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Input:

A set  of polyhedra with total complexity n in ℝ3.

Objective:

Preprocess  so that given        
any query line segment s, one may quickly       
find the polyhedron in  nearest to s.

In this study, we consider the approximate version:

• For any real parameter  > 0, return an input polyhedron whose distance to s is at most     
(1 + ) times the distance from the nearest input polyhedron to s.

Motivation:

Nearest neighbor search has applications in areas such as computational geometry, machine 
learning, data science, etc.

A particular relevance in path planning problems involving collision or clearance queries 
for non-point objects in three-dimensional space.

Problem statement



Related work: Nearest neighbor search (NNS) problems

How difficult is the problem?  To get a rough idea…

NNS with O(log n) query time has long been closely connected to Voronoi diagram (VD).

• In ℝd, the worst-case complexity of VD for point sites is Θ(n⌈d/2⌉).

Note: Nearest neighbor search for non-point objects is at least as hard as for point objects.

• In ℝ3, the worst-case complexity of VD for general sites is not well understood.

‒ For a few non-point sites and metrics in ℝ3, known lower bounds are roughly 
quadratic (e.g., see [Sharir, 1995], [Boissonnat et al., 1998], [Har-Peled, 2001], [Koltun and Sharir, 2004]).

• For any “reasonable” class of geometric sites, the maximum complexity of VD in ℝd is 
conjectured to be close to Θ(nd−1) [Boris, 2001].

Both VD- and non-VD-style data structures have been proposed for NNS problems.

Input and query objects are points:

• Efficient exact algorithms for low dimensions (e.g., see [Clarkson, 1988], [Meiser, 1993]).

• Efficient approximate algorithms for high dimensions (e.g., see [Andoni et al., 2014],     
[Andoni and Indyk, 2017], [Arya et al., 2017]).



Related work: Nearest neighbor search (NNS) problems

Input and/or query objects are more complex than points:

Input objects Query object References

Polyhedra in ℝ3

Point

Koltun and Sharir, 2004

Lines Chew et al., 1998; Har-Peled, 2001; Mahabadi, 2014

k-flats Magen, 2007; Basri et al., 2010; Agarwal et al., 2017

Line segments Abdelkader and Mount, 2021

Points

Line Andoni et al., 2009

k-flat Mulzer et al., 2015

Line segment in ℝ2 Bespamyatnikh, 2003; Goswami et al., 2004; Segal and Zeitlin, 2008

Polygons in ℝ2 Line segment Daescu and Malik, 2018



Related work: Nearest neighbor search (NNS) problems

Input and/or query objects are more complex than points:

• Most recent (related) work [Abdelkader and Mount, 2021]:

− Approximate nearest neighboring line segment to a query point in ℝd.

− O((n2/d) log (/)) preprocessing time/space, O(log(max{n, }/)) query time,         
where  is the spread of the input line segments. 
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Related work: Nearest neighbor search (NNS) problems

Input and/or query objects are more complex than points:

• Two-dimensional variant of our problem [Daescu and Malik, 2018]:

− Exact nearest neighboring polygon to a query line segment in the plane.

− O(m log n) preprocessing time, O(m) space, O((n/m1/2) polylog n) query time,               
for any n  m  n2.
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Overview of our results

A non-trivial algorithm for (1 + )-approximate line segment nearest neighbor search 
among polyhedra in ℝ3.

For any n  m  n3, we obtain

O((m/) polylog n + n2+) preprocessing time/space and    
O((1/)(n/m1/3) polylog n) query time.

Specifically, if we set m = n, we have

O(n2+) preprocessing time/space and               
O((n2/3/) polylog n) query time.

Machineries and tools used: 

Polyhedral metric (for approximating the Euclidean distance),    
approximate Voronoi diagram,        
real algebraic geometry,                                      
multi-level partition trees.



Approximate line segment nearest neighbor

Suppose that query line segment s intersects a polyhedron in .

• Can be identified in O(n1/2+) time after a preprocessing that takes O(n3/2+) expected time 
and space [Ezra and Sharir, 2022].

Hereafter, assume that s does not intersect any polyhedron in .

1) Find the polyhedron in  closest to      
each endpoint of s (a and b).

2) Find the polyhedron in   Sab closest to s     
(i.e., closest orthogonal neighbor to s). 

Of the polyhedra found above,         
the one with the shortest distance to s is        
the polyhedron in  nearest to s.



Nearest neighbor to each endpoint of s

Subproblem 1.

Given a set  of polyhedra with total complexity n in ℝ3, preprocess  so that for any query 
point p, one can quickly determine the polyhedron in  closest to p.

Exact solution:

• Let T be the set of O(n) triangular faces of the polyhedral in .

• Reduce Subproblem 1 to finding the triangle of T nearest to p.

• For each triangle   T, define f(p) to be the Euclidean distance from any point p to .

• Let CT = {f(p) |   T}.

• Let MT be the lower envelope of CT.

• For any query point p = (x, y, z), the triangle   T nearest to p is given by f(p) attaining 
MT at (x, y, z).

• For any  > 0, lower envelope MT can be constructed in O(n3+) expected time and stored 
in a data structure of O(n3+) size such that a nearest triangle search query can be answered 
in O(log2 n) time [Agarwal et al., 1997].



Nearest neighbor to each endpoint of s

Subproblem 1.

Given a set  of polyhedra with total complexity n in ℝ3, preprocess  so that for any query 
point p, one can quickly determine the polyhedron in  closest to p.

Approximate solution:

• Define the polyhedral distance between any two points p and q:

  dQ(p, q) = sup{t | q  p + tQ}, 

 where Q is a symmetric convex polytope. 

• For any  > 0, there is a Q represented by the intersection of O(1/) half-spaces such that

 d(p, q)  dQ(p, q)  (1 + ) d(p, q), 

 where d(p, q) is the Euclidean distance between p and q [Dudley, 1974].

• Construct the Voronoi diagram V of  under dQ in O(n2+) time, and the complexity of V 
is O(n2+) [Kolton and Sharir, 2004].

• Using V, for any query point p, we can report, in O(log n) time, a (1 + )-approximate 
nearest neighboring polyhedron in  to p.



Nearest orthogonal neighbor to s

Subproblem 2.

Given a set  of polyhedra with total complexity n in ℝ3, preprocess  so that for any query 
line segment s, one can quickly determine the polyhedron in   Sab closest to s.

Approximate using a polyhedral metric:

• Define a convex polygonal prism T that is axially symmetrical to s:         
s + tQ, where Q is a symmetric convex O(1/)-gon.                      

 T has two O(1/)-gons Qa and Qb as base faces,                      
connected by O(1/) rectangular sides.  

• Using T, define the polyhedral distance between s and         
a polyhedron P in   Sab:

  dQ(p, q) = sup{t | P  (s + tQ) = }.

Process each of O(1/) faces and edges of T for face- and edge-shooting queries.

Two scenarios to be considered: A)  A shooting face hits a vertex of P.

    B)  A shooting edge hits an edge of P.



Scenario A

A query shoots a fixed-direction rectangular face from s.

The expanding face traces a 3D infinite wedge.

Look for the first time the expanding wedge hits          
a vertex of an input polyhedron.

Let V be the set of O(n) vertices of the polyhedra in .

Construct a 5-level partition tree on V:

• First 4 levels are used to collect the vertices in V that lie within the infinite wedge as the 
union of a small number of canonical subsets.

 Each of first 4 levels supports half-space range searching queries among the points of V.

• 5-th level supports queries that ask for the vertex in the canonical subsets that is minimal in 
a fixed direction.

• Following standard methodology for constructing multi-level partition trees [Agarwal, 2017; 

Chan, 2012; Dobkin and Edelsbrunner, 1987; Matoušek, 1993]:

 Preprocessing time/space is O(m polylog n), and   
 query time is O(n/m1/3 polylog n), for any n  m  n3.



Scenario B

Two types of shooting edges:

 (I) Normal to s (II) Parallel to s

Type I

A query shoots a fixed line segment normal to s from an endpoint of s.

The expanding line segment traces a 2D infinite wedge.

Seek for the first time the expanding wedge hits an edge of an input polyhedron.

This scenario has been taken care of when solving Subproblem 1.



Scenario B – Type II

A query shoots a fixed line segment                
identical and parallel to s from s.

The moving line segment traces an infinite rectangle.

Look for the first time the expanding rectangle hits        
an edge of an input polyhedron.

Let E be the set of O(n) edges of the polyhedra in .

Let e denote the fixed shooting edge parallel to s.

Assume that e and s are in some plane z = z0.

Let ℓ be the length of s.

Parameterize each edge  in E:

 x = ux()z + vx()

 y = uy()z + vy()

 z = uz()z + vz()

where ux(), vx(), uy(), vy(), uz(), vz()  ℝ.



p() lies within the infinite rectangle if and only if

 uy()z0 + vy()  y0 – l/2,

 uy()z0 + vy()  y0 + l/2,

 z0 – uz()  0, and

 z0 – vz()  0.

Find the  in E that satisfies (1)                        
such that ux()z0 + vx() – x0 is minimum.

To do that, construct a 5-level partition tree on E:

• First 4 levels are to collect the edges in E that satisfies (1).

 Define 4 planar point sets P1 = {(uy(), vy()) |   E}, P2 = {(1, –uz()) |   E},     
P3 = {(1, –vz()) |   E}, and P4 = {(ux(), vx()) |   E}.

 1-st and 2-nd levels support half-plane range searching queries against P1,      
3-rd level against P2, and 4-th level against P3.

• 5-th level supports queries that ask for the edge that is minimal in a fixed direction.

• Preprocessing time/space is O(m polylog n), and                    
query time is O(n/m1/2 polylog n), for any n  m  n2.

Scenario B – Type II

(1)



Nearest orthogonal neighbor to s

Subproblem 2.

Given a set  of polyhedra with total complexity n in ℝ3, preprocess  so that for any query 
line segment s, one can quickly determine the polyhedron in   Sab closest to s.

Prepare query data structures:

• For each shooting face of T in Scenario A:

 O(m polylog n) preprocessing time/space,   
 O(n/m1/3 polylog n) query time, for any n  m  n3.

• For each shooting edge of T in Scenario B – Type II:

 O(m polylog n) preprocessing time/space,   
 O(n/m1/2 polylog n) query time, for any n  m  n2.

Since there are O(1/) such faces and edges, this takes                
O((m/) polylog n) preprocessing time and storage total,                       
for any n  m  n3.

Total cost of a query is O((1/)(n/m1/3) polylog n).



Overview of our results

Subproblem 1: Finding nearest neighbor to each endpoint of query line segment s

 O(n2+) preprocessing time/space, O(log n) query time.

Subproblem 2: Finding nearest orthogonal neighbor to query line segment s

 O((m/) polylog n) preprocessing time/space, O((1/)(n/m1/3) polylog n) 
query time, for any n  m  n3.

 

In conclusion, for any n  m  n3, we can find a (1 + )-approximate line segment nearest 
neighbor among polyhedra in ℝ3 with 

 O((m/) polylog n + n2+) preprocessing time/space and 

 O((1/)(n/m1/3) polylog n) query time.

Specifically, 

m = n  O(n2+) preprocessing time/space and O((n2/3/) polylog n) query time.

m = n3  O((n3/) polylog n) preprocessing time/space and O((1/) polylog n) query time.



Concluding remarks

Partly motivated by path planning applications, where paths are suggested in real time and 
need to be verified quickly if they satisfy certain constraints such as having a given 
clearance from obstacles.

Given a set of polyhedra in 3-space, preprocess them so that for any query polygonal path and 
any real value c > 0, one can quickly

i) report the clearance of the path, and/or

ii) determine if the path has a clearance of at least c.

Query (i) can be answered by finding the exact nearest neighboring input polyhedron.

Query (ii) can be addressed after performing query (i).

Unfortunately, exact nearest neighbor search in such a setting is expensive, and approximation 
(using the results herein) may yield inconclusive answer.

Is it feasible to quickly answer query (ii) definitively without an exact solution to query (i)?

Note: After obtaining a decision algorithm for query (ii), query (i) can be answered using 
parametric search.
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Ovidiu Daescu and Ka Yaw Teo
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