# Optimal Polyline Simplification under the Local Fréchet Distance in 2D in (Near-)Quadratic Time

Peter Schäfer, Sabine Storandt, Johannes Zink

Universität Konstanz

| F | Å |    |
|---|---|----|
|   | Ш | ШЛ |
|   |   |    |

CCCG 2023 Aug 3, Montreal



#### **Problem Setting**

- a sequence of *n* vertices  $p_1, \ldots, p_n$
- straight segments
- select a minimal subset of vertices (no interpolation!)
- such that a distance **measure** is within a given **threshold**  $\delta$ :



#### **Problem Setting**

- a sequence of *n* vertices  $p_1, \ldots, p_n$
- straight segments
- select a minimal subset of vertices (no interpolation!)
- such that a distance **measure** is within a given **threshold**  $\delta$ :



#### **Problem Setting**

- a sequence of *n* vertices  $p_1, \ldots, p_n$
- straight segments
- select a minimal subset of vertices (no interpolation!)
- such that a distance **measure** is within a given **threshold**  $\delta$ :



#### **Problem Setting**

- a sequence of *n* vertices  $p_1, \ldots, p_n$
- straight segments
- select a minimal subset of vertices (no interpolation!)
- such that a distance **measure** is within a given **threshold**  $\delta$ :

### **Local Simplification**



#### **Problem Setting**

- Local Simplification = segment-wise
- distance measure applied to each segment
- select minimal subset of vertices such that

 $d(P_{[i,i+1]}, S_{[j,k]}) \le \delta$ 

### **Distance Measures**

### **Hausdorff Distance**

- minimize maximum distance between two vertices
- works for any set of points
- ignores their order 😒

#### Fréchet Distance

- minimize maximum distance over all mapping functions
- recognizes the course of the trajectory
- algorithmically challenging 😑

### **Distance Measures**

### **Hausdorff Distance**

- minimize maximum distance between two vertices
- works for any set of points
- ignores their order 😒

#### **Fréchet Distance**

- minimize maximum distance over all mapping functions
- recognizes the course of the trajectory
- algorithmically challenging 😑

### **Fréchet Distance**



- it's the dog-leash distance
- man and dog walk the curves
- at variable speed (but never backwards)
- find the **minimum** required length of the leash

### **Fréchet Distance**



#### Definition

Given two parameterized curves  $P, Q : [0, 1] \rightarrow \mathbb{R}^2$ 

$$d_F(P,Q) = \inf_{\substack{\sigma,\tau \ s \in [0,1], \\ t \in [0,1]}} \max_{\|P(\sigma(s)) - Q(\tau(t))\|\|$$

the Fréchet distance is the infimum over all **continuous and increasing** bijections  $\sigma, \tau : [0, 1] \rightarrow [0, 1]$ . || · || is the underlying norm (Euclidean, or other)

# State of the Art

| local Hausdorff Distance |                      | local Fréchet Distance             |                   |
|--------------------------|----------------------|------------------------------------|-------------------|
| $O(n^3)$                 | Imai,Iri '88         | <b>O</b> ( <b>n</b> <sup>3</sup> ) | Godau '91         |
| $O(n^2 \log n)$          | Melkman,O'Rourke '88 | $O(n^{2.5})$                       | Buchin et al.'22  |
| $O(n^2)$                 | Chan,Chin '88        | $O(n\log n)$                       | Approximation     |
|                          |                      |                                    | Agarwal et al.'05 |
|                          |                      |                                    |                   |
|                          |                      |                                    |                   |
|                          |                      |                                    |                   |

# State of the Art

| local Hausdorff Distance |                      | local Fréchet Distance             |                             |
|--------------------------|----------------------|------------------------------------|-----------------------------|
| $O(n^3)$                 | Imai,Iri '88         | <b>O</b> ( <b>n</b> <sup>3</sup> ) | Godau '91                   |
| $O(n^2 \log n)$          | Melkman,O'Rourke '88 | $O(n^{2.5})$                       | Buchin et al.'22            |
| $O(n^2)$                 | Chan,Chin '88        | $O(n \log n)$                      | Approximation               |
|                          |                      |                                    | Agarwal et al.'05           |
| r                        |                      | $O(n^2 \log n)$                    | $L_2, L_{p \in (1,\infty)}$ |
|                          |                      | NEW                                |                             |

# State of the Art

| local Hausdorff Distance |                      | local Fréchet Distance             |                             |
|--------------------------|----------------------|------------------------------------|-----------------------------|
| $O(n^3)$                 | Imai,Iri '88         | <b>O</b> ( <b>n</b> <sup>3</sup> ) | Godau '91                   |
| $O(n^2 \log n)$          | Melkman,O'Rourke '88 | $O(n^{2.5})$                       | Buchin et al.'22            |
| $O(n^2)$                 | Chan,Chin '88        | $O(n \log n)$                      | Approximation               |
|                          |                      |                                    | Agarwal et al.'05           |
|                          |                      | $O(n^2\log n)$                     | $L_2, L_{p \in (1,\infty)}$ |
|                          |                      | <b>O</b> ( <b>n</b> <sup>2</sup> ) | $L_1, L_\infty$             |
|                          |                      | NEW                                |                             |

- proceeds in two phases

### First phase

- valid shortcuts (brute force)
- build shortcut graph

### Second phase

- shortest path in graph
- optimal simplification

### → total running time $O(n^3)$



- proceeds in two phases

### - First phase

- valid shortcuts (brute force)
- build shortcut graph
- Second phase
  - shortest path in graph
  - optimal simplification
- → total running time  $O(n^3)$



- proceeds in two phases
- First phase
  - valid shortcuts (brute force)
  - build shortcut graph
- Second phase
  - shortest path in graph
  - optimal simplification
- → total running time  $O(n^3)$



- proceeds in two phases
- First phase
  - valid shortcuts (brute force)
  - build shortcut graph
- Second phase
  - shortest path in graph
  - optimal simplification
- → total running time  $O(n^3)$



- proceeds in two phases
- First phase
  - valid shortcuts (brute force)
  - build shortcut graph

### - Second phase

- shortest path in graph
- optimal simplification
- → total running time  $O(n^3)$



- proceeds in two phases
- First phase
  - valid shortcuts (brute force)
  - build shortcut graph
- Second phase
  - shortest path in graph
  - optimal simplification
- → total running time  $O(n^3)$



- proceeds in two phases
- First phase
  - valid shortcuts (brute force)
  - build shortcut graph
- Second phase
  - shortest path in graph
  - optimal simplification
- → total running time  $O(n^3)$



- proceeds in two phases
- First phase  $O(n^3)$ 
  - valid shortcuts (brute force)
  - build shortcut graph  $O(n^2)$
- Second phase
  - shortest path in graph
  - optimal simplification
- → total running time  $O(n^3)$



- proceeds in two phases
- First phase  $O(n^3)$ 
  - valid shortcuts (brute force)
  - build shortcut graph  $O(n^2)$
- Second phase  $O(n^2)$ 
  - shortest path in graph
  - optimal simplification

### → total running time $O(n^3)$



- proceeds in two phases
- First phase  $O(n^3)$ 
  - valid shortcuts (brute force)
  - build shortcut graph  $O(n^2)$
- Second phase  $O(n^2)$ 
  - shortest path in graph
  - optimal simplification
- → total running time  $O(n^3)$



- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut ⇔

v<sub>j</sub> is inside the cone and behind the wave front

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

v<sub>i</sub> is inside the cone and behind the wave front

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

- can be updated incrementally 🙂
- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

– can be updated incrementally 🙂

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

- can be updated incrementally 😉

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

- can be updated incrementally 😉

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

- can be updated incrementally 🙂

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_i$  is **inside** the cone and **behind** the wave front

- can be updated incrementally 🙂

– why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

- can be updated incrementally 🙂

– why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

- can be updated incrementally 🙂

– why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

can be updated incrementally (2)



- why is the wave front used at all?

- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut

 $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

can be updated incrementally (2)





- for each vertex  $v_i$ ,  $i \in \{1, \ldots, n\}$ 
  - traverse each subsequent vertex  $v_j$ , j > i
  - while maintaining a cone
  - and a wave front



-  $\overline{v_i v_j}$  is a **valid** shortcut  $\Leftrightarrow$ 

 $v_j$  is **inside** the cone and **behind** the wave front

can be updated incrementally (2)



- why is the wave front used at all?

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes  $\leq 1 \text{ arc} \Rightarrow O(n)$  arcs
- $\rightarrow$  stored in a binary tree
- find intersections:  $O(\log n)$
- update:  $O(\log n)$ , amortized
- → total time  $O(n^2 \log n)$

| 72 · |
|------|

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes  $\leq 1$  arc  $\Rightarrow O(n)$  arcs
- $\rightarrow$  stored in a binary tree
- find intersections:  $O(\log n)$
- update:  $O(\log n)$ , amortized
- → total time  $O(n^2 \log n)$

| $v_i$ |
|-------|

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes  $\leq 1 \text{ arc} \rightarrow O(n)$  arcs



- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes  $\leq 1 \text{ arc} \rightarrow O(n)$  arcs
- $\rightarrow$  stored in a binary tree



- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes  $\leq 1 \text{ arc} \rightarrow O(n)$  arcs
- $\rightarrow$  stored in a binary tree
- find intersections:  $O(\log n)$



- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes  $\leq 1 \text{ arc} \rightarrow O(n)$  arcs
- $\rightarrow$  stored in a binary tree
- find intersections:  $O(\log n)$
- update:  $O(\log n)$ , amortized



- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes  $\leq 1 \text{ arc} \rightarrow O(n)$  arcs
- $\rightarrow$  stored in a binary tree
- find intersections:  $O(\log n)$
- update:  $O(\log n)$ , amortized
- $\rightarrow$  total time  $O(n^2 \log n)$



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains the whole wave front
- determine  $\leq 2$  intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut  $\overline{v_i v_k}$ : map each intermediate  $v_j$  to the intersection of  $v_j$ 's wave front and  $\overline{v_i v_k}$



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq 2$  intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut v<sub>i</sub>v<sub>k</sub>:
  map each intermediate v<sub>j</sub> to the intersection of v<sub>j</sub>'s wave front and v<sub>i</sub>v<sub>k</sub>



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut  $\overline{v_i v_k}$ : map each intermediate  $v_j$  to the intersection of  $v_j$ 's wave front and  $\overline{v_i v_k}$



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut  $\overline{v_i v_k}$ : map each intermediate  $v_j$  to the intersection of  $v_j$ 's wave front and  $\overline{v_i v_k}$



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut  $\overline{v_i v_k}$ : map each intermediate  $v_j$  to the intersection of  $v_j$ 's wave front and  $\overline{v_i v_k}$



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut  $\overline{v_i v_k}$ : map each intermediate  $v_j$  to the intersection of  $v_j$ 's wave front and  $\overline{v_i v_k}$



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut  $\overline{v_i v_k}$ : map each intermediate  $v_j$  to the intersection of  $v_j$ 's wave front and  $\overline{v_i v_k}$



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut vivk:
  map each intermediate vj to the intersection of vj's wave front and vivk



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut vivk:
  map each intermediate vj to the intersection of vj's wave front and vivk



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut vivk:
  map each intermediate vj to the intersection of vj's wave front and vivk



- order of vertices matters for Fréchet distance
- narrow cone s.t. δ-circle contains
  the whole wave front
- determine  $\leq$  2 intersections
- $\rightarrow$  can be done in  $O(\log n)$
- narrow the cone
- correctness, for a shortcut vivk:
  map each intermediate vj to the intersection of vj's wave front and vivk



#### – sum-norm $L_1$ , max-norm $L_\infty$

 observation: the wave front consists of at most two line segments

- created by intersecting axis-parallel squares

→ total time  $O(n^2)$ 



- sum-norm  $L_1$ , max-norm  $L_\infty$
- observation: the wave front consists of at most two line segments
- created by intersecting axis-parallel squares
- → total time  $\underline{O(n^2)}$



- sum-norm  $L_1$ , max-norm  $L_\infty$
- observation: the wave front consists of at most two line segments
- created by intersecting axis-parallel squares





- sum-norm  $L_1$ , max-norm  $L_\infty$
- observation: the wave front consists of at most two line segments
- created by intersecting axis-parallel squares
- → total time  $O(n^2)$



- worst case = wavefront size O(n)
- we can build worst-case examples
- $\rightarrow O(n^2 \log n)$  is tight
- **but**: worst cases are **contrived**, unlikely to appear in the wild

- worst case = wavefront size O(n)
- − we can build worst-case examples ⊘
- $\rightarrow O(n^2 \log n)$  is tight
- **but**: worst cases are **contrived**, unlikely to appear in the wild



input curve

- worst case = wavefront size O(n)
- − we can build worst-case examples ⊘
- $\rightarrow O(n^2 \log n)$  is tight
- **but**: worst cases are **contrived**, unlikely to appear in the wild



input curve



wavefront

- worst case = wavefront size O(n)
- − we can build worst-case examples ⊘
- $\rightarrow O(n^2 \log n)$  is tight
- but: worst cases are contrived, unlikely to appear in the wild



input curve





grows linear with n

- worst case = wavefront size O(n)
- − we can build worst-case examples ⊘
- $\rightarrow O(n^2 \log n)$  is tight
- but: worst cases are contrived, unlikely to appear in the wild



input curve

wavefront



grows linear with n

#### **Wavefront Size**

#### Conjecture

- worst-case is rare
- there is a 'natural' tendency to keep wavefronts small
- ightarrow total running time close to  $O(n^2)$

- open question: condition for worst-case instances  $\mathbb{Q}$
- in the mean time…

#### **Wavefront Size**

#### Conjecture

- worst-case is rare
- there is a 'natural' tendency to keep wavefronts small
- ightarrow total running time close to  $O(n^2)$

- open question: condition for worst-case instances  $\mathbb{Q}$
- in the mean time…

#### **Wavefront Size**

#### Conjecture

- worst-case is rare
- there is a 'natural' tendency to keep wavefronts small
- $\rightarrow$  total running time close to  $O(n^2)$

- open question: condition for worst-case instances
- in the mean time...

# **Wavefront Size**

#### Conjecture

- worst-case is rare
- there is a 'natural' tendency to keep wavefronts small
- $\rightarrow$  total running time close to  $O(n^2)$

- open question: condition for worst-case instances
- in the mean time...

# **Wavefront Size**

#### Conjecture

- worst-case is rare
- there is a 'natural' tendency to keep wavefronts small
- $\rightarrow$  total running time close to  $O(n^2)$

- open question: condition for worst-case instances 📀
- in the mean time...

evaluate on real-world data

#### **Real-world Instances**

- real-world data: trajectories from OSM, up to 3 Mio. vertices

- Wave-fronts are always **small**:  $avg. \le 6$ , max.  $\le 90$
- practical running-time close to O(n<sup>2</sup>)
  (confirming our conjecture)



#### **Real-world Instances**

- real-world data: trajectories from OSM, up to 3 Mio. vertices
- Wave-fronts are always **small**: avg.  $\leq$  6, max.  $\leq$  90
- → practical running-time close to O(n<sup>2</sup>) (confirming our conjecture)



#### **Real-world Instances**

- real-world data: trajectories from OSM, up to 3 Mio. vertices
- Wave-fronts are always **small**: avg.  $\leq$  6, max.  $\leq$  90
- → **practical** running-time close to  $O(n^2)$  (confirming our conjecture)



### **Container Data Structure**

- default: binary tree
  - but: left / right decisions are not for free
  - but: wavefronts are small ≈ constant
- try simpler containers:

linked-list, array, skip list, ...



- → the winner is: linked-list ☺
- (except on construed worst-case instances)

### **Container Data Structure**

- default: binary tree
  - but: left / right decisions are not for free
  - but: wavefronts are small ≈ constant
- → try simpler containers:

linked-list, array, skip list, ...



- → the winner is: linked-list ☺
- (except on construed worst-case instances)

### **Container Data Structure**

- default: binary tree
  - but: left / right decisions are not for free
  - but: wavefronts are small ≈ constant
- → try simpler containers:

linked-list, array, skip list, ...



- → the winner is: linked-list ☺
- (except on construed worst-case instances)

# **Comparison to other Algorithms**

- **significantly** faster than state-of-the-art **Imai-Iri** / **Godau** '91 (note that Imai-Iri is *always*  $\Theta(n^3)$ )
- competitive to approx. algorithm Agarwal et al.'05

# **Comparison to other Algorithms**

- significantly faster than state-of-the-art Imai-Iri / Godau '91 (note that Imai-Iri is *always* Θ(n<sup>3</sup>))
- competitive to approx. algorithm Agarwal et al.'05



### **Comparison to other Algorithms**

- significantly faster than state-of-the-art Imai-Iri / Godau '91 (note that Imai-Iri is *always* Θ(n<sup>3</sup>))
- competitive to approx. algorithm Agarwal et al.'05



- significantly faster than state-of-the-art Imai-Iri / Godau '91 (note that Imai-Iri is *always* Θ(n<sup>3</sup>))
- competitive to approx. algorithm Agarwal et al.'05 (but we have exact results, of course)



- new algorithm (using some old ideas)
- improves state-of-the-art to  $O(n^2 \log n)$
- even  $O(n^2)$  for  $L_1$ ,  $L_\infty$
- bounds are tight, but...
- worst-case is unlikely on real-world data
- $\rightarrow$  practical running time  $\approx O(n^2)$
- allows for simpler implementation



- new algorithm (using some old ideas)
- improves state-of-the-art to  $O(n^2\log n)$
- even  $O(n^2)$  for L $_1$ , L $_{\infty}$
- bounds are tight, but...
- worst-case is unlikely on real-world data
- $\rightarrow$  practical running time  $\approx O(n^2)$
- allows for simpler implementation



- new algorithm (using some old ideas)
- improves state-of-the-art to  $O(n^2\log n)$
- even  $O(n^2)$  for  $\mathsf{L}_1,\,\mathsf{L}_\infty$
- bounds are tight, but...
- worst-case is unlikely on real-world data
- $\rightarrow$  practical running time  $\approx O(n^2)$
- allows for simpler implementation



- new algorithm (using some old ideas)
- improves state-of-the-art to  $O(n^2\log n)$
- even  $O(n^2)$  for  $\mathsf{L}_1,\,\mathsf{L}_\infty$
- bounds are tight, but...
- worst-case is unlikely on real-world data
- $\rightarrow$  practical running time  $\approx O(n^2)$
- allows for simpler implementation



- new algorithm (using some old ideas)
- improves state-of-the-art to  $O(n^2\log n)$
- even  $O(n^2)$  for  $\mathsf{L}_1,\,\mathsf{L}_\infty$
- bounds are tight, but...
- worst-case is unlikely on real-world data
- → practical running time  $\approx O(n^2)$
- allows for simpler implementation



- new algorithm (using some old ideas)
- improves state-of-the-art to  $O(n^2\log n)$
- even  $O(n^2)$  for  $\mathsf{L}_1,\,\mathsf{L}_\infty$
- bounds are tight, but...
- worst-case is unlikely on real-world data
- → practical running time  $\approx O(n^2)$
- allows for simpler implementation



- ⑦ define worst-case
- (?) lower bounds  $< O(n^2)$
- higher dimensions
- ⑦ norms  $L_{p \in (1,\infty)}$
- ③ spherical geometry
- ⑦ drop endpoints

