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Convex Hull Approximation

� Given a set P of n points in the plane, the convex hull C(P) is one
the most fundamental objects in computational geometry.

� C(P) might contain many points, thus natural to consider finding a

smaller subset Q ⊆ P such that C(Q) ≈ C(P).
� We will measure similarity using the Hausdorff distance between

C(Q) and C(P), which we denote DH(Q,P).

� Since Q ⊆ P, and C(Q), C(P) convex, one can argue

DH(Q,P) = maxp∈P ||p − C(Q)||.
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Problem Variants

MinCardin

Given a set P ⊂ R2 of n points, and a value τ > 0, find the smallest

cardinality subset Q ⊆ P such that DH(Q,P) ≤ τ .

k⋆ = k⋆(P, τ) = minQ⊆P:DH (Q,P)≤τ |Q| is the min cardinality of cost τ .

MinDist

Given a set P ⊂ R2 of n points, and an integer k, find the subset

Q ⊆ P that minimizes DH(Q,P) subject to |Q| ≤ k .

τ⋆ = τ⋆(P, k) = minQ⊆P:|Q|=k DH(Q,P) is the optimal radius for k.

MinCardin and MinDist are polynomial time solvable and are dual. A

solution to one can be used to search for the solution to the other.

Naively the solutions and searching are at least cubic time.
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Prior Work

� [KR21] For points in convex position, O(n log2(n)) time for

MinCardin and O(cn log3(n)) w.h.p. for MinDist. For arbitrary

position, by reducing to unweighted APSP, O(n2.5302) time for both.

� Remark: Beating APSP time non-trivial. Must exploit geometry.

� [AH23] Most relevant result, O(k⋆n log n) time for MinCardin.

� Natural question: Can one get a similar improvement for MinDist.
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� Remark: Beating APSP time non-trivial. Must exploit geometry.

� [AH23] Most relevant result, O(k⋆n log n) time for MinCardin.

� Natural question: Can one get a similar improvement for MinDist.

Many other prior works on approximating the convex hull, though those

works generally do not compute the optimal approximation, or give cubic

time algorithms for Hausdorff or other related measures.
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Decision Procedure

High level idea: solve MinDist, by searching using decider for MinCardin.

Theorem ([AH23])

Given an instance P, k of MinDist and a value τ . Let τ⋆ = τ⋆(P, k).

There is a procedure decider(P, k, τ), that in O(nk log n) time returns

1. τ = τ⋆,

2. τ < τ⋆, or

3. τ > τ⋆ and a set Q where |Q| ≤ k and DH(Q,P) ≤ τ

Note the result in [AH23] is actually for MinCardin, but with some

massaging it yields the above decider.
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Canonical Set of Values

� Given an instance P, k of MinDist, the optimal value τ⋆ is the

distance of the point p ∈ P furthest from C(Q⋆).

� p projects onto some edge ab of C(Q⋆), either at a, b, or the interior.

� Thus τ⋆ is either the distance from p to another point in P, or the

distance from p to the line ℓa,b for some pair a, b ∈ P.

� Let Pa,b be subset of P left of ℓa,b. Can argue if τ⋆ is the distance

to ℓa,b, then p is point from Pa,b furthest from ℓa,b.

� Thus τ⋆ ∈ V ∪ L, where

V =
{
||x − y ||

∣∣ x , y ∈ P
}

and L =

{
max
p∈Pa,b

d(p, ℓa,b)

∣∣∣∣ a, b ∈ P

}
.
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Searching

� Let extremal(ℓa,b) = maxp∈Pa,b
d(p, ℓa,b). If one precomputes C(P),

extremal(ℓa,b) takes O(log n) time by binary searching.

� |V ∪ L| = O(n2), and takes O(n2 log n) time to explicitly compute.

� Gives O(n2 log n + nk log2 n) using the O(nk log n) time decider.

� Our goal is to beat quadratic time for small k.

� Use decider to binary search over V using [CZ21].

� If τ⋆ ∈ V, then we will find τ⋆ and terminate.

� Otherwise, returns value r ,R ∈ V such that τ⋆ ∈ (r ,R).

� Takes O((n4/3 + nk log n) log n) time w.h.p.
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Stage 2

� After Stage I, we can now focus on L.

� Sample a set S of Θ(n3/2 log n) values from L. Let U = S ∩ (r ,R).

� Binary search over U, again using decider.

� Again produces an interval (r ′,R ′) such that τ⋆ ∈ (r ′,R ′).

� Can argue that w.h.p. (r ′,R ′) ∩ L = O(
√
n). (similar to [HR14]).

� The problem is we do not have direct access to the set (r ′,R ′) ∩ L.
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Stage 3

� We know τ⋆ ∈ (r ′,R ′). Since R ′ > τ⋆, decider(P, k,R ′) returns a

set Q where |Q| ≤ k and DH(Q,P) ≤ R ′.

� Let α = DH(Q,P). If α < R ′, check if τ⋆ = α, and if not then

τ⋆ ∈ (r ′, α) and we restart stage 3 with this interval.

� Assume α = R ′. We know τ⋆ < α, thus τ⋆ < α− ε for an

infinitesimal ε. Thus decider(P, k, α− ε) returns a set Q ′ such that

|Q ′| ≤ k and β = DH(Q
′,P) < α.

� Check if β = τ⋆, and if not then τ⋆ ∈ (r ′, β) and so repeat stage 3

on the interval.

� This open interval doesn’t contain β and so has fewer values from L.
� Thus in total Stage 3 runs for O(

√
n) rounds, each of which costs

O(nk log n) time as this is the time for decider
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Total Time

� Stage I: O((n4/3 + nk log n) log n)

� Stage II: O((n3/2 log n + nk log n) log n)

� Stage III: O(n3/2k log n)

� Total Time: O(n3/2(k + log n) log n)

� Optimizing the L sample size can improve the time to:

O
(
n3/2

√
k log3/2 n + kn log2 n

)
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Main Result

The MinDist problem can be solved in O
(
n3/2

√
k log3/2 n + kn log2 n

)
time with high probability.
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