Overlapping of Lattice Unfolding for Cuboids

CCCG 2023
© Takumi SHIOTA ${ }^{\dagger}$, Tonan KAMATA ${ }^{\ddagger}$,
Ryuhei UEHARA
\dagger Kyushu Institute of Technology, Japan
\ddagger Japan Advanced Institute of
Science and Technology, Japan
August 2, 2023

Overlapping of lattice unfolding

Let's consider unfolding a cuboid into a polyomino.
[Note] A polyomino is a polygon made by connecting multiple squares along their edges.

> Let's call this type of polyomino "Lattice unfolding".

Overlapping of lattice unfolding

Let's consider unfolding a cuboid into a polyomino.
[Note] A polyomino is a polygon made by connecting multiple squares along their edges.

$>$ We call this type of unfolding "Vertices-in-touch unfolding".

Overlapping of lattice unfolding

Let's consider unfolding a cuboid into a polyomino.
[Note] A polyomino is a polygon made by connecting multiple squares along their edges.

$>$ We call this type of unfolding "Edges-in-touch unfolding".

Overlapping of lattice unfolding

Let's consider unfolding a cuboid into a polyomino.
[Note] A polyomino is a polygon made by connecting multiple squares along their edges.

$>$ We call this type of unfolding
 "Faces-in-touch unfolding".
$>$ Please look at the distributed 3D models.

$\dagger 1$: [R. Hearn, 2018] $\dagger 2:[\mathrm{H}$. Sugiura, 2018]	V	Vertices-in-touch
OUnd and our results	E	Edges-in-touch
	F	Faces-in-touch

Lattice cubes

Definition 1

Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.

The square lattice

Lattice cubes

Definition 1

Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.

The square lattice

Lattice cubes

Definition 1

Choose two points on a square lattice and construct a square with these two points as one side. The cuboid assembled with this square as one face is called a lattice cube.

The square lattice

The lattice cube

The length of one edge of a cube

We assume a square lattice of unit length (=1).
I. Choose a point $O(0,0)$ on the square lattice.
II. Let the coordinates of point A be $(a, 0)$ and B be $(0, b)$ $\left(\mathrm{a} \in \mathbb{N}, \mathrm{b} \in \mathbb{N}^{+}, \mathrm{a} \geq \mathrm{b}\right)$.
III. Let $L=|A B|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$ be the length of one edge of a lattice cube.

The length of one edge of a cube

We assume a square lattice of unit length (=1).
I. Choose a point $O(0,0)$ on the square lattice.
II. Let the coordinates of point A be $(a, 0)$ and B be $(0, b)$ $\left(\mathrm{a} \in \mathbb{N}, \mathrm{b} \in \mathbb{N}^{+}, \mathrm{a} \geq \mathrm{b}\right)$.
III. Let $L=|A B|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$ be the length of one edge of a lattice cube.

The length of one edge of a cube

We assume a square lattice of unit length (=1).
I. Choose a point $O(0,0)$ on the square lattice.
II. Let the coordinates of point A be $(a, 0)$ and B be $(0, b)$ $\left(\mathrm{a} \in \mathbb{N}, \mathrm{b} \in \mathbb{N}^{+}, \mathrm{a} \geq \mathrm{b}\right)$.
III. Let $L=|A B|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$ be the length of one edge of a lattice cube.

The length of one edge of a cube

We assume a square lattice of unit length (=1).
I. Choose a point $O(0,0)$ on the square lattice.
II. Let the coordinates of point A be $(a, 0)$ and B be $(0, b)$ $\left(\mathrm{a} \in \mathbb{N}, \mathrm{b} \in \mathbb{N}^{+}, \mathrm{a} \geq \mathrm{b}\right)$.
III. Let $L=|A B|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$ be the length of one edge of a lattice cube.

The side length of a cube

List of lattice cubes

\boldsymbol{a}	1	1	2	2	2	3	\cdots
\boldsymbol{b}	0	1	0	1	2	0	\cdots
\boldsymbol{L}	1	$\sqrt{2}$	2	$\sqrt{5}$	$2 \sqrt{2}$	3	\cdots
$\boldsymbol{L} \times \boldsymbol{L}$							
square							

Lattice cuboids

Definition 2

A cuboid made by connecting multiple lattice cubes is called a lattice cuboid. (Note: Lattice cubes \subset Lattice cuboids)

The lattice cuboid

The three side lengths of a cuboid

Let L^{\prime} be the length of one edge of a lattice cube.

$$
L^{\prime}=\sqrt{a^{2}+b^{2}}\left(a \in \mathbb{N}^{+}, b \in \mathbb{N}, a \geq b, \operatorname{gcd}(a, b)=1\right)
$$

Denote the lattice cuboid as " $\left(x L^{\prime}, y L^{\prime}, z L^{\prime}\right)$-cuboid".

$$
(x, y, z \in \mathbb{N}, x \leq y \leq z)
$$

The three side lengths of a cuboid

List of lattice cuboids

(x, y, z)

		（1，1，1）	$(1,1,2)$	$(1,2,2)$	（2，2，2）	$(1,1,3)$	$(1,2,3)$	$(2,2,3)$	$(2,3,3)$	（3，3，3）	
\because	$\left\|\begin{array}{l} a \\ 0 \end{array}\right\|$			ITI	π	TIT	侕	田	壮		
$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\underset{E}{E}$	X	＊	＊＊＊		－	＊	多	多	为	
$\left\lvert\, \begin{array}{\|c\|} * \\ \hline \end{array}\right.$	a	7	＊	\％		\％	－	\|			
E		：					：	：		：	：

Lattice unfolding for cuboids

Definition 3

A lattice unfolding is a polygon obtained by cutting the face of the cuboid along the edges of unit squares.

The lattice cuboid
Cut along the edges of unit squares and unfold it flat.

Lattice unfolding for cuboids

Definition 3

A lattice unfolding is a polygon obtained by cutting the face of the cuboid along the edges of unit squares.

Cut along the edges of unit squares and unfold it flat.

The lattice cuboid

(Note)

Dotted lines ----- are folding lines (No cut)

$\dagger 1:[$ R. Hearn, 2018] $\dagger 2:[H$. Sugiura, 2018] $\quad \mathrm{v}$ Vertices-in-touch

Background and our results

Technique to show the existence

$(2 \sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2})$-cuboid

Lattice unfolding Q_{1}

Technique to show the existence

$(2 \sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2})$-cuboid

Lattice unfolding Q_{1}

$$
(x \sqrt{2}, y \sqrt{2}, z \sqrt{2}) \text {-cuboid }(x \geq 2, y \geq 2, z \geq 3)
$$

Technique to show the existence

$(2 \sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2})$-cuboid

Lattice unfolding Q_{1}

Embed

$$
(x \sqrt{2}, y \sqrt{2}, z \sqrt{2}) \text {-cuboid }(x \geq 2, y \geq 2, z \geq 3)
$$

Technique to show the existence

$(2 \sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2})$-cuboid

Lattice unfolding Q_{1}
Embed

$$
(x \sqrt{2}, y \sqrt{2}, z \sqrt{2}) \text {-cuboid }(x \geq 2, y \geq 2, z \geq 3)
$$

Technique to show the existence

Lattice unfolding Q_{1}

Technique to show the existence

Technique to show the existence

($L^{\prime}, L^{\prime}, L^{\prime}$)-cuboid ($L^{\prime} \geq \sqrt{13}$)

Technique to show the existence

Fold

Lattice unfolding Q_{1}

$$
[\text { Note }] L^{\prime}=\sqrt{a^{2}+b^{2}}
$$

$$
\left(a \in \mathbb{N}^{+}, b \in \mathbb{N}, a \geq b\right)
$$

($L^{\prime}, L^{\prime}, L^{\prime}$)-cuboid ($L^{\prime} \geq \sqrt{13}$)

Technique to show the existence

For $\left(x L^{\prime}, y L^{\prime}, z L^{\prime}\right)$-cuboid ($L^{\prime}<\sqrt{13}$) Embed

Lattice unfolding Q_{1}

[J. Mitani et al., 2008]

$(\sqrt{5}, 2 \sqrt{5}, 2 \sqrt{5})$-cuboid

$(2 \sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2})$-cuboid

$(\sqrt{10}, \sqrt{10}, 2 \sqrt{10})$-cuboid

Technique to show the existence

For $\left(x L^{\prime}, y L^{\prime}, z L^{\prime}\right)$-cuboid $\left(L^{\prime}<\sqrt{13}\right)$ Embed

Lattice unfolding Q_{1}

[J. Mitani et al., 2008]

$(\sqrt{5}, 2 \sqrt{5}, 2 \sqrt{5})$-cuboid

$(2 \sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2})$-cuboid

$(\sqrt{10}, \sqrt{10}, 2 \sqrt{10})$-cuboid

$(\sqrt{2}, \sqrt{2}, 2 \sqrt{2})$-cuboid

$(\sqrt{5}, \sqrt{5}, \sqrt{5})$-cuboid

$(\sqrt{10}, \sqrt{10}, \sqrt{10})$-cuboid

Technique to show the existence

For $\left(x L^{\prime}, y L^{\prime}, z L^{\prime}\right)$-cuboid $\left(L^{\prime}<\sqrt{13}\right)$ Embed

Lattice unfolding Q_{1}

[J. Mitani et al., 2008]

$(\sqrt{5}, 2 \sqrt{5}, 2 \sqrt{5})$-cuboid

$(2 \sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2})$-cuboid

$(\sqrt{10}, \sqrt{10}, 2 \sqrt{10})$-cuboid

$(\sqrt{2}, \sqrt{2}, 2 \sqrt{2})$-cuboid

$(\sqrt{5}, \sqrt{5}, \sqrt{5})$-cuboid

$(\sqrt{10}, \sqrt{10}, \sqrt{10})$-cuboid

Background and our results

Gadgets for Faces-in-touch unfolding

Lattice unfolding Q_{1}

[Except]

(1,1,z)-cuboid $(z \geq 3)$

[T.Uno, 2008]

Background and our results

Gadgets for Edges-in-touch unfolding

Lattice unfolding Q_{2}

[Except]

(1,1,z)-cuboid ($z \geq 3$)

Lattice unfolding Q_{1}
$\dagger 1:[$ R. Hearn, 2018] $\dagger 2:[H$. Sugiura, 2018] v Vertices-in-touch

Background and our results

E Edges-in-touch
Faces-in-touch

$\dagger 1$: [R. Hearn, 2018] $\dagger 2:[\mathrm{H}$. Sugiura, 2018]	V	Vertices-in-touch
OUnd and our results	E	Edges-in-touch
	F	Faces-in-touch

$\dagger 1:[$ R. Hearn, 2018] $\dagger 2:[H$. Sugiura, 2018] v Vertices-in-touch

Background and our results

Edges-in-touch

Faces-in-touch

$\dagger 1:[$ R. Hearn, 2018] $\dagger 2:[H$. Sugiura, 2018] v Vertices-in-touch

Background and our results

Edges-in-touch

Faces-in-touch

Background and our results

Edges-in-touch
Faces-in-touch

\section*{$\dagger 1:[R$. Hearn, 2018] $\dagger 2:[H$. Sugiura, 2018]
 Background and our results
 | V | Vertices-in-touch |
| :---: | :--- |
| E | Edges-in-touch |
| F | Faces-in-touch |}

To check the overlap more efficiently ...
We expand and use Rotational Unfolding [T. Shiota et al., 2023]

Technique to show the non-existence

Rotational Unfolding [T. Shiota et al., 2023]
$>$ Enumerating the path between any two faces by rolling a polyhedron.
$>$ Checking the overlap of both end-faces of a path.

\square

Technique to show the non-existence

Rotational Unfolding [T. Shiota et al., 2023]
$>$ Enumerating the path between any two faces by rolling a polyhedron.
$>$ Checking the overlap of both end-faces of a path.

Technique to show the non-existence

Rotational Unfolding [T. Shiota et al., 2023]
$>$ Enumerating the path between any two faces by rolling a polyhedron.
$>$ Checking the overlap of both end-faces of a path.

Technique to show the non-existence Δ

Rotational Unfolding [T. Shiota et al., 2023]

$>$ Enumerating the path between any two faces by rolling a polyhedron.
$>$ Checking the overlap of both end-faces of a path.

Technique to show the non-existence

Rotational Unfolding [T. Shiota et al., 2023]
$>$ Enumerating the path between any two faces by rolling a polyhedron.
$>$ Checking the overlap of both end-faces of a path.

Technique to show the non-existence

Rotational Unfolding [T. Shiota et al., 2023]
$>$ Enumerating the path between any two faces by rolling a polyhedron.
$>$ Checking the overlap of both end-faces of a path.

Plane

Technique to show the non-existence

Rotational Unfolding [T. Shiota et al., 2023]
$>$ Enumerating the path between any two faces by rolling a polyhedron.
$>$ Checking the overlap of both end-faces of a path.

Plane
Q. Why only check the overlap of both end-faces in the path?

Technique to show the non-existence

Lemma 1 [T. Shiota et al., 2023]

The path in the edge unfolding that connects two faces is one of the paths enumerated by rotational unfolding.

$$
{ }_{6} C_{2}=15 \text { ways }
$$

Check all combinations of faces [T. Horiyama and W. Shoji, 2011]

6 ways
Rotational unfolding

Technique to show the non-existence

Lemma 1 [T. Shiota et al., 2023]

The path in the edge unfolding that connects two faces is one of the paths enumerated by rotational unfolding.

Only check both end-faces in the path. \Rightarrow The other pair of faces is already checked.

$$
{ }_{6} C_{2}=15 \text { ways }
$$

Check all combinations of faces [T. Horiyama and W. Shoji, 2011]

6 ways
Rotational unfolding

Overlap check in lattice unfoldings

In rotational unfolding, we check for overlaps with each roll.

1. Set the center coordinates of one endpoint of the path to $(x, y)=(0,0)$.
2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
[Note] The length of one side of the cuboid is 1.

The computation process for the other endpoint's coordinates

Overlap check in lattice unfoldings

In rotational unfolding, we check for overlaps with each roll.

1. Set the center coordinates of one endpoint of the path to $(x, y)=(0,0)$.
2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
[Note] The length of one side of the cuboid is 1 .

The computation process for the other endpoint's coordinates

Overlap check in lattice unfoldings

In rotational unfolding, we check for overlaps with each roll.

1. Set the center coordinates of one endpoint of the path to $(x, y)=(0,0)$.
2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
[Note] The length of one side of the cuboid is 1.

The computation process for the other endpoint's coordinates

Overlap check in lattice unfoldings

In rotational unfolding, we check for overlaps with each roll.

1. Set the center coordinates of one endpoint of the path to $(x, y)=(0,0)$.
2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
[Note] The length of one side of the cuboid is 1.

The computation process for the other endpoint's coordinates

Overlap check in lattice unfoldings

In rotational unfolding, we check for overlaps with each roll.

1. Set the center coordinates of one endpoint of the path to $(x, y)=(0,0)$.
2. While rolling the cuboid, sequentially compute the center coordinates of the other endpoint.
[Note] The length of one side of the cuboid is 1.

The computation process for the other endpoint's coordinates

Overlap check in lattice unfoldings

The center coordinates of the other endpoint of the path are...

- $(0,0)$
\rightarrow Faces-in-touch
- (0,1), $(-1,0),(0,-1)$
\rightarrow Edges-in-touch

Faces-in-touch Edges-in-touch
$\square(1,1),(1,-1),(-1,-1),(-1,1)$ \rightarrow Vertices-in-touch

Vertices-in-touch
$\dagger 1:[$ R. Hearn, 2018] $\dagger 2:[H$. Sugiura, 2018] v Vertices-in-touch

Background and our results

Edges-in-touch

Faces-in-touch

,		Vertices-in-touch
	E	Edges-in-touch
		Faces-in-touch

Future work: Clarify the existence of overlapping unfolding for "tetrahedron" or "octahedron" that can be constructed from the triangular lattice.

Tetrahedron

