Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs

<u>Yuki Kawakami</u> Shun Takahashi Kazuhisa Seto Takashi Horiyama Yuki Kobayashi Yuya Higashikawa Naoki Katoh

¹ Hokkaido Univ. Osaka Metropolitan Univ. ³ Univ. of Hyogo

Bar-joint frameworks

- A bar-joint framework is studied in combinatorial rigidity theory.
- It consists of rigid bars and rotatable joints.
- It corresponds to the geometric graph by regarding each joint as vertex on the plane and each bar as straight-line edge.
- Our focus is whether the framework is rigid or flexible. 'It depends on only the combinatorial characterization if point set is generic (algebraically independent over the rational field).
 - We assume a *semi-generic* point set.
 - ♦ No three points are colinear
 - ◆ All interpoint distances are distinct

A bar-joint framework

Geometric graph

Bar-joint frameworks

- A bar-joint framework is studied in combinatorial rigidity theory.
- It consists of rigid bars and rotatable joints.
- It corresponds to the geometric graph by regarding each joint as vertex on the plane and each bar as straight-line edge.
- Our focus is whether the framework is rigid or flexible.
 It depends on only the combinatorial characterization if point set is generic (algebraically independent over the rational field).

- We assume a *semi-generic* point set.
 - ♦ No three points are colinear
 - ◆ All interpoint distances are distinct

Laman Graph [Laman 1970]

 \blacksquare Laman graph \Leftrightarrow minimally rigid on the plane.

Laman graph

Graph G satisfies following conditions

• For graph G = (V, E)|E(G)| = 2|V(G)| - 3

• For any subgraph H of G with $E(H) \neq \emptyset$ $|E(H)| \leq 2|V(H)| - 3$

Violates condition for subgraph *H*

$$|E(H)| > 2|V(H)| - 3$$

 $6 > 2 \cdot 4 - 3 = 5$

(k, ℓ) -tight graphs

Generalization

Laman graph

Graph G satisfies following conditions

- For graph G = (V, E)|E(G)| = 2|V(G)| - 3
- For any subgraph H of G with $E(H) \neq \emptyset$ $|E(H)| \leq 2|V(H)| 3$

(k, ℓ) -tight graph

Graph G satisfies following conditions

- For graph G = (V, E) $|E(G)| = k|V(G)| \ell$
- For any subgraph H of G with $E(H) \neq \emptyset$ $|E(H)| \leq k|V(H)| \ell$
- Case k = 2, $\ell = 3$: (2,3)-tight graphs = Laman graphs.
- Case k = 1, $\ell = 1$: (1,1)-tight graphs = spanning trees.

Euclidean minimum-weight Laman graphs

 \blacksquare MLG(P): Minimum-weight Laman Graph on P Laman graphs on P

- The Laman graph on P with the minimum total edge-length over all Laman graph on P.
- Given a semi-generic point set P,
 we can uniquely obtain MLG(P)
 by a greedy algorithm[1] (Polynomial time).
- Depending on the given point set P,
 MLG(P) may have edge crossings.

Euclidean minimum-weight Laman graphs

 \blacksquare MLG(P): Minimum-weight Laman Graph on P Laman graphs on P

- The Laman graph on P with the minimum total edge-length over all Laman graph on P.
- Given a semi-generic point set P,
 we can uniquely obtain MLG(P)
 by a greedy algorithm[1] (Polynomial time).
- Depending on the given point set P,
 MLG(P) may have edge crossings.

Euclidean minimum-weight (k, ℓ) -tight graph

 \blacksquare (k, ℓ) -MTG(P): Minimum-weight (k, ℓ) -tight graph on P.

- The (k, ℓ) -tight graph on P with the **minimum** total edge-length over all (k, ℓ) -tight graph on P.
- Given a semi-generic point set P, we can **uniquely** obtain (k, ℓ) -MTG(P) by a greedy algorithm[1] (Polynomial time).
- (1,1)-MTG(*P*) has **no edge crossings** for any *P*. (Minimum-weight spanning tree)
- Depending on the given point set P,
 (2,2)-MTG(P) may have edge crossings.

Our focus on edge crossings

- 1. The number of total edge crossings (called crossing number)
 - We show lower bounds for the maximum crossing number of MLG(P) and (2,2)-MTG(P).

(We explore a semi-generic point set P such that maximize crossing number.)

 $MLG(P_1)$: Crossing number is 0

 $MLG(P_3)$: Crossing number is 1

 $MLG(P_2)$: Crossing number is 1

MLG(P_4): Crossing number is 3

Our focus on edge crossings

- 1. The number of total edge crossings (called crossing number)
 - We show lower bounds for the maximum crossing number of MLG(P) and (2,2)-MTG(P). (We explore a semi-generic point set P such that maximize crossing number.)
- 2. The geometric thickness
 - We show lower bounds for the maximum geometric thickness of MLG(P) and (2,2)-MTG(P).
 - (We explore a semi-generic point set P such that maximize geometric thickness.)

Our focus on edge crossings

1. The number of total edge crossings (called crossing number)

The smallest number of layers necessary to partition the edge set of G(P) into layers so that no layers have edge crossing.

- 2. The geometric thickness
 - We show lower bounds for the maximum geometric thickness of MLG(P) and (2,2)-MTG(P).

(We explore a semi-generic point set P such that maximize geometric thickness.)

The maximum number		(2,3)-MTG (P) (MLG (P))		(2,2)-MTG(P)	
		Previous result [1]	Our result	Previous result [2]	Our result
Crossing number	Upper bound	2.5 P - 5	-	22 P - 22	-
	Lower bound	$(1.25 - \epsilon) P $	$(1.42-\epsilon) P $	-	$(1.83 - \epsilon) P $
Geometric thickness	upper bound	4	-	-	_
	Lower bound	2	3	-	3

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021 [2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

The maximum number		(2,3)-M	(2,3)-MTG (P) (MLG (P))		(2,2)-MTG(P)		
		Previous resu	lt [1]	Our res	ult	Previous result [2]	Our result
Crossing number	Upper bound	2.5 P -	5	_		22 P - 22	-
	Lower bound	$(1.25 - \epsilon)$	P	$(1.42 - \epsilon$) P	-	$(1.83 - \epsilon) P $
Geometric thickness	upper bound	Imp	rov	vement		1	-
	Lower bound	2		3		-	3

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021 [2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

The maximum number		(2,3)-MTG (P) (MLG (P))		(2,2)-MTG(P)	
		Previous result [1]	Our result	Previous result [2]	Our result
Crossing number	Upper bound	2.5 P - 5	1	22 P - 22	_
	Lower bound	$(1.25 - \epsilon) P $	$(1.42-\epsilon) P $	1	$(1.83-\epsilon) P $
Geometric thickness	upper bound	4	ı	1	-
	Lower bound	2	3	Improvem	ent 3

[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021

The maximum number		(2,3)-MTG (P) (MLG (P))		(2,2)-MTG(P)	
		Previous result [1]	Our result	Previous result [2]	Our result
Crossing number	Upper bound	2.5 P - 5	Gap _	22 P - 22	-
	Lower bound	$(1.25 - \epsilon) P $	$(1.42 - \epsilon) P $	I	$(1.83 - \epsilon) P $
Geometric thickness	upper bound	4	-	1	-
	Lower bound	2 Ga	3 p	-	3

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021

[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

The maximum number		(2,3)-MTG (P) (MLG (P))		(2,2)-MTG(<i>P</i>)		
		Previous result [1]	Our result	Previous result [2]	Our result	
Crossing number	Upper bound	2.5 P - 5	-	22 P - 22	_	
	Lower bound	$(1.25 - \epsilon) P $	$(1.42-\epsilon) P $		$(1.83 - \epsilon) P $	
Geometric thickness	This upper bound is obtained by substituting $k\coloneqq 2, \ell\coloneqq 2$ for the upper bound $(6k^2+4k-10)\cdot \frac{ E }{2}$ for general k and ℓ					

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021 [2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

The maximum number		(2,3)-MTG (P) (MLG (P))		(2,2)-MTG(P)		
		Previous result [1]	Our result	Previous result [2]	Our result	
Crossing k	Upper bound	2.5 P - 5	_	22 P - 22	_	
	Lower bound	$(1.25 - \epsilon) P $	$(1.42 - \epsilon) P $		$(1.83 - \epsilon) P $	
Geometric thickness	This upper bound is obtained by substituting $k\coloneqq 2, \ell\coloneqq 2$ for the upper bound $(6k^2+4k-10)\cdot \frac{ E }{2}$ for general k and ℓ .					

[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021

The maximum number		(2,3)-MTG(G(P) (MLG(P)) (2,2)-MTG(P)		TG(<i>P</i>)
			Our result	Previous result [2]	Our result
Crossing number	Upper bound	2.5 P - 5	-	22 P - 22	-
	Lower bound	$(1.25 - \epsilon) P $	$(1.42 - \epsilon) P $	-	$(1.83 - \epsilon) P $
Geometric thickness	upper bound	4	1	1	-
	Lower bound	2	3	-	3

[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021

A unit U Consists of 5 points. Their relative positions are same.

- By arranging regularly one type of unit *U*, they derive the lower bound for the crossing number.
 - When t units are arranged:
 - \triangleright Number of points set: |P| = 4t + 1
 - \triangleright Crossing number: 5t-2
 - Rearranging expression of crossing number
 - \triangleright Crossing number: $\left(\frac{5}{4} \frac{13}{16t+4}\right)|P| \ge (1.25 \epsilon)|P|$

This green edge crosses two edges.

MLG(P) is **isomorphic** in each unit and an edge added between U_i , U_{i+1} .

- By arranging regularly one type of unit *U*, they derive the lower bound for the crossing number.
 - When *t* units are arranged:
 - \triangleright Number of points set: |P| = 4t + 1
 - \triangleright Crossing number: 5t-2
 - Rearranging expression of crossing number
 - \triangleright Crossing number: $\left(\frac{5}{4} \frac{13}{16t+4}\right)|P| \ge (1.25 \epsilon)|P|$

MLG(P) is **isomorphic** in each unit and an edge added between U_i , U_{i+1} .

- By arranging regularly one type of unit *U*, they derive the lower bound for the crossing number.
 - When *t* units are arranged:
 - \triangleright Number of points set: |P| = 4t + 1
 - \triangleright Crossing number: 5t-2
 - Rearranging expression of crossing number
 - \triangleright Crossing number: $\left(\frac{5}{4} \frac{13}{16t+4}\right)|P| \ge (1.25 \epsilon)|P|$

Additional crossings: 5

Additional crossings: 5

MLG(P) is **isomorphic** in each unit and an edge added between U_i , U_{i+1} .

- By arranging regularly one type of unit U, they derive the lower bound for the crossing number.
 - When *t* units are arranged:
 - \triangleright Number of points set: |P| = 4t + 1
 - \triangleright Crossing number: 5t-2
 - Rearranging expression of crossing number
 - \triangleright Crossing number: $\left(\frac{5}{4} \frac{13}{16t+4}\right)|P| \ge (1.25 \epsilon)|P|$

Additional crossings: 5

MLG(P) is **isomorphic** in each unit and an edge added between U_i , U_{i+1} .

- By arranging regularly one type of unit U, they derive the lower bound for the crossing number.
 - When *t* units are arranged:
 - \triangleright Number of points set: |P| = 4t + 1
 - \triangleright Crossing number: 5t-2
 - Rearranging expression of crossing number
 - > Crossing number: $\left(\frac{5}{4} \frac{13}{16t+4}\right) |P| \ge (1.25 \epsilon) |P|$

■ We Propose a new unit consisting of 8 points.

•

MLG(*P*) of new unit

- We Propose a new unit consisting of 8 points.
 - \triangleright MLG(P) has 8 edge crossings.

- If we apply Kobayashi's method: (Arranging new units regularly)
 - There is no edge crossings between the neighboring units U_i , U_{i+1} .

Additional points: 7 \longrightarrow MLG(P) has this green edge.

(It doesn't cross other edges.)

Additional crossings: 8

Ratio: **1.14** ···

Additional points: 7

Additional crossings: 10

Ratio: **1.42** ···

MLG has this green edge. (It crosses two edges.)

- We extend the Kobayashi's method to arrange two types of units U, U'.
 - \triangleright Both of these two units U, U' derive the isomorphic MLG.
 - This method will give **two edge crossings** between the neighboring units U_i , U_{i+1} .

- We extend the Kobayashi's method to arrange two types of units *U*, *U*′.
 - When t units are arranged:
 - \triangleright Number of points set: |P| = 7t + 1
 - \triangleright Crossing number: 10t-2
 - Rearranging expression of crossing number

Additional points: 7

Additional crossings: 10 \triangleright Crossing number: $\left(\frac{10}{7} - \frac{24}{49t+7}\right)|P| \ge (1.42 - \epsilon)|P|$

Ratio: **1**. **42** ···

Our method for (2,2)-MTG(P)

Our method for (2,2)-MTG(P)

- We arrange different units consisting of 6 points.
 - \triangleright Each unit derive the **isomorphic** (2,2)-MTG.
 - \succ The width of unit U_{i+1} is d times that of unit U_i .
 - When t units are arranged:
 - \triangleright Number of points set: |P| = 6t
 - \triangleright Crossing number: 11t 6
 - Rearranging expression of crossing number
 - ightharpoonup Crossing number: $\left(\frac{11}{6} \frac{1}{t}\right)|P| \ge (1.83 \epsilon)|P|$

The maximum number		(2,3)-MTG (P) (MLG (P))		(2,2)-MTG(<i>P</i>)	
		Previous result [1]	Our result	Previous result [2]	Our result
Crossing number	Upper bound	2.5 P - 5	-	22 P - 22	-
	Lower bound	$(1.25 - \epsilon) P $	$(1.42 - \epsilon) P $	-	$(1.83 - \epsilon) P $
Geometric thickness	upper bound	4	-	-	-
	Lower bound	2	3	-	3

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021 [2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

The maximum number		(2,3)-MTG(P) (MLG(P))	(2,2)-MTG(P)	
The maximum	The maximum number		Our result	Previous result [2]	Our result
Crossing number	Upper bound	2.5 P - 5	-	22 P - 22	1
	Lower bound	$(1.25 - \epsilon) P $	$(1.42 - \epsilon) P $	1	$(1.83 - \epsilon) P $
Geometric thickness	upper bound	4	_	-	-
	Lower bound	2	3	-	3

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021 [2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

Geometric thickness and edge-crossing graph

Edge-crossing graph (W, F) for geometric graph G(P) = (P, E)

- Each vertex $e \in W$ corresponds to edge $e \in E$.
- Each edge $(e, e') \in F$ corresponds to edge crossing of two edges e and e' of G(P).

Geometric thickness and edge-crossing graph

Edge-crossing graph (W, F) for geometric graph G(P) = (P, E)

- Each vertex $e \in W$ corresponds to edge $e \in E$.
- Each edge $(e, e') \in F$ corresponds to edge crossing of two edges e and e' of G(P).

Geometric thickness and edge-crossing graph

Edge-crossing graph (W, F) for geometric graph G(P) = (P, E)

- Each vertex $e \in W$ corresponds to edge $e \in E$.
- Each edge $(e, e') \in F$ corresponds to edge crossing of two edges e and e' of G(P).

Geometric thickness of MLG(P)

Geometric thickness of MLG(P)

Geometric thickness of MLG(P)

Geometric thickness is 3 or more

Chromatic number is 3 or more

The maximum number		(2,3)-MTG(P) (MLG(P))	(2,2)-MTG(P)	
		Previous result [1]	Our result	Previous result [2]	Our result
Crossing number	Upper bound	2.5 P - 5	-	22 P - 22	-
	Lower bound	$(1.25 - \epsilon) P $	$(1.42-\epsilon) P $	-	$(1.83 - \epsilon) P $
Geometric thickness	upper bound	4	-	-	-
	Lower bound	2	3	-	3

^[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of euclidean minimum weight laman graphs., COCOON, 2021 [2] S. Bereg et. al., On the edge crossing properties of euclidean minimum weight laman graphs., Computational Geometry, 2016

Conclusion

- We improve lower bounds for the total number of edge crossings and geometric thickness of MLG(P).
- We extend lower bounds for them of (2,2)-MTG(P).

Future works

• There exists gap between lower and upper bounds for the total number of edge crossings and geometric thickness of MLG(P) and (k, ℓ) -MTG(P).