
Optimal Polyline Simplification
under the
Local Fréchet Distance
in 2D in (Near-)Quadratic Time

Peter Schäfer, Sabine Storandt, Johannes Zink

CCCG 2023 Aug 3, Montreal

Polyline Simplification

Problem Setting

– a sequence of n vertices p1, . . . , pn
– straight segments

– select a minimal subset of vertices (no interpolation!)

– such that a distance measure is within a
given threshold 𝜹:

d(P, S) ≤ 𝛿

2

Polyline Simplification

Problem Setting

– a sequence of n vertices p1, . . . , pn
– straight segments

– select a minimal subset of vertices (no interpolation!)

– such that a distance measure is within a
given threshold 𝜹:

d(P, S) ≤ 𝛿

2

Polyline Simplification

Problem Setting

– a sequence of n vertices p1, . . . , pn
– straight segments

– select a minimal subset of vertices (no interpolation!)

– such that a distance measure is within a
given threshold 𝜹:

d(P, S) ≤ 𝛿

2

Polyline Simplification

δ

Problem Setting

– a sequence of n vertices p1, . . . , pn
– straight segments

– select a minimal subset of vertices (no interpolation!)

– such that a distance measure is within a
given threshold 𝜹:

d(P, S) ≤ 𝛿

2

Local Simplification

δδ δ

Problem Setting

– Local Simplification = segment-wise

– distance measure applied to each segment

– select minimal subset of vertices such that

d(P[i,i+1] , S[j,k]) ≤ 𝛿

3

Distance Measures

Hausdorff Distance

– minimize maximum distance between two vertices

– works for any set of points

– ignores their order p

Fréchet Distance

– minimize maximum distance over all mapping functions

– recognizes the course of the trajectory ⌣

– algorithmically challenging p

4

Distance Measures

Hausdorff Distance

– minimize maximum distance between two vertices

– works for any set of points

– ignores their order p

Fréchet Distance

– minimize maximum distance over all mapping functions

– recognizes the course of the trajectory ⌣

– algorithmically challenging p

4

Fréchet Distance

– it’s the dog-leash distance

– man and dog walk the curves

– at variable speed (but never backwards)

– find the minimum required length of the leash

5

Fréchet Distance

Definition

Given two parameterized curves P,Q : [0, 1] → ℝ2

dF (P,Q) = inf
𝜎,𝜏

max
s∈[0,1],
t∈[0,1]

| | P(𝜎(s)) − Q(𝜏(t)) | |

the Fréchet distance is the infimum over all continuous and increasing
bijections 𝜎, 𝜏 : [0, 1] → [0, 1].
| | · | | is the underlying norm (Euclidean, or other)

6

State of the Art

local Hausdorff Distance local Fréchet Distance

O(n3) Imai,Iri ’88 O(n3) Godau ’91

O(n2 log n) Melkman,O’Rourke ’88 O(n2.5) Buchin et al.’22

O(n2) Chan,Chin ’88 O(n log n) Approximation

Agarwal et al.’05

7

State of the Art

local Hausdorff Distance local Fréchet Distance

O(n3) Imai,Iri ’88 O(n3) Godau ’91

O(n2 log n) Melkman,O’Rourke ’88 O(n2.5) Buchin et al.’22

O(n2) Chan,Chin ’88 O(n log n) Approximation

Agarwal et al.’05

O(n2 log n) L2, Lp∈(1,∞)

p = 1

p = 1.5

p = 2

p = 4

p =∞

ε

ε/2

−ε/2

−ε

0

−ε −ε/2 ε/2 ε0

7

State of the Art

local Hausdorff Distance local Fréchet Distance

O(n3) Imai,Iri ’88 O(n3) Godau ’91

O(n2 log n) Melkman,O’Rourke ’88 O(n2.5) Buchin et al.’22

O(n2) Chan,Chin ’88 O(n log n) Approximation

Agarwal et al.’05

O(n2 log n) L2, Lp∈(1,∞)

O(n2) L1, L∞
p = 1

p = 1.5

p = 2

p = 4

p =∞

ε

ε/2

−ε/2

−ε

0

−ε −ε/2 ε/2 ε0

7

Algorithm by Imai and Iri

– proceeds in two phases

– First phase
– valid shortcuts (brute force)
– build shortcut graph

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 1

Algorithm by Imai and Iri

■ proceeds in two phases

v1

vn

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase
– valid shortcuts (brute force)
– build shortcut graph

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 1

Algorithm by Imai and Iri

■ proceeds in two phases

v1

vn

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase
– valid shortcuts (brute force)
– build shortcut graph

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 4

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force
v1

vn

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase
– valid shortcuts (brute force)
– build shortcut graph

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 4

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force
v1

vn

5 - 5

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase
– valid shortcuts (brute force)
– build shortcut graph

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 4

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force
v1

vn

5 - 5

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase
– valid shortcuts (brute force)
– build shortcut graph

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 4

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force
v1

vn

5 - 8

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase
– valid shortcuts (brute force)
– build shortcut graph

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 10

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

■ return optimal simplification

5 - 8

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase O(n3)
– valid shortcuts (brute force)
– build shortcut graph O(n2)

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 10

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

■ return optimal simplification

5 - 8

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase O(n3)
– valid shortcuts (brute force)
– build shortcut graph O(n2)

– Second phase O(n2)
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 10

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

■ return optimal simplification

5 - 8

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

8

Algorithm by Imai and Iri

– proceeds in two phases

– First phase O(n3)
– valid shortcuts (brute force)
– build shortcut graph O(n2)

– Second phase O(n2)
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 10

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

■ return optimal simplification

5 - 8

Algorithm by Imai and Iri

■ proceeds in two phases

■ First phase:

■ determine valid shortcuts brute-force

■ build shortcut graph
v1

vn

v1 vn

■ Second phase:

■ find shortest path in shortcut graph

8

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 2

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

vi
vn

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 4

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 6

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 7

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 8

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 9

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 10

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 12

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 13

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 13

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 15

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 16

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 17

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 18

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 19

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 20

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 20

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

6 - 22

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

v1 v3

v2

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 20

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

6 - 23

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

v1 v3

v2

9

Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 20

Algorithm by Melkman & O’Rourke

■ Starting at each vertex vi (i ∈ {1, . . . , n}),

■ traverse each subsequent vertex vj (j ∈ {i + 1, . . . , n})

■ while maintaining a cone and a wave front.

vi
vn

vi+1

vj−1

vj

vj+1

■ vivj is a valid shortcut ⇔ vj lies in the cone and “behind” the wave front

δ

9

The Wave Front

– is a sequence of circular arcs

– how complex can it be?

– each vertex contributes ≤ 1 arc $ O(n) arcs

$ stored in a binary tree

– find intersections: O(log n)

– update: O(log n), amortized

$ total time O(n2 log n)

The Wave Front

■ is a sequence of circular arcs.

How complex can the wave front be?

vi 10

The Wave Front

– is a sequence of circular arcs

– how complex can it be?

– each vertex contributes ≤ 1 arc $ O(n) arcs

$ stored in a binary tree

– find intersections: O(log n)

– update: O(log n), amortized

$ total time O(n2 log n)

The Wave Front

■ is a sequence of circular arcs.

How complex can the wave front be?

vi 10

The Wave Front

– is a sequence of circular arcs

– how complex can it be?

– each vertex contributes ≤ 1 arc $ O(n) arcs

$ stored in a binary tree

– find intersections: O(log n)

– update: O(log n), amortized

$ total time O(n2 log n)

The Wave Front

■ is a sequence of circular arcs.

How complex can the wave front be?

■ each vertex contributes ≤ 1 arc ⇒ O(n) arcs

vi 10

The Wave Front

– is a sequence of circular arcs

– how complex can it be?

– each vertex contributes ≤ 1 arc $ O(n) arcs

$ stored in a binary tree

– find intersections: O(log n)

– update: O(log n), amortized

$ total time O(n2 log n)

The Wave Front

■ is a sequence of circular arcs.

How complex can the wave front be?

■ each vertex contributes ≤ 1 arc ⇒ O(n) arcs

vi 10

The Wave Front

– is a sequence of circular arcs

– how complex can it be?

– each vertex contributes ≤ 1 arc $ O(n) arcs

$ stored in a binary tree

– find intersections: O(log n)

– update: O(log n), amortized

$ total time O(n2 log n)

The Wave Front

■ is a sequence of circular arcs.

How complex can the wave front be?

■ each vertex contributes ≤ 1 arc ⇒ O(n) arcs

vi 10

The Wave Front

– is a sequence of circular arcs

– how complex can it be?

– each vertex contributes ≤ 1 arc $ O(n) arcs

$ stored in a binary tree

– find intersections: O(log n)

– update: O(log n), amortized

$ total time O(n2 log n)

The Wave Front

■ is a sequence of circular arcs.

How complex can the wave front be?

■ each vertex contributes ≤ 1 arc ⇒ O(n) arcs

vi 10

The Wave Front

– is a sequence of circular arcs

– how complex can it be?

– each vertex contributes ≤ 1 arc $ O(n) arcs

$ stored in a binary tree

– find intersections: O(log n)

– update: O(log n), amortized

$ total time O(n2 log n)

The Wave Front

■ is a sequence of circular arcs.

How complex can the wave front be?

■ each vertex contributes ≤ 1 arc ⇒ O(n) arcs

vi 10

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 3

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 3

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 4

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 5

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 6

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 6

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 8

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 9

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 10

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

11

Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk

8 - 12

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

11

L1 and L∞ Norms

– sum-norm L1, max-norm L∞

– observation: the wave front consists of
at most two line segments

– created by intersecting axis-parallel squares

$ total time O(n2)

10 - 4

L1 and L∞ Norm
Observation: in L1 and L∞

Proof Idea for L∞:

(IB) The first wave front are ≤
parallel square with side length 2ε (

vi

vi+1

12

L1 and L∞ Norms

– sum-norm L1, max-norm L∞

– observation: the wave front consists of
at most two line segments

– created by intersecting axis-parallel squares

$ total time O(n2)

10 - 4

L1 and L∞ Norm
Observation: in L1 and L∞

Proof Idea for L∞:

(IB) The first wave front are ≤
parallel square with side length 2ε (

vi

vi+1

12

L1 and L∞ Norms

– sum-norm L1, max-norm L∞

– observation: the wave front consists of
at most two line segments

– created by intersecting axis-parallel squares

$ total time O(n2)

10 - 6

L1 and L∞ Norm
Observation: in L1 and L∞

Proof Idea for L∞:

(IB) The first wave front are ≤
parallel square with side length 2ε (

vi

(IS)

Hence, the resulting wave front has again ≤ 2 axis-parallel line segments.

vj

12

L1 and L∞ Norms

– sum-norm L1, max-norm L∞

– observation: the wave front consists of
at most two line segments

– created by intersecting axis-parallel squares

$ total time O(n2)

10 - 7

L1 and L∞ Norm
Observation: in L1 and L∞

Proof Idea for L∞:

(IB) The first wave front are ≤
parallel square with side length 2ε

vi

(IS)

Hence, the resulting wave front has again ≤ 2 axis-parallel line segments.

vj

12

Constructing Worst-case Instances

– worst case = wavefront size O(n)
– we can build worst-case examples ¥

$ O(n2 log n) is tight

– but: worst cases are contrived, unlikely to appear in the wild

13

Constructing Worst-case Instances

– worst case = wavefront size O(n)
– we can build worst-case examples ¥

$ O(n2 log n) is tight

– but: worst cases are contrived, unlikely to appear in the wild

input curve

13

Constructing Worst-case Instances

– worst case = wavefront size O(n)
– we can build worst-case examples ¥

$ O(n2 log n) is tight

– but: worst cases are contrived, unlikely to appear in the wild

input curve wavefront

13

Constructing Worst-case Instances

– worst case = wavefront size O(n)
– we can build worst-case examples ¥

$ O(n2 log n) is tight

– but: worst cases are contrived, unlikely to appear in the wild

 1000

 2000

 3000

 4000

 5000

 6000

 1000 3000 5000 7000 9000

max.

avg.

S
iz

e
 o

f
W

a
ve

fr
o
n
t

of vertices

input curve wavefront grows linear with n

13

Constructing Worst-case Instances

– worst case = wavefront size O(n)
– we can build worst-case examples ¥

$ O(n2 log n) is tight

– but: worst cases are contrived, unlikely to appear in the wild

 1000

 2000

 3000

 4000

 5000

 6000

 1000 3000 5000 7000 9000

max.

avg.

S
iz

e
 o

f
W

a
ve

fr
o
n
t

of vertices

input curve wavefront grows linear with n

13

Wavefront Size

Conjecture

– worst-case is rare

– there is a ‘natural’ tendency to keep wavefronts small

$ total running time close to O(n2) ⌣

– open question: condition for worst-case instances®
– in the mean time...

14

Wavefront Size

Conjecture

– worst-case is rare

– there is a ‘natural’ tendency to keep wavefronts small

$ total running time close to O(n2) ⌣

– open question: condition for worst-case instances®
– in the mean time...

14

Wavefront Size

Conjecture

– worst-case is rare

– there is a ‘natural’ tendency to keep wavefronts small

$ total running time close to O(n2) ⌣

– open question: condition for worst-case instances®
– in the mean time...

14

Wavefront Size

Conjecture

– worst-case is rare

– there is a ‘natural’ tendency to keep wavefronts small

$ total running time close to O(n2) ⌣

– open question: condition for worst-case instances®
– in the mean time...

14

Wavefront Size

Conjecture

– worst-case is rare

– there is a ‘natural’ tendency to keep wavefronts small

$ total running time close to O(n2) ⌣

– open question: condition for worst-case instances®
– in the mean time...

evaluate on real-world data

14

Real-world Instances

– real-world data: trajectories from OSM, up to 3 Mio. vertices

– Wave-fronts are always small: avg. ≤ 6, max. ≤ 90

$ practical running-time close to O(n2)

(confirming our conjecture)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2,000 10,000 20,000 3,000,000

#
 o

f
e
le

m
e

n
ts

 in
 w

a
ve

fr
o

n
t

of vertices

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

o
c
c
u

re
n

c
e
s

avg. wavefront size 15

Real-world Instances

– real-world data: trajectories from OSM, up to 3 Mio. vertices

– Wave-fronts are always small: avg. ≤ 6, max. ≤ 90

$ practical running-time close to O(n2)

(confirming our conjecture)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2,000 10,000 20,000 3,000,000

#
 o

f
e
le

m
e

n
ts

 in
 w

a
ve

fr
o

n
t

of vertices

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

o
c
c
u

re
n

c
e
s

avg. wavefront size 15

Real-world Instances

– real-world data: trajectories from OSM, up to 3 Mio. vertices

– Wave-fronts are always small: avg. ≤ 6, max. ≤ 90

$ practical running-time close to O(n2)

(confirming our conjecture)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2,000 10,000 20,000 3,000,000

#
 o

f
e
le

m
e

n
ts

 in
 w

a
ve

fr
o

n
t

of vertices

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

o
c
cu

re
n

c
e
s

avg. wavefront size 15

Container Data Structure

– default: binary tree
– but: left / right decisions are not for free p

– but: wavefronts are small ≈ constant
$ try simpler containers:

linked-list, array, skip list, ...

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.5 1 1.5 2 2.5 3 3.5

ru
n

n
in

g
 t
im

e
 r

e
la

tiv
e

 t
o

 a
rr

a
y

im
p

le
m

e
n

ta
tio

n

avg. size of wavefront

$ the winner is: linked-list ⌣

– (except on construed worst-case

instances)

16

Container Data Structure

– default: binary tree
– but: left / right decisions are not for free p

– but: wavefronts are small ≈ constant
$ try simpler containers:

linked-list, array, skip list, ...

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.5 1 1.5 2 2.5 3 3.5

ru
n

n
in

g
 t
im

e
 r

e
la

tiv
e

 t
o

 a
rr

a
y

im
p

le
m

e
n

ta
tio

n

avg. size of wavefront

$ the winner is: linked-list ⌣

– (except on construed worst-case

instances)

16

Container Data Structure

– default: binary tree
– but: left / right decisions are not for free p

– but: wavefronts are small ≈ constant
$ try simpler containers:

linked-list, array, skip list, ...

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.5 1 1.5 2 2.5 3 3.5

ru
n

n
in

g
 t
im

e
 r

e
la

tiv
e

 t
o

 a
rr

a
y

im
p

le
m

e
n

ta
tio

n

avg. size of wavefront

$ the winner is: linked-list ⌣

– (except on construed worst-case

instances)

16

Comparison to other Algorithms

Our algorithm is ...

– significantly faster than state-of-the-art Imai-Iri / Godau ’91
(note that Imai-Iri is always Θ(n3))

– competitive to approx. algorithm Agarwal et al.’05

17

Comparison to other Algorithms

Our algorithm is ...

– significantly faster than state-of-the-art Imai-Iri / Godau ’91
(note that Imai-Iri is always Θ(n3))

– competitive to approx. algorithm Agarwal et al.’05

 0.0001

 0.001

 0.01

 0.1

 1

4,000 5,000 6,000 7,000 8,000 9,000 11,000

re
la

tiv
e

 r
u

n
n

in
g

 t
im

e

of vertices

17

Comparison to other Algorithms

Our algorithm is ...

– significantly faster than state-of-the-art Imai-Iri / Godau ’91
(note that Imai-Iri is always Θ(n3))

– competitive to approx. algorithm Agarwal et al.’05

 0.0001

 0.001

 0.01

 0.1

 1

4,000 5,000 6,000 7,000 8,000 9,000 11,000

re
la

tiv
e

 r
u

n
n

in
g

 t
im

e

of vertices

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3,000 10,000 15,000 20,000 100,000

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

a
p

p
ro

x.
 r

u
n

n
in

g
 t
im

e
 /

 o
u

r
ru

n
n

in
g

 t
im

e

re
s
u

lt
si

ze
 /

 o
p

tim
a

l
re

s
u

lt
si

ze

of vertices

17

Comparison to other Algorithms

Our algorithm is ...

– significantly faster than state-of-the-art Imai-Iri / Godau ’91
(note that Imai-Iri is always Θ(n3))

– competitive to approx. algorithm Agarwal et al.’05
(but we have exact results, of course)

 0.0001

 0.001

 0.01

 0.1

 1

4,000 5,000 6,000 7,000 8,000 9,000 11,000

re
la

tiv
e

 r
u

n
n

in
g

 t
im

e

of vertices

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3,000 10,000 15,000 20,000 100,000

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

a
p

p
ro

x.
 r

u
n

n
in

g
 t
im

e
 /

 o
u

r
ru

n
n

in
g

 t
im

e

re
s
u

lt
si

ze
 /

 o
p

tim
a

l
re

s
u

lt
si

ze

of vertices

17

Conclusion

– new algorithm (using some old ideas)

– improves state-of-the-art
to O(n2 log n)

– even O(n2) for L1, L∞

– bounds are tight, but...

– worst-case is unlikely on real-world data

$ practical running time ≈ O(n2)

– allows for simpler implementation

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

18

Conclusion

– new algorithm (using some old ideas)

– improves state-of-the-art
to O(n2 log n)

– even O(n2) for L1, L∞

– bounds are tight, but...

– worst-case is unlikely on real-world data

$ practical running time ≈ O(n2)

– allows for simpler implementation

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

18

Conclusion

– new algorithm (using some old ideas)

– improves state-of-the-art
to O(n2 log n)

– even O(n2) for L1, L∞

– bounds are tight, but...

– worst-case is unlikely on real-world data

$ practical running time ≈ O(n2)

– allows for simpler implementation

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

18

Conclusion

– new algorithm (using some old ideas)

– improves state-of-the-art
to O(n2 log n)

– even O(n2) for L1, L∞

– bounds are tight, but...

– worst-case is unlikely on real-world data

$ practical running time ≈ O(n2)

– allows for simpler implementation

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

18

Conclusion

– new algorithm (using some old ideas)

– improves state-of-the-art
to O(n2 log n)

– even O(n2) for L1, L∞

– bounds are tight, but...

– worst-case is unlikely on real-world data

$ practical running time ≈ O(n2)

– allows for simpler implementation

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

18

Conclusion

– new algorithm (using some old ideas)

– improves state-of-the-art
to O(n2 log n)

– even O(n2) for L1, L∞

– bounds are tight, but...

– worst-case is unlikely on real-world data

$ practical running time ≈ O(n2)

– allows for simpler implementation

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

18

Open Questions

® define worst-case

® lower bounds < O(n2)

® higher dimensions

® norms Lp∈(1,∞)

® spherical geometry

® drop endpoints

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk

19

