Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs

Yuki Kawakami ${ }^{1}$ Shun Takahashi ${ }^{1}$ Kazuhisa Seto ${ }^{1}$ Takashi Horiyama ${ }^{1}$ Yuki Kobayashi ${ }^{2}$ Yuya Higashikawa ${ }^{3}$ Naoki Katoh ${ }^{3}$

Bar-joint frameworks

■ A bar-joint framework is studied in combinatorial rigidity theory.

- It consists of rigid bars and rotatable joints.
- It corresponds to the geometric graph by regarding each joint as vertex on the plane and each bar as straight-line edge.
- Our focus is whether the framework is rigid or flexible. It depends on only the combinatorial characterization if point set is generic (algebraically independent over the rational field).
- We assume a semi-generic point set.
- No three points are colinear
- All interpoint distances are distinct

A bar-joint framework

Geometric graph

Bar-joint frameworks

■ A bar-joint framework is studied in combinatorial rigidity theory.

- It consists of rigid bars and rotatable joints.
- It corresponds to the geometric graph by regarding each joint as vertex on the plane and each bar as straight-line edge.
- Our focus is whether the framework is rigid or flexible. It depends on only the combinatorial characterization if point set is generic (algebraically independent over the rational field).

rigid
- We assume a semi-generic point set.
- No three points are colinear
- All interpoint distances are distinct

Laman Graph [Laman 1970]

■ Laman graph \Leftrightarrow minimally rigid on the plane. Laman graph
Graph G satisfies following conditions

- For graph $G=(V, E)$

$$
|E(G)|=2|V(G)|-3
$$

Laman graph

(k, ℓ)-tight graphs

Generalization

Graph G satisfies following conditions

- For graph $G=(V, E)$

$$
|E(G)|=2|V(G)|-3
$$

- For any subgraph H of G with $E(H) \neq \varnothing$ $|E(H)| \leq 2|V(H)|-3$

(k, ℓ)-tight graph

Graph G satisfies following conditions

- For graph $G=(V, E)$

$$
|E(G)|=k|V(G)|-\ell
$$

- For any subgraph H of G with $E(H) \neq \emptyset$

$$
|E(H)| \leq \boldsymbol{k}|V(H)|-\ell
$$

- Case $k=2, \ell=3:(2,3)$-tight graphs = Laman graphs.
- Case $k=1, \ell=1$: $(1,1)$-tight graphs = spanning trees.

Euclidean minimum-weight Laman graphs

■ MLG(P): Minimum-weight Laman Graph on P Laman graphs on P

- The Laman graph on P with the minimum total edge-length over all Laman graph on P.
- Given a semi-generic point set P, we can uniquely obtain MLG(P) by a greedy algorithm[1] (Polynomial time).
- Depending on the given point set P, MLG (P) may have edge crossings.

[1] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. Discrete Mathematics , 2008

Euclidean minimum-weight Laman graphs

■ MLG(P): Minimum-weight Laman Graph on P Laman graphs on P

- The Laman graph on P with the minimum total edge-length over all Laman graph on P.
- Given a semi-generic point set P, we can uniquely obtain MLG(P) by a greedy algorithm[1] (Polynomial time).
- Depending on the given point set P, MLG(P) may have edge crossings.

Euclidean minimum-weight (k, ℓ)-tight graph

■ (\boldsymbol{k}, ℓ)-MTG($\boldsymbol{P})$: Minimum-weight (k, ℓ)-tight graph on P.

- The (k, ℓ)-tight graph on P with the minimum total edge-length over all (k, ℓ)-tight graph on P.
- Given a semi-generic point set P, we can uniquely obtain (k, ℓ)-MTG(P) by a greedy algorithm[1] (Polynomial time).
- $(1,1)-\mathrm{MTG}(P)$ has no edge crossings for any P. (Minimum-weight spanning tree)
- Depending on the given point set P, $(2,2)-\mathrm{MTG}(P)$ may have edge crossings.

Our focus on edge crossings

1. The number of total edge crossings (called crossing number)

- We show lower bounds for the maximum crossing number of MLG(P) and (2,2)-MTG(P).
(We explore a semi-generic point set P such that maximize crossing number.)

$\operatorname{MLG}\left(P_{1}\right)$:
Crossing number is 0

MLG $\left(P_{3}\right)$:
Crossing number is 1

$\operatorname{MLG}\left(P_{2}\right)$:
Crossing number is 1

Our focus on edge crossings

1. The number of total edge crossings (called crossing number)

- We show lower bounds for the maximum crossing number of MLG(P) and (2,2)-MTG(P). (We explore a semi-generic point set P such that maximize crossing number.)

2. The geometric thickness

- We show lower bounds for the maximum geometric thickness of $\operatorname{MLG}(P)$ and $(2,2)-\mathrm{MTG}(P)$.
(We explore a semi-generic point set P such that maximize geometric thickness.)

Our focus on edge crossings

1. The number of total edge crossings (called crossing number)

The smallest number of layers necessary to partition the edge set of $G(P)$ into layers so that no layers have edge crossing.
2. The geometric thickness

- We show lower bounds for the maximum geometric thickness of $\operatorname{MLG}(P)$ and $(2,2)-\mathrm{MTG}(P)$.
(We explore a semi-generic point set P such that maximize geometric thickness.)

Comparison of previous result and our result

The maximum number	$(2,3)-\mathrm{MTG}(P)(\mathrm{MLG}(P))$		$(2,2)-\mathrm{MTG}(P)$		
	Upper bound	$2.5\|P\|-5$	-	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$(\mathbf{1 . 4 2 - \boldsymbol { \epsilon }) \| \boldsymbol { P } \|}$	-	$(\mathbf{1 . 8 3 - \boldsymbol { \epsilon }) \| \boldsymbol { P } \|}$
Geometric thickness	upper bound	4	-	-	-
	Lower bound	2	$\mathbf{3}$	-	$\mathbf{3}$

Comparison of previous result and our result

The maximum number		(2,3)-MTG(P) (MLG(P))		$(2,2)-\mathrm{MTG}(P)$	
		Previous result [1]	Our result	Previous result ${ }_{\text {[2] }}$	Our result
Crossing number	Upper bound	$2.5\|P\|-5$	-	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|\|(1.42-\epsilon)\| P \mid$		-	$(1.83-\epsilon)\|P\|$
Geometric thickness	upper bound	Improvement		-	-
	Lower bound	2	3	-	3

Comparison of previous result and our result

The maximum number		$(2,3)-\mathrm{MTG}(P)$ (MLG (P))		$(2,2)-\mathrm{MTG}(P)$	
		Previous result [1]	Our result	Previous result ${ }_{\text {[2] }}$	Our result
Crossing number	Upper bound	$2.5\|P\|-5$	-	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$(1.42-\epsilon)\|P\|$	-	$(1.83-\epsilon)\|P\|$
Geometric thickness	upper bound	4	-	-	-
	Lower bound	2	3	Improvement	ment 3

[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021
[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

Comparison of previous result and our result

The maximum number		$(2,3)-\mathrm{MTG}(P)$ (MLG(P))		$(2,2)-\mathrm{MTG}(P)$	
		Previous result [1]	Our result	Previous result [2]	Our result
Crossing number	Upper bound	$2.5\|P\|-5$	Gap	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$\|(1.42-\epsilon)\| P \mid$	-	$(1.83-\epsilon)\|P\|$
Geometric thickness	upper bound	4	-	-	-
	Lower bound	Gap		-	3

[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021
[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

Comparison of previous result and our result

The maximum number		$(2,3)-\mathrm{MTG}(P)$ (MLG(P))		(2,2)-MTG(P)	
		Previous result [1]	Our result	Previous result [2]	Our result
Crossing number	Upper bound	$2.5\|P\|-5$	-	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$(1.42-\epsilon)\|P\|$		$.83-\epsilon)\|P\|$
Geometric thickness	This upper bound is obtained by substituting $k:=2, \ell:=2$ for the upper bound $\left(6 k^{2}+4 k-10\right) \cdot \frac{\|E\|}{2}$ for general k and ℓ.				

Comparison of previous result and our result

The maximum number		$(2,3)-\mathrm{MTG}(P)$ (MLG(P))		(2,2)-MTG(P)	
		Previous result [1]	Our result	Previous result ${ }_{\text {[2] }}$	Our result
Crossing number	Upper bound	$2.5\|P\|-5$	${ }^{-}$	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$(1.42-\epsilon)\|P\|$		$83-\epsilon)$
Geometric thickness	This upper bound is obtained by substituting $k:=2, \ell:=2$ for the upper bound $\left(6 k^{2}+4 k-10\right) \cdot \frac{\|E\|}{2}$ for general k and ℓ.				

Comparison of previous result and our result

The maximum number		$(2,3)-\mathrm{MTG}(P)$ (MLG (P))		$(2,2)-\mathrm{MTG}(P)$	
		Previous result [1]	Our result	Previous result ${ }_{\text {[2] }}$	Our result
Crossing number	Upper bound	$2.5\|P\|-5$	-	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$\|(1.42-\epsilon)\| P \mid$	-	$(1.83-\epsilon)\|P\|$
Geometric thickness	upper bound	4	-	-	-
	Lower bound	2	3	-	3

[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021
[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

Previous work [Kobayashi+ 2021]

Previous work [Kobayashi+ 2021]

$U_{1} \quad$ By arranging regularly one type of unit U, they derive the lower bound for the crossing number.

- When t units are arranged:
$>$ Number of points set: $|\mathrm{P}|=4 t+1$
$>$ Crossing number: $5 t-2$
- Rearranging expression of crossing number
$>$ Crossing number: $\left(\frac{5}{4}-\frac{13}{16 t+4}\right)|P| \geq(1.25-\epsilon)|P|$

Previous work [Kobayashi+ 2021]

Additional points: 4

■ By arranging regularly one type of unit U, they derive the lower bound for the crossing number.

- When t units are arranged:
$>$ Number of points set: $|\mathrm{P}|=4 t+1$
$>$ Crossing number: $5 t-2$
- Rearranging expression of crossing number
$>$ Crossing number: $\left(\frac{5}{4}-\frac{13}{16 t+4}\right)|P| \geq(1.25-\epsilon)|P|$

Previous work [Kobayashi+ 2021]

Additional points: 4

- By arranging regularly one type of unit U, they derive the lower bound for the crossing number.
- When t units are arranged:
$>$ Number of points set: $|\mathrm{P}|=4 t+1$
$>$ Crossing number: $5 t-2$
- Rearranging expression of crossing number
$>$ Crossing number: $\left(\frac{5}{4}-\frac{13}{16 t+4}\right)|P| \geq(1.25-\epsilon)|P|$

Previous work [Kobayashi+ 2021]

Our method for MLG(P)

- We Propose a new unit consisting of 8 points.

Our method for MLG(P)

- We Propose a new unit consisting of 8 points. $>\operatorname{MLG}(P)$ has 8 edge crossings.

MLG(P) of new unit

Our method for MLG(P)

■ If we apply Kobayashi's method:

(Arranging new units regularly)

- There is no edge crossings between the neighboring units U_{i}, U_{i+1}.

Additional crossings: 8

MLG (P) has this green edge. (It doesn't cross other edges.)

■ We extend the Kobayashi's method to arrange two types of units $\boldsymbol{U}, \boldsymbol{U}^{\prime}$.
$>$ Both of these two units U, U^{\prime} derive the isomorphic MLG.
$>$ This method will give two edge crossings between the neighboring units U_{i}, U_{i+1}.

Additional points: 7

Additional crossings: 10

Our method for MLG(P)

Additional points: 7

■ We extend the Kobayashi's method to arrange two types of units $\boldsymbol{U}, \boldsymbol{U}^{\prime}$.

- When t units are arranged:
$>$ Number of points set: $|\mathrm{P}|=7 t+1$
$>$ Crossing number: $10 t-2$
- Rearranging expression of crossing number

Additional crossings: $10>$ Crossing number: $\left(\frac{10}{7}-\frac{24}{49 t+7}\right)|P| \geq(1.42-\epsilon)|P|$ Ratio: $1.42 \ldots$

Our method for (2,2)-MTG(P)

$$
U_{t-1}
$$

Our method for (2,2)-MTG(P)

■ We arrange different units consisting of 6 points.
$>$ Each unit derive the isomorphic (2,2)-MTG.
$>$ The width of unit U_{i+1} is d times that of unit U_{i}.

- When t units are arranged:
$>$ Number of points set: $|\mathrm{P}|=6 t$
> Crossing number: $11 t-6$
- Rearranging expression of crossing number
$>$ Crossing number: $\left(\frac{11}{6}-\frac{1}{t}\right)|P| \geq(1.83-\epsilon)|P|$

Comparison of previous result and our result

The maximum number		$(2,3)-\mathrm{MTG}(P)$ (MLG(P))		(2,2)-MTG(P)	
		Previous result [1]	Our result	Previous result ${ }_{\text {[2] }}$	Our result
Crossing number	Upper bound	$2.5\|P\|-5$	-	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$(1.42-\epsilon)\|P\|$	-	$(1.83-\epsilon)\|P\|$
Geometric thickness	upper bound	4	-	-	-
	Lower bound	2	3	-	3

[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021
[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016

Comparison of previous result and our result

The maximum number	$(2,3)-\mathrm{MTG}(P)(\mathrm{MLG}(P))$		$(2,2)-\mathrm{MTG}(P)$		
	Previous result [1]	Our result	Previous result [2]	Our result	
Crossing number	Upper bound	$2.5\|P\|-5$	-	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$(\mathbf{1 . 4 2 - \boldsymbol { \epsilon }) \| \boldsymbol { P } \|}$	-	$(\mathbf{1 . 8 3 - \boldsymbol { \epsilon }) \| \boldsymbol { P } \|}$
Geometric thickness	upper bound	4	-	-	-
	Lower bound	2	$\mathbf{3}$	-	$\mathbf{3}$

Geometric thickness and edge-crossing graph

Edge-crossing graph (W, F) for geometric graph $G(P)=(P, E)$

- Each vertex $e \in W$ corresponds to edge $e \in E$.
- Each edge $\left(e, e^{\prime}\right) \in F$ corresponds to edge crossing of two edges e and e^{\prime} of $G(P)$. Geometric graph $G(P)$

Edge-crossing graph (W, F)

Geometric thickness of $G(P)=$ Chromatic number of (W, F)

Geometric thickness and edge-crossing graph

Edge-crossing graph (W, F) for geometric graph $G(P)=(P, E)$

- Each vertex $e \in W$ corresponds to edge $e \in E$.
- Each edge $\left(e, e^{\prime}\right) \in F$ corresponds to edge crossing of two edges e and e^{\prime} of $G(P)$. Geometric graph $G(P)$

Edge-crossing graph (W, F)

Geometric thickness of $G(P)=$ Chromatic number of (W, F)

Geometric thickness and edge-crossing graph

Edge-crossing graph (W, F) for geometric graph $G(P)=(P, E)$

- Each vertex $e \in W$ corresponds to edge $e \in E$.
- Each edge (e, e^{\prime}) $\in F$ corresponds to edge crossing of two edges e and e^{\prime} of $G(P)$.

Geometric thickness of $G(P)=$ Chromatic number of (W, F)

Geometric thickness of MLG(P)

Geometric thickness of MLG(P)

Geometric thickness of MLG(P)

Geometric thickness is 3 or more
Chromatic number is 3 or more

Geometric thickness of $G(P)=$ Chromatic number of (W, F)

Comparison of previous result and our result

The maximum number	$(2,3)-\mathrm{MTG}(P)(\mathrm{MLG}(P))$		$(2,2)-\mathrm{MTG}(P)$		
	Upper bound	$2.5\|P\|-5$	-	$22\|P\|-22$	-
	Lower bound	$(1.25-\epsilon)\|P\|$	$(\mathbf{1 . 4 2 - \boldsymbol { \epsilon }) \| \boldsymbol { P } \|}$	-	$(\mathbf{1 . 8 3 - \boldsymbol { \epsilon }) \| \boldsymbol { P } \|}$
Geometric thickness	upper bound	4	-	-	-
	Lower bound	2	$\mathbf{3}$	-	$\mathbf{3}$

Conclusion

- We improve lower bounds for the total number of edge crossings and geometric thickness of MLG(P).
- We extend lower bounds for them of $(2,2)-\mathrm{MTG}(P)$.

Future works

- There exists gap between lower and upper bounds for the total number of edge crossings and geometric thickness of $\operatorname{MLG}(P)$ and $(k, \ell)-\mathrm{MTG}(P)$.

