
Convex Hulls and Triangulations of Planar Point
Sets on the Congested Clique

Jesper Jansson Christos Levcopoulos Andrzej Lingas
Kyoto University Lund University Lund University

CCCG 2023
Montreal, Quebec, Canada

Congested Clique Model

The model of congested clique focuses on the communication cost
and ignores that of local computation (Lotker et al., 2003)

Originally, it has been applied to dense graph problems. The n nodes
of a clique network one-to-one correspond to vertices of the input
graph and have information about the neighborhood of the
corresponding vertex initially. In each round, each node can:

1. send an O(log n) bit message to each other node, the messages to
different nodes can be different;

2. receive an O(log n) bit message from each other node;

3. perform unlimited local computations on own data.

The objective is to minimize the number of rounds.

1

Congested Clique Network

nO(log)

n

O(log)

n

O(log)

Unlimited

computation

Figure 1: An example of congested clique network, each node is sup-
posed to hold a distinct piece of the input initially.

2

Congested Clique Model 2

For several dense graph problems, e.g., minimum spanning tree,
round efficient, often even O(1)-round algorithms have been designed
in this model (Robinson, 2022).
One has also designed round efficient algorithms for matrix
multiplication (Censor-Hillel et al., 2015), sorting and routing
(Lenzen, 2013) in this model. E.g., in case of sorting, one assumes
that each of the n nodes initially stores a distinct batch of n O(log n)
bit keys. The target is to sort the n2 keys.
We extend this approach to include geometric problems on sets of n2

points with O(log n) bit coordinates in the Euclidean plane. Thus,
each node holds initially a batch of n points with O(log n) bit
coordinates in the plane. The target is to compute the convex hull or
a triangulation, or the Voronoi diagram of the set S of n2 points.

3

Our Contributions

Input: A set S of n2 points with O(log n) bit coordinates, each node
holds a batch of n input points.

• An implementation of Quick Convex Hull for S on congested
clique in O(h) rounds, where h is the size of the convex hull of S.

• A refined algorithm for the convex hull of S on congested clique
running in O(log n) rounds.

• An algorithm for a triangulation of S running in O(log2 n)
rounds.

4

Quick Convex Hull on Congested Clique

1. Sort the n2 points in S by their x-coordinates so each node
receives a subsequence consisting of n consecutive points in S.

2. Each node sends the first point and the last point in its
subsequence to the other nodes.

3. Each node computes the same points pmax of the maximum
x-coordinate and pmin of the minimum x-coordinate in S. Next,
it decomposes its sorted subsequence into the upper subsequence
over (pmax, pmin) and the lower one below (pmax, pmin).

4. QuickUpperHull(pmin, pmax)

5. QuickLowerHull(pmin, pmax)

6. Rearrange the output by using round efficient routing.

5

procedure QuickUpperHull(p, r)

• Each node u determines the set Su of points in its upper
subsequence that have x-coordinates between those of p and r

and lie above or on (p, r). If Su 6= ∅ the node sends a point in Su

with the largest y-coordinate to the node holding p (master).

• If the master hasn’t received any point sent in Step 1 then it
proclaims p, r to be vertices of the upper hull. Next, it pops a
call of QuickUpperHull from the top of a stack of recursive calls.
If the stack is empty it terminates QuickUpperHull(pmin, pmax).

• If the master has received some points sent in Step 1 than it
picks a point q of maximum y-coordinate among them. Next, it
activates QuickUpperHull(p, q) and puts QuickUpperHull(q, r)
on the top of the stack.

6

The idea of QuickUpperHull(p, r)

p

q r

Figure 2: The point q of largest y coordinate between the points
p and r is selected in order to call QuickUpperHull(p, q) and
QuickUpperHull(q, r).

7

Time Analysis of Quick Convex Hull on Congested Clique

The procedure QuickLowerHull(p, r) is defined analogously.
Each step of Quick Convex Hull but for QuickUpperHull(pmin, pmax)
and QuickLowerHull(pmin, pmax) can be done in O(1) rounds on the
congested n-clique. In particular, the sorting and routing can be
done in O(1) rounds by the results of Lenzen. Similarly, each step of
QuickUpperHull(p, r) and QuickLowerHull(p, r), but for recursive
calls, can be done in O(1) rounds. Since each non-leaf call of
QuickUpperHull(p, r) and QuickLowerHull(p, r) results in a new
vertex of the convex hull, their total number does not exceed the
number h of vertices on the convex hull of S.

Theorem 1 The convex hull of the set S of n2 points can be
computed in O(h) rounds on the congested n-clique.

8

An O(log n)-round Algorithm for Convex Hull

The algorithm uses refined procedures for Upper Hull and Lower
Hull, NewUpperHull(S), NewLowerHull(S), respectively.

The procedure NewUpperHull(S) lets each node ` construct the
upper hull H` of its batch of at most n points in the upper-hull
subsequence locally.

The crucial step of NewUpperHull(S) is a parallel computation of
bridges between all pairs H`, Hm, ` 6= m, of the constructed upper
hulls by parallel calls to the procedure Bridge(H`, Hm).

Based on the bridges between H` and the other upper hulls Hm, each
node ` can determine which of the vertices of H` belong to the upper
hull of S (see Lemma 1).

9

Bridges

S
1

S
2

Figure 3: An example of the bridge between the upper hulls of S1 and
S2.

10

Lemma 1

Lemma 1 For ` ∈ [n], let H` be the upper hull of the upper-hull
subsequence of S assigned to the node `. A vertex v of H` is not a
vertex of the upper hull of S if and only if it lies below a bridge
between H` and Hm, where ` 6= m, or there are two bridges between
H` and Hs, Ht, respectively, where s < ` < t, such that they touch v

and form an angle of less than 180 degrees at v.

11

Illustration to Lemma 1

H
s

H
t

b
s

b
t

H
l

v

e

Figure 4: The final case in Lemma 1.

12

Lemma 2

The recursive procedure Bridge is based on the following folklore
lemma.

Lemma 2 Let S1, S2 be two n-point sets in the Euclidean plane
separated by a vertical line. Let H1, H2 be the upper hulls of S1, S2,

respectively. Suppose that each of H1 and H2 has at least three
vertices. Next, let m1, m2 be the median vertices of H1, H2,

respectively. Suppose that the segment connecting m1 with m2 is not
the bridge between H1 and H2. Then, nome of the vertices on H1

either to the left or to the right of m1, or none of the vertices on H2

either to the left or to the right of m2 can be an endpoint of the
bridge between H1 and H2.

13

Illustration of Lemma 2

m
1

H
1

H
2m

2

Figure 5: An illustration to Lemma 2 on which the procedure Bridge
is based.

14

procedure Bridge(H ′
`, H ′

m)

Input: Two continuous pieces H ′`, H ′m of the upper hull of the points
assigned to ` and m, respectively.
Output: The bridge between H ′` and H ′m.

1. If H ′` or H ′m has at most two vertices then compute the bridge
between H ′` and H ′m by binary search and mark all the vertices
below it as not qualifying for the upper hull. .

2. Find a median m1 of H ′` and a median m2 of H ′m.

3. If the straight line passing through m1 and m2 is a supporting
line for both H ′` and H ′m then mark all the vertices below
between ` and m as not qualifying for the upper hull.

4. Else Bridge(H ′′` , H ′′m), where H ′` = H ′′` and H ′′m is obtained from
H ′m by removing vertices on a side of m2 or vice versa by Lem. 2.

15

Time Analysis of New Convex Hull

The procedure NewLowerHull(H ′`, H ′m) is defined analogously.
Roughly, all steps but for the n2 parallel calls of the Bridge

procedure can be done in O(1) rounds.

By Lemma 2,the recursion depth of the Bridge procedure is
logarithmic. The nodes ` and m need to exchange O(log n)
O(log n)-bit messages in order to implement Bridge(H`, Hm). It
follows that all the n2 calls of Bridge(H`, Hm) can be implemented
in parallel in O(log n) rounds.

Theorem 2 The convex hull of the set S of the n2 input points with
O(log n)-bit coordinates in the Euclidean plane can be computed in
O(log n) rounds on the congested clique.

16

procedure Triangulation(S)

1. Sort the points in S by their x-coordinates so each node receives
a subsequence consisting of n consecutive points in S, in the
sorted order.

2. Each node q constructs a triangulation Tq,q of the points in its
sorted subsequence locally.

3. For 1 ≤ p < q ≤ n, Tp,q will denote the already computed
triangulation of the points in the sorted subsequence held in the
nodes p through q. For i = 0, log n− 1, in parallel, for
j = 1, 1 + 2i+1, 1 + 2 · 2i+1, 1 + 3 · 2i+1, ... the union of the
triangulations Tj,j+2i−1 and Tj+2i,j+2i+1−1 is transformed to a
triangulation Tj,j+2i+1−1 by Merge(i, j).

17

procedure Merge(i, j)

Input: Triangulations Tj,j+2i−1 and Tj+2i,j+2i+1−1.

Output: A triangulation Tj,j+2j+1−1.

1. Compute the bridges between the convex hulls of Tj,j+2i−1 and
Tj+2i,j+2i+1−1. Determine the polygon P formed by the bridges
between the convex hulls of Tj,j+2i−1 and Tj+2i,j+2i+1−1, the
right side of the convex hull of Tj,j+2i−1, and the left side of the
convex hull of Tj+2i,j+2i+1−1 between the bridges.

2. Triangulate(P, j, j + 2i+1 − 1)

18

procedure Triangulate(P, p, q)

1. The nodes p, ..., q determine the node holding the median vertex
v of the longest convex chain on the perimeter of P and v sends
the coordinates of v and the adjacent vertices to p, ..., q.

2. The nodes holding vertices of the convex chain opposite to that
with v determine if they hold vertices u that could be connected
by a segment with v within P. If so, they send such a vertex u to
the node holding v.

3. he node holding v selects one of the received vertices u as the
mate and sends its coordinates to the other nodes p through q.

4. The nodes p, ..., q split P into subpolygons P1, P2 by (v, u) and
move their edges to consecutive destinations p, ..., r1 ≤ r2, ..., q.

5. In parallel, Triangulate(P1, p, r1) and Triangulate(P2, r2, q).

19

The idea of Triangulate

1
P

P
2

v

P

u

Figure 6: The recursive procedure Triangulate finds a diagonal between
the median v of the longer convex chain and a vertex u on the other
convex chain in order to split the polygon P into subpolygons P1 and
P − 2.

20

Time Analysis

To verify if (v, u) is within P the relevant node checks if this segment
is within the intersection of the union of the half-planes induced by
the edges adjacent to v with the union of the half-planes induced by
the edges adjacent to u.

All steps, but for those involving calls Merge, Triangulate and
computing the bridges, require O(1) rounds. The bridges can be
computed in O(log n) rounds by our prior algorithm. The recursive
depth of Triangulate is O(log n). Hence, Triangulate and Merge can
be implemented in O(log n) rounds. The parallel calls Merge(i, j) for
fixed i can be done in O(log n) rounds by global routing.

Theorem 3 A triangulation of the set S of the n2 input points can
be computed in O(log2 n) rounds on the congested clique.

21

Voronoi Diagram on Congested Clique

The primary difficulty in the design of efficient parallel algorithms for
the Voronoi diagram of a planar point set using a divide-and-conquer
approach is the efficient parallel merging of Voronoi diagrams.

In the full version of this paper, we show:

Theorem 4 The Voronoi diagram of n2 points with O(log n)-bit
coordinates drawn uniformly at random from a unit square in the
Euclidean plane can be computed within the square with high
probability in O(1) rounds on the congested clique.

22

This research was partially supported by Swedish Research Council
grants 621-2017-03750 and 2018-04001, and JSPS KAKENHI
JP20H05964.

Thank you for your attention

23

