On the complexity of embedding in graph products

Therese Biedl ${ }^{1}$ David Eppstein Torsten Ueckerdt
${ }^{1}$ University of Waterloo, Canada. biedl@uwaterloo.ca

August 2, 2023

With thanks to the Workshop on Graph Product Structure Theory (BIRS21w5235) at the Banff International Research Station, Nov. 21-26, 2021.

Graph embedding

Given: A graph G

Given: A host graph H

Want: Can G be embedded in H ? \Longleftrightarrow Is G a subgraph of H ? $\Longleftrightarrow G \subseteq H$?

Graph embedding

Given: A graph G

Possibly restricted to be a tree or planar or

Given: A host graph H

Often with structure, e.g. grid or $T \boxtimes P$ (defined below). Often infinite (but G will always be finite).

Want: Can G be embedded in H ?
\Longleftrightarrow Is G a subgraph of H ?
$\Longleftrightarrow G \subseteq H ?$

Motivation/applications

VLSI design (1970s):

- create a computer chip
- one step: how to route connections horizontally and vertically
\Leftrightarrow how to embed graph in grid

Orthogonal graph drawing (1990s):

- similar to above, but focus on beauty rather than area
- grid embedding \Leftrightarrow orth. drawing with edge-lengths 1

Motivation/applications

Graph theory: Extract properties of G via embedding in host-graph.

Theorem (Graph Product Structure (DJMMUW20))

Every planar graph G can be embedded in $H \boxtimes P_{\infty}$ for some planar graph H of treewidth ≤ 8.
(P_{∞} : infinite path. Treewidth, $\boxtimes:$ see below.)

Motivation/applications

Graph theory: Extract properties of G via embedding in host-graph.

Theorem (Graph Product Structure (DJMMUW20))

Every planar graph G can be embedded in $H \boxtimes P_{\infty}$ for some planar graph H of treewidth ≤ 8.

- Lots of implications: queue layouts, non-repetetive colourings, adjacency labellings, ...
- Lots of generalizations: k-planar graphs, squares of planar graphs, ...
- Embedding can be computed efficiently
- One can improve on ' ≤ 8 '

Row treewidth and row pathwidth

Theorem (Graph Product Structure (DJMMUW20,UWY21))

Every planar graph G can be embedded in $H \boxtimes P_{\infty}$ for some graph H of treewidth ≤ 6.

- Define row-treewidth (G) : Smallest k s.t. $G \subseteq H \boxtimes P_{\infty}$ for some graph H of treewidth k.
- [UWY21]: row-treewidth $(G) \leq 6$ for all planar graphs G.
- [DJM+20]: row-treewidth $(G) \geq 3$ for some planar graph G.

Q1: Which number in $\{3,4,5,6\}$ is the right number here?
(Lovely question, but not in this talk)

Row treewidth and row pathwidth

Theorem (Graph Product Structure (DJMMUW20,UWY21))

Every planar graph G can be embedded in $H \boxtimes P_{\infty}$ for some graph H of treewidth ≤ 6.

- Define row-treewidth (G) : Smallest k s.t. $G \subseteq H \boxtimes P_{\infty}$ for some graph H of treewidth k.
- [UWY21]: row-treewidth $(G) \leq 6$ for all planar graphs G.
- [DJM+20]: row-treewidth $(G) \geq 3$ for some planar graph G.

Q1: Which number in $\{3,4,5,6\}$ is the right number here?
(Lovely question, but not in this talk)
Q2: What is the complexity of computing row-treewidth (G) ?

Some definitions

Goal: What is the complexity of testing whether $G \subseteq H \boxtimes P_{\infty}$ for some graph H of treewidth/pathwidth k ?

Some definitions

Goal: What is the complexity of testing whether $G \subseteq H \boxtimes P_{\infty}$ for some graph H of treewidth/pathwidth k ?

- Treewidth: That parameter with bags arranged in a tree.

$$
\binom{\text { We only need: }}{\text { treewidth } 1 \Leftrightarrow \text { subgraph of tree }}
$$

- Pathwidth: That parameter with bags arranged in a path.

caterpillar C_{∞} :

. spine legs

Products of graphs

- Cartesian product $H \square P_{\infty}$:
- $P_{\infty}=\left\langle p_{1}, p_{2}, \ldots\right\rangle$ (infinite path).
- $v \in V(H) \longrightarrow\left\langle v \times p_{1}, v \times p_{2}, \ldots\right\rangle$ (extension of v)
- horizontal edges: $\left(v \times p_{i}, v \times p_{i+1}\right)$ for $i \geq 1$
- vertical edges: $(v, w) \in E(H) \rightarrow\left(v \times p_{i}, w \times p_{i}\right)$ for $i \geq 1$

Products of graphs

- Cartesian product $H \square P_{\infty}$:
- $P_{\infty}=\left\langle p_{1}, p_{2}, \ldots\right\rangle$ (infinite path).
- $v \in V(H) \longrightarrow\left\langle v \times p_{1}, v \times p_{2}, \ldots\right\rangle$ (extension of v)
- horizontal edges: $\left(v \times p_{i}, v \times p_{i+1}\right)$ for $i \geq 1$
- vertical edges: $(v, w) \in E(H) \rightarrow\left(v \times p_{i}, w \times p_{i}\right)$ for $i \geq 1$

- Strong product $H \boxtimes P_{\infty}$: Cartesian product plus
- diagonal edges: $(v, w) \in E(H) \rightarrow\left(v \times p_{i}, w \times p_{i+1}\right)$ for $i \geq 1$

Examples

(We will almost only study these host-graphs.)

- $P_{\infty} \square P_{\infty}=$ rectangular grid

Examples

(We will almost only study these host-graphs.)

- $P_{\infty} \square P_{\infty}=$ rectangular grid
- $P_{\infty} \boxtimes P_{\infty}=$ king's graph

Examples

(We will almost only study these host-graphs.)

- $P_{\infty} \square P_{\infty}=$ rectangular grid
- $P_{\infty} \boxtimes P_{\infty}=$ king's graph
- $C_{\infty} \square P_{\infty} \approx$ grid with stuff at rows

Examples

(We will almost only study these host-graphs.)

- $P_{\infty} \square P_{\infty}=$ rectangular grid
- $P_{\infty} \boxtimes P_{\infty}=$ king's graph
- $C_{\infty} \square P_{\infty} \approx$ grid with stuff at rows
- $C_{\infty} \boxtimes P_{\infty} \approx$ grid with stuff at rows

Examples

(We will almost only study these host-graphs.)

- $P_{\infty} \square P_{\infty}=$ rectangular grid
- $P_{\infty} \boxtimes P_{\infty}=$ king's graph
- $C_{\infty} \square P_{\infty} \approx$ grid with stuff at rows
- $C_{\infty} \boxtimes P_{\infty} \approx$ grid with stuff at rows
- $T \square P_{\infty}$ and $T \boxtimes P$: hard to
 visualize

Problems

Given a graph G :
(1) GridEmbedding: Is G subgraph of $P_{\infty} \square P_{\infty}$?
(2) KingGraphEmbedding: Is G subgraph of $P_{\infty} \boxtimes P_{\infty}$?
(3) RowPathWidth1: Does G have row-pathwidth 1? (Same as: Is G subgraph of $C_{\infty} \boxtimes P_{\infty}$?)
(4) RowTreeWidth1: Does G have row-treewidth 1? (Same as: Is G subgraph of $T \boxtimes P_{\infty}$ for a tree T ?)

Problems

Given a graph G :
(1) GridEmbedding: Is G subgraph of $P_{\infty} \square P_{\infty}$?
(2) KingGraphEmbedding: Is G subgraph of $P_{\infty} \boxtimes P_{\infty}$?
(3) RowPathWidth1: Does G have row-pathwidth 1? (Same as: Is G subgraph of $C_{\infty} \boxtimes P_{\infty}$?)
(4) RowTreeWidth1: Does G have row-treewidth 1? (Same as: Is G subgraph of $T \boxtimes P_{\infty}$ for a tree T ?)

Goal: These are all NP-hard, even for very restricted graphs G. (Well-known for (1), new for (2-4).)

Grid Embedding with Fixed Orientation

Our hardness-proofs are based on common subproblem:
GridEmbeddingWithFixedOrientation: Given G, edges labelled 'hor' or 'ver', is $G \subseteq P_{\infty} \square P_{\infty}$ with edges as indicated?

Grid Embedding with Fixed Orientation

Our hardness-proofs are based on common subproblem:
GridEmbeddingWithFixedOrientation: Given G, edges labelled 'hor' or 'ver', is $G \subseteq P_{\infty} \square P_{\infty}$ with edges as indicated?

Theorem
GridEmbeddingWithFixedOrientation is NP-hard.

Grid Embedding with Fixed Orientation

Theorem

GridEmbeddingWithFixedOrientation is NP-hard.
Proof: Use Logic Engine (Eades, Whitesides 96)

Grid Embedding with Fixed Orientation

Theorem

GridEmbeddingWithFixedOrientation is NP-hard.
Proof: Use Logic Engine (Eades, Whitesides 96)

Input: NAE-3SAT instance $c_{1}=x_{1} \vee x_{2} \vee \overline{x_{3}}, c_{2}=-$.

Logic Engine

Frame: No choices up to symmetry since edge-orientations fixed.

Logic Engine

Frame: No choices up to symmetry since edge-orientations fixed.
Armature: One per variable, can flip horizontally

Logic Engine

Frame: No choices up to symmetry since edge-orientations fixed.
Armature: One per variable, can flip horizontally
Clause-rows: Frame + armature expand over one row per clause Flags: Add if $\ell_{i} \notin c_{j}$, can flip horizontally

Logic Engine

Frame: No choices up to symmetry since edge-orientations fixed.
Armature: One per variable, can flip horizontally
Clause-rows: Frame + armature expand over one row per clause Flags: Add if $\ell_{i} \notin c_{j}$, can flip horizontally
Easy to see: Can embed \Leftrightarrow solution to NAE-3SAT.

Fixing orientations

So GridEmbeddingWithFixedOrientation is NP-hard.

- Now: GridEmbedding is NP-hard.
- Idea: Modify tree so that orientations are forced
(up to rotation)

Fixing orientations

So GridEmbeddingWithFixedOrientation is NP-hard.

- Now: GridEmbedding is NP-hard.
- Idea: Modify tree so that orientations are forced
(up to rotation)

- All bold edges have same orientation.
- All dotted edges have other orientation.
- So to force orientations, turn paths into spines.

Grid Embedding

Theorem (based on (Bhatt, Cosmodakis 87))

GridEmbedding is NP-hard even for trees.

King Graph Embedding

Theorem

Testing whether $G \subseteq P_{\infty} \boxtimes P_{\infty}$ is NP-hard, even if G is a tree.

- Idea 1: Modify construction for GridEmbedding.

King Graph Embedding

Theorem

Testing whether $G \subseteq P_{\infty} \boxtimes P_{\infty}$ is NP-hard, even if G is a tree.

- Idea 1: Modify construction for GridEmbedding.
- Idea 2: Prove a more general statement.

Theorem

Can convert any graph G into G^{\prime} s.t. $G \subseteq P_{\infty} \square P_{\infty} \Leftrightarrow G^{\prime} \subseteq P_{\infty} \boxtimes P_{\infty}$.

King Graph Embedding

Theorem

Testing whether $G \subseteq P_{\infty} \boxtimes P_{\infty}$ is NP-hard, even if G is a tree.

- Idea 1: Modify construction for GridEmbedding.
- Idea 2: Prove a more general statement.

Theorem

Can convert any graph G into G^{\prime} s.t. $G \subseteq P_{\infty} \square P_{\infty} \Leftrightarrow G^{\prime} \subseteq P_{\infty} \boxtimes P_{\infty}$.

Row pathwidth

Theorem

Let G be a graph. Let G^{\prime} be obtained by ... Then $G \subseteq P_{\infty} \boxtimes P_{\infty} \Leftrightarrow G^{\prime} \subseteq C_{\infty} \boxtimes P_{\infty} \Leftrightarrow$ row-pathwith $\left(G^{\prime}\right)=1$

Row pathwidth

Theorem

Let G be a graph. Let G^{\prime} be obtained by adding lots of leaves. Then $G \subseteq P_{\infty} \boxtimes P_{\infty} \Leftrightarrow G^{\prime} \subseteq C_{\infty} \boxtimes P_{\infty} \Leftrightarrow$ row-pathwith $\left(G^{\prime}\right)=1$

Row pathwidth

Theorem

Let G be a graph. Let G^{\prime} be obtained by adding lots of leaves. Then $G \subseteq P_{\infty} \boxtimes P_{\infty} \Leftrightarrow G^{\prime} \subseteq C_{\infty} \boxtimes P_{\infty} \Leftrightarrow$ row-pathwith $\left(G^{\prime}\right)=1$

Corollary
Computing the row pathwidth is NP-hard, even for a tree, and even if we only want to test whether it is 1.

Onto row-treewidth

Goal: It is NP-hard to test whether $G \subseteq T \boxtimes P_{\infty}$ for a tree T. Problem: Need different tool to force edge-orientations.

Onto row-treewidth

Goal: It is NP-hard to test whether $G \subseteq T \boxtimes P_{\infty}$ for a tree T. Problem: Need different tool to force edge-orientations.

Observation

Let $e=(v, w)$ be an edge of a graph G embedded in $T \boxtimes P_{\infty}$. If v, w have ≥ 5 common neighbours, then e is horizontal.

e horizontal

NP-hardness of row treewidth

- Use G from GridEmbeddingWithFixedOrientation

NP-hardness of row treewidth

- Use G from GridEmbeddingWithFixedOrientation
- Triple the width, add deg-2 vertices at want-to-be-horizontals

NP-hardness of row treewidth

- Use G from GridEmbeddingWithFixedOrientation
- Triple the width, add deg-2 vertices at want-to-be-horizontals
- Add two diagonals at want-to-be-vertical edges (and argue that this forces vertical)

NP-hardness of row treewidth

Done? Not quite. (Frame could 'get out of the way'.)

NP-hardness of row treewidth

Done? Not quite. (Frame could 'get out of the way'.)

NP-hardness of row treewidth

Done? Not quite. (Frame could 'get out of the way'.)

Solution: Close tines into cycles.

Show: Logic engine then projects to path.

So $G^{\prime} \subseteq T \boxtimes P_{\infty}$ $\Leftrightarrow G \subseteq P \square P$ with fixed orientation

NP-hardness of row treewidth

Done? Not quite. (Frame could 'get out of the way'.)

Solution:
Close tines into cycles.

Show: Logic engine then projects to path.

So $G^{\prime} \subseteq T \boxtimes P_{\infty}$
$\Leftrightarrow G \subseteq P \square P$ with
fixed orientation

Theorem

Computing the row treewidth of G is NP-hard, even for a planar graph, and even if we only want to test whether it is 1 .

Positive results?

So: Everything is NP-hard.
What do we do if a problem is NP-hard?

Aspiration

RowTreewidth is polynomial if G satisfies $\langle\ldots\rangle$. RowTreewidth is FPT in parameter $\langle\ldots\rangle$.

Positive results?

So: Everything is NP-hard.
What do we do if a problem is NP-hard?

Aspiration

RowTreewidth is polynomial if G satisfies $\langle\ldots\rangle$.
RowTreewidth is FPT in parameter $\langle\ldots\rangle$.

Our construction rules out nearly everything:

- Only test whether answer is ' 1 '
- Constant treewidth and pathwidth
- Constant maximum degree

Positive results?

So: Everything is NP-hard.
What do we do if a problem is NP-hard?

Aspiration

RowTreewidth is polynomial if G satisfies $\langle\ldots\rangle$.
RowTreewidth is FPT in parameter $\langle\ldots\rangle$.

Our construction rules out nearly everything:

- Only test whether answer is ' 1 '
- Constant treewidth and pathwidth
- Constant maximum degree

Only few (very specialized) positive results (see paper)

A few more (negative) results

- No $O(1)$-approximation for row treewidth and row pathwidth (under small set expansion conjecture)
- NP-hard to test whether a tree has row treedepth 1.
- treedepth $1=$ subgraph of star $K_{1, n}$
- completely different reduction

A few more (negative) results

- No $O(1)$-approximation for row treewidth and row pathwidth (under small set expansion conjecture)
- NP-hard to test whether a tree has row treedepth 1.
- treedepth $1=$ subgraph of star $K_{1, n}$
- completely different reduction

In summary, everything is really really hard.

