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Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.
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Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?
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Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , ⌈

√
n⌉ − 1 [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most ⌈

√
n⌉ [Bonato et al. 2014].

The upper bound for the burning number of any connected graph is
improved a few times: from 2

√
n [Bonato et al., 2014], to√

6
2

√
n ≈ 1.22

√
n [Land and Lu, 2016] to

2√
3

√
n + O(1) ≈ 1.15

√
n + O(1) [Bonato and S.K., 2021], to

2√
3

√
n + 1 ≈ 1.15

√
n [Bastide et al. 2022], to

√
n + o(

√
n) [Norin

and Turcotte, 2023].

There are also probabilistic models for graph
burning [Pralat, 2014, Mitsche et al., 2017]
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Computational Complexity

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

Reduction from 3-Partition problem (an extension of 2-partition
problem to 3 set).

The problem remains NP-hard for disjoint set of paths, trees, other
graph families.
The problem is more “interesting” when the underlying graphs are
sparse.

The problem is APX-hard [Mondal et al., 2021].
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Approximation Algorithms

Graph family Apx. Factor

general graphs 3 [Bessy et al., 2018],
[Bonato and S.K., 2019]

forests of disjoint paths 1 + ϵ (FPTAS) [Bonato and S.K., 2019]

graphs of bounded treewidth 1 + ϵ (PTAS) [Lieskovský and Sgall, 2022]

graphs of bounded path-length 1 + o(1) [S.K. et al., 2020]

graphs of bounded tree-length 2 + o(1) [S.K. et al., 2020]

There are also probabilistic models for graph
burning [Pralat, 2014, Mitsche et al., 2017]
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Geometric Burning
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Anywhere Burning

The input is a set P of points in the Euclidean plane.

In the anywhere burning problem, at each round:

A fire may start at any point in the plane.
The existing fire extends to all points within distance 1.

The objective is to select starting points (centers) in a way to
minimize the number of rounds to burn all points in P.
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Point Burning

The input is a set P of points in the Euclidean plane.

In the point burning problem, at each round:

A fire may start at a point in P.
The existing fire extends to all points within distance 1.

The objective is to select starting points (centers) in a way to
minimize the number of rounds to burn all points in P.

8 / 23
Improved Algorithms for Burning Planar Point Sets

▲



Point Burning

The input is a set P of points in the Euclidean plane.

In the point burning problem, at each round:

A fire may start at a point in P.
The existing fire extends to all points within distance 1.

The objective is to select starting points (centers) in a way to
minimize the number of rounds to burn all points in P.

c1

8 / 23
Improved Algorithms for Burning Planar Point Sets

▲



Point Burning

The input is a set P of points in the Euclidean plane.

In the point burning problem, at each round:

A fire may start at a point in P.
The existing fire extends to all points within distance 1.

The objective is to select starting points (centers) in a way to
minimize the number of rounds to burn all points in P.

c1

c2

8 / 23
Improved Algorithms for Burning Planar Point Sets

▲



Point Burning

The input is a set P of points in the Euclidean plane.

In the point burning problem, at each round:

A fire may start at a point in P.
The existing fire extends to all points within distance 1.

The objective is to select starting points (centers) in a way to
minimize the number of rounds to burn all points in P.

c1

c2
c3

8 / 23
Improved Algorithms for Burning Planar Point Sets

▲



Point Burning

The input is a set P of points in the Euclidean plane.

In the point burning problem, at each round:

A fire may start at a point in P.
The existing fire extends to all points within distance 1.

The objective is to select starting points (centers) in a way to
minimize the number of rounds to burn all points in P.

c1

c2
c3

c4

8 / 23
Improved Algorithms for Burning Planar Point Sets

▲



Point Burning

The input is a set P of points in the Euclidean plane.

In the point burning problem, at each round:

A fire may start at a point in P.
The existing fire extends to all points within distance 1.

The objective is to select starting points (centers) in a way to
minimize the number of rounds to burn all points in P.

c1

c2
c3

c4

c5

8 / 23
Improved Algorithms for Burning Planar Point Sets

▲



Point Burning

The input is a set P of points in the Euclidean plane.

In the point burning problem, at each round:

A fire may start at a point in P.
The existing fire extends to all points within distance 1.

The objective is to select starting points (centers) in a way to
minimize the number of rounds to burn all points in P.

c1

c2
c3

c4

c5

c6

8 / 23
Improved Algorithms for Burning Planar Point Sets

▲



Geometric Burning Problems

In geometric burning problems, the goal is to minimize k such that
disks of distinct radii from {0, 1, 2, . . . , k} cover the input set P.

In anywhere burning, the disks can be centred anywhere in the
plane.
In point burning, the disks must be centred at points in P.

×

×

×

×

×

c1

c2

c3

c4

c5

c1

c2
c3

c4

c5

c6

Anywhere burning Point burning
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Results

Both problems are NP-hard [Keil et al., 2022].

For anywhere burning, the best existing approximation ratio has
improved from 2+ϵ [Keil et al., 2022] to
1.92188+ϵ [Gokhale et al., 2023].

We present two new algorithms with improved competitive ratios of
1.865 + ϵ and 1.833 + ϵ.

For point burning, the best existing approximation ratio has
improved from 2+ϵ [Keil et al., 2022] to
1.96296+ϵ [Gokhale et al., 2023].

We present a new algorithm with an improved competitive ratio of
1.944 + ϵ.
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improved from 2+ϵ [Keil et al., 2022] to
1.96296+ϵ [Gokhale et al., 2023].

We present a new algorithm with an improved competitive ratio of
1.944 + ϵ.
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Discrete Unit Disk Cover (DUDC)
Problem

The input is a given set of P points and a set of disks of uniform
radii r .

The objective is to select a minimum number of disks that cover all
points in P.

This problem is NP-hard and there is a PTAS for
it [Mustafa and Ray, 2010].
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Anywhere Burning

There is an optimal anywhere burning with fires starting at the
point set C formed by pairs and triplets of points in P.
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Anywhere Burning

Use the DUDC PTAS of [Mustafa and Ray, 2010] to find the
smallest value k∗ so that P can be covered with k∗ disks of radius
k∗ centered at points in C .

It is not possible to cover P with (k∗ − 1)/(1 + ϵ) disks of radius
k∗ − 1.
So, it is not possible to cover P with smaller disks of radii
{0, 1, . . . , (k∗ − 1)/(1 + ϵ)− 1}.
Burning P takes at least (k∗ − 1)/(1 + ϵ) rounds!
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Anywhere Burning

Burning P takes at least (k∗ − 1)/(1 + ϵ) rounds!

It is possible to cover P with k∗ disks of radius k∗.

So, it is possible to cover P with disks of distinct radii in
{0, 1, . . . , k∗, k∗ + 1, . . . , 2k∗ − 1}.

It is possible to burning P within 2k∗ rounds.

We get an approximation factor is 2 + ϵ′.
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Anywhere Burning

Summary so far: Minimize γ s.t. one can cover k∗ disks of
uniform radius k∗ with disks of distinct radii {0, 1, . . . , γk∗ − 1}.

This ensures a competitive ratio of (1 + ϵ)γ.
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Anywhere Burning

Disk Covering problem: γ(i) is the minimum value s.t. i disks of
radius γ(i) can cover a unit disk.1

γ(3) =
√
3/2

1E. Friedman. Circles covering circles.
https://erich-friedman.github.io/packing/circovcir/.
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Anywhere Burning

Disk Covering problem: γ(i) is the minimum value s.t. i disks of
radius γ(i) can cover a unit disk.1

γ(3) =
√
3/2 γ(4) =

√
2/2 γ(5) ⪅ 0.6094 γ(6) ⪅ 0.5560

γ(8) ⪅ 0.4451 γ(9) ⪅ 0.4143 γ(10) ⪅
0.3951

γ(7) = 0.5

γ(11) ⪅
0.3801

γ(12) ⪅
0.3612

1E. Friedman. Circles covering circles.
https://erich-friedman.github.io/packing/circovcir/.
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Anywhere Burning

It is possible to cover k∗ disks of radius k∗ with disks of distinct
radii from {0, 1, . . . , ⌊1.865k∗⌋ − 1}.

i radius range covered disks

0 ≥ k∗ ⌊0.865k∗⌋
3 [

√
3k∗/2, k∗) ⌊(2−

√
3)k∗/6⌋

4 [
√
2k∗/2,

√
3k∗/2) ⌊(

√
3−

√
2)k∗/8⌋

5 [0.6094k∗,
√
2k∗/2) ⌊(

√
2/2− 0.6094)k∗/5⌋

6 [0.5560k∗, 0.6094k∗) ⌊0.0534k∗/6⌋
7 [0.5k∗, 0.5560k∗) ⌊0.0560k∗/7⌋
8 [0.4451k∗, 0.5k∗) ⌊0.0549k∗/8⌋
9 [0.4143k∗, 0.4451k∗) ⌊0.0308k∗/9⌋
10 [0.3950, 0.4143) ⌊0.0193k∗/10⌋
11 [0.3801, 0.3950) ⌊0.0149k∗/11⌋
12 [0.3612, 0.3801) ⌊0.0189k∗/12⌋
sum − > 1.0009k∗ − 11 > k∗
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Anywhere Burning

It is possible to cover k∗ disks of radius k∗ with disks of distinct
radii from {0, 1, . . . , ⌊1.865k∗⌋ − 1}.

Theorem
There is an anywhere burning algorithm with an approximation factor of
1.865.
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Anywhere Burning

Instead of using disks of the same class to cover a disk of radius k∗,
apply a “mix-and-match approach”.

1c

2b

3c

4b
5c

1b

2c

3b

4c
5b

1a

3a

4a

5a

6a 6b

2a

6c

2a

2a

6c

6c

Group 1 covering Group 2 covering Group 3 covering Group 4 covering

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

1a: [0.95k∗, k∗] 2a: [0.8k∗, 0.85k∗) 3a: [0.65k∗, 0.7k∗) 4a: [0.5k∗, 0.55k∗) 5a: [0.35k∗, 0.4k∗) 6a: [0.2k∗, 0.25k∗)

1b: [0.9k∗, 0.95k∗] 2b: [0.75k∗, 0.8k∗) 3b: [0.6k∗, 0.65k∗) 4b: [0.45k∗, 0.5k∗) 5b: [0.3k∗, 0.35k∗) 6b: [0.15k∗, 0.2k∗)

1c: [0.85k∗, 0.9k∗] 2c: [0.7k∗, 0.75k∗) 3c: [0.55k∗, 0.6k∗) 4c: [0.4k∗, 0.45k∗) 5c: [0.25k∗, 0.3k∗) 6c: [0.1k∗, 0.15k∗)
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Anywhere Burning

It is possible to burn k∗ disks of radius k∗ using disks of distinct
radii from {0, 1, . . . , ⌊11k∗/6⌋ − 1}.

0.05k∗ disks are covered by each of Groups 1, 2, and 3 (summing to
0.15k∗ covered disks), and 0.05k∗/3 disks are covered by Group 3.
The remaining 11k∗/6− 0.15k∗ − 0.05k∗/3 = 5k∗/6 disks are
covered by 5k∗/6 disk of radius ≥ k∗.
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Anywhere Burning

It is possible to burn k∗ disks of radius k∗ using disks of distinct
radii from {0, 1, . . . , ⌊11k∗/6⌋ − 1}.

Theorem

There is an anywhere burning algorithm with an approximation
factor of 11/6 + ϵ = 1.83̄ + ϵ
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Point Burning

As before, we use the PTAS for DUDC to find a set U of k∗ disks
of radius k∗ that cover all points.

Use disk of radius < k∗ as follows:

Place any disk of radius in [0.944g∗, g∗) at the center of a disk in U.
Partition the uncovered annulus into i regions and cover non-empty
sectors with disks of class i .
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of radius k∗ that cover all points.

Use disk of radius < k∗ as follows:

Place any disk of radius in [0.944g∗, g∗) at the center of a disk in U.
Partition the uncovered annulus into i regions and cover non-empty
sectors with disks of class i .

2π/7
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Point Burning

It is possible to burn k∗ disks of radius k∗ using disks of distinct
radii from {0, 1, . . . , ⌊1.944k∗⌋ − 1}.

Theorem

There is a point burning algorithm with an approximation factor
of 1.944 + ϵ
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Summary

Anywhere burning: We presented an algorithm with an
approximation factor of 1.83̄ + ϵ, improving the ratio 1.92188+ϵ
of [Gokhale et al., 2023].

For point burning, we presented an algorithm with an approximation
factor of 1.944, improving the ratio 1.96296+ϵ
of [Gokhale et al., 2023].

These results can be slightly improved with a refined classification
of disks, but a notable improvement is unlikely to achieve within the
DUDC framework.

Open problems:

Is there any PTAS for anywhere/point burning problems?
Instead of fixing the spread factor and minimizing the number of
rounds, fix the number of rounds and minimize the spread factor.
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