Parallel Line Centers with Guaranteed Separation

CCCG 2023

August 3

Chaeyoon Chung, Taehoon Ahn, Sang Won Bae, Hee-Kap Ahn

1. Introduction

Facility-location problems

1. Introduction

Facility-location problems

1. Introduction

k-line-center problem

1. Introduction

k-line-center problem

k-parallel-line-center problem

1. Introduction

k-line-center problem

k-parallel-line-center problem

1. Introduction

k-parallel-line-center problem

1. Introduction

For a given point set P,
k-parallel-line-center of P

k-slab cover of P

1. Introduction

Given a set of k slabs,
k-slab

1. Introduction

Given a set of k slabs,

> k-slab

Given a set P of points,

$$
k \text {-slab cover of } P
$$

1．Introduction

\boldsymbol{k}－slab $\mathrm{S}=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{k}}\right)$ when $\mathrm{k}=5$

1. Introduction

\boldsymbol{k}-slab $\mathrm{S}=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{k}}\right)$ when $\mathrm{k}=5$

1. Introduction

\boldsymbol{k}-slab $\mathrm{S}=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{k}}\right)$ when $\mathrm{k}=5$

The width of S

- $w(S):=\max \left\{w\left(\sigma_{1}\right), w\left(\sigma_{2}\right), \ldots\right\}$

1. Introduction

\boldsymbol{k}-slab $\mathrm{S}=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{k}}\right)$ when $k=5$

The width of S

- $w(S):=\max \left\{w\left(\sigma_{1}\right), w\left(\sigma_{2}\right), \ldots\right\}$

The gap-width of S

- $g(S):=\min \left\{w\left(\gamma_{1}\right), w\left(\gamma_{2}\right), \ldots\right\}$

1. Introduction

\boldsymbol{k}-slab $\mathbf{S}=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{k}}\right)$ when $\mathrm{k}=5$

The width of S

- $\mathrm{w}(\mathrm{S}):=\max \left\{\mathrm{w}\left(\sigma_{1}\right), \mathrm{w}\left(\sigma_{2}\right), \ldots\right\}$

The gap-width of S

- $g(S):=\min \left\{w\left(\gamma_{1}\right), w\left(\gamma_{2}\right), \ldots\right\}$

The breadth of S

- $b(S)$

1. Introduction

k-slab $S=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{k}}\right)$ when $k=5$

The width of S

- $\mathrm{w}(\mathrm{S}):=\max \left\{\mathrm{w}\left(\sigma_{1}\right), \mathrm{w}\left(\sigma_{2}\right), \ldots\right\}$

The gap-width of S

- $g(S):=\min \left\{w\left(\gamma_{1}\right), w\left(\gamma_{2}\right), \ldots\right\}$

The breadth of S

- $b(S)$

The gap-ratio of S

- $\quad \rho(\mathrm{S}):=g(\mathrm{~S}) / b(\mathrm{~S})$

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.
$k=4, \quad \rho=0.1$

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.
$k=4, \quad \rho=0.1$

1．Introduction

For given $k \geqslant 2$ ，a set P of n points，and a real $\rho \in(0,1]$ ，
find a minimum－width k－slab cover of P whose gap－ratio is at least ρ ．
$k=4, \quad \rho=0.1$

1．Introduction

For given $k \geqslant 2$ ，a set P of n points，and a real $\rho \in(0,1]$ ，
find a minimum－width k－slab cover of P whose gap－ratio is at least ρ ．
$k=4, \quad \rho=0.1$

S
S^{\prime}

1．Introduction

For given $k \geqslant 2$ ，a set P of n points，and a real $\rho \in(0,1]$ ，
find a minimum－width k－slab cover of P whose gap－ratio is at least ρ ．
$k=4, \quad \rho=0.1$

S
S^{\prime}

1．Introduction

For given $k \geqslant 2$ ，a set P of n points，and a real $\rho \in(0,1]$ ，
find a minimum－width k－slab cover of P whose gap－ratio is at least ρ ．
$k=4, \quad \rho=0.1$

S
S^{\prime}

1．Introduction

For given $k \geqslant 2$ ，a set P of n points，and a real $\rho \in(0,1]$ ，
find a minimum－width k－slab cover of P whose gap－ratio is at least ρ ．

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

A separator of a k-slab S :
a sequence of $k-1$ points on a common line each of which lies in its distinct gap.

$$
\begin{aligned}
& \mathrm{R}=\left(r_{1}, r_{2}, r_{3}\right) \\
& \text { It holds that } r_{i} \in \gamma_{i} \text { for each } i=1, \ldots, k-1 .
\end{aligned}
$$

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

A separator of a k-slab S :
a sequence of $k-1$ points on a common line each of which lies in its distinct gap.

$$
\text { A k-slab } \mathrm{S} \text { when } k=4
$$

$$
\begin{aligned}
& \mathrm{R}=\left(r_{1}, r_{2}, r_{3}\right) \\
& \text { It holds that } r_{i} \in \gamma_{i} \text { for each } i=1, \ldots, k-1 .
\end{aligned}
$$

A k-slab S respects the separator R.

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

Step 1. An algorithm to compute a minimum-width k-slab cover of P which respects a given separator R in $O(k n \log n)$ time and $O(n)$ space.

Step 2. An algorithm to compute $O\left(\rho^{-k}\right)$ candidate separators.

Step 3. Compute a minimum-width k-slab cover of P by testing $O\left(\rho^{-k}\right)$ candidate separators in $O\left(\rho^{-k} k n \log n\right)$ time and $O(n)$ space.

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

Step 1. An algorithm to compute a minimum-width k-slab cover of P which respects a given separator R in $O(k n \log n)$ time and $O(n)$ space.

Step 2. An algorithm to compute $O\left(\rho^{-k}\right)$ candidate separators.

Step 3. Compute a minimum-width k-slab cover of P by testing $O\left(\rho^{-k}\right)$ candidate separators in $O\left(\rho^{-k} k n \log n\right)$ time and $O(n)$ space.

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

Step 1. An algorithm to compute a minimum-width k-slab cover of P which respects a given separator R in $O(k n \log n)$ time and $O(n)$ space.

Step 2. An algorithm to compute $O\left(\rho^{-k}\right)$ candidate separators.

Step 3. Compute a minimum-width k-slab cover of P by testing $O\left(\rho^{-k}\right)$ candidate separators in $O\left(\rho^{-k} k n \log n\right)$ time and $O(n)$ space.

1. Introduction

For given $k \geqslant 2$, a set P of n points, and a real $\rho \in(0,1]$,
find a minimum-width k-slab cover of P whose gap-ratio is at least ρ.

Step 1. An algorithm to compute a minimum-width k-slab cover of P which respects a given separator R in $O(k n \log n)$ time and $O(n)$ space.

Step 2. An algorithm to compute $O\left(\rho^{-k}\right)$ candidate separators.

Step 3. Compute a minimum-width k-slab cover of P by testing $O\left(\rho^{-k}\right)$ candidate separators in $O\left(\rho^{-k} k n \log n\right)$ time and $O(n)$ space.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

Each of the function

- W_{1}, \ldots, W_{k},
- g_{1}, \ldots, g_{k-1}
- b
: piecewise sinusoidal with $O(n)$ breakpoints

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

Each of the function

- W_{1}, \ldots, W_{k},
- g_{1}, \ldots, g_{k-1}
- b
: piecewise sinusoidal with $O(n)$ breakpoints
\rightarrow We can compute the width, gap-width, breadth, and the gap ratio for a fixed orientation.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

$$
k=3
$$

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

－A fully dynamic structure CH_{i} for each $i=1, \ldots, k$［G．S．Brodal and R．Jacob，2002］ －$O(\log n)$ time queries using $O(n)$ space．
－ $2 k$ lists $\left(W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}\right.$ ，and B）
－k lists：Store functions of $w_{i}(\theta)$ for $i=1, \ldots, k \quad: W_{1}, \ldots, W_{k}$
－$k-1$ lists：Store functions of $g_{i}(\theta)$ for $i=1, \ldots, k-1 \quad: G_{1}, \ldots, G_{k-1}$
－ 1 list：Stores a function of $b(\theta) \quad$ B
－The two extreme points $q_{i}^{+}(\theta)$ and $q_{i}^{-}(\theta)$ for each $P_{i}(\theta)$

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

－A fully dynamic structure CH_{i} for each $i=1, \ldots, k$［G．S．Brodal and R．Jacob，2002］ －$O(\log n)$ time queries using $O(n)$ space．
－ $2 k$ lists $\left(W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}\right.$ ，and B）
－$\quad k$ lists：\quad Store functions of $w_{i}(\theta)$ for $i=1, \ldots, k \quad: W_{1}, \ldots, W_{k}$
－$k-1$ lists：Store functions of $g_{i}(\theta)$ for $i=1, \ldots, k-1 \quad: G_{1}, \ldots, G_{k-1}$
－ 1 list：Stores a function of $b(\theta): B$
－The two extreme points $q_{i}^{+}(\theta)$ and $q_{i}^{-}(\theta)$ for each $P_{i}(\theta)$

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

－A fully dynamic structure CH_{i} for each $i=1, \ldots, k$［G．S．Brodal and R．Jacob，2002］
－$O(\log n)$ time queries using $O(n)$ space．
－ $2 k$ lists $\left(W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}\right.$ ，and B）
－$\quad k$ lists：\quad Store functions of $w_{i}(\theta)$ for $i=1, \ldots, k \quad: W_{1}, \ldots, W_{k}$
－$k-1$ lists：Store functions of $g_{i}(\theta)$ for $i=1, \ldots, k-1 \quad: G_{1}, \ldots, G_{k-1}$
－ 1 list：Stores a function of $b(\theta)$
B
－The two extreme points $q_{i}^{+}(\theta)$ and $q_{i}^{-}(\theta)$ for each $P_{i}(\theta)$

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

- A fully dynamic structure CH_{i} for each $i=1, \ldots, k$ [G. S. Brodal and R. Jacob, 2002] - $O(\log n)$ time queries using $O(n)$ space.
- $2 k$ lists $\left(W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}\right.$, and B)
- $\quad k$ lists: \quad Store functions of $w_{i}(\theta)$ for $i=1, \ldots, k \quad: W_{1}, \ldots, W_{k}$
- $k-1$ lists: Store functions of $g_{i}(\theta)$ for $i=1, \ldots, k-1 \quad: G_{1}, \ldots, G_{k-1}$
- 1 list: Stores a function of $b(\theta) \quad: B$
- The two extreme points $q_{i}^{+}(\theta)$ and $q_{i}^{-}(\theta)$ for each $P_{i}(\theta)$

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

－A fully dynamic structure CH_{i} for each $i=1, \ldots, k$［G．S．Brodal and R．Jacob，2002］
－$O(\log n)$ time queries using $O(n)$ space．
－ $2 k$ lists $\left(W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}\right.$ ，and B）
－$\quad k$ lists：\quad Store functions of $w_{i}(\theta)$ for $i=1, \ldots, k \quad: W_{1}, \ldots, W_{k}$
－$k-1$ lists：Store functions of $g_{i}(\theta)$ for $i=1, \ldots, k-1 \quad: G_{1}, \ldots, G_{k-1}$
－ 1 list：Stores a function of $b(\theta) \quad: B$
－The two extreme points $q_{i}^{+}(\theta)$ and $q_{i}^{-}(\theta)$ for each $P_{i}(\theta)$

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

1) Slab event

> : when two or more points of P are contained in a boundary line of slab of $P_{i}(\theta)$

2) Cross event
when a point in P lies on $\ell_{i}(\theta)$

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

－Update W_{i}
－Update $\mathrm{G}_{i-1}, \mathrm{G}_{i}$
－Update B，if needed

1）Slab event
：when two or more points of P are contained in a boundary line of slab of $P_{i}(\theta)$

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

- Update $\mathrm{CH}_{i}, \mathrm{C}_{i+1}$
- Update W_{i}, W_{i+1}
- Update G_{i}

2) Cross event

: when a point in P lies on $\ell_{i}(\theta)$

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

1）Slab event ：when two or more points of P are contained in a boundary line of slab of $P_{i}(\theta)$
2）Cross event ：when a point in P lies on $\ell_{i}(\theta)$

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

1) Slab event : when two or more points of P are contained in a boundary line of slab of $P_{i}(\theta)$
2) Cross event : when a point in P lies on $\ell_{i}(\theta)$

- The number of events is $O(k n)$
- It takes $O(\log n)$ time for each event. [G. S. Brodal and R. Jacob, 2002]

2．A min－width k－slab cover for a Given Separator

Step 1．Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$ ，compute a minimum－width k－slab cover of P respecting R ．

1）Slab event ：when two or more points of P are contained in a boundary line of slab of $P_{i}(\theta)$
2）Cross event ：when a point in P lies on $\ell_{i}(\theta)$
－The number of events is $O(k n)$
－It takes $O(\log n)$ time for each event．［G．S．Brodal and R．Jacob，2002］

$$
\begin{array}{lll}
2 k & \text { lists }\left(W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1} \text {, and } B\right) \\
\quad k \text { lists: } \quad \text { Store functions of } w_{i}(\theta) \text { for } i=1, \ldots, k & : W_{1}, \ldots, W_{k} \\
\bullet \quad k-1 \text { lists: Store functions of } g_{i}(\theta) \text { for } i=1, \ldots, k-1 & : G_{1}, \ldots, G_{k-1} \\
-\quad 1 \text { list: } \quad \text { Stores a function of } b(\theta) & : B
\end{array}
$$

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

1) Slab event : when two or more points of P are contained in a boundary line
 of slab of $P_{i}(\theta)$
2) Cross event : when a point in P lies on $\ell_{i}(\theta)$

- The number of events is $O(k n)$
- It takes $O(\log n)$ time for each event. [G. S. Brodal and R. Jacob, 2002]

```
\(2 k\) lists \(\left(W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}\right.\), and \(\left.B\right)\)
- \(\quad k\) lists: \(\quad\) Store functions of \(w_{i}(\theta)\) for \(i=1, \ldots, k \quad: W_{1}, \ldots, W_{k}\)
- \(k-1\) lists: Store functions of \(g_{i}(\theta)\) for \(i=1, \ldots, k-1 \quad: G_{1}, \ldots, G_{k-1}\)
- 1 list: Stores a function of \(b(\theta) \quad\) B
```

\rightarrow Evaluate $W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}$, and B
: Compute the exact orientation θ where the gap-ratio is at least ρ and the width is minimized.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

1) Slab event : when two or more points of P are contained in a boundary line
 of slab of $P_{i}(\theta)$
2) Cross event : when a point in P lies on $\ell_{i}(\theta)$

- The number of events is $O(\mathrm{kn})$
- It takes $O(\log n)$ time for each event. [G. S. Brodal and R. Jacob, 2002]

```
\(2 k\) lists \(\left(W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}\right.\), and \(\left.B\right)\)
- \(\quad k\) lists: \(\quad\) Store functions of \(w_{i}(\theta)\) for \(i=1, \ldots, k \quad: W_{1}, \ldots, W_{k}\)
- \(k-1\) lists: Store functions of \(g_{i}(\theta)\) for \(i=1, \ldots, k-1 \quad: G_{1}, \ldots, G_{k-1}\)
- 1 list: Stores a function of \(b(\theta) \quad\) B
```

\rightarrow Evaluate $W_{1}, \ldots, W_{k}, G_{1}, \ldots, G_{k-1}$, and B every n events
: Compute the exact orientation θ where the gap-ratio is at least ρ and the width is minimized.

2. A min-width k-slab cover for a Given Separator

Step 1. Given a separator $R=\left(r_{1}, \ldots, r_{k-1}\right)$, compute a minimum-width k-slab cover of P respecting R.

Theorem. A minimum-width k-slab cover of P respecting R can be computed in $O(k n \log n)$ time and $O(n)$ space.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

The directional width of P in orientation $\theta, d_{\theta}(P)$

An ϵ-coreset for the directional width of P

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

The directional width of P in orientation $\theta, d_{\theta}(P)$

An ϵ-coreset for the directional width of P

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

The directional width of P in orientation $\theta, d_{\theta}(P)$

An ϵ-coreset for the directional width of P $d_{\theta}(K) \geqslant(1-\epsilon) d_{\theta}(P)$ for any orientation θ.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

The directional width of P in orientation $\theta, d_{\theta}(P)$

An ϵ-coreset for the directional width of P $d_{\theta}(K) \geqslant(1-\epsilon) d_{\theta}(P)$ for any orientation θ.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

Let $\mathbf{K} \subset P$ be a $(\rho / 2)$-coreset for directional width of P.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

Let $K \subset P$ be a $(\rho / \mathbf{2})$-coreset for directional width of $P . \quad \rightarrow K$ of size $O(1 / \rho)$ can be computed in $O(n)$ time.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

Let $K \subset P$ be a $(\rho / \mathbf{2})$-coreset for directional width of $P . \quad \rightarrow K$ of size $O(1 / \rho)$ can be computed in $O(n)$ time.

Lemma. For any k-slab cover $S=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ of P, it holds that $K \cap \sigma_{1} \neq \emptyset$ and $K \cap \sigma_{\mathrm{k}} \neq \emptyset$.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

Let $K \subset P$ be a $(\rho / \mathbf{2})$-coreset for directional width of $P . \quad \rightarrow K$ of size $O(1 / \rho)$ can be computed in $O(n)$ time.

Lemma. For any k-slab cover $S=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ of P, it holds that $K \cap \sigma_{1} \neq \emptyset$ and $K \cap \sigma_{\mathrm{k}} \neq \emptyset$.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

Let $K \subset P$ be a $(\rho / \mathbf{2})$-coreset for directional width of $P . \quad \rightarrow K$ of size $O(1 / \rho)$ can be computed in $O(n)$ time.

Lemma. For any k-slab cover $S=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ of P, it holds that $K \cap \sigma_{1} \neq \emptyset$ and $K \cap \sigma_{k} \neq \emptyset$.

Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

For an arbitrary k-slab cover S of P,

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

For an arbitrary k-slab cover S of P,
Let p and q be any two points such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

For an arbitrary k-slab cover S of P,
Let p and q be any two points such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.

$$
R_{p q}:\lceil 1 / \rho\rceil \text { equidistant points on } \overline{p q}
$$

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

For an arbitrary k-slab cover S of P,
Let p and q be any two points such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.

$R_{p q}:\lceil 1 / \rho\rceil$ equidistant points on $\overline{p q}$

Lemma. Each gap of S contains at least one point in $R_{p q}$

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

For an arbitrary k-slab cover S of P,
Let p and q be any two points such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.

$R_{p q}:\lceil 1 / \rho\rceil$ equidistant points on $\overline{p q}$

Lemma. Each gap of S contains at least one point in $R_{p q}$

There is a separator $\left(r_{1}, \ldots, r_{k-1}\right)$ of S such that $r_{i} \in R_{p q}$

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

1) Compute a $(\rho / 2)$-coreset $K \subseteq P$ of size $O(1 / \rho)$

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

1) Compute a $(\rho / 2)$-coreset $K \subseteq P$ of size $O(1 / \rho)$

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

1) Compute a $(\rho / 2)$-coreset $K \subseteq P$ of size $O(1 / \rho)$
2) Compute all antipodal pairs of the convex hull of K

Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

1) Compute a $(\rho / 2)$-coreset $K \subseteq P$ of size $O(1 / \rho)$
2) Compute all antipodal pairs of the convex hull of K
 Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.
3) For every antipodal pair (p, q), generate $\lceil 1 / \rho\rceil$ equidistant points

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

1) Compute a $(\rho / 2)$-coreset $K \subseteq P$ of size $O(1 / \rho)$
2) Compute all antipodal pairs of the convex hull of K
 Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.
3) For every antipodal pair (p, q), generate $\lceil 1 / \rho\rceil$ equidistant points

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

1) Compute a $(\rho / 2)$-coreset $K \subseteq P$ of size $O(1 / \rho)$
2) Compute all antipodal pairs of the convex hull of K

Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.
3) For every antipodal pair (p, q), generate $\lceil 1 / \rho\rceil$ equidistant points
\& consider all possible $(k-1)$-combinations of the points as candidate separators When $k=4$

3. Computing Candidate Separators

Step 2. Given a set P of n points, compute candidates for an optimal separator.

1) Compute a $(\rho / 2)$-coreset $K \subseteq P$ of size $O(1 / \rho)$
2) Compute all antipodal pairs of the convex hull of K
 Corollary. There is an antipodal pair (p, q) of K such that $p \in \sigma_{1}$ and $q \in \sigma_{k}$.
3) For every antipodal pair (p, q), generate $\lceil 1 / \rho\rceil$ equidistant points
\& consider all possible $(k-1)$-combinations of the points as candidate separators
 Lemma. Each gap of S contains When $k=4$

$|K|=O(1 / \rho), \quad \#$ of combinations per antipodal pair $=O\left(1 / \rho^{k-1}\right)$
\rightarrow \# of candidate separators is $O\left(1 / \rho^{k}\right)$

4．Algorithm

1）Given a separator R ，we can compute a minimum width k－slab cover of P respecting R in $O(k n \log n)$ time and $O(n)$ space．

2）We can compute $O\left(\rho^{-k}\right)$ candidate separators in $O\left(n \log n+\rho^{-k}\right)$ time．

4. Algorithm

1) Given a separator R, we can compute a minimum width k-slab cover of P respecting R in $O(k n \log n)$ time and $O(n)$ space.
2) We can compute $O\left(\rho^{-k}\right)$ candidate separators in $O\left(n \log n+\rho^{-k}\right)$ time.

Theorem. A minimum-width k-slab cover of P whose gap-ratio is at least ρ can be computed in $O\left(\rho^{-k} \cdot k n \log n\right)$ time and $O(n)$ space, if exists.

4．Algorithm

Thank you！

