Super Guarding and Dark Rays in Art Galleries

MIT CompGeom Group

Hugo A. Akitaya Erik D. Demaine Adam Hesterberg Anna Lubiw Jayson Lynch Joseph O'Rourke Frederick Stock

Overview

1. The art gallery problem and some variants
2. The art gallery problem and some variants
3. Introduce a new variant inspired by previous variants
4. The art gallery problem and some variants
5. Introduce a new variant inspired by previous variants
6. Prove necessary and sufficient bounds for convex polygons
7. The art gallery problem and some variants
8. Introduce a new variant inspired by previous variants
9. Prove necessary and sufficient bounds for convex polygons
10. Give a loose bound for simple polygons
11. The art gallery problem and some variants
12. Introduce a new variant inspired by previous variants
13. Prove necessary and sufficient bounds for convex polygons
14. Give a loose bound for simple polygons
15. Fun with wedges!

The Art Gallery Problem

- How do we place guards such that every point of our art gallery is visible to a guard?
- Given a polygon P, find a set of points G such that every point $p \in P$ is visible from a point $g \in G$.
- $\lfloor n / 3\rfloor$ guards are sometimes necessary and always sufficient.

Figure. https://www.louvre.fr/en

Guards Blocking Guards Variant

- Guards cannot see through other guards

Guards Blocking Guards Variant

- Guards cannot see through other guards

Guards Blocking Guards Variant

- Guards cannot see through other guards

Guards Blocking Guards Variant

- Guards cannot see through other guards
- The bound of $\lfloor n / 3\rfloor$ still holds, a blocking guard can see what it is obscuring from another guard

Multiple Coverage Variant

Suppose every point in the closed polygon must be seen by k guards (the guards $k-$ cover the polygon).

Multiple Coverage Variant

Suppose every point in the closed polygon must be seen by k guards (the guards k - cover the polygon).

- If co-location of guards is allowed, this is trivial

Multiple Coverage Variant

Suppose every point in the closed polygon must be seen by k guards (the guards k - cover the polygon).

- If co-location of guards is allowed, this is trivial

Multiple Coverage Variant

Suppose every point in the closed polygon must be seen by k guards (the guards k - cover the polygon).

- If co-location of guards is allowed, this is trivial

Multiple Coverage Variant

Suppose every point in the closed polygon must be seen by k guards (the guards k - cover the polygon).

- If co-location is not allowed, but guards can see through each other, this is equivalent to $k=1$ where we replace each guard with a cluster of k guards.

Multiple Coverage Variant

Suppose every point in the closed polygon must be seen by k guards (the guards $k-$ cover the polygon).

- If co-location is not allowed, but guards can see through each other, this is equivalent to $k=1$ where we replace each guard with a cluster of k guards.
- hence we have a $k\lfloor n / 3\rfloor$ bound.

Super Guarding With Multiple Coverage (Dark Rays)

Let's combine these!

Super Guarding With Multiple Coverage (Dark Rays)

Let's combine these!

- k-guard a polygon P with n vertices

Super Guarding With Multiple Coverage (Dark Rays)

Let's combine these!

- k-guard a polygon P with n vertices
- Guards cannot be co-located

Super Guarding With Multiple Coverage (Dark Rays)

Let's combine these!

- k-guard a polygon P with n vertices
- Guards cannot be co-located
- Guards block each other's line-of-sight

Super Guarding With Multiple Coverage (Dark Rays)

Let's combine these!

- k-guard a polygon P with n vertices
- Guards cannot be co-located
- Guards block each other's line-of-sight

How many guards are necessary and sufficient?

Dark Rays and Dark Points

- Let g_{1} and g_{2} be two guards visible to each other

Dark Rays and Dark Points

- g_{2} generates a dark ray at g_{1}, and g_{1} generates a dark ray at g_{2}

Dark Rays and Dark Points

- g_{2} generates a dark ray at g_{1}, and g_{1} generates a dark ray at g_{2}

Dark Rays and Dark Points

- A point p is dark if it is contained in a dark ray, and d-dark if it is contained in d dark rays

Convex Polygons

In a convex polygon, guard visibility reduces to dark rays and points

Convex Polygons

In a convex polygon, guard visibility reduces to dark rays and points

- Reflex angles can block line-of-sight

Convex Polygons

In a convex polygon, guard visibility reduces to dark rays and points

- Reflex angles can block line-of-sight creating dark regions

THEOREM 1

For a closed convex n-gon, coverage to depth k requires $g \in\{k, k+1, k+2\}$ guards:

1. For $k \leq n: g=k$ guards are necessary and sufficient.

k	1	2	3
g	1	2	3

Table. Number of guards g to k-guard a triangle

THEOREM 1

For a closed convex n-gon, coverage to depth k requires $g \in\{k, k+1, k+2\}$ guards:

1. For $k \leq n: g=k$ guards are necessary and sufficient.
2. For $n<k<4 n-2: g=k+1$ guards are necessary and sufficient.

k	1	2	3	4	5	6	7	8	9
g	1	2	3	5	6	7	8	9	10

Table. Number of guards g to k-guard a triangle

Theorem 1

For a closed convex n-gon, coverage to depth k requires $g \in\{k, k+1, k+2\}$ guards:

1. For $k \leq n: g=k$ guards are necessary and sufficient.
2. For $n<k<4 n-2: g=k+1$ guards are necessary and sufficient.
3. For $4 n-2 \leq k: g=k+2$ guards are necessary and sufficient.

k	1	2	3	4	5	6	7	8	9	10	11	\cdots
g	1	2	3	5	6	7	8	9	10	12	13	\cdots

Table. Number of guards g to k-guard a triangle

ObSERVATION

1. k-guarding with $g=k$ guards is possible if and only if there is no dark point inside P.

ObSERVATION

1. k-guarding with $g=k$ guards is possible if and only if there is no dark point inside P.
2. k-guarding with $g=k+1$ guards is possible if and only if there is no 2-dark point inside P.

Observation

1. k-guarding with $g=k$ guards is possible if and only if there is no dark point inside P.
2. k-guarding with $g=k+1$ guards is possible if and only if there is no 2 -dark point inside P.
3. k-guarding with $g=k+2$ guards is always possible because we can perturb the guards to remove 3-dark points

THEOREM 2

The maximum number of guards that can be placed in a convex n-gon P without creating 2 -dark points in P is $4 n-2$.

TRIANGLE LEMMA

- Suppose some guards are placed in P without creating 2-dark points.
- Let T be a closed triangle in P with guards g_{1}, g_{2}, g_{3} at its corners.

TRIANGLE LEMMA

- Suppose some guards are placed in P without creating 2-dark points.
- Let T be a closed triangle in P with guards g_{1}, g_{2}, g_{3} at its corners.
- Then, T contains at most one more guard.

THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect inside is at most $g=4 n-2$.

- Take the convex hull C of the guards in P.

THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect inside is at most $g=4 n-2$.

- Shrink and rotate P such that every edge has one or more guards in its interior or on its endpoint(s)

THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect inside is at most $g=4 n-2$.

- There can be at most $2 n$ guards on the boundary of C.

THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect inside is at most $g=4 n-2$.

- There can be at most $2 n$ guards on the boundary of C.
- A triangulation of C creates $2 n-2$ triangles, in which there can only be one guard (triangle lemma)

THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect inside is at most $g=4 n-2$.

- C gives us $2 n$ guards, and its triangulation gives us another $2 n-2$ guards - $\Rightarrow 2 n+(2 n-2)=4 n-2$

$4 n-2$ GUARDS IN A TRIANGLE

$4 n-2$ Guards in a Triangle

$4 n-2$ Guard Strategy - Triangles

$4 n-2$ Guard Strategy - Triangles

$4 n-2$ Guard Strategy - Triangles

$4 n-2$ Guard Strategy - Triangles

$4 n-2$ Guard Strategy - Triangles

$4 n-2$ Guard Strategy - Triangles

$4 n-2$ Guard Strategy

THEOREM 6

It is possible to place $4 n-2$ guards in a convex n-gon P so that all dark-ray intersections lie strictly exterior to P.

Simple Polygons

- To cover a simple polygon of n vertices to depth $k, g=k\lfloor n / 3\rfloor$ guards are sometimes necessary

Simple Polygons

- $g=(k+2)\lfloor n / 3\rfloor$ guards always suffice.

10 Guards in a Wedge

10 Guards in a Wedge

10 Guards in a Wedge

- Our triangle construction does not work in a wedge

10 Guards in a Wedge

- Our triangle construction does not work in a wedge

10 Guards in a Wedge

- We need something else

1. Investigate bounds or the complexity (NP-hard?) of placing points in a simple polygon so that no two dark rays intersect.

Open Problems

1. Investigate bounds or the complexity (NP-hard?) of placing points in a simple polygon so that no two dark rays intersect.
2. Close the simple polygon gap. $(k\lfloor n / 3\rfloor$ are necessary but $(k+2)\lfloor n / 3\rfloor$ are sufficient.)

Open Problems

1. Investigate bounds or the complexity (NP-hard?) of placing points in a simple polygon so that no two dark rays intersect.
2. Close the simple polygon gap. ($k\lfloor n / 3\rfloor$ are necessary but $(k+2)\lfloor n / 3\rfloor$ are sufficient.)
3. Can the tight bound for a wedge be generalized to tight bounds for unbounded convex polygons with two rays joined by a chain of $n-1$ vertices and $n-2$ edges?

THANK you!

Any questions?

