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Bar-joint frameworks

2

n A bar-joint framework is studied in combinatorial rigidity theory. 

A bar-joint framework

Geometric graph

• It consists of rigid bars and rotatable joints.
• It corresponds to the geometric graph

by regarding each joint as vertex on the plane
and each bar as straight-line edge.

• We assume a semi-generic point set.
u No three points are colinear
u All interpoint distances are distinct

n Our focus is whether the framework is rigid or flexible.
It depends on only the combinatorial characterization 
if point set is generic (algebraically independent over the rational field).
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Laman Graph [Laman 1970] 
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n Laman graph minimally rigid on the plane. ⟺

Graph 𝐺 satisfies following conditions
• For graph 𝐺 = 𝑉, 𝐸
𝐸 𝐺 = 2 𝑉 𝐺 − 3

• For any subgraph 𝐻 of 𝐺 with 𝐸 𝐻 ≠ ∅

𝐸 𝐻 ≤ 2 𝑉 𝐻 − 3

Laman graph

Laman graph

Violates condition 
for subgraph 𝐻
𝐸 𝐻 > 2 𝑉 𝐻 − 3

6 > 2 ⋅ 4 − 3 = 5



(𝑘, ℓ)-tight graphs
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Graph 𝐺 satisfies following conditions
• For graph 𝐺 = 𝑉, 𝐸
𝐸 𝐺 = 𝟐 𝑉 𝐺 − 𝟑

• For any subgraph 𝐻 of 𝐺 with 𝐸 𝐻 ≠ ∅

𝐸 𝐻 ≤ 𝟐 𝑉 𝐻 − 𝟑

Laman graph
Graph 𝐺 satisfies following conditions
• For graph 𝐺 = 𝑉, 𝐸
𝐸 𝐺 = 𝒌 𝑉 𝐺 − ℓ

• For any subgraph 𝐻 of 𝐺 with 𝐸 𝐻 ≠ ∅

𝐸 𝐻 ≤ 𝒌 𝑉 𝐻 − ℓ

𝒌, ℓ -tight graph

Generalization

• Case 𝑘 = 2, ℓ = 3: 2,3 -tight graphs = Laman graphs.
• Case 𝑘 = 1, ℓ = 1: 1,1 -tight graphs = spanning trees.



Euclidean minimum-weight Laman graphs
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• The Laman graph on 𝑃 with the minimum total
edge-length over all Laman graph on 𝑃. 

• Given a semi-generic point set 𝑃, 
we can uniquely obtain MLG(𝑃)
by a greedy algorithm[1] (Polynomial time).

• Depending on the given point set 𝑃,
MLG(𝑃) may have edge crossings.

n MLG(𝑷): Minimum-weight Laman Graph on 𝑃 Laman graphs on 𝑃

[1] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. Discrete Mathematics , 2008

Minimum-weight
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• The Laman graph on 𝑃 with the minimum total
edge-length over all Laman graph on 𝑃. 

• Given a semi-generic point set 𝑃, 
we can uniquely obtain MLG(𝑃)
by a greedy algorithm[1] (Polynomial time).

• Depending on the given point set 𝑃,
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Minimum-weight

Laman graphs on 𝑃

[1] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. Discrete Mathematics , 2008

n MLG(𝑷): Minimum-weight Laman Graph on 𝑃



Euclidean minimum-weight 𝑘, ℓ -tight graph 
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• The 𝑘, ℓ -tight graph on 𝑃 with the minimum
total edge-length over all 𝑘, ℓ -tight graph on 𝑃.  

• Given a semi-generic point set 𝑃, 
we can uniquely obtain 𝑘, ℓ -MTG(𝑃)
by a greedy algorithm[1] (Polynomial time).

• 1,1 -MTG(𝑃) has no edge crossings for any 𝑃. 
(Minimum-weight spanning tree) 

• Depending on the given point set 𝑃,
2,2 -MTG(𝑃) may have edge crossings.

n 𝒌, ℓ -MTG(𝑷): Minimum-weight 𝑘, ℓ -tight graph on 𝑃. 

Minimum-weight

[1] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. Discrete Mathematics , 2008



1. The number of total edge crossings (called crossing number)

Our focus on edge crossings
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•We show lower bounds for the maximum crossing number
of MLG(𝑃) and 2,2 -MTG(𝑃). 

(We explore a semi-generic point set 𝑃 such that maximize crossing number.) 

MLG(𝑃!):
Crossing number is 0

𝑃!

MLG(𝑃"):
Crossing number is 1

𝑃"
MLG(𝑃#):
Crossing number is 3

𝑃#

MLG(𝑃$):
Crossing number is 1

𝑃$



1. The number of total edge crossings (called crossing number)

2. The geometric thickness

Our focus on edge crossings
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•We show lower bounds for the maximum crossing number
of MLG(𝑃) and 2,2 -MTG(𝑃). 

(We explore a semi-generic point set 𝑃 such that maximize crossing number.) 

• We show lower bounds for the maximum geometric thickness
of MLG(𝑃) and 2,2 -MTG(𝑃).

(We explore a semi-generic point set 𝑃 such that maximize geometric thickness.)  



1. The number of total edge crossings (called crossing number)

2. The geometric thickness

Our focus on edge crossings
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• We show lower bounds for the maximum geometric thickness
of MLG(𝑃) and 2,2 -MTG(𝑃).

(We explore a semi-generic point set 𝑃 such that maximize geometric thickness.)  

The smallest number of layers necessary to partition the edge set of 𝐺 𝑃
into layers so that no layers have edge crossing. 

Layer 1 Layer 2 Geometric thickness is 2



12

The maximum number
2,3 -MTG(𝑃) (MLG(𝑃)) 2,2 -MTG(𝑃)

Previous result [1] Our result Previous result [2] Our result 

Crossing 
number

Upper 
bound 2.5 𝑃 − 5 - 22 𝑃 − 22 -

Lower 
bound

1.25 − 𝜖 𝑃 𝟏. 𝟒𝟐 − 𝝐 𝑷 - 𝟏. 𝟖𝟑 − 𝝐 𝑷

Geometric 
thickness

upper
bound 4 - - -

Lower
bound 2 3 - 3

Comparison of previous result and our result

[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021
[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016
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Comparison of previous result and our result
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Gap

Gap
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* 6𝑘! + 4𝑘 − 10 ⋅ "
!

for general 𝑘, ℓ

Comparison of previous result and our result

This upper bound is obtained by substituting 𝑘 ≔ 2, ℓ ≔ 2
for the upper bound 6𝑘! + 4𝑘 − 10 ⋅ "

!
for general 𝑘 and ℓ.

[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021
[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016
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[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of Euclidean minimum weight Laman graphs., COCOON, 2021
[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016



Previous work [Kobayashi+ 2021]
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𝑈!

𝑈"

𝑈%

A unit 𝑈 Consists of 5 points. 
Their relative positions are same.

• When 𝑡 units are arranged:

• Rearranging expression of crossing number

Ø Number of points set: P = 4𝑡 + 1
Ø Crossing number: 5𝑡 − 2

Ø Crossing number: %
#
− !$

!&'(#
𝑃 ≥ 1.25 − 𝜖 𝑃

n By arranging regularly one type of unit 𝑼,
they derive the lower bound for the crossing number.



Previous work [Kobayashi+ 2021]
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• When 𝑡 units are arranged:

• Rearranging expression of crossing number

Ø Number of points set: P = 𝟒𝑡 + 1
Ø Crossing number: 𝟓𝑡 − 2

Ø Crossing number: 𝟓
𝟒
− !$

!&'(#
𝑃 ≥ 1.25 − 𝜖 𝑃

n By arranging regularly one type of unit 𝑼,
they derive the lower bound for the crossing number.

MLG(𝑃) is isomorphic in each unit
and an edge added between 𝑈+ , 𝑈+,-.  

𝑈!
𝑈%

This green edge crosses two edges.



Previous work [Kobayashi+ 2021]
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Additional crossings: 5

Additional points: 4
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• When 𝑡 units are arranged:

• Rearranging expression of crossing number

Ø Number of points set: P = 𝟒𝑡 + 1
Ø Crossing number: 𝟓𝑡 − 2

Ø Crossing number: 𝟓
𝟒
− !$

!&'(#
𝑃 ≥ 𝟏. 𝟐𝟓 − 𝜖 𝑃

n By arranging regularly one type of unit 𝑼,
they derive the lower bound for the crossing number.

MLG(𝑃) is isomorphic in each unit
and an edge added between 𝑈+ , 𝑈+,-.  

𝑈!

𝑈"

𝑈%

Additional crossings: 5
Additional points: 4

Ratio: 1.25



Our method for MLG(𝑃) 
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n We Propose a new unit consisting of 8 points.



Our method for MLG(𝑃) 
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Ø MLG(𝑃) has 8 edge crossings.

MLG(𝑃) of new unit

n We Propose a new unit consisting of 8 points.



Our method for MLG(𝑃) 
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n If we apply Kobayashi's method:
(Arranging new units regularly)
• There is no edge crossings

between the neighboring units 𝑈+ , 𝑈+,-. 

MLG(𝑃) has this green edge.
(It doesn’t cross other edges.)

𝑈.
𝑈-

Additional crossings: 8

Additional points: 7

Ratio: 𝟏. 𝟏𝟒⋯



Our method for MLG(𝑃) 
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n We extend the Kobayashi's method
to arrange two types of units 𝑼,𝑼#. 

Ø Both of these two units 𝑈,𝑈/ derive
the isomorphic MLG.

Ø This method will give two edge crossings
between the neighboring units 𝑈+ , 𝑈+,-. 

Separate
the distance

MLG has this green edge.
(It crosses two edges.)

𝑈. = 𝑈

𝑈- = 𝑈/

Additional crossings: 10

Additional points: 7

Ratio: 𝟏. 𝟒𝟐⋯



𝑈. = 𝑈

・・
・ 𝑈- = 𝑈/

𝑈0 = 𝑈

𝑈1 = 𝑈/

Our method for MLG(𝑃) 
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• When 𝑡 units are arranged:

• Rearranging expression of 
crossing number

Ø Number of points set: P = 𝟕𝑡 + 1
Ø Crossing number: 𝟏𝟎𝑡 − 2

Ø Crossing number: 𝟏𝟎
𝟕
− "#

#.'(/
𝑃 ≥ 𝟏. 𝟒𝟐 − 𝜖 𝑃Additional crossings: 10

Additional points: 7

n We extend the Kobayashi's method
to arrange two types of units 𝑼,𝑼#. 

Ratio: 𝟏. 𝟒𝟐⋯
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Our method for 2,2 -MTG(𝑃) 

𝑈%

𝑈!

𝑈&'!

𝑑 times

𝑑&'" times

n We arrange different units consisting of 6 points.
Ø Each unit derive the isomorphic 2,2 -MTG. 
Ø The width of unit 𝑈0(! is 𝑑 times that of unit 𝑈0. 
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Our method for 2,2 -MTG(𝑃) 

𝑈%

𝑈!

𝑈&'!

𝑑 times • When 𝑡 units are arranged:

• Rearranging expression of crossing number

Ø Number of points set: P = 𝟔𝑡
Ø Crossing number: 𝟏𝟏𝑡 − 6

Ø Crossing number: 𝟏𝟏
𝟔
− !

'
𝑃 ≥ 𝟏. 𝟖𝟑 − 𝜖 𝑃

Ø Each unit derive the isomorphic 2,2 -MTG. 
Ø The width of unit 𝑈0(! is 𝑑 times that of unit 𝑈0. 

n We arrange different units consisting of 6 points.

Additional crossings: 11
Additional points: 6 Ratio: 𝟏. 𝟖𝟑⋯
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[2] S. Bereg et. al., On the edge crossing properties of Euclidean minimum weight Laman graphs., Computational Geometry, 2016
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Geometric thickness and edge-crossing graph
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• Each vertex 𝑒 ∈ 𝑊 corresponds to edge 𝑒 ∈ 𝐸.
• Each edge 𝑒, 𝑒2 ∈ 𝐹 corresponds to edge crossing of two edges 𝑒 and 𝑒′ of 𝐺 𝑃 .

Geometric thickness of 𝐺 𝑃 = Chromatic number of 𝑊,𝐹

Edge-crossing graph 𝑊,𝐹 for geometric graph 𝐺 𝑃 = 𝑃, 𝐸

Geometric graph 𝐺 𝑃 Edge-crossing graph 𝑊,𝐹

Correspondence

edge 𝑖, 𝑗 : vertex 𝑒!,#
edge crossing 
𝑖, 𝑗 and 𝑥, 𝑦 : edge 𝑒!,# , 𝑒$,%

𝑒3,!
𝑒!,"
𝑒",$𝑒",#

𝑒!,#

𝑒!,$

𝑒3,"
4

0

1 2

3



Geometric thickness and edge-crossing graph
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• Each vertex 𝑒 ∈ 𝑊 corresponds to edge 𝑒 ∈ 𝐸.
• Each edge 𝑒, 𝑒2 ∈ 𝐹 corresponds to edge crossing of two edges 𝑒 and 𝑒′ of 𝐺 𝑃 .

Geometric thickness of 𝐺 𝑃 = Chromatic number of 𝑊,𝐹

Edge-crossing graph 𝑊,𝐹 for geometric graph 𝐺 𝑃 = 𝑃, 𝐸

Geometric graph 𝐺 𝑃 Edge-crossing graph 𝑊,𝐹

Correspondence

edge 𝑖, 𝑗 : vertex 𝑒!,#
edge crossing 
𝑖, 𝑗 and 𝑥, 𝑦 : edge 𝑒!,# , 𝑒$,%

𝑒3,!
𝑒!,"
𝑒",$𝑒",#

𝑒!,#

𝑒!,$

𝑒3,"
4

0

1 2

3

Edge crossing
Edge crossing



Geometric thickness and edge-crossing graph
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• Each vertex 𝑒 ∈ 𝑊 corresponds to edge 𝑒 ∈ 𝐸.
• Each edge 𝑒, 𝑒2 ∈ 𝐹 corresponds to edge crossing of two edges 𝑒 and 𝑒′ of 𝐺 𝑃 .

Geometric thickness of 𝐺 𝑃 = Chromatic number of 𝑊,𝐹

Edge-crossing graph 𝑊,𝐹 for geometric graph 𝐺 𝑃 = 𝑃, 𝐸

Geometric graph 𝐺 𝑃 Edge-crossing graph 𝑊,𝐹

Correspondence

edge 𝑖, 𝑗 : vertex 𝑒!,#
edge crossing 
𝑖, 𝑗 and 𝑥, 𝑦 : edge 𝑒!,# , 𝑒$,%Plane graph

𝑒3,!
𝑒!,"
𝑒",$𝑒",#

𝑒!,#

𝑒!,$

𝑒3,"
4

0

1 2

3



Geometric thickness of MLG(𝑃)
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MLG 𝑃 Edge-crossing graph for MLG 𝑃

Correspondence

𝑒>,? 𝑒@,A 𝑒?,B 𝑒3,!
𝑒!,"
𝑒",$
𝑒#,%
𝑒%,&
𝑒&,/𝑒@,C 𝑒D,B 𝑒C,E

𝑒?,C

edge 𝑖, 𝑗 : vertex 𝑒!,#
edge crossing 
𝑖, 𝑗 and 𝑥, 𝑦

: edge 𝑒!,# , 𝑒$,%

0 1

65

4

32

7



Geometric thickness of MLG(𝑃)
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Correspondence

edge 𝑖, 𝑗 : vertex 𝑒!,#

𝑒>,? 𝑒@,A 𝑒?,B 𝑒3,!
𝑒!,"
𝑒",$
𝑒#,%
𝑒%,&
𝑒&,/𝑒@,C 𝑒D,B 𝑒C,E

𝑒?,C
edge crossing 
𝑖, 𝑗 and 𝑥, 𝑦

: edge 𝑒!,# , 𝑒$,%

0 1

65

4

32

7

MLG 𝑃 Edge-crossing graph for MLG 𝑃
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Correspondence

edge 𝑖, 𝑗 : vertex 𝑒!,#

𝑒>,? 𝑒@,A 𝑒?,B 𝑒3,!
𝑒!,"
𝑒",$
𝑒#,%
𝑒%,&
𝑒&,/𝑒@,C 𝑒D,B 𝑒C,E

𝑒?,C
edge crossing 
𝑖, 𝑗 and 𝑥, 𝑦

: edge 𝑒!,# , 𝑒$,%

0 1

65

4

32

7
Cycle of length 5

Chromatic number is 3 or moreGeometric thickness is 3 or more

Geometric thickness of 𝐺 𝑃 = Chromatic number of 𝑊,𝐹

Geometric thickness of MLG(𝑃)
MLG 𝑃 Edge-crossing graph for MLG 𝑃



Comparison of previous result and our result
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[1] Y. Kobayashi et. al., Improving upper and lower bounds for the total number of edge crossings of euclidean minimum weight laman graphs., COCOON, 2021
[2] S. Bereg et. al., On the edge crossing properties of euclidean minimum weight laman graphs., Computational Geometry, 2016

The maximum number
2,3 -MTG(𝑃) (MLG(𝑃)) 2,2 -MTG(𝑃)

Previous result [1] Our result Previous result [2] Our result 

Crossing 
number

Upper 
bound 2.5 𝑃 − 5 - 22 𝑃 − 22 -

Lower 
bound

1.25 − 𝜖 𝑃 𝟏. 𝟒𝟐 − 𝝐 𝑷 - 𝟏. 𝟖𝟑 − 𝝐 𝑷

Geometric 
thickness

upper
bound 4 - - -

Lower
bound 2 3 - 3



Conclusion
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• We improve lower bounds for the total number of 
edge crossings and geometric thickness of MLG(𝑃).

• We extend lower bounds for them of 2,2 -MTG(𝑃).

Future works 
• There exists gap between lower and upper bounds

for the total number of edge crossings and geometric thickness
of MLG(𝑃) and 𝑘, ℓ -MTG(𝑃). 


