Universal convex covering problems under affine dihedral group actions

M. K. Jung, S. D. Yoon, H. -K. Ahn, T. Tokuyama Presenter: Mook Kwon Jung

CCCG2023 2023.08.04

< Covering Problem >

k-center problem

Rectangle covering

- Input: All unit line segments
- Geometric transformation: Translation

What is the smallest-area convex hull of them?

Mook Kwon Jung

2/17

- Input: All unit line segments
- Geometric transformation: Translation
- What is the smallest-area convex hull of them?

Area: $\pi/4pprox 0.785$

- Input: All unit line segments
- Geometric transformation: Translation

What is the smallest-area convex hull of them?

Area: $(\pi-\sqrt{3})/2pprox 0.705$

- Input: All unit line segments
- Geometric transformation: Translation
- Solution: The equilateral triangle with height 1*

*J. Pal, Ein Minimumproblem für Ovale, Mathematische Annalen, 83:311-319, 1921.

- Input: *n* unit line segments
- Geometric transformation: Translation
- What is the smallest-area convex hull of them?

- Input: *n* unit line segments
- Geometric transformation: Translation
- What is the smallest-area convex hull of them?

 \Rightarrow Construct in $O(n \log n)$ time*

Triangle

H.-K. Ahn, S.-W. Bae, O. Cheong, J. Gudmundsson, T. Tokuyama, A. Vigneron, A Generalization of the Convex Kakeya Problem, Algorithmica, 70:152-170, 2014.

- Input: All closed curves with length 2
- Transformation: Translation

- Input: All closed curves with length 2
- Transformation: Translation

Open Problem!!

$0.620^* \leq$ (Area) $\leq 0.657^*$

*P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer Verlag, 2005.

- Input: All closed curves with length 2
- Transformation: Translation and rotation

Open Problem!!

$0.4^1 \leq$ (Area) $\leq 0.441^2$

[1] B. Grechuk, S. Som-am, A convex cover for closed unit curves has area at least 0.1, Discrete Optimization, 38, article 100608: 1-15, 2020.

[2] W. Wichiramala, A smaller cover for closed unit curves, Miskolc Mathematical Notes, 19(1):691-698, 2018.

- Input: All closed curves with length 2
- Transformation: Translation and discrete rotation

- Input: All closed curves with length 2
- Transformation: Translation and discrete rotation

- Input: All closed curves with length 2
- Transformation: Translation and discrete rotation

$$\bullet_0 + \frac{\pi}{4}$$
< $\frac{\pi}{4}$ rotation>

- Input: All closed curves with length 2
- Transformation: Translation and discrete rotation

- Input: All closed curves with length 2
- Transformation: Translation and discrete rotation

- Input: All closed curves with length 2
- Transformation: Translation and discrete rotation
- $\frac{\pi}{2}$ rotations: The equilateral triangle with height 1^*

The smallest-area convex hull of all unit line segments

* M. K. Jung, S. D. Yoon, H.-K. Ahn, T. Tokuyama, Universal convex covering problems under translation and discrete rotations, arXiv:2211.14807 [cs.CG], 2022.

- Input: All closed curves with length 2
- Transformation: Translation and discrete rotation

-
$$\frac{2}{3}\pi$$
 rotations: (Area) $\leq 0.568^* \Rightarrow$

*M. K. Jung, S. D. Yoon, H.-K. Ahn, T. Tokuyama, Universal convex covering problems under translation and discrete rotations, arXiv:2211.14807 [cs.CG], 2022.

If we add the reflection?

If we add the reflection?

- Input: All closed curves with length 2
- Transformation: Affine dihedral group

What is the smallest-area convex hull of them?

- Geometric Transformation
- G_k : Translation and $2\pi/k$ rotations

- Geometric Transformation
- G_k : Translation and $2\pi/k$ rotations

ex) G₃:Translation and $\frac{2}{3}\pi$ rotations

- Geometric Transformation
- G_k : Translation and $2\pi/k$ rotations
- H_k : Translation, the x-axis reflection and $2\pi/k$ rotations

- Geometric Transformation
- G_k : Translation and $2\pi/k$ rotations
- H_k : Translation, the x-axis reflection and $2\pi/k$ rotations
- ex) H_3 :Translation, x-axis reflection, and $\frac{2}{3}\pi$ rotations

- Geometric Transformation
- G_k : Translation and $2\pi/k$ rotations
- H_k : Translation, the x-axis reflection and $2\pi/k$ rotations

ex) H_3 :Translation, x-axis reflection, and $\frac{2}{3}\pi$ rotations

- Geometric Transformation
- G_k : Translation and $2\pi/k$ rotations
- H_k : Translation, the x-axis reflection and $2\pi/k$ rotations
- ex) H_3 :Translation, x-axis reflection, and $\frac{2}{3}\pi$ rotations

H_k : G_k + The x-axis reflection

- Geometric Transformation
- G_k : Translation and $2\pi/k$ rotations
- H_k : Translation, the x-axis reflection and $2\pi/k$ rotations
- T: Translation

- Geometric Transformation
- G_k : Translation and $2\pi/k$ rotations
- H_k : Translation, the x-axis reflection and $2\pi/k$ rotations
- T: Translation
- Object Set
- S_c: The set of all closed curves with length 2

G: Geometric Transformation S: Object set

Def. A covering K is a G-covering of S if $\forall \gamma \in S, \exists g \in G$ such that $g\gamma \subseteq K$

G: Geometric Transformation S: Object set

Def. A covering K is a G-covering of S if $\forall \gamma \in S, \exists g \in G$ such that $g\gamma \subseteq K$

ex) G: Translation and rotation

G: Geometric Transformation S: Object set

Def. A covering K is a G-covering of S if $\forall \gamma \in S, \exists g \in G$ such that $g\gamma \subseteq K$

G: Geometric Transformation S: Object set

Def. A covering K is a G-covering of S if $\forall \gamma \in S, \exists g \in G$ such that $g\gamma \subseteq K$

Def. A G-covering K of S is *minimal* if no proper closed subset of K is a G-covering of S.

Def. A G-covering K of S is *minimal* if no proper closed subset of K is a G-covering of S.

Def. The smallest-area G-covering K of S has the smallest area among all G-coverings of S.

Def. A G-covering K of S is *minimal* if no proper closed subset of K is a G-covering of S.

Def. The smallest-area G-covering K of S has the smallest area among all G-coverings of S.

Def. A G-covering K of S is *minimal* if no proper closed subset of K is a G-covering of S.

Def. The smallest-area G-covering K of S has the smallest area among all G-coverings of S.

G_k : translation, $2\pi/k$ rotations

H_k: translation, the x-axis reflection $2\pi/k$ rotations

Observation. G_k -covering is also H_k -covering. ($:: G_k \subseteq H_k$)

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

Observation. G_k -covering is also H_k -covering. ($:: G_k \subseteq H_k$)

$$\Rightarrow$$
 H₂-covering

 \Rightarrow H₁-covering??

The smallest-area G₂-covering*

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

Observation. G_k -covering is also H_k -covering. ($:: G_k \subseteq H_k$)

$$\Rightarrow$$
 H₂-covering

 \Rightarrow H₁-covering!!!

The smallest-area G₂-covering*

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

 G_2 -covering of S_c ? YES

 H_1 -covering of S_c ? **NO**

Х

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

Observation. G_k -covering is also H_k -covering.

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

Observation. G_k -covering is also H_k -covering.

 \Rightarrow H₄-covering

 \Rightarrow Not H_2 -covering!!

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

Observation. G_k -covering is also H_k -covering.

 G_k : translation, $2\pi/k$ rotations

 H_k : translation, the x-axis reflection $2\pi/k$ rotations

Observation. G_k -covering is also H_k -covering.

*H*₁: translation, the x-axis reflection

1. \triangle_1 is an H_1 -covering of S_c

*H*₁: translation, the x-axis reflection

1. \triangle_1 is an H_1 -covering of S_c

2. \triangle_1 is a minimal closed H_1 -covering of S_c

- *H*₁: translation, the x-axis reflection
- 1. \triangle_1 is an H_1 -covering of S_c

2. \triangle_1 is a minimal closed H_1 -covering of S_c

3. \triangle_1 is the smallest-area triangle H_1 -covering of S_c

- *H*₁: Translation and *x*-axis reflection
- G_2 : Translation and π rotations

- *H*₁: Translation and *x*-axis reflection
- G_2 : Translation and π rotations

- *H*₁: Translation and *x*-axis reflection
- G_2 : Translation and π rotations

Lemma 1. Suppose that a region P is symmetric with respect to the y-axis. Then P is an H_1 -covering of S_c iff it is a G_2 -covering of S_c .

Lemma 2^{*}. \triangle_1 is the smallest-area G_2 -covering of S_c .

Lemma 1. Suppose that a region *P* is symmetric with respect to the *y*-axis. Then *P* is an H_1 -covering of S_c iff it is a G_2 -covering of S_c .

Lemma 2^{*}. \triangle_1 is the smallest-area G_2 -covering of S_c .

Since \triangle_1 is symmetric with respect to the y-axis and a G_2 -covering of S_c , \triangle_1 is an H_1 -covering of S_c .

Lemma 1. Suppose that a region *P* is symmetric with respect to the *y*-axis. Then *P* is an H_1 -covering of S_c iff it is a G_2 -covering of S_c .

Lemma 2^{*}. \triangle_1 is the smallest-area G_2 -covering of S_c .

Since \triangle_1 is symmetric with respect to the y-axis and a G_2 -covering of S_c , \triangle_1 is an H_1 -covering of S_c .

Corollary. \triangle_1 is the smallest-area H_1 -covering of S_c among all H_1 -covering of S_c that are symmetric to the y-axis.

Theorem. \triangle_1 is a minimal closed convex H_1 -covering of S_c .

Theorem. \triangle_1 is a minimal closed convex H_1 -covering of S_c .

Theorem. \triangle_1 is a minimal closed convex H_1 -covering of S_c .

Theorem. \triangle_1 is a minimal closed convex H_1 -covering of S_c .

Maintaining the perimeter of the triangles 2.

Theorem. \triangle_1 is a minimal closed convex H_1 -covering of S_c .

Maintaining the perimeter of the triangles 2.

Theorem. \triangle_1 is a minimal closed convex H_1 -covering of S_c .

Maintaining the perimeter of the triangles 2.

Theorem. \triangle_1 is a minimal closed convex H_1 -covering of S_c .

Maintaining the perimeter of the triangles 2.

$riangle_1$: The Smallest-area Triangle

Let T_L be an equilateral triangle of perimeter 2 such that it has a vertical side and its opposite corner lies to the right.

Let T_R be a copy of T_L rotated by π .

$riangle_1$: The Smallest-area Triangle

Let T_L be an equilateral triangle of perimeter 2 such that it has a vertical side and its opposite corner lies to the right.

Let T_R be a copy of T_L rotated by π .

Observe that T_L and T_R are invariant under x-axis reflection.

 \Rightarrow What is the smallest-area triangle containing T_L and T_R ?

Let Q be the convex hull of T_L and T_R

Let Q be the convex hull of T_L and T_R

Let Q be the convex hull of T_L and T_R

Let Q be the convex hull of T_L and T_R

Let \triangle be the smallest-area triangle containing Q

Mook Kwon Jung

Let Q be the convex hull of T_L and T_R

1.
$$|Q| \ge |T_L| + |T_R| = 2|T_L|$$

2. $|\Delta| \ge \frac{3}{2}|Q|$

Let Q be the convex hull of T_L and T_R

Let Q be the convex hull of T_L and T_R

Let \triangle be the smallest-area triangle containing Q

3. The equality holds iff $\triangle = \triangle_1$

Mook Kwon Jung

Let Q be the convex hull of T_L and T_R

Let \triangle be the smallest-area triangle containing Q

3. The equality holds iff $\triangle = \triangle_1$

 $\Rightarrow riangle_1$ is the smallest triangle

Summary & Conclusion

- : Minimal

- : Smallest

Summary & Conclusion

- Set of all unit line segments.

: The smallest-area G_2 -covering of S_c

The smallest-area triangle H_1 -covering of S_c

: The smallest-area G_2 -covering of S_c

The smallest-area triangle H_1 -covering of S_c

 \Rightarrow Is it the smallest-area H_1 -covering of S_c ?

: The smallest-area G_2 -covering of S_c

The smallest-area triangle H_1 -covering of S_c

 \Rightarrow Is it the smallest-area H_1 -covering of S_c ?

: A minimal G_4 -covering of S_c

A minimal H_2 -covering of S_c

: The smallest-area G_2 -covering of S_c

The smallest-area triangle H_1 -covering of S_c

 \Rightarrow Is it the smallest-area H_1 -covering of S_c ?

: A minimal G_4 -covering of S_c

A minimal H_2 -covering of S_c

 \Rightarrow Relation between G_{2^k} -covering and $H_{2^{k-1}}$ -covering

Thank You!!

