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OVERVIEW

1. The art gallery problem and some variants

2. Introduce a new variant inspired by previous variants
3. Prove necessary and sufficient bounds for convex polygons
4. Give a loose bound for simple polygons
5. Fun with wedges!

MIT COMPGEOM GROUP 1 / 20



OVERVIEW

1. The art gallery problem and some variants
2. Introduce a new variant inspired by previous variants

3. Prove necessary and sufficient bounds for convex polygons
4. Give a loose bound for simple polygons
5. Fun with wedges!

MIT COMPGEOM GROUP 1 / 20



OVERVIEW

1. The art gallery problem and some variants
2. Introduce a new variant inspired by previous variants
3. Prove necessary and sufficient bounds for convex polygons

4. Give a loose bound for simple polygons
5. Fun with wedges!

MIT COMPGEOM GROUP 1 / 20



OVERVIEW

1. The art gallery problem and some variants
2. Introduce a new variant inspired by previous variants
3. Prove necessary and sufficient bounds for convex polygons
4. Give a loose bound for simple polygons

5. Fun with wedges!

MIT COMPGEOM GROUP 1 / 20



OVERVIEW

1. The art gallery problem and some variants
2. Introduce a new variant inspired by previous variants
3. Prove necessary and sufficient bounds for convex polygons
4. Give a loose bound for simple polygons
5. Fun with wedges!

MIT COMPGEOM GROUP 1 / 20



THE ART GALLERY PROBLEM

▶ How do we place guards such that every point of our art gallery is visible to a guard?
▶ Given a polygon P, find a set of points G such that every point p ∈ P is visible from a point

g ∈ G.
▶ ⌊n/3⌋ guards are sometimes necessary and always sufficient.

Figure. https://www.louvre.fr/en
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GUARDS BLOCKING GUARDS VARIANT

▶ Guards cannot see through other guards

▶ The bound of ⌊n/3⌋ still holds, a blocking guard can see what it is obscuring from another guard

g1

g2
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MULTIPLE COVERAGE VARIANT

Suppose every point in the closed polygon must be seen by k guards (the guards k − cover the
polygon).
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MULTIPLE COVERAGE VARIANT

Suppose every point in the closed polygon must be seen by k guards (the guards k − cover the
polygon).
▶ If co-location of guards is allowed, this is trivial

▶ hence we have a k⌊n/3⌋ bound.
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Suppose every point in the closed polygon must be seen by k guards (the guards k − cover the
polygon).
▶ If co-location of guards is allowed, this is trivial

▶ hence we have a k⌊n/3⌋ bound.
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MULTIPLE COVERAGE VARIANT

Suppose every point in the closed polygon must be seen by k guards (the guards k − cover the
polygon).
▶ If co-location is not allowed, but guards can see through each other, this is equivalent to k = 1

where we replace each guard with a cluster of k guards.

▶ hence we have a k⌊n/3⌋ bound.
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where we replace each guard with a cluster of k guards.
▶ hence we have a k⌊n/3⌋ bound.
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SUPER GUARDING WITH MULTIPLE COVERAGE (DARK RAYS)

Let’s combine these!

▶ k-guard a polygon P with n vertices
▶ Guards cannot be co-located
▶ Guards block each other’s line-of-sight

How many guards are necessary and sufficient?
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DARK RAYS AND DARK POINTS

▶ Let g1 and g2 be two guards visible to each other
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DARK RAYS AND DARK POINTS

▶ g2 generates a dark ray at g1, and g1 generates a dark ray at g2
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▶ g2 generates a dark ray at g1, and g1 generates a dark ray at g2
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DARK RAYS AND DARK POINTS

▶ A point p is dark if it is contained in a dark ray, and d-dark if it is contained in d dark rays

g1 g2

g3 g4
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CONVEX POLYGONS

In a convex polygon, guard visibility reduces to dark rays and points

▶ Reflex angles can block line-of-sight

creating dark regions

g1 g3

g2

MIT COMPGEOM GROUP 7 / 20



CONVEX POLYGONS

In a convex polygon, guard visibility reduces to dark rays and points
▶ Reflex angles can block line-of-sight

creating dark regions

g1

MIT COMPGEOM GROUP 7 / 20



CONVEX POLYGONS

In a convex polygon, guard visibility reduces to dark rays and points
▶ Reflex angles can block line-of-sight creating dark regions
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THEOREM 1

For a closed convex n-gon, coverage to depth k requires g ∈ {k, k + 1, k + 2} guards:
1. For k ≤ n: g = k guards are necessary and sufficient.

2. For n < k < 4n − 2: g = k + 1 guards are necessary and sufficient.
3. For 4n − 2 ≤ k: g = k + 2 guards are necessary and sufficient.

k 1 2 3
g 1 2 3

Table. Number of guards g to k-guard a triangle
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THEOREM 1

For a closed convex n-gon, coverage to depth k requires g ∈ {k, k + 1, k + 2} guards:
1. For k ≤ n: g = k guards are necessary and sufficient.
2. For n < k < 4n − 2: g = k + 1 guards are necessary and sufficient.
3. For 4n − 2 ≤ k: g = k + 2 guards are necessary and sufficient.

k 1 2 3 4 5 6 7 8 9 10 11 · · ·
g 1 2 3 5 6 7 8 9 10 12 13 · · ·

Table. Number of guards g to k-guard a triangle
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OBSERVATION

1. k-guarding with g = k guards is possible if and only if there is no dark point inside P.

2. k-guarding with g = k + 1 guards is possible if and only if there is no 2-dark point inside P.
3. k-guarding with g = k + 2 guards is always possible because we can perturb the guards to

remove 3-dark points
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THEOREM 2

The maximum number of guards that can be placed in a convex n-gon P without creating 2-dark
points in P is 4n − 2.
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TRIANGLE LEMMA

▶ Suppose some guards are placed in P without creating 2-dark points.
▶ Let T be a closed triangle in P with guards g1, g2, g3 at its corners.

▶ Then, T contains at most one more guard.

g1 g2

g3

g4
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▶ Suppose some guards are placed in P without creating 2-dark points.
▶ Let T be a closed triangle in P with guards g1, g2, g3 at its corners.
▶ Then, T contains at most one more guard.
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THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect
inside is at most g = 4n − 2.
▶ Take the convex hull C of the guards in P.

C

P
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THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect
inside is at most g = 4n − 2.
▶ Shrink and rotate P such that every edge has one or more guards in its interior or on its

endpoint(s)

C

P
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THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect
inside is at most g = 4n − 2.
▶ There can be at most 2n guards on the boundary of C.
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THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect
inside is at most g = 4n − 2.
▶ There can be at most 2n guards on the boundary of C.
▶ A triangulation of C creates 2n − 2 triangles, in which there can only be one guard (triangle

lemma)
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THEOREM 5

The number of guards g that can be placed in a convex n-gon P so that no two dark rays intersect
inside is at most g = 4n − 2.
▶ C gives us 2n guards, and its triangulation gives us another 2n − 2 guards

• ⇒ 2n + (2n − 2) = 4n − 2

C

P
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4n − 2 GUARDS IN A TRIANGLE
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4n − 2 GUARDS IN A TRIANGLE
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4n − 2 GUARD STRATEGY - TRIANGLES
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4n − 2 GUARD STRATEGY

vi ℓi
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THEOREM 6

It is possible to place 4n − 2 guards in a convex n-gon P so that all dark-ray intersections lie strictly
exterior to P.
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SIMPLE POLYGONS

▶ To cover a simple polygon of n vertices to depth k, g = k⌊n/3⌋ guards are sometimes necessary
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SIMPLE POLYGONS

▶ g = (k + 2)⌊n/3⌋ guards always suffice.

3
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10 GUARDS IN A WEDGE
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10 GUARDS IN A WEDGE

▶ Our triangle construction does not work in a wedge
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10 GUARDS IN A WEDGE

▶ We need something else

3 4
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OPEN PROBLEMS

1. Investigate bounds or the complexity (NP-hard?) of placing points in a simple polygon so
that no two dark rays intersect.

2. Close the simple polygon gap. (k⌊n/3⌋ are necessary but (k + 2)⌊n/3⌋ are sufficient.)
3. Can the tight bound for a wedge be generalized to tight bounds for unbounded convex

polygons with two rays joined by a chain of n − 1 vertices and n − 2 edges?
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THANK YOU!

Any questions?
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