
A Parameterized Algorithm
for Flat Folding

David Eppstein

CCCG 2023



From the 1990s world wide web

https://web.archive.org/web/20050816201015/http:
//www.richardclegg.org/htdocs/origami.html

https://web.archive.org/web/20050816201015/http://www.richardclegg.org/htdocs/origami.html
https://web.archive.org/web/20050816201015/http://www.richardclegg.org/htdocs/origami.html


So how hard are origami folding instructions?

We need to formalize this as a computational problem

Input: 2d folding pattern (planar straight line graph of folds),
possibly labeled with mountain/valley folds

Output: the folded shape

Simplifying assumption: Shape folds flat in the plane (not like this)



Classical complexity:
hard problems ∈ hard complexity classes

[Bern and Hayes 1996] claim: testing if a pattern can be folded flat
(with or without mountain–valley assignment) is NP-complete

Proof sketch: Reduction
from not-all-equal-3-sat

Zigzagging pleats (blue)
represent variables

More pleats (green) carry
data to clause gadgets (red)

Sadly, their gadgets do not work correctly [Akitaya et al. 2015]

Instead, Akitaya et al. provide new gadgets for similar reduction

(Green connectors extend down as well as up; zigzagging not needed)



Parameterized complexity:
Analyze difficulty by more than total input size

Hard inputs from NAESAT have folds along the edges and
diagonals of a grid of size O(clauses × variables)

Maybe it’s easier to fold patterns in which
one of the two grid dimensions is small?



Grid dimension is the wrong parameter

Reason 1: It doesn’t apply to non-grid folding patterns

Reason 2: We don’t even know how to fold 3 × n square grids

The still-unsolved “map folding problem”: flat-fold a grid with a
mountain–valley assignment on all grid edges



Positioning the polygons

Observation: It is easy to map each polygon of a folding pattern to
its position in the flat-folded result:
▶ Connect polygons in a (dual) spanning tree
▶ Fix one polygon in place as tree root
▶ Reflect the rest across the fold lines along path to root



Difficulty: Choosing above-below ordering

Map folding is difficult because the number of possible orderings is
factorial in the number of map squares!

For some folding patterns, the polygons may not even have a
consistent ordering

We need to consider a finer subdivision into polygons: subregions of
the folded result, not subregions of the folding pattern



Main idea of new algorithm

Make graph with vertex for each subregion of folded result
Edge connecting subregions that share a boundary

a

c d

e

f

b

acf
acf acf

abcf
bcf
cf
f

acef
cef
cdef
def
ef
f

Two parameters: treewidth and ply
(ply = max number of layers, here 3 in region d)

Use dynamic programming to choose layer ordering for each vertex,
consistent with orderings of its neighbors



Some details

What does it mean for neighboring regions to have consistent
orders?

We also need ordering to be consistent within a single region



More details

Dynamic programming algorithm processes rooted tree
decomposition in bottom-up order

a

c d

e

f

b

acf
acf acf

abcf
bcf
cf
f

acef
cef
cdef
def
ef
f

Each tree node has “bag” of ≤ (width + 1) subregions

We compute set of “consistent states”:
▶ Tuple of layer orderings for subregions in bag
▶ Consistent within each subregion
▶ Consistent for neighboring subregions of bag
▶ Comes from consistent states in child bags



Fine-grained complexity:
Give me optimality or give me consequences

Time of our algorithm ≈ (ply!)(width+1) · creases2

▶ Polynomial in size of folding pattern
▶ Singly-exponential in treewidth
▶ Factorial in ply

Exponential time hypothesis: SAT (and NAESAT) require time cn

⇒ NAESAT-based folding instances require cgrid height, ply = O(1)

⇒ our exponential dependence on treewidth is necessary

(faster algorithm would translate back into subexponential SAT)



Still open

How to explain or improve our factorial dependence on ply?

Map folding leads to a one-vertex graph (treewidth = 0)
with high ply (= number of squares)

Is it hard?

Can we quantify its hardness?



References and image credits

Hugo A. Akitaya, Kenneth C. Cheung, Erik D. Demaine, Takashi
Horiyama, Thomas Hull, Jason S. Ku, Tomohiro Tachi, and Ryuhei
Uehara. Box pleating is hard. In Jin Akiyama, Hiro Ito, Toshinori
Sakai, and Yushi Uno, editors, Discrete and Computational Geometry
and Graphs – 18th Japan Conference, JCDCGG 2015, Kyoto, Japan,
September 14–16, 2015, Revised Selected Papers, volume 9943 of
Lecture Notes in Comput. Sci., pages 167–179. Springer, 2015. doi:
10.1007/978-3-319-48532-4_15.

Marshall Bern and Barry Hayes. The complexity of flat origami. In Proc.
7th ACM-SIAM Symposium on Discrete Algorithms (SODA ’96),
pages 175–183, Philadelphia, PA, 1996. Society for Industrial and
Applied Mathematics. URL
https://portal.acm.org/citation.cfm?id=313852.313918.

Robert Dickau. Eight ways to fold a 2x2 map along its creases.
CC-BY-SA image, March 24 2010. URL https:
//commons.wikimedia.org/wiki/File:MapFoldings-2x2.png.

https://portal.acm.org/citation.cfm?id=313852.313918
https://commons.wikimedia.org/wiki/File:MapFoldings-2x2.png
https://commons.wikimedia.org/wiki/File:MapFoldings-2x2.png

	References

