CCOSKEG Discs in Simple Polygons

Prosenjit Bose¹ Anthony D'Angelo¹ Stephane Durocher²

¹Carleton University

²University of Manitoba

35th Canadian Conference on Computational Geometry

P. Bose et al

CCCG 2023 2 / 29

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < < 回 > < < つ < ○

-

< ≧ > <

CCOSKEG Disc

2-approx: $O(n \log^2 n \log r + m)$ expected time (Bose, D'Angelo, Durocher, '23)

CCOSKEG Disc

ヘロア 人間 アメヨア 人間 ア

Euclidean

Geodesic

三日 のへで

Chord-Constrained Smallest k-Enclosing Geodesic Disc

Given:

- a simple polygon *P* defined by a sequence of *m* vertices in \mathbb{R}^2 , *r* of which are reflex vertices
- a set S of **n** points of \mathbb{R}^2 contained in P
- integer $k \leq n$
- a chord $\ell \subset P$

Find a geodesic disc of minimum radius ρ^* centred on ℓ and contained in P that contains **k** points of S.

KEG disc k-enclosing geodesic disc

geodesic disc centred and contained in P that contains k points of S

< ∃ > <

KEG disc k-enclosing geodesic disc geodesic disc centred and contained in P that contains k points of S SKEG disc smallest k-enclosing geodesic disc

KEG disc with smallest radius

KEG disc k-enclosing geodesic disc

geodesic disc centred and contained in ${\cal P}$ that contains k points of ${\cal S}$

SKEG disc smallest k-enclosing geodesic disc KEG disc with smallest radius

CCOSKEG disc chord-constrained SKEG disc

a SKEG disc whose centre is constrained to lie on an input chord of \ensuremath{P}

CCOSKEG

Theorem

We compute a CCOSKEG disc in $O(n \log^2 n + m)$ time with high probability ($\ge 1 - e^{-\log^b n}$ for some constant b > 0) using $O(n \log r + m)$ space.

EL OQO

(신문) (신문

Tools

Polygon Simplification

O(m) time (Aichholzer et al., '14) Size O(r), preserves visibility, shortest paths

3 1 4

Tools

Shortest-Path Query Data Structure O(r) build time **(Guibas, Hershberger, '**89**)** $O(\log r)$ query time

Projections

Searching Along ℓ

Binary Search

CCCG 2023 11 / 29

(Megiddo, '79, '83)

三日 のへで

(Megiddo, '79, '83)

Search through parameter space looking for a "solution"

ELE NOR

(Megiddo, '79, '83)

Search through parameter space looking for a "solution"

• decision algorithm to test candidates

1.2

(Megiddo, '79, '83)

Search through parameter space looking for a "solution"

- decision algorithm to test candidates
- candidates need "monotonicity" property

(Megiddo, '79, '83)

Search through parameter space looking for a "solution"

- decision algorithm to test candidates
- candidates need "monotonicity" property
- generic algorithm providing candidate solutions

Disc of radius ρ

Disc of radius ρ

イロト イヨト イヨト イヨト

三日 のへの

Disc of radius ρ

• *** * * * *** •

• u

三日 のへの

<ロト < 団ト < 団ト < 団ト

Disc of radius ρ

Count the depth of the overlapping intervals $\implies O(n(\log r + \log n))$ time, O(n + r) space

What Are Our Candidates?

- projections
- \bullet intersection of ℓ with geodesic bisector

What Are Our Candidates?

- Test projections chosen with O(n) time median selection algorithm (Blum et al., '73)
- $O(\log n)$ calls to decision algorithm

What to Sort

What to Sort

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

P	R	ose	et	al
	-		~ ~	ш.

CCCG 2023 15 / 29

三日 のへで

P. Bose et al.

CCOSKEG Discs

CCCG 2023 16 / 29

三日 のへの

•

Assume the reflex vertices defining endpoint-equations are known

Assume the reflex vertices defining endpoint-equations are known

CCCG 2023 16 / 29

Assume the reflex vertices defining endpoint-equations are known

3 CCCG 2023 16 / 29

-

< ∃ >

I= nan

QuickSort

(van Oostrum, Veltkamp, '04)

QuickSort

(van Oostrum, Veltkamp, '04)

三日 のへで

イロン イヨン イヨン イヨン

Boxsort: (Reischuk, '85)

Boxsort: (Reischuk, '85)

Boxsort: (Reischuk, '85)

三日 のへの

Boxsort: (Reischuk, '85)

Boxsort: (Reischuk, '85)

Boxsort: (Reischuk, '85) Parm. search with boxsort: (Goodrich, Pszona, '13) Weighted selection, O(n) time: (Reiser, '78)

 $O(\log n)$ calls to decision alg with high probability

Ρ.	Bose	et	al.

CCOSKEG

Theorem

We compute a CCOSKEG disc in $O(n \log^2 n + m)$ time with high probability ($\ge 1 - e^{-\log^b n}$ for some constant b > 0) using $O(n \log r + m)$ space.

ELE SOC

→ 3 → 4 3

Comparing to Higher Order Geodesic VDs Ignoring Polylogs

Can be solved exactly in the polygon with higher-order geodesic VDs in worst-case time $O(k^2n + k^2r + \min(kr, r(n - k)) + m)$.

JOC ELE

Comparing to Higher Order Geodesic VDs Ignoring Polylogs

CCOSKEG: O(n + m)OKGVD:

Comparing to Higher Order Geodesic VDs Ignoring Polylogs

CCOSKEG: O(n + m)OKGVD:

• for
$$k \in \Theta(1)$$
: $O(n+m)$

• for
$$k \in \Omega(n)$$
, $k < n - 1$: $O($ more than $n^3)$ time

Great animation:

llinkin, SOCG '13, **DOI:** 10.1145/2462356.2462359 Notes: Michiel Smid

"Solving Geometric Optimization Problems Using Parametric Search"

The End

Related Results

- Coverings/packing simple polygon with geodesic discs [11, 13]
- Geodesic centre, simple polygon [1, 3, 5, 10, 12] Geodesic 2-centre, simple polygon [9, 13]
- Geodesic centre, *n* points in simple *m*-gon: $O(m + n \log(mn))$ [2, 7, 12] Geodesic 2-centre, *n* points in simple *m*-gon: $O(n(m + n) \log^3(m + n))$ [8]
- Simple m-gon, n points, all geodesic discs of radius ρ that contain at least k points [4]: for output size Y ∈ O(nm)

(ignoring polylogs)
$$O(m + (Ym)^{2/3} + Y + n^2)$$

- Geodesic k-Nearest Neighbour Queries (static) [6]: built in O(n * polylog) expected time queries in O(k * polylog) expected time
- 2-approximation SKEG disc : O(n log² n log r + m) (Bose, D'Angelo, Durocher, WADS '23)

• $\rho \implies$ 2-SKEG radius

- $\rho \implies$ 2-SKEG radius
- depth =?

- $\rho \implies$ 2-SKEG radius
- depth = $\Theta(\min(kr, n))$

Can we do better?

< ∃ ►

ELE NOR

2-SKEG depth

• In $O(nr \log^2 n + nr \log^2 r + m)$ expected time we compute a radius ρ using $O(n \log r + m)$ expected space that is a 2-approximation to the radius for a SKEG disc such that depth(ρ) $\leq 10k$.

2-SKEG depth

- In $O(nr \log^2 n + nr \log^2 r + m)$ expected time we compute a radius ρ using $O(n \log r + m)$ expected space that is a 2-approximation to the radius for a SKEG disc such that depth $(\rho) \leq 10k$.
- If we use $O(nr \log^2 n + nr \log^2 r + nk + m)$ expected time and $O(n \log r + k^2 + m)$ expected space, we can improve ρ such that depth $(\rho) \leq 4k$.

< E.

-

CCCG 2023 25 / 29

-

-

CCCG 2023 25 / 29

CCCG 2023 25 / 29

 $O(\log n + \log r)$ calls to decision alg with high probability

P. Bose et al.

CCCG 2023 25 / 29

= 200

References I

- H. Ahn, L. Barba, P. Bose, J. D. Carufel, M. Korman, and E. Oh. A linear-time algorithm for the geodesic center of a simple polygon. *Discrete & Computational Geometry*, 56(4):836–859, 2016.
- [2] B. Aronov, S. Fortune, and G. T. Wilfong. The furthest-site geodesic voronoi diagram. *Discrete & Computational Geometry*, 9:217–255, 1993.
- [3] T. Asano and G. Toussaint. Computing the geodesic center of a simple polygon. In *Discrete Algorithms and Complexity*, pages 65–79. Elsevier, 1987.
- [4] M. G. Borgelt, M. J. van Kreveld, and J. Luo. Geodesic disks and clustering in a simple polygon. *Int. J. Comput. Geometry Appl.*, 21(6):595–608, 2011.

> < = > < = > = = < < < > <

References II

- [5] P. Bose and G. T. Toussaint. Computing the constrained euclidean geodesic and link center of a simple polygon with application. In *Computer Graphics International*, pages 102–110. IEEE Computer Society, 1996.
- [6] S. de Berg and F. Staals. Dynamic data structures for k-nearest neighbor queries. *Computational Geometry*, 111:101976, 2023.
- [7] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. *Journal of Computer and System Sciences*, 39(2):126–152, 1989.
- [8] E. Oh, S. W. Bae, and H. Ahn. Computing a geodesic two-center of points in a simple polygon. *Comput. Geom.*, 82:45–59, 2019.
- [9] E. Oh, J. D. Carufel, and H. Ahn. The geodesic 2-center problem in a simple polygon. *Comput. Geom.*, 74:21–37, 2018.
- [10] R. Pollack, M. Sharir, and G. Rote. Computing the geodesic center of a simple polygon. *Discrete & Computational Geometry*, 4:611–626, 1989.

- [11] G. Rabanca and I. Vigan. Covering the boundary of a simple polygon with geodesic unit disks. *CoRR*, abs/1407.0614, 2014.
- [12] G. Toussaint. Computing geodesic properties inside a simple polygon. *Revue D'Intelligence Artificielle*, 3(2):9–42, 1989.
- [13] I. Vigan. Packing and covering a polygon with geodesic disks. *CoRR*, abs/1311.6033, 2013.