Parallel Line Centers with Guaranteed Separation

CCCG 2023 August 3

Chaeyoon Chung, Taehoon Ahn, Sang Won Bae, Hee-Kap Ahn

Facility-location problems

Facility-location problems

k-line-center problem

k-**parallel**-line-center problem

k-**parallel**-line-center problem

For a given point set *P*,

Given a set of k slabs,

k-slab

Given a set of k slabs,

Given a set P of points,

k-slab

k-slab cover of P

k-slab $S = (\sigma_1, ..., \sigma_k)$ when k = 5 σ_1 σ_2 σ_3 σ_4 σ_5

k-slab S = $(\sigma_1, \dots, \sigma_k)$ when k = 5 σ_1 σ_2 σ_3 $_{W}(S)$ σ_4 σ_5

The \underline{width} of S

•
$$\mathbf{w}(\mathbf{S}) := \max\{\mathbf{w}(\sigma_1), \mathbf{w}(\sigma_2), ...\}$$

k-slab S = $(\sigma_1, \dots, \sigma_k)$ when k = 5

The \underline{width} of S

• $\mathbf{w}(\mathsf{S}) := \max\{\mathbf{w}(\sigma_1), \mathbf{w}(\sigma_2), ...\}$

The gap-width of S

• $g(\mathsf{S}) := \min\{\mathsf{w}(\gamma_1), \mathsf{w}(\gamma_2), ...\}$

k-slab S = $(\sigma_1, \dots, \sigma_k)$ when k = 5

The width of S

• $\mathbf{w}(\mathsf{S}) := \max\{\mathbf{w}(\sigma_1), \mathbf{w}(\sigma_2), ...\}$

The <u>gap-width</u> of S

• $g(\mathsf{S}) := \min\{\mathsf{w}(\gamma_1), \mathsf{w}(\gamma_2), ...\}$

The <u>breadth</u> of S

• *b*(S)

k-slab S = $(\sigma_1, \dots, \sigma_k)$ when k = 5

The width of S

• $\mathbf{w}(\mathsf{S}) := \max\{\mathbf{w}(\sigma_1), \mathbf{w}(\sigma_2), ...\}$

The <u>gap-width</u> of S

• $g(S) := \min\{w(\gamma_1), w(\gamma_2), ...\}$

The <u>breadth</u> of S

• *b*(S)

The gap-ratio of S

• $\rho(\mathsf{S}) := g(\mathsf{S})/b(\mathsf{S})$

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

find a minimum-width k-slab cover of P whose gap-ratio is at least ρ .

POSTECH Pohang University of Science and Technology

ALC: Chaeyoon Chung

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

find a minimum-width k-slab cover of P whose gap-ratio is at least ρ .

A **separator** of a *k*-slab S:

a sequence of k - 1 points on a common line each of which lies in its distinct gap.

 $R = (r_1, r_2, r_3)$ It holds that $r_i \in \gamma_i$ for each i = 1, ..., k - 1.

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

find a minimum-width k-slab cover of P whose gap-ratio is at least ρ .

A **separator** of a *k*-slab S:

a sequence of k - 1 points on a common line each of which lies in its distinct gap.

 $R = (r_1, r_2, r_3)$ It holds that $r_i \in \gamma_i$ for each i = 1, ..., k - 1.

A *k*-slab S **respects** the separator R .

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

find a minimum-width k-slab cover of P whose gap-ratio is at least ρ .

Step 1. An algorithm to compute a minimum-width *k*-slab cover of *P* which **respects** a given separator R in $O(kn \log n)$ time and O(n) space.

Step 2. An algorithm to compute $O(\rho^{-k})$ candidate separators.

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

find a minimum-width k-slab cover of P whose gap-ratio is at least ρ .

Step 1. An algorithm to compute a minimum-width *k*-slab cover of *P* which **respects** a given separator R in $O(kn \log n)$ time and O(n) space.

Step 2. An algorithm to compute $O(\rho^{-k})$ candidate separators.

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

find a minimum-width k-slab cover of P whose gap-ratio is at least ρ .

Step 1. An algorithm to compute a minimum-width *k*-slab cover of *P* which **respects** a given separator R in $O(kn \log n)$ time and O(n) space.

Step 2. An algorithm to compute $O(\rho^{-k})$ candidate separators.

For given $k \ge 2$, a set P of n points, and a real $\rho \in (0, 1]$,

find a minimum-width k-slab cover of P whose gap-ratio is at least ρ .

Step 1. An algorithm to compute a minimum-width *k*-slab cover of *P* which **respects** a given separator R in $O(kn \log n)$ time and O(n) space.

Step 2. An algorithm to compute $O(\rho^{-k})$ candidate separators.

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width *k*-slab cover of *P* respecting *R*.

Each of the function

- W_1, \ldots, W_k ,
- g_1, \ldots, g_{k-1}
- b

: piecewise sinusoidal with O(n) breakpoints

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width *k*-slab cover of *P* respecting *R*.

Each of the function

- $W_1, \ldots, W_k,$
- $g_1, ..., g_{k-1}$
- b

: piecewise sinusoidal with O(n) breakpoints

 \rightarrow We can compute **the width**, **gap-width**, **breadth**, and **the gap ratio** for a fixed orientation.

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

- A fully dynamic structure CH_i for each i = 1, ..., k [G. S. Brodal and R. Jacob, 2002]
 - $O(\log n)$ time queries using O(n) space.

$$2k$$
 lists (W₁,..., W_k, G₁,..., G_{k-1}, and B)

- k lists: Store functions of $w_i(\theta)$ for i = 1, ..., k : $W_1, ..., W_k$
- k lists: Store functions of $w_i(\theta)$ for i = 1, ..., k : $vv_1, ..., vv_k$ k 1 lists: Store functions of $g_i(\theta)$ for i = 1, ..., k 1 : $G_1, ..., G_{k-1}$
 - 1 list: Stores a function of $b(\theta)$

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width *k*-slab cover of *P* respecting *R*.

- A fully dynamic structure CH_i for each i = 1, ..., k [G. S. Brodal and R. Jacob, 2002]
 - $O(\log n)$ time queries using O(n) space.
- 2k lists (W₁, ..., W_k, G₁, ..., G_{k-1}, and B)
 - *k* lists: Store functions of $w_i(\theta)$ for i = 1, ..., k : $W_1, ..., W_k$
 - k-1 lists: Store functions of $g_i(\theta)$ for i = 1, ..., k-1 : $G_1, ..., G_{k-1}$
 - 1 list: Stores a function of $b(\theta)$
- The two extreme points $q_i^+(\theta)$ and $q_i^-(\theta)$ for each $P_i(\theta)$

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

- A fully dynamic structure CH_i for each i = 1, ..., k [G. S. Brodal and R. Jacob, 2002]
 - $O(\log n)$ time queries using O(n) space.
- 2k lists ($W_1, ..., W_k, G_1, ..., G_{k-1}$, and B)
 - *k* lists: Store functions of $w_i(\theta)$ for i = 1, ..., k : $W_1, ..., W_k$ k 1 lists: Store functions of $g_i(\theta)$ for i = 1, ..., k 1 : $G_1, ..., G_{k-1}$ \bullet

 - 1 list: Stores a function of $b(\theta)$
- The two extreme points $q_i^+(\theta)$ and $q_i^-(\theta)$ for each $P_i(\theta)$

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

- A fully dynamic structure CH_i for each i = 1, ..., k [G. S. Brodal and R. Jacob, 2002]
 - $O(\log n)$ time queries using O(n) space.
- 2k lists ($W_1, ..., W_k, G_1, ..., G_{k-1}$, and B)
 - *k* lists: Store functions of $w_i(\theta)$ for i = 1, ..., k : $W_1, ..., W_k$ *k* 1 lists: Store functions of $g_i(\theta)$ for i = 1, ..., k 1 : $G_1, ..., G_{k-1}$

 - 1 list: Stores a function of $b(\theta)$

The two extreme points $q_i^+(\theta)$ and $q_i^-(\theta)$ for each $P_i(\theta)$

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

- A fully dynamic structure CH_i for each i = 1, ..., k [G. S. Brodal and R. Jacob, 2002]
 - $O(\log n)$ time queries using O(n) space.
- 2k lists ($W_1, ..., W_k, G_1, ..., G_{k-1}$, and B)
 - *k* lists: Store functions of $w_i(\theta)$ for i = 1, ..., k : $W_1, ..., W_k$ *k* 1 lists: Store functions of $g_i(\theta)$ for i = 1, ..., k 1 : $G_1, ..., G_{k-1}$

 - Stores a function of $b(\theta)$ 1 **list:**

The two extreme points $q_i^+(\theta)$ and $q_i^-(\theta)$ for each $P_i(\theta)$

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

- A fully dynamic structure CH_i for each i = 1, ..., k [G. S. Brodal and R. Jacob, 2002]
 - $O(\log n)$ time queries using O(n) space.
- 2k lists ($W_1, ..., W_k, G_1, ..., G_{k-1}$, and B)
 - *k* lists: Store functions of $w_i(\theta)$ for i = 1, ..., k : $W_1, ..., W_k$ *k* 1 lists: Store functions of $g_i(\theta)$ for i = 1, ..., k 1 : $G_1, ..., G_{k-1}$

 - Stores a function of $b(\theta)$ 1 list:

The two extreme points $q_i^+(\theta)$ and $q_i^-(\theta)$ for each $P_i(\theta)$

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

1) Slab event

: when two or more points of *P* are contained in a boundary line of slab of $P_i(\theta)$

2) Cross event : when a point in *P* lies on $\ell_i(\theta)$

🛕 🗋 🦲 Chaeyoon Chung

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

- Update W_i
- Update G_{i-1}, G_i
- Update B, if needed

1) Slab event : when two or more points of *P* are contained in a boundary line of slab of $P_i(\theta)$

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width *k*-slab cover of *P* respecting *R*.

Slab event : when two or more points of *P* are contained in a boundary line of slab of *P_i(θ)* Cross event : when a point in *P* lies on *ℓ_i(θ)*

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width *k*-slab cover of *P* respecting *R*.

1) **Slab event** : when two or more points of *P* are contained in a boundary line of slab of $P_i(\theta)$

- 2) **Cross event** : when a point in *P* lies on $\ell_i(\theta)$
- The number of events is O(kn)
- It takes $O(\log n)$ time for each event. [G. S. Brodal and R. Jacob, 2002]

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

1) **Slab event** : when two or more points of *P* are contained in a boundary line of slab of $P_i(\theta)$

- 2) Cross event : when a point in *P* lies on $\ell_i(\theta)$
- The number of events is O(kn)
- It takes $O(\log n)$ time for each event. [G. S. Brodal and R. Jacob, 2002]

2k lists (W₁, ..., W_k, G₁, ..., G_{k-1}, and B)

- *k* lists: Store functions of w_i(θ) for *i* = 1, ..., *k* : W₁, ..., W_k *k* 1 lists: Store functions of g_i(θ) for *i* = 1, ..., *k* 1 : G₁, ..., G_{k-1}
- 1 list: Stores a function of $b(\theta)$

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

1) **Slab event** : when two or more points of *P* are contained in a boundary line of slab of $P_i(\theta)$

- 2) Cross event : when a point in *P* lies on $\ell_i(\theta)$
- The number of events is O(kn)
- It takes $O(\log n)$ time for each event. [G. S. Brodal and R. Jacob, 2002]

2k lists (W₁, ..., W_k, G₁, ..., G_{k-1}, and B)

- *k* lists: Store functions of w_i(θ) for *i* = 1, ..., *k* : W₁, ..., W_k *k* 1 lists: Store functions of g_i(θ) for *i* = 1, ..., *k* 1 : G₁, ..., G_{k-1}
- 1 list: Stores a function of $b(\theta)$
- \rightarrow Evaluate W₁, ..., W_k, G₁, ..., G_{k-1}, and B

: Compute the exact orientation θ where the gap-ratio is at least ρ and the width is minimized.

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width k-slab cover of P respecting R.

1) **Slab event** : when two or more points of *P* are contained in a boundary line of slab of $P_i(\theta)$

- 2) Cross event : when a point in *P* lies on $\ell_i(\theta)$
- The number of events is O(kn)
- It takes $O(\log n)$ time for each event. [G. S. Brodal and R. Jacob, 2002]

2k lists (W₁, ..., W_k, G₁, ..., G_{k-1}, and B)

- *k* lists: Store functions of w_i(θ) for *i* = 1,...,*k* : W₁,..., W_k *k* 1 lists: Store functions of g_i(θ) for *i* = 1,...,*k* 1 : G₁,..., G_{k-1}
- 1 list: Stores a function of $b(\theta)$
- \rightarrow Evaluate W₁, ..., W_k, G₁, ..., G_{k-1}, and B every *n* events

: Compute the exact orientation θ where the gap-ratio is at least ρ and the width is minimized.

Step 1. Given a separator $R = (r_1, ..., r_{k-1})$, compute a minimum-width *k*-slab cover of *P* respecting *R*.

Theorem. A minimum-width *k*-slab cover of *P* respecting R can be computed in $O(kn \log n)$ time and O(n) space.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

The **directional width** of *P* in orientation θ , $d_{\theta}(P)$

An ϵ -coreset for the directional width of P

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

The **directional width** of *P* in orientation θ , $d_{\theta}(P)$

An ϵ -coreset for the directional width of P

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

The **directional width** of *P* in orientation θ , $d_{\theta}(P)$

An ϵ -coreset for the directional width of P $d_{\theta}(K) \ge (1 - \epsilon) d_{\theta}(P)$ for any orientation θ . θ Κ

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

The **directional width** of *P* in orientation θ , $d_{\theta}(P)$ $d_{\theta}(\mathsf{P})$

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

Let $\mathsf{K} \subset \mathsf{P}$ be a (
ho/2)-coreset for directional width of P .

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

Let $K \subset P$ be a $(\rho/2)$ -coreset for directional width of P. $\rightarrow K$ of size $O(1/\rho)$ can be computed in O(n) time.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

Let $K \subset P$ be a $(\rho/2)$ -coreset for directional width of P. $\rightarrow K$ of size $O(1/\rho)$ can be computed in O(n) time.

Lemma. For any *k*-slab cover $S = (\sigma_1, ..., \sigma_k)$ of *P*, it holds that $K \cap \sigma_1 \neq \emptyset$ and $K \cap \sigma_k \neq \emptyset$.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

Let $\mathbf{K} \subset P$ be a $(\rho/2)$ -coreset for directional width of P. $\rightarrow K$ of size $O(1/\rho)$ can be computed in O(n) time.

Lemma. For any *k*-slab cover $S = (\sigma_1, ..., \sigma_k)$ of *P*, it holds that $K \cap \sigma_1 \neq \emptyset$ and $K \cap \sigma_k \neq \emptyset$.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

Let $\mathbf{K} \subset P$ be a $(\rho/2)$ -coreset for directional width of P. $\rightarrow K$ of size $O(1/\rho)$ can be computed in O(n) time.

Lemma. For any *k*-slab cover $S = (\sigma_1, ..., \sigma_k)$ of *P*, it holds that $K \cap \sigma_1 \neq \emptyset$ and $K \cap \sigma_k \neq \emptyset$.

Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_1$ and $q \in \sigma_k$.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

For an arbitrary k-slab cover S of P,

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

For an arbitrary k-slab cover S of P,

Let *p* and *q* be any two points such that $p \in \sigma_1$ and $q \in \sigma_k$.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

For an arbitrary *k*-slab cover *S* of *P*,

Let *p* and *q* be any two points such that $p \in \sigma_1$ and $q \in \sigma_k$.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

For an arbitrary *k*-slab cover *S* of *P*,

Let *p* and *q* be any two points such that $p \in \sigma_1$ and $q \in \sigma_k$.

Lemma. Each gap of *S* contains at least one point in R_{pq}

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

For an arbitrary *k*-slab cover *S* of *P*,

Let *p* and *q* be any two points such that $p \in \sigma_1$ and $q \in \sigma_k$.

 $R_{pq}: \lceil 1/\rho \rceil$ equidistant points on \overline{pq}

Lemma. Each gap of S contains at least one point in R_{pq}

There is a separator $(r_1, ..., r_{k-1})$ of S such that $r_i \in R_{pq}$

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

```
1) Compute a (\rho/2)-coreset K \subseteq P of size O(1/\rho)
```


Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

```
1) Compute a (\rho/2)-coreset K \subseteq P of size O(1/\rho)
```


Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

```
1) Compute a (\rho/2)-coreset \mathsf{K} \subseteq \mathsf{P} of size \mathsf{O}(1/\rho)
```

2) Compute all antipodal pairs of the convex hull of *K* \triangleleft **Corollary.** There is an antipodal pair (p, q) of *K* such that $p \in \sigma_1$ and $q \in \sigma_k$.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

```
1) Compute a (\rho/2)-coreset K \subseteq P of size O(1/\rho)
```

2) Compute all antipodal pairs of the convex hull of K \triangleleft Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_1$ and $q \in \sigma_k$.

3) For every antipodal pair (p, q), generate $\lceil 1/\rho \rceil$ equidistant points

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

```
1) Compute a (\rho/2)-coreset K \subseteq P of size O(1/\rho)
```

2) Compute all antipodal pairs of the convex hull of K \triangleleft Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_1$ and $q \in \sigma_k$.

3) For every antipodal pair (p, q), generate $\lceil 1/\rho \rceil$ equidistant points

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

Step 2. Given a set *P* of *n* points, compute candidates for an optimal separator.

Leo Chaeyoon Chung

4. Algorithm

1) Given a separator *R*, we can compute a minimum width *k*-slab cover of *P* respecting *R* in $O(kn \log n)$ time and O(n) space.

2) We can compute $O(\rho^{-k})$ candidate separators in $O(n \log n + \rho^{-k})$ time.

4. Algorithm

1) Given a separator *R*, we can compute a minimum width *k*-slab cover of *P* respecting *R* in $O(kn \log n)$ time and O(n) space.

```
2) We can compute O(\rho^{-k}) candidate separators in O(n \log n + \rho^{-k}) time.
```

Theorem. A minimum-width k-slab cover of P whose gap-ratio is at least ρ can be computed in $O(\rho^{-k} \cdot kn \log n)$ time and O(n) space, if exists.

4. Algorithm

Thank you!

