
Approximate Line Segment Nearest Neighbor Search
amid Polyhedra in 3-Space

Ovidiu Daescu and Ka Yaw Teo

Department of Computer Science

University of Texas at Dallas, Richardson, TX

Input:

A set  of polyhedra with total complexity n in ℝ3.

Objective:

Preprocess  so that given
any query line segment s, one may quickly
find the polyhedron in  nearest to s.

In this study, we consider the approximate version:

• For any real parameter  > 0, return an input polyhedron whose distance to s is at most
(1 + ) times the distance from the nearest input polyhedron to s.

Motivation:

Nearest neighbor search has applications in areas such as computational geometry, machine
learning, data science, etc.

A particular relevance in path planning problems involving collision or clearance queries
for non-point objects in three-dimensional space.

Problem statement

Related work: Nearest neighbor search (NNS) problems

How difficult is the problem? To get a rough idea…

NNS with O(log n) query time has long been closely connected to Voronoi diagram (VD).

• In ℝd, the worst-case complexity of VD for point sites is Θ(n⌈d/2⌉).

Note: Nearest neighbor search for non-point objects is at least as hard as for point objects.

• In ℝ3, the worst-case complexity of VD for general sites is not well understood.

‒ For a few non-point sites and metrics in ℝ3, known lower bounds are roughly
quadratic (e.g., see [Sharir, 1995], [Boissonnat et al., 1998], [Har-Peled, 2001], [Koltun and Sharir, 2004]).

• For any “reasonable” class of geometric sites, the maximum complexity of VD in ℝd is
conjectured to be close to Θ(nd−1) [Boris, 2001].

Both VD- and non-VD-style data structures have been proposed for NNS problems.

Input and query objects are points:

• Efficient exact algorithms for low dimensions (e.g., see [Clarkson, 1988], [Meiser, 1993]).

• Efficient approximate algorithms for high dimensions (e.g., see [Andoni et al., 2014],
[Andoni and Indyk, 2017], [Arya et al., 2017]).

Related work: Nearest neighbor search (NNS) problems

Input and/or query objects are more complex than points:

Input objects Query object References

Polyhedra in ℝ3

Point

Koltun and Sharir, 2004

Lines Chew et al., 1998; Har-Peled, 2001; Mahabadi, 2014

k-flats Magen, 2007; Basri et al., 2010; Agarwal et al., 2017

Line segments Abdelkader and Mount, 2021

Points

Line Andoni et al., 2009

k-flat Mulzer et al., 2015

Line segment in ℝ2 Bespamyatnikh, 2003; Goswami et al., 2004; Segal and Zeitlin, 2008

Polygons in ℝ2 Line segment Daescu and Malik, 2018

Related work: Nearest neighbor search (NNS) problems

Input and/or query objects are more complex than points:

• Most recent (related) work [Abdelkader and Mount, 2021]:

− Approximate nearest neighboring line segment to a query point in ℝd.

− O((n2/d) log (/)) preprocessing time/space, O(log(max{n, }/)) query time,
where  is the spread of the input line segments.

Input objects Query object References

Polyhedra in ℝ3

Point

Koltun and Sharir, 2004

Lines Chew et al., 1998; Har-Peled, 2001; Mahabadi, 2014

k-flats Magen, 2007; Basri et al., 2010; Agarwal et al., 2017

Line segments Abdelkader and Mount, 2021

Points

Line Andoni et al., 2009

k-flat Mulzer et al., 2015

Line segment in ℝ2 Bespamyatnikh, 2003; Goswami et al., 2004; Segal and Zeitlin, 2008

Polygons in ℝ2 Line segment Daescu and Malik, 2018

Related work: Nearest neighbor search (NNS) problems

Input and/or query objects are more complex than points:

• Two-dimensional variant of our problem [Daescu and Malik, 2018]:

− Exact nearest neighboring polygon to a query line segment in the plane.

− O(m log n) preprocessing time, O(m) space, O((n/m1/2) polylog n) query time,
for any n  m  n2.

Input objects Query object References

Polyhedra in ℝ3

Point

Koltun and Sharir, 2004

Lines Chew et al., 1998; Har-Peled, 2001; Mahabadi, 2014

k-flats Magen, 2007; Basri et al., 2010; Agarwal et al., 2017

Line segments Abdelkader and Mount, 2021

Points

Line Andoni et al., 2009

k-flat Mulzer et al., 2015

Line segment in ℝ2 Bespamyatnikh, 2003; Goswami et al., 2004; Segal and Zeitlin, 2008

Polygons in ℝ2 Line segment Daescu and Malik, 2018

Overview of our results

A non-trivial algorithm for (1 + )-approximate line segment nearest neighbor search
among polyhedra in ℝ3.

For any n  m  n3, we obtain

O((m/) polylog n + n2+) preprocessing time/space and
O((1/)(n/m1/3) polylog n) query time.

Specifically, if we set m = n, we have

O(n2+) preprocessing time/space and
O((n2/3/) polylog n) query time.

Machineries and tools used:

Polyhedral metric (for approximating the Euclidean distance),
approximate Voronoi diagram,
real algebraic geometry,
multi-level partition trees.

Approximate line segment nearest neighbor

Suppose that query line segment s intersects a polyhedron in .

• Can be identified in O(n1/2+) time after a preprocessing that takes O(n3/2+) expected time
and space [Ezra and Sharir, 2022].

Hereafter, assume that s does not intersect any polyhedron in .

1) Find the polyhedron in  closest to
each endpoint of s (a and b).

2) Find the polyhedron in   Sab closest to s
(i.e., closest orthogonal neighbor to s).

Of the polyhedra found above,
the one with the shortest distance to s is
the polyhedron in  nearest to s.

Nearest neighbor to each endpoint of s

Subproblem 1.

Given a set  of polyhedra with total complexity n in ℝ3, preprocess  so that for any query
point p, one can quickly determine the polyhedron in  closest to p.

Exact solution:

• Let T be the set of O(n) triangular faces of the polyhedral in .

• Reduce Subproblem 1 to finding the triangle of T nearest to p.

• For each triangle   T, define f(p) to be the Euclidean distance from any point p to .

• Let CT = {f(p) |   T}.

• Let MT be the lower envelope of CT.

• For any query point p = (x, y, z), the triangle   T nearest to p is given by f(p) attaining
MT at (x, y, z).

• For any  > 0, lower envelope MT can be constructed in O(n3+) expected time and stored
in a data structure of O(n3+) size such that a nearest triangle search query can be answered
in O(log2 n) time [Agarwal et al., 1997].

Nearest neighbor to each endpoint of s

Subproblem 1.

Given a set  of polyhedra with total complexity n in ℝ3, preprocess  so that for any query
point p, one can quickly determine the polyhedron in  closest to p.

Approximate solution:

• Define the polyhedral distance between any two points p and q:

 dQ(p, q) = sup{t | q  p + tQ},

 where Q is a symmetric convex polytope.

• For any  > 0, there is a Q represented by the intersection of O(1/) half-spaces such that

 d(p, q)  dQ(p, q)  (1 + ) d(p, q),

 where d(p, q) is the Euclidean distance between p and q [Dudley, 1974].

• Construct the Voronoi diagram V of  under dQ in O(n2+) time, and the complexity of V
is O(n2+) [Kolton and Sharir, 2004].

• Using V, for any query point p, we can report, in O(log n) time, a (1 + )-approximate
nearest neighboring polyhedron in  to p.

Nearest orthogonal neighbor to s

Subproblem 2.

Given a set  of polyhedra with total complexity n in ℝ3, preprocess  so that for any query
line segment s, one can quickly determine the polyhedron in   Sab closest to s.

Approximate using a polyhedral metric:

• Define a convex polygonal prism T that is axially symmetrical to s:
s + tQ, where Q is a symmetric convex O(1/)-gon.

 T has two O(1/)-gons Qa and Qb as base faces,
connected by O(1/) rectangular sides.

• Using T, define the polyhedral distance between s and
a polyhedron P in   Sab:

 dQ(p, q) = sup{t | P  (s + tQ) = }.

Process each of O(1/) faces and edges of T for face- and edge-shooting queries.

Two scenarios to be considered: A) A shooting face hits a vertex of P.

 B) A shooting edge hits an edge of P.

Scenario A

A query shoots a fixed-direction rectangular face from s.

The expanding face traces a 3D infinite wedge.

Look for the first time the expanding wedge hits
a vertex of an input polyhedron.

Let V be the set of O(n) vertices of the polyhedra in .

Construct a 5-level partition tree on V:

• First 4 levels are used to collect the vertices in V that lie within the infinite wedge as the
union of a small number of canonical subsets.

 Each of first 4 levels supports half-space range searching queries among the points of V.

• 5-th level supports queries that ask for the vertex in the canonical subsets that is minimal in
a fixed direction.

• Following standard methodology for constructing multi-level partition trees [Agarwal, 2017;

Chan, 2012; Dobkin and Edelsbrunner, 1987; Matoušek, 1993]:

 Preprocessing time/space is O(m polylog n), and
 query time is O(n/m1/3 polylog n), for any n  m  n3.

Scenario B

Two types of shooting edges:

 (I) Normal to s (II) Parallel to s

Type I

A query shoots a fixed line segment normal to s from an endpoint of s.

The expanding line segment traces a 2D infinite wedge.

Seek for the first time the expanding wedge hits an edge of an input polyhedron.

This scenario has been taken care of when solving Subproblem 1.

Scenario B – Type II

A query shoots a fixed line segment
identical and parallel to s from s.

The moving line segment traces an infinite rectangle.

Look for the first time the expanding rectangle hits
an edge of an input polyhedron.

Let E be the set of O(n) edges of the polyhedra in .

Let e denote the fixed shooting edge parallel to s.

Assume that e and s are in some plane z = z0.

Let ℓ be the length of s.

Parameterize each edge  in E:

 x = ux()z + vx()

 y = uy()z + vy()

 z = uz()z + vz()

where ux(), vx(), uy(), vy(), uz(), vz()  ℝ.

p() lies within the infinite rectangle if and only if

 uy()z0 + vy()  y0 – l/2,

 uy()z0 + vy()  y0 + l/2,

 z0 – uz()  0, and

 z0 – vz()  0.

Find the  in E that satisfies (1)
such that ux()z0 + vx() – x0 is minimum.

To do that, construct a 5-level partition tree on E:

• First 4 levels are to collect the edges in E that satisfies (1).

 Define 4 planar point sets P1 = {(uy(), vy()) |   E}, P2 = {(1, –uz()) |   E},
P3 = {(1, –vz()) |   E}, and P4 = {(ux(), vx()) |   E}.

 1-st and 2-nd levels support half-plane range searching queries against P1,
3-rd level against P2, and 4-th level against P3.

• 5-th level supports queries that ask for the edge that is minimal in a fixed direction.

• Preprocessing time/space is O(m polylog n), and
query time is O(n/m1/2 polylog n), for any n  m  n2.

Scenario B – Type II

(1)

Nearest orthogonal neighbor to s

Subproblem 2.

Given a set  of polyhedra with total complexity n in ℝ3, preprocess  so that for any query
line segment s, one can quickly determine the polyhedron in   Sab closest to s.

Prepare query data structures:

• For each shooting face of T in Scenario A:

 O(m polylog n) preprocessing time/space,
 O(n/m1/3 polylog n) query time, for any n  m  n3.

• For each shooting edge of T in Scenario B – Type II:

 O(m polylog n) preprocessing time/space,
 O(n/m1/2 polylog n) query time, for any n  m  n2.

Since there are O(1/) such faces and edges, this takes
O((m/) polylog n) preprocessing time and storage total,
for any n  m  n3.

Total cost of a query is O((1/)(n/m1/3) polylog n).

Overview of our results

Subproblem 1: Finding nearest neighbor to each endpoint of query line segment s

 O(n2+) preprocessing time/space, O(log n) query time.

Subproblem 2: Finding nearest orthogonal neighbor to query line segment s

 O((m/) polylog n) preprocessing time/space, O((1/)(n/m1/3) polylog n)
query time, for any n  m  n3.

In conclusion, for any n  m  n3, we can find a (1 + )-approximate line segment nearest
neighbor among polyhedra in ℝ3 with

 O((m/) polylog n + n2+) preprocessing time/space and

 O((1/)(n/m1/3) polylog n) query time.

Specifically,

m = n O(n2+) preprocessing time/space and O((n2/3/) polylog n) query time.

m = n3 O((n3/) polylog n) preprocessing time/space and O((1/) polylog n) query time.

Concluding remarks

Partly motivated by path planning applications, where paths are suggested in real time and
need to be verified quickly if they satisfy certain constraints such as having a given
clearance from obstacles.

Given a set of polyhedra in 3-space, preprocess them so that for any query polygonal path and
any real value c > 0, one can quickly

i) report the clearance of the path, and/or

ii) determine if the path has a clearance of at least c.

Query (i) can be answered by finding the exact nearest neighboring input polyhedron.

Query (ii) can be addressed after performing query (i).

Unfortunately, exact nearest neighbor search in such a setting is expensive, and approximation
(using the results herein) may yield inconclusive answer.

Is it feasible to quickly answer query (ii) definitively without an exact solution to query (i)?

Note: After obtaining a decision algorithm for query (ii), query (i) can be answered using
parametric search.

References

A. Abdelkader and D. M. Mount. Approximate nearest neighbor search for line segments. In
37th International Symposium on Computational Geometry, 2021.

P. K. Agarwal. Simplex range searching and its variants: A review. A Journey Through
Discrete Mathematics: A Tribute to Jiří Matoušek, pages 1–30, 2017.

P. K. Agarwal, B. Aronov, and M. Sharir. Computing envelopes in four dimensions with
applications. SIAM Journal on Computing, 26(6):1714–1732, 1997.

P. K. Agarwal, N. Rubin, and M. Sharir. Approximate nearest neighbor search amid higher-
dimensional flats. In 25th Annual European Symposium on Algorithms, 2017.

A. Andoni and P. Indyk. Nearest neighbors in high dimensional spaces. In Handbook of
Discrete and Computational Geometry, pages 1135–1155. Chapman and Hall/CRC, 2017.

A. Andoni, P. Indyk, R. Krauthgamer, and H. L. Nguyên. Approximate line nearest neighbor
in high dimensions. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 293–301, 2009.

A. Andoni, P. Indyk, H. L. Nguyên, and I. Razenshteyn. Beyond locality-sensitive hashing. In
Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete algorithms,
pages 1018–1028, 2014.

B. Aronov. A lower bound on Voronoi diagram complexity. Information Processing Letters,
83(4):183–185, 2002.

References

S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 270–288, 2017.

R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(2):266–278, 2010.

S. Bespamyatnikh. Computing closest points for segments. International Journal of
Computational Geometry & Applications, 13(05):419–438, 2003.

J. D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec. Voronoi diagrams in higher
dimensions under certain polyhedral distance functions. Discrete & Computational
Geometry, 19(4):473–484, 1998.

T. M. Chan. Optimal partition trees. Discrete & Computational Geometry, 47:661–690, 2012.

L. P. Chew, K. Kedem, M. Sharir, B. Tagansky, and E. Welzl. Voronoi diagrams of lines in 3-
space under polyhedral convex distance functions. Journal of Algorithms, 29(2):238–255,
1998.

K. L. Clarkson. A randomized algorithm for closest point queries. SIAM Journal on
Computing, 17(4):830–847, 1988.

References

O. Daescu and H. Malik. Does a robot path have clearance c? In Proceedings of the 12th
International Conference on Combinatorial Optimization and Applications, pages 509–
521, 2018.

O. Daescu and R. Serfling. Extremal point queries with lines and line segments and related
problems. Computational Geometry, 32(3):223–237, 2005.

D. P. Dobkin and H. Edelsbrunner. Space searching for intersecting objects. Journal of
Algorithms, 8(3):348–361, 1987.

R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. Journal
of Approximation Theory, 10(3):227–236, 1974.

E. Ezra and M. Sharir. On ray shooting for triangles in 3-space and related problems. SIAM
Journal on Computing, 51(4):1065–1095, 2022.

P. P. Goswami, S. Das, and S. C. Nandy. Triangular range counting query in 2D and its
application in finding k nearest neighbors of a line segment. Computational Geometry,
29(3):163–175, 2004.

S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science, pages 94–103, 2001.

V. Koltun and M. Sharir. Three dimensional Euclidean Voronoi diagrams of lines with a fixed
number of orientations. SIAM Journal of Computing, 32:616–642, 2003.

References

V. Koltun and M. Sharir. Polyhedral Voronoi diagrams of polyhedra in three dimensions.
Discrete & Computational Geometry, 31:83–124, 2004.

A. Magen. Dimensionality reductions in ℓ2 that preserve volumes and distance to affine
spaces. Discrete & Computational Geometry, 38(1):139–153, 2007.

S. Mahabadi. Approximate nearest line search in high dimensions. In Proceedings of the
Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 337–354, 2014.

J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete & Computational
Geometry, 10:157–182, 1993.

S. Meiser. Point location in arrangements of hyperplanes. Information and Computation,
106(2):286–303, 1993.

W. Mulzer, H. L. Nguyên, P. Seiferth, and Y. Stein. Approximate k-flat nearest neighbor
search. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory of
Computing, pages 783–792, 2015.

M. Segal and E. Zeitlin. Computing closest and farthest points for a query segment.
Theoretical computer science, 393(1-3):294–300, 2008.

M. Sharir. Arrangements in higher dimensions: Voronoi diagrams, motion planning and other
applications. In Proceedings of the 4th Workshop on Algorithms and Data Structures, pages
109–121, 1995.

Thank you!

Ovidiu Daescu and Ka Yaw Teo

Department of Computer Science

University of Texas at Dallas, Richardson, TX

	Slide 1: Approximate Line Segment Nearest Neighbor Search amid Polyhedra in 3-Space
	Slide 2: Problem statement
	Slide 3: Related work: Nearest neighbor search (NNS) problems
	Slide 4: Related work: Nearest neighbor search (NNS) problems
	Slide 5: Related work: Nearest neighbor search (NNS) problems
	Slide 6: Related work: Nearest neighbor search (NNS) problems
	Slide 7: Overview of our results
	Slide 8: Approximate line segment nearest neighbor
	Slide 9: Nearest neighbor to each endpoint of s
	Slide 10: Nearest neighbor to each endpoint of s
	Slide 11: Nearest orthogonal neighbor to s
	Slide 12: Scenario A
	Slide 13: Scenario B
	Slide 14: Scenario B – Type II
	Slide 15: Scenario B – Type II
	Slide 16: Nearest orthogonal neighbor to s
	Slide 17: Overview of our results
	Slide 18: Concluding remarks
	Slide 19: References
	Slide 20: References
	Slide 21: References
	Slide 22: References
	Slide 23: Thank you!

