Overlapping of Lattice Unfolding for Cuboids

CCCG 2023

- □ Takumi SHIOTA†, Tonan KAMATA‡,
 Ryuhei UEHARA‡
 - † Kyushu Institute of Technology, Japan
 - [‡] Japan Advanced Institute of Science and Technology, Japan

August 2, 2023

Let's consider unfolding a cuboid into a polyomino.

[Note] A *polyomino* is a polygon made by connecting multiple squares along their edges.

Let's call this type of polyomino "Lattice unfolding".

Let's consider unfolding a cuboid into a polyomino.

[Note] A *polyomino* is a polygon made by connecting multiple squares along their edges.

We call this type of unfolding "Vertices-in-touch unfolding".

Let's consider unfolding a cuboid into a polyomino.

[Note] A *polyomino* is a polygon made by connecting multiple squares along their edges.

We call this type of unfolding "Edges-in-touch unfolding".

Let's consider unfolding a cuboid into a polyomino.

[Note] A *polyomino* is a polygon made by connecting multiple squares along their edges.

- We call this type of unfolding "Faces-in-touch unfolding".
- Please look at the distributed 3D models.

Background and our results

- **V** Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

Background and our results

- **V** Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

Lattice cubes

Definition 1

Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.

The square lattice

Lattice cubes

Definition 1

Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.

The square lattice

Lattice cubes

Definition 1

Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.

- I. Choose a point O(0,0) on the square lattice.
- II. Let the coordinates of point A be (a, 0) and B be (0, b) $(a \in \mathbb{N}, b \in \mathbb{N}^+, a \ge b)$.
- III. Let $L = |AB| = \sqrt{a^2 + b^2}$ be the length of one edge of a lattice cube.

- I. Choose a point O(0,0) on the square lattice.
- II. Let the coordinates of point A be (a, 0) and B be (0, b) $(a \in \mathbb{N}, b \in \mathbb{N}^+, a \ge b)$.
- III. Let $L = |AB| = \sqrt{a^2 + b^2}$ be the length of one edge of a lattice cube.

- I. Choose a point O(0,0) on the square lattice.
- II. Let the coordinates of point A be (a, 0) and B be (0, b) $(a \in \mathbb{N}, b \in \mathbb{N}^+, a \ge b)$.
- III. Let $L = |AB| = \sqrt{a^2 + b^2}$ be the length of one edge of a lattice cube.

- I. Choose a point O(0,0) on the square lattice.
- II. Let the coordinates of point A be (a, 0) and B be (0, b) $(a \in \mathbb{N}, b \in \mathbb{N}^+, a \ge b)$.
- III. Let $L = |AB| = \sqrt{a^2 + b^2}$ be the length of one edge of a lattice cube.

The side length of a cube

List of lattice cubes

а	1	1	2	2	2	3	•••
b	0	1	0	1	2	0	•••
L	1	$\sqrt{2}$	2	$\sqrt{5}$	$2\sqrt{2}$	3	
L×L square							•••
<i>L×L×L</i> cube							•••

Lattice cuboids

Definition 2

A cuboid made by connecting multiple lattice cubes is called a lattice cuboid. (Note: Lattice cubes ⊂ Lattice cuboids)

The three side lengths of a cuboid

Let L' be the length of one edge of a lattice cube.

$$L' = \sqrt{a^2 + b^2} \ (a \in \mathbb{N}^+, b \in \mathbb{N}, a \ge b, \gcd(a, b) = 1)$$

Denote the lattice cuboid as "(xL', yL', zL')-cuboid".

$$(x, y, z \in \mathbb{N}, x \le y \le z)$$

The three side lengths of a cuboid

List of lattice cuboids

Lattice unfolding for cuboids

Definition 3

A lattice unfolding is a polygon obtained by cutting the face of the cuboid along the edges of unit squares.

Lattice unfolding for cuboids

Definition 3

A lattice unfolding is a polygon obtained by cutting the face of the cuboid along the edges of unit squares.

Cut along the edges of unit squares and unfold it flat.

The lattice cuboid

(Note)

Dotted lines ---- are folding lines (No cut)

Background and our results

- **V** | Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

Lattice unfolding Q_1

 $(2\sqrt{2}, 2\sqrt{2}, 3\sqrt{2})$ -cuboid

Lattice unfolding Q_1

 $(x\sqrt{2}, y\sqrt{2}, z\sqrt{2})$ -cuboid $(x \ge 2, y \ge 2, z \ge 3)$

 $(2\sqrt{2}, 2\sqrt{2}, 3\sqrt{2})$ -cuboid

Lattice unfolding Q_1

 $(x\sqrt{2}, y\sqrt{2}, z\sqrt{2})$ -cuboid $(x \ge 2, y \ge 2, z \ge 3)$

[Note]
$$L' = \sqrt{a^2 + b^2}$$

 $(a \in \mathbb{N}^+, b \in \mathbb{N}, a \ge b)$

 $(\sqrt{2}, \sqrt{2}, 2\sqrt{2})$ -cuboid

 $(\sqrt{5}, \sqrt{5}, \sqrt{5})$ -cuboid

 $(\sqrt{10}, \sqrt{10}, \sqrt{10})$ -cuboid

 $(\sqrt{5}, \sqrt{5}, \sqrt{5})$ -cuboid

 $(\sqrt{2}, \sqrt{2}, 2\sqrt{2})$ -cuboid

 $(\sqrt{10}, \sqrt{10}, \sqrt{10})$ -cuboid

Background and our results

- V Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

Gadgets for Faces-in-touch unfolding

Lattice unfolding Q_1

[Except]

(1,1,z)-cuboid $(z \ge 3)$

[T.Uno, 2008]

Background and our results

- V Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

Gadgets for Edges-in-touch unfolding

Lattice unfolding Q_2

[Except]

(1,1,z)-cuboid $(z \ge 3)$

Lattice unfolding Q_1

Background and our results

- V Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

- **V** Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

- **V** | Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

- V Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

- **V** | Vertices-in-touch
- **E** | Edges-in-touch
- F Faces-in-touch

- V Vertices-in-touch
- **E** Edges-in-touch
- F Faces-in-touch

- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.

- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.

- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.

- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.

- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.

- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.

Rotational Unfolding [T. Shiota et al., 2023]

- Enumerating the path between any two faces by rolling a polyhedron.
- Checking the overlap of both end-faces of a path.

Q. Why only check the overlap of both end-faces in the path?

Lemma 1 [T. Shiota et al., 2023]

The path in the edge unfolding that connects two faces is one of the paths enumerated by rotational unfolding.

Check all combinations of faces [T. Horiyama and W. Shoji, 2011]

Lemma 1 [T. Shiota et al., 2023]

The path in the edge unfolding that connects two faces is one of the paths enumerated by rotational unfolding.

In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0,0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.

[Note] The length of one side of the cuboid is 1.

In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0,0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.

[Note] The length of one side of the cuboid is 1.

In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0,0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.

[Note] The length of one side of the cuboid is 1.

In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0,0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.

[Note] The length of one side of the cuboid is 1.

In rotational unfolding, we check for overlaps with each roll.

- 1. Set the center coordinates of one endpoint of the path to (x, y) = (0,0).
- 2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.

[Note] The length of one side of the cuboid is 1.

The center coordinates of the other endpoint of the path are...

- $\blacksquare (0,0)$
 - → Faces-in-touch

■ (0,1), (-1,0), (0,-1)→ Edges-in-touch

Edges-in-touch

→ Vertices-in-touch

Vertices-in-touch

- **V** | Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

- **V** Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

Background and our results

- **V** Vertices-in-touch
- **E** | Edges-in-touch
- F | Faces-in-touch

Future work: Clarify the existence of overlapping unfolding for "tetrahedron" or "octahedron" that can be constructed from the triangular lattice.

