Reducing Nearest Neighbor Training Sets Optimally and Exactly Josiah Rohrer and Simon Weber

Simon Weber CCCG, Aug. 3rd, 2023

Nearest-Neighbor data structures and algorithms scale badly in high dimensions!

Nearest-Neighbor data structures and algorithms scale badly in high dimensions!

What if we reduced the size of the training data set?

Nearest-Neighbor data structures and algorithms scale badly in high dimensions!

What if we reduced the size of the training data set? "Nearest Neighbor Condensation"

Nearest-Neighbor data structures and algorithms scale badly in high dimensions!

What if we reduced the size of the training data set? "Nearest Neighbor Condensation"

We consider the *exact* case: No point $p \in \mathbb{R}^d$ may change classification.

Definition: Given a labelled point set P, a point $p \in P$ is called *relevant* if the point set $P \setminus \{p\}$ induces a different nearest-neighbor classification.

Definition: Given a labelled point set P, a point $p \in P$ is called *relevant* if the point set $P \setminus \{p\}$ induces a different nearest-neighbor classification.

Fact: The set $rel(P) \subseteq P$ of relevant points induces the same nearest-neighbor classification as P.

Department of Computer Science

Simon Weber CCCG, Aug. 3rd, 2023

Simon Weber CCCG, Aug. 3rd, 2023

EMST + Extremal Points

EMST + Extremal Points

Eppstein's Open Question

Question: Can we reduce the training set *further* than to the relevant points, without changing the resulting classification? What is the *complexity* of finding the smallest subset $Q \subseteq P$ with the same classification?

Eppstein's Open Question

Question: Can we reduce the training set *further* than to the relevant points, without changing the resulting classification? What is the *complexity* of finding the smallest subset $Q \subseteq P$ with the same classification?

A minimum-cardinality reduced training set

Relevant Points are not Optimal

Relevant Points are not Optimal

Relevant Points are not Optimal

X

X

X

X

Our Results

Theorem: If P is in general position, rel(P) is a minimum-cardinality reduced training set.

Our Results

Theorem: If P is in general position, rel(P) is a minimum-cardinality reduced training set.

Theorem: Computing a minimum-cardinality reduced training set is in P for points in \mathbb{R}^1 .

Our Results

Theorem: If P is in general position, rel(P) is a minimum-cardinality reduced training set.

Theorem: Computing a minimum-cardinality reduced training set is in P for points in \mathbb{R}^1 .

Theorem: Computing a minimum-cardinality reduced training set is NP-complete for points in \mathbb{R}^d for $d \ge 2$, even if there are only two colors.

no 3 collinear, no 4 cocircular

no 3 collinear, no 4 cocircular

Observation: Every Voronoi wall between differently classified cells must lie in the bisecting hyperplane of some $a, b \in Q \subseteq P$.

no 3 collinear, no 4 cocircular

Observation: Every Voronoi wall between differently classified cells must lie in the bisecting hyperplane of some $a, b \in Q \subseteq P$.

Claim: Every hyperplane is the bisecting hyperplane of at most one pair of points $a, b \in P$.

no 3 collinear, no 4 cocircular

Observation: Every Voronoi wall between differently classified cells must lie in the bisecting hyperplane of some $a, b \in Q \subseteq P$.

Claim: Every hyperplane is the bisecting hyperplane of at most one pair of points $a, b \in P$.

no 3 collinear, no 4 cocircular

Observation: Every Voronoi wall between differently classified cells must lie in the bisecting hyperplane of some $a, b \in Q \subseteq P$.

Claim: Every hyperplane is the bisecting hyperplane of at most one pair of points $a, b \in P$.

no 3 collinear, no 4 cocircular

Observation: Every Voronoi wall between differently classified cells must lie in the bisecting hyperplane of some $a, b \in Q \subseteq P$.

Claim: Every hyperplane is the bisecting hyperplane of at most one pair of points $a, b \in P$.

no 3 collinear, no 4 cocircular

Observation: Every Voronoi wall between differently classified cells must lie in the bisecting hyperplane of some $a, b \in Q \subseteq P$.

Claim: Every hyperplane is the bisecting hyperplane of at most one pair of points $a, b \in P$.

no 3 collinear, no 4 cocircular

Observation: Every Voronoi wall between differently classified cells must lie in the bisecting hyperplane of some $a, b \in Q \subseteq P$.

Claim: Every hyperplane is the bisecting hyperplane of at most one pair of points $a, b \in P$.

Fact: A point p is relevant if and only if it shares a (d-1)-dimensional Voronoi wall with a point of different classification.

Observation: A minimum-cardinality reduced training set has either 1 or 2 points per cell.

Reduction to *maximum weight independent set on interval graphs*:

Theorem [Hsiao, Tang, Chang, '92]: MaxW-IS on interval graphs is in P.

Reduction to *maximum weight independent set on interval graphs*:

• Find all chains (including the non-maximal ones)

Reduction to *maximum weight independent set on interval graphs*:

- Find all chains (including the non-maximal ones)
- Associate each chain with its convex hull interval

Reduction to *maximum weight independent set on interval graphs*:

- Find all chains (including the non-maximal ones)
- Associate each chain with its convex hull interval
- Give every k-chain weight $max(k-2,\epsilon)$

Reduction to *maximum weight independent set on interval graphs*:

- Find all chains (including the non-maximal ones)
- Associate each chain with its convex hull interval
- Give every k-chain weight $max(k-2,\epsilon)$

Observation: MaxW-IS \Leftrightarrow minimum-cardinality reduced training set

Definition: An instance of *V-cycle Max2SAT* is given by

Definition: An instance of *V-cycle Max2SAT* is given by

$$\phi = (x_1 \vee \neg x_3) \land (\neg x_2 \vee x_3)$$

Definition: An instance of V-cycle Max2SAT is given by

$$\phi = (x_1 \lor \neg x_3) \land (\neg x_2 \lor x_3)$$

Definition: An instance of V-cycle Max2SAT is given by

$$\phi = (x_1 \lor \neg x_3) \land (\neg x_2 \lor x_3)$$

Definition: An instance of V-cycle Max2SAT is given by

- a 2-CNF formula $\phi = C_1 \land \ldots \land C_b$ over the variables x_1, \ldots, x_a , such that $G_{cyc}(\phi)$, the bipartite clause-variable graph of ϕ with an additional Hamiltonian cycle (x_1, \ldots, x_a, x_1) , is planar
- an integer k

The task is to decide whether there exists a variable assignment fulfilling at least k clauses of ϕ .

$$\phi = (x_1 \lor \neg x_3) \land (\neg x_2 \lor x_3)$$

Definition: An instance of V-cycle Max2SAT is given by

- a 2-CNF formula $\phi = C_1 \land \ldots \land C_b$ over the variables x_1, \ldots, x_a , such that $G_{cyc}(\phi)$, the bipartite clause-variable graph of ϕ with an additional Hamiltonian cycle (x_1, \ldots, x_a, x_1) , is planar
- an integer k

The task is to decide whether there exists a variable assignment fulfilling at least k clauses of ϕ .

Theorem [Buchin et al., 2020]: V-cycle Max2SAT is NP-hard.

Variable Gadgets

Variable Gadgets

Variable Gadgets

Channels

Channels

Channels

Reading the Value Off a Channel

Reading the Value Off a Channel

Reading the Value Off a Channel

Getting a Value Onto a Channel

Simon Weber CCCG, Aug. 3rd, 2023

Getting a Value Onto a Channel

Getting a Value Onto a Channel

p_i is present "for free" if the *i*-th literal is fulfilled

 p_i is present "for free" if the *i*-th literal is fulfilled

 p_i is present "for free" if the *i*-th literal is fulfilled

 p_i is present "for free" if the *i*-th literal is fulfilled

 p_i is present "for free" if the *i*-th literal is fulfilled

 p_i is present "for free" if the *i*-th literal is fulfilled

 p_1 and p_2 need to be endpoints of channels!

p_1 O

 $\mathbf{O} p_2$

Some Missing Ingredients

Stretching

Claim: There exists an integer $N(\phi)$, such that there exists an assignment fulfilling at least k clauses of ϕ if and only if there exists a reduced training set $Q \subseteq P(\phi)$ with $|Q| \leq N(\phi) - k$.

Claim: There exists an integer $N(\phi)$, such that there exists an assignment fulfilling at least k clauses of ϕ if and only if there exists a reduced training set $Q \subseteq P(\phi)$ with $|Q| \leq N(\phi) - k$.

assignment \Rightarrow reduced training set: clear

Claim: There exists an integer $N(\phi)$, such that there exists an assignment fulfilling at least k clauses of ϕ if and only if there exists a reduced training set $Q \subseteq P(\phi)$ with $|Q| \leq N(\phi) - k$.

assignment \Rightarrow reduced training set: clear reduced training set \Rightarrow assignment:

Claim: There exists an integer $N(\phi)$, such that there exists an assignment fulfilling at least k clauses of ϕ if and only if there exists a reduced training set $Q \subseteq P(\phi)$ with $|Q| \leq N(\phi) - k$.

assignment \Rightarrow reduced training set: clear reduced training set \Rightarrow assignment:

"Cheating is not beneficial"

Conclusion

Finding the minimum-cardinality reduced training set is NP-complete for $d \ge 2$ and any number of colors $k \ge 2$.

Open Question: For many "lossy" notions of nearest-neighbor condensation even *approximating* the minimum-cardinality subset fulfilling the required guarantees is NP-hard. What about our exact setting?