City Guarding with Cameras of Bounded Field of View Guarding Free Space with Vertex Half Guards

Ahmad Biniaz Mohammad Hashemi

University of Windsor

35th Canadian Conference on Computational Geometry - 2023

Agenda

Introduction

- Addressed Problems
- Literature and Related Works

City Guarding

- Definition
- Problem Restrictions
- Conjecture
- Lemmas and Theorem

3 Guarding Orthogonally Convex Polygons

- Definition
- Problem Restrictions

(CC) BY-SA

- Conjecture
- Theorem

Remarks

The **two** problems we addressed are related to the **city guarding** and the **art gallery** problems.

Arbitrary-oriented buildings (aerial view).

Orthogonally convex polygons in the plane.

Literature and Related Works - Art Gallery Problem

Orthogonal polygon & point guards (360°) .

Polygon with holes & point guards (360°) .

Literature and Related Works - City Guarding

A city with rectangular buildings.

(cc) BY-SA

Axis-aligned buildings (aerial view).

Arbitrary-oriented buildings (aerial view).

- Given a city with k arbitrary-oriented rectangular-base buildings, the task is to guard the free space (the ground, walls, roofs, and the sky) by placing cameras with 180° field of view only on the top corners of the buildings.
 - We proved that **3***k* + **1** such cameras are always **sufficient**, which answers *Daescu and Malik's conjecture (CCCG, 2020)*.

A Glimpse of City Guarding

A city with rectangular buildings.

(CC) BY-SA

Arbitrary-oriented buildings (aerial view).

City Guarding - Problem Restrictions

- Buildings' base shape: rectangular
- Buildings' orientation: arbitrary
- Cameras' horizontal field of view: 180°
- Cameras' range of vision: infinite
- Place of cameras: only on the top corners of the buildings
- Direction of cameras: orthogonal to the walls
- Goal: Guarding the city (roofs, ground, walls, and whole aerial space)

Four possible directions a camera can have.

(cc) BY-SA

Conjecture (Daescu and Malik, CCCG, 2020)

3k + 1 vertex guards are sometimes necessary to guard a city with k vertical buildings with rectangular bases, where guards are placed only at the top vertices of the buildings. (They conjecture the bounds are tight.)

- They proved **necessity** bound and **conjectured** that it is **tight**.
- Their example for proving the lowerbound is given in the next slide.

Necessity bound example

Example

A city with k = 4 buildings that needs 3k + 1 = 13 guards.

Ahmad, Mohammad

(CC) BY-SA

Contact: Mohammad - smh10.mh@gmail.com

August 2, 2023

Lemma 1 (Daescu and Malik, CCCG, 2020)

If in a city the roofs, walls, and the ground are guarded by a set of cameras, then every point in the aerial space of the city is visible by a camera.

• Therefore, a guarding of **roofs, walls, and the ground** is a guarding of **the whole city's aerial space**.

11/33

• We focus on the guarding of the **ground and walls** and place the cameras in a way guarding the **roofs** too.

Vertical Projection of the Buildings

Buildings (vertically projected to the plane).

The Problem in 2D

Polygon P (city's boundary) with holes (buildings).

∃ →

< 行

Extension of Holes' Sides

Extensions divide the free space of P into regions R_1, R_2, \ldots

э

3 ► 1 = 5

< A > <

Lemma 2

Lemma 2 (Regions' Convexness)

Each region R_i is convex.

Proof.

The extensions of each two adjacent sides of a hole create a quadrant. Each region R_i is the intersection of a set of quadrants. Since quadrants are convex, each region is convex as well.

Intersection of some quadrants (the blue region).

(cc) BY-SA

Intersections of Extended Sides

A cut of polygon *P* focusing on the holes' corners (red points) and extensions' intersections (blue points).

Lemma 3

Lemma 3 (Number of the Regions)

The number of regions R_1, R_2, \ldots is 3k + 1.

We define a **planar** graph G = (V, E):

 $V = \{ Holes' Corners \cup Extensions' Intersection Points \}$

 $= \{ Corner Vertices \cup Intersection Vertices \}$

 $E = \{ Segmented Holes' Sides \cup Segmented Sides' Extensions \cup \}$

Segmented Boundary of P}

Observation

Each hole has 4 corners and 4 sides and each extension defines an intersection vertex: |Corner Vertices| = |Intersection Vertices| = 4k

$$|V| = 4k + 4k = 8k$$

(cc) BY-SA

Lemma 3 (Continue)

Claim

G is 3-regular.

Proof.

- Each corner vertex is incident to two sides of a hole and one extension.
- Each intersection vertex is incident to an extension and two segments from the intersected segment.

Therefore, G is 3-regular.

A cut of polygon P focusing on vertices' degrees.

Lemma 3 (Continue)

Proof of Lemma 3.

Knowing G is 3-regular and |V| = 8k:

$$\sum_{i=1}^{|V|} \deg(v_i) = 2|E| => 3|V| = 2|E| => |E| = \frac{3(8k)}{2} = 12k$$

F = faces of G (outerface, holes, and regions $R_1, R_2, ...$). Using Euler's formula for connected planar graphs:

$$|F| = |E| - |V| + 2 = 12k - 8k + 2 = 4k + 2.$$

Excluding the **outerface** and the *k* holes, the number of regions R_1, R_2, \ldots is 3k + 1.

< (17) > < (27 >)

Lemma 4

Planer 3-regular graph G.

Lemma 4

Each region R_i contains a corner of a hole on its boundary.

(CC) BY-SA

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Proof of Lemma 4.

Each region R_i is built up by **extending sides**. Consider the **last** extension that **closes** the boundary of region R_i . This **extension** (the entire directed line segment) is a part of the boundary of R_i . The **initial point** of this directed line segment is a **hole's corner**.

A worst-case region R_x . Order of extending sides: h_i, h_j, h_l .

Good and Bad Regions, Corner and Edge Guards

h₃ h₅ h₂

Good regions (white regions with green 90° corner(s) on their boundary) and bad regions (in pink).

One corner guard (in green) per good region, one edge guard (in blue) per bad region.

Camera Placement

Cameras looking toward the interior of the regions they guard, perpendicular to the regions' boundary.

23 / 33

э

∃ ► < ∃ ►</p>

< A > <

Theorem 5

Given k arbitrary-oriented rectangular-base buildings, we can guard the entire space (the ground, walls, roofs, and the sky) with at most 3k + 1 cameras of 180° field of view that are placed at top corners of buildings orthogonal to a wall. The bound 3k + 1 is the best achievable.

- Given k orthogonally convex polygons of total m vertices in the plane, the task is to guard the free space (everywhere except for the polygons) by placing guards with 180° field of view only on the corners of the polygons.
 - We proved that $\frac{m}{2} + k + 1$ such guards are always sufficient, which answers another conjecture of Daescu and Malik (Theoretical Computer Science, 2021).

A Glimpse of Guarding Orthogonally Convex Polygons

Definition

Orthogonal Polygon: a polygon whose edges are orthogonal (axis-aligned).

Definition

Orthogonally Convex Polygon: An orthogonal polygon whose intersection with any orthogonal line segment is either empty or a single line segment.

Orthogonally convex polygons in the plane.

(cc) BY-SA

Guarding Orthogonally Convex Polygons - Problem Restrictions

- Polygons' orientation: arbitrary
- Polygons' type: orthogonally convex
- Guards' horizontal field of view: 180°
- Guards' range of vision: infinite
- Place of Guards: only on the corners of the polygons
- Direction of guards: orthogonal to the sides
- Goal: Guarding the free space (everywhere except polygons' interior)

Orthogonally convex polygons in the plane.

Conjecture (Daescu and Malik, Theoretical Computer Science, 2021)

Given a set F of k pairwise disjoint orthogonal polygons in the plane, $\frac{m}{2} + k + 1$ vertex guards are sometimes necessary to guard the free space and the boundaries of the polygons in F.

- They proved necessity bound and conjectured that it is tight.
- Their example for proving the lowerbound is **similar** to the one for City Guarding with **orthogonally convex holes**.

- Likewise, we extend sides but only the sides which end at a convex corner, and they divide the free space into some regions.
- Similar to Lemma 2, the result regions are convex.
- Solution Like Lemma 3, the number of these regions is equal to $\frac{m}{2} + k + 1$:
 - We define 3-regular planar graph G and have total number of convex corners $c = \frac{m}{2} + 2k$.

• Similarly,
$$|V| = 2c = m + 4k$$
.

- So, $|E| = \frac{3m}{2} + 6k$ and $|F| = \frac{m}{2} + 2k + 2$.
- Regions are good and bad, and the guard placement is in the same manner by corner and edge guards.

Guard Placement

Sides' extensions and guard placement of 3 polygons.

医补尿 医补

< A > <

э

Theorem 6

Given k pairwise disjoint arbitrary-oriented orthogonally convex polygons of total m vertices in the plane, we can guard the entire free space with at most $\frac{m}{2} + k + 1$ cameras of 180° field of view that are placed at the corners of the polygons orthogonal to a side. The bound $\frac{m}{2} + k + 1$ is the best achievable.

- **Generalization:** Same results for guarding cities with orthogonally convex bases buildings:
 - Rectangles are special orthogonally convex polygons (they only have convex corners): m = 4k

$$\frac{m}{2} + k + 1 = \frac{4k}{2} + k + 1 = 3k + 1$$

- Any Questions?
- Contact: Mohammad Hashemi
 - hashem62@uwindsor.ca
 - smh10.mh@gmail.com
- Thank you for considering this presentation!