On the Deque and Rique Numbers of Complete and Complete Bipartite Graphs

Michael A. Bekos, Michael Kaufmann, Maria Eleni Pavlidi, Xenia Rieger

Linear Layouts Introduction and Example

• Undirected graph G(V, E)

- Undirected graph G(V, E)
- Linear order of V

- Undirected graph G(V, E)
- Linear order of V
- Partition of *E* into pages

- Undirected graph G(V, E)
- Linear order of V
- Partition of *E* into pages

• page assignment depends on data structure D

- Edges of each page P are processed by a data structure D
- Originally: Stack

- Edges of each page P are processed by a data structure D
- Originally: Stack

- Edges of each page P are processed by a data structure D
- Originally: Stack

- Edges of each page P are processed by a data structure D
- Originally: Stack

- Edges of each page P are processed by a data structure D
- Originally: Stack

• Goal: *D***-Number** of Graphs

Data Structures

Introduction and Research

Data structures: Introduction

Data structures: Forbidden Patterns

Stack

Queue

Rique

Bekos et al. (2022)

Deque

Spanning subgraphs of planar graphs with a Hamiltonian path

Auer et al. (2018)

Contribution

Computation of Deque Layouts

Fundamental Polygon Representation

Auer et al. (2018)

Computation of Linear Layouts: Variables

Original Variables

(*i*)
$$\sigma(u, v) \Leftrightarrow u \prec v$$

(*ii*) $\phi_p(e) \Leftrightarrow e$ is assigned to page p
(*iii*) $\chi(e, e) \Leftrightarrow e$ and e' are assigned to the same page

Addition for Deque-Support

 $\tau_p(e, x) with x \in \{hh, tt, th, ht\} \\ \Leftrightarrow the type of edge e at page \rho is x$

Computation of Linear Layouts: Runtime

Comparison of runtimes of the computation of Rique layouts.

Runtimes of (a)satisfiable instances of K_7 to K_{14} (Rique-Number) (b)unsatisfiable instances of K_7 to K_{11} (Rique-Number – 1).

Deque-Like

Complete Graphs

$$DEQ(K_n) = \begin{bmatrix} n \\ 4 \end{bmatrix}$$

$$RIQ(K_n) \le \left\lfloor \frac{n-1}{3} \right\rfloor$$

Theorem 2

Theorem 4

Deque-Number of Complete Graphs

Edge count: A graph with n vertices admitting a deque layout with k pages has at most 2kn - 5k + n - 1 edges.

Each deque page is a planar graph $\Rightarrow 3n - 6$ edges per page Spine edges $\Rightarrow 2n - 5$ non-spine edges per page $\Rightarrow (2n - 5)k + n - 1$

Deque-Number of Complete Graphs

Lower Bound: Edge count

$$2kn - 5k + n - 1 \ge \frac{n^2 - n}{2}$$

$$k(2n - 5) \ge \frac{n^2 - n - 2n + 2}{2}$$

$$k \ge \frac{n^2 - 3n + 2}{4n - 10} \text{ for } n \ge 3$$

Upper Bound $S(K_n) = \left\lceil \frac{n}{2} \right\rceil$

Bernhart, P. C. Kainen (1979)

$$\Rightarrow DEQ(K_n) \leq \left[\frac{n}{4}\right]$$

Lemma:
$$\left[\frac{n^2 - 3n + 2}{4n - 10}\right] = \left[\frac{n}{4}\right]$$

Rique-Number of Complete Graphs

Known upper bound

Improved upper bound

$$RIQ(K_n) \leq \left[\frac{n}{3}\right]$$

$$RIQ(K_n) \le \left\lfloor \frac{n-1}{3} \right\rfloor$$

Bekos et al. (2022)

Complete Bipartite Graphs

$$DEQ(K_{n,n}) \leq \left[\frac{n}{3}\right] \qquad RIQ(K_{n,n}) \leq \left[\frac{n-1}{2}\right] - 1$$

Open Problems

Deque-Number of Complete Bipartite Graphs: Computational Results

Graph	K _{4,4}	<i>K</i> _{5,5}	<i>K</i> _{6,6}	<i>K</i> _{7,7}	K _{8,8}	K _{9,9}
Deque-Number	2	2	2	3	3	3
Stack-Number	4	4	5	6	6	7

Are Deque Layouts more powerful than Double Stack Layouts for Complete Bipartite Graphs?

Open Problems

- Rique-Number for Planar Graphs
- Exact Deque-Number of Complete Bipartite Graphs and exact Rique-Numbers
- Study of Monotone Deque
- Comparison of the Data Structures and study of other Graph Classes, e.g., k-trees or bipartite graphs
- Improve computation

Questions