Motivation
 Definitions
 Grid embeddings

 0000
 0000
 000000

Row pathwidth and treewidth

Further thoughts

On the complexity of embedding in graph products

Therese Biedl ¹ David Eppstein Torsten Ueckerdt

¹University of Waterloo, Canada. biedl@uwaterloo.ca

August 2, 2023

With thanks to the Workshop on Graph Product Structure Theory (BIRS21w5235) at the Banff International Research Station, Nov. 21-26, 2021.

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
0000				

Graph embedding

Given: A graph G

Given: A host graph H

Want: Can G be embedded in H? \iff Is G a subgraph of H? \iff G \subseteq H?

 $\Leftrightarrow \text{ Is } G \cong H?$

< ロ > < 同 > < 回 > < 回 >

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
0000				

Motivation/applications

VLSI design (1970s):

- create a computer chip
- one step: how to route connections horizontally and vertically
- \Leftrightarrow how to embed graph in grid

Orthogonal graph drawing (1990s):

- similar to above, but focus on beauty rather than area
- grid embedding \Leftrightarrow orth. drawing with edge-lengths 1

イロト 不得 トイヨト イヨト

Motivation/applications

Graph theory: Extract properties of G via embedding in host-graph.

Theorem (Graph Product Structure (DJMMUW20))

Every planar graph G can be embedded in $H \boxtimes P_{\infty}$ for some planar graph H of treewidth ≤ 8 .

(P_{∞} : infinite path. *Treewidth*, \boxtimes : see below.)

Motivation/applications

Graph theory: Extract properties of G via embedding in host-graph.

Theorem (Graph Product Structure (DJMMUW20))

Every planar graph G can be embedded in $H \boxtimes P_{\infty}$ for some planar graph H of treewidth ≤ 8 .

(P_{∞} : infinite path. *Treewidth*, \boxtimes : see below.)

イロン 不得 とうほう イロン 二日

- Lots of implications: queue layouts, non-repetetive colourings, adjacency labellings, ...
- Lots of generalizations: *k*-planar graphs, squares of planar graphs, . . .
- Embedding can be computed efficiently
- One can improve on ' \leq 8'

Row treewidth and row pathwidth

Theorem (Graph Product Structure (DJMMUW20,UWY21))

Every planar graph G can be embedded in $H \boxtimes P_{\infty}$ for some graph H of treewidth ≤ 6 .

- Define row-treewidth(G): Smallest k s.t. G ⊆ H⊠P_∞ for some graph H of treewidth k.
- [UWY21]: row-treewidth(G) \leq 6 for all planar graphs G.
- [DJM+20]: row-treewidth $(G) \ge 3$ for some planar graph G.
- **Q1:** Which number in $\{3, 4, 5, 6\}$ is the right number here?

(Lovely question, but not in this talk)

Row treewidth and row pathwidth

Theorem (Graph Product Structure (DJMMUW20,UWY21))

Every planar graph G can be embedded in $H \boxtimes P_{\infty}$ for some graph H of treewidth ≤ 6 .

- Define row-treewidth(G): Smallest k s.t. G ⊆ H⊠P_∞ for some graph H of treewidth k.
- [UWY21]: row-treewidth(G) \leq 6 for all planar graphs G.
- [DJM+20]: row-treewidth $(G) \ge 3$ for some planar graph G.
- **Q1:** Which number in $\{3, 4, 5, 6\}$ is the right number here?

(Lovely question, but not in this talk)

Q2: What is the complexity of computing row-treewidth(G)?

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
	●000			

Some definitions

Goal: What is the complexity of testing whether $G \subseteq H \boxtimes P_{\infty}$ for some graph *H* of treewidth/pathwidth *k*?

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
0000	0000	000000	0000	00

Some definitions

Goal: What is the complexity of testing whether $G \subseteq H \boxtimes P_{\infty}$ for some graph *H* of treewidth/pathwidth *k*?

• Treewidth: That parameter with bags arranged in a tree.

6/21

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
	0000			

Products of graphs

- Cartesian product $H\Box P_{\infty}$:
 - $P_{\infty} = \langle p_1, p_2, \dots \rangle$ (infinite path).
 - $v \in V(H) \longrightarrow \langle v \times p_1, v \times p_2, \dots \rangle$ (extension of v)
 - *horizontal* edges: $(v \times p_i, v \times p_{i+1})$ for $i \ge 1$
 - vertical edges: $(v, w) \in E(H) \rightarrow (v \times p_i, w \times p_i)$ for $i \ge 1$ P_{∞} :

Motivation	Definitions ○●○○	Grid embeddings	Row pathwidth and treewidth	Further thoughts

Products of graphs

• Cartesian product $H\Box P_{\infty}$:

•
$$P_{\infty} = \langle p_1, p_2, \dots \rangle$$
 (infinite path).

•
$$v \in V(H) \longrightarrow \langle v \times p_1, v \times p_2, \dots \rangle$$
 (extension of v)

- *horizontal* edges: $(v \times p_i, v \times p_{i+1})$ for $i \ge 1$
- vertical edges: $(v, w) \in E(H) \rightarrow (v \times p_i, w \times p_i)$ for $i \ge 1$ P_{∞} :

• Strong product $H \boxtimes P_{\infty}$: Cartesian product plus

• diagonal edges: $(v, w) \in E(H) \rightarrow (v \times p_i, w \times p_{i+1})$ for $i \ge 1$

Motivation	Definitions ○○●○	Grid embeddings	Row pathwidth and treewidth	Further thoughts
Example	S			

•
$$P_{\infty} \Box P_{\infty} = \text{rectangular grid}$$

Motivation	Definitions ○○●○	Grid embeddings	Row pathwidth and treewidth	Further thoughts
Example	es			

- $P_{\infty} \Box P_{\infty} =$ rectangular grid
- $P_{\infty} \boxtimes P_{\infty} = \text{king's graph}$

Motivation	Definitions ○○●○	Grid embeddings	Row pathwidth and treewidth	Further thoughts
Exampl	es			

- $P_{\infty} \Box P_{\infty} =$ rectangular grid
- $P_{\infty} \boxtimes P_{\infty} = \mathsf{king's graph}$
- $C_{\infty} \Box P_{\infty} \approx$ grid with stuff at rows

Motivation	Definitions ○○●○	Grid embeddings	Row pathwidth and treewidth	Further thoughts

- $P_{\infty} \Box P_{\infty} =$ rectangular grid
- $P_{\infty} \boxtimes P_{\infty} = \operatorname{king's} \operatorname{graph}$

Examples

- $C_{\infty} \Box P_{\infty} \approx$ grid with stuff at rows
- $C_\infty oxtimes P_\infty pprox \operatorname{grid}$ with stuff at rows

Motivation	Definitions ○○●○	Grid embeddings	Row pathwidth and treewidth	Further thoughts
Example	es			

- $P_{\infty} \Box P_{\infty} =$ rectangular grid
- $P_{\infty} \boxtimes P_{\infty} = \mathsf{king's graph}$
- $C_{\infty} \Box P_{\infty} \approx$ grid with stuff at rows
- $C_{\infty} \boxtimes P_{\infty} \approx$ grid with stuff at rows
- $T \Box P_{\infty}$ and $T \boxtimes P$: hard to visualize

Motivation	Definitions 000●	Grid embeddings	Row pathwidth and treewidth	Further thoughts
Problems				

Given a graph G:

- GRIDEMBEDDING: Is G subgraph of $P_{\infty} \Box P_{\infty}$?
- **2** KINGGRAPHEMBEDDING: Is G subgraph of $P_{\infty} \boxtimes P_{\infty}$?
- ③ ROWPATHWIDTH1: Does G have row-pathwidth 1? (Same as: Is G subgraph of C_∞⊠P_∞?)
- Q ROWTREEWIDTH1: Does G have row-treewidth 1? (Same as: Is G subgraph of T⊠P_∞ for a tree T?)

Motivation	Definitions 000●	Grid embeddings	Row pathwidth and treewidth	Further thoughts
Problem	nc			

Given a graph G:

- GRIDEMBEDDING: Is G subgraph of $P_{\infty} \Box P_{\infty}$?
- **2** KINGGRAPHEMBEDDING: Is G subgraph of $P_{\infty} \boxtimes P_{\infty}$?
- ③ ROWPATHWIDTH1: Does G have row-pathwidth 1? (Same as: Is G subgraph of C_∞⊠P_∞?)
- Q ROWTREEWIDTH1: Does G have row-treewidth 1? (Same as: Is G subgraph of T⊠P_∞ for a tree T?)

イロト イヨト イヨト

Goal: These are all NP-hard, even for very restricted graphs G. (Well-known for (1), new for (2-4).)

Our hardness-proofs are based on common subproblem:

GRIDEMBEDDINGWITHFIXEDORIENTATION: Given G, edges labelled 'hor' or 'ver', is $G \subseteq P_{\infty} \Box P_{\infty}$ with edges as indicated?

Our hardness-proofs are based on common subproblem:

GRIDEMBEDDINGWITHFIXEDORIENTATION: Given G, edges labelled 'hor' or 'ver', is $G \subseteq P_{\infty} \Box P_{\infty}$ with edges as indicated?

Theorem

GRIDEMBEDDINGWITHFIXEDORIENTATION is NP-hard.

イロト 不通 と イヨト イヨト

Theorem

GRIDEMBEDDINGWITHFIXEDORIENTATION is NP-hard.

Proof: Use Logic Engine (Eades, Whitesides 96)

Theorem

GRIDEMBEDDINGWITHFIXEDORIENTATION is NP-hard.

Proof: Use Logic Engine (Eades, Whitesides 96)

Motivation	Definitions	Grid embeddings ○○●○○○	Row pathwidth and treewidth	Further thoughts

Frame: No choices up to symmetry since edge-orientations fixed.

Motivation	Definitions	Grid embeddings ○○●○○○	Row pathwidth and treewidth	Further thoughts

Logic Engine

Frame: No choices up to symmetry since edge-orientations fixed. **Armature**: One per variable, can flip horizontally

Motivation	Definitions 0000	Grid embeddings ○○●○○○	Row pathwidth and treewidth	Further thoughts

Logic Engine

Frame: No choices up to symmetry since edge-orientations fixed. **Armature**: One per variable, can flip horizontally **Clause-rows**: Frame + armature expand over one row per clause **Flags**: Add if $\ell_i \notin c_j$, can flip horizontally

Motivation	Definitions 0000	Grid embeddings ○○●○○○	Row pathwidth and treewidth	Further thoughts

Logic Engine

Frame: No choices up to symmetry since edge-orientations fixed. **Armature**: One per variable, can flip horizontally **Clause-rows**: Frame + armature expand over one row per clause **Flags**: Add if $\ell_i \notin c_j$, can flip horizontally **Easy to see:** Can embed \Leftrightarrow solution to NAE-3SAT.

Motivation	Definitions 0000	Grid embeddings ○○○●○○	Row pathwidth and treewidth	Further thoughts
Fixing o	rientation	S		

So GRIDEMBEDDINGWITHFIXEDORIENTATION is NP-hard.

- Now: GRIDEMBEDDING is NP-hard.
- Idea: Modify tree so that orientations are forced

(up to rotation)

Motivation	Definitions	Grid embeddings ○○○●○○	Row pathwidth and treewidth	Further thoughts

Fixing orientations

So $\operatorname{GridEmbeddingWithFixedOrientation}$ is NP-hard.

- Now: GRIDEMBEDDING is NP-hard.
- Idea: Modify tree so that orientations are forced

(up to rotation)

- All bold edges have same orientation.
- All dotted edges have other orientation.
- So to force orientations, turn paths into spines.

Row pathwidth and treewidth

Further thoughts

Grid Embedding

Definitions

Theorem (based on (Bhatt, Cosmodakis 87))

GRIDEMBEDDING is NP-hard even for trees.

. 1111111111	1111111	1111111	***********	**********	11111111.
	111111	\dots	\dots	α	\mathbf{m}
******	*****	*****	* * * * * * * * * * * * *	*********	* * * * * * * * * *
°itiitiiti	111111			anna	tittitte.
	0000000	0000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000
• • • • • • • • • • • • • • • • • • • •	*****	*****	·↓ <mark>○∳</mark> ○◇∳◇◇∳◇	╞╬╪╬╬╪╬╬╪╬╬	★ ◇◇ ★ ◇ <mark>◆</mark> ◇
	0000000	*****	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		6 6 6 6 6 6 6 6 6
fire .	1111111	1111111			
	111111	111111			
~~~~~	~~~ P	****	<b>,                                    </b>	የየየየ ቀቀቀ	<u>⊶</u> • • • • •
	<u>.</u>	1111111			
<b></b>	<b></b>				
0 <b></b> 0 <b></b> 0	0 0 0-	•• •••		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<b>⊶</b> • • <del>• •</del> •
စ္စစ္ စစ္စစ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40 04	) 6 <mark>6 6 6 6</mark> 6 6 6 6 6 6 6 6 6 6 6 6 6 6	~~~ ~~~	⊶⊷ ⊶⊷
		1 11			
• • • • • • • • •	000 0	4099 od	ာ စစ္စစ္စစ္စစ္ စ	000 99000	9 9 <del>0 0 0 0 0 0</del> 0 0 0 0 0 0 0 0 0 0 0 0 0
	-0		-0-0	····	+
	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		
•••••••	- 66040	<del>4</del> 066 -4	<u>, 6600000000000000000000000000000000000</u>		<u>⊶</u> •• • • • •
		rii ri			
8 8 1	4	1 1	6 6 6	8 8	6 6

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
		00000		

# King Graph Embedding

#### Theorem

Testing whether  $G \subseteq P_{\infty} \boxtimes P_{\infty}$  is NP-hard, even if G is a tree.

• Idea 1: Modify construction for GRIDEMBEDDING.

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
		00000		

## King Graph Embedding

#### Theorem

Testing whether  $G \subseteq P_{\infty} \boxtimes P_{\infty}$  is NP-hard, even if G is a tree.

- Idea 1: Modify construction for GRIDEMBEDDING.
- Idea 2: Prove a more general statement.

#### Theorem

Can convert any graph G into G' s.t.  $G \subseteq P_{\infty} \Box P_{\infty} \Leftrightarrow G' \subseteq P_{\infty} \boxtimes P_{\infty}$ .



Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
		00000		

# King Graph Embedding

#### Theorem

Testing whether  $G \subseteq P_{\infty} \boxtimes P_{\infty}$  is NP-hard, even if G is a tree.

- Idea 1: Modify construction for GRIDEMBEDDING.
- Idea 2: Prove a more general statement.

#### Theorem

Can convert any graph G into G' s.t.  $G \subseteq P_{\infty} \Box P_{\infty} \Leftrightarrow G' \subseteq P_{\infty} \boxtimes P_{\infty}$ .



Motivation De	efinitions (	Grid embeddings	Row pathwidth and treewidth	Further tho
0000 00	000 0	000000	0000	00

#### Row pathwidth

#### Theorem

Let G be a graph. Let G' be obtained by ... Then  $G \subseteq P_{\infty} \boxtimes P_{\infty} \Leftrightarrow G' \subseteq C_{\infty} \boxtimes P_{\infty} \Leftrightarrow \text{row-pathwith}(G') = 1$ 



ights

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further though
			0000	

#### Row pathwidth

#### Theorem

Let G be a graph. Let G' be obtained by adding lots of leaves. Then  $G \subseteq P_{\infty} \boxtimes P_{\infty} \Leftrightarrow G' \subseteq C_{\infty} \boxtimes P_{\infty} \Leftrightarrow \text{row-pathwith}(G') = 1$ 





Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
			0000	

## Row pathwidth

#### Theorem

Let G be a graph. Let G' be obtained by adding lots of leaves. Then  $G \subseteq P_{\infty} \boxtimes P_{\infty} \Leftrightarrow G' \subseteq C_{\infty} \boxtimes P_{\infty} \Leftrightarrow \text{row-pathwith}(G') = 1$ 



16 / 21

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth ○●○○	Further thoughts

#### Onto row-treewidth

**Goal:** It is NP-hard to test whether  $G \subseteq T \boxtimes P_{\infty}$  for a tree T.

Problem: Need different tool to force edge-orientations.

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
			0000	

#### Onto row-treewidth

**Goal:** It is NP-hard to test whether  $G \subseteq T \boxtimes P_{\infty}$  for a tree T.

Problem: Need different tool to force edge-orientations.

#### Observation

Let e = (v, w) be an edge of a graph G embedded in  $T \boxtimes P_{\infty}$ . If v, w have  $\geq 5$  common neighbours, then e is horizontal.



Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
			0000	



Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
			0000	



- Use *G* from GRIDEMBEDDINGWITHFIXEDORIENTATION
- Triple the width, add deg-2 vertices at want-to-be-horizontals

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thought
			0000	



- Use G from GRIDEMBEDDINGWITHFIXEDORIENTATION
- Triple the width, add deg-2 vertices at want-to-be-horizontals





19/21

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts

Done? Not quite. (Frame could 'get out of the way'.)



Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
			0000	

Done? Not quite. (Frame could 'get out of the way'.)





Done? Not quite. (Frame could 'get out of the way'.)



Computing the row treewidth of G is NP-hard, even for a planar graph, and even if we only want to test whether it is 1.

<b>Motivation</b>	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts ●○
Positive	results?			

So: Everything is NP-hard.

What do we do if a problem is NP-hard?

#### Aspiration

ROWTREEWIDTH is polynomial if G satisfies  $\langle ... \rangle$ . ROWTREEWIDTH is FPT in parameter  $\langle ... \rangle$ .

Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
				•0

#### Positive results?

So: Everything is NP-hard.

What do we do if a problem is NP-hard?

#### Aspiration

ROWTREEWIDTH is polynomial if G satisfies  $\langle ... \rangle$ . ROWTREEWIDTH is FPT in parameter  $\langle ... \rangle$ .

Our construction rules out nearly everything:

- Only test whether answer is '1'
- Constant treewidth and pathwidth
- Constant maximum degree



Motivation	Definitions	Grid embeddings	Row pathwidth and treewidth	Further thoughts
				•0

(see paper)

#### Positive results?

So: Everything is NP-hard.

What do we do if a problem is NP-hard?

#### Aspiration

ROWTREEWIDTH is polynomial if G satisfies  $\langle ... \rangle$ . ROWTREEWIDTH is FPT in parameter  $\langle ... \rangle$ .

Our construction rules out nearly everything:

- Only test whether answer is '1'
- Constant treewidth and pathwidth
- Constant maximum degree

Only few (very specialized) positive results

A (1) > A (2) > A (2) >



# A few more (negative) results

- No *O*(1)-approximation for row treewidth and row pathwidth (under small set expansion conjecture)
- NP-hard to test whether a tree has row treedepth 1.
  - treedepth  $1 = \text{subgraph of star } K_{1,n}$
  - completely different reduction



# A few more (negative) results

- No O(1)-approximation for row treewidth and row pathwidth (under small set expansion conjecture)
- NP-hard to test whether a tree has row treedepth 1.
  - treedepth  $1 = \text{subgraph of star } K_{1,n}$
  - completely different reduction

In summary, everything is really really hard.

