Optimal Polyline Simplification under the
 Local Fréchet Distance in 2D in (Near-)Quadratic Time

Peter Schäfer, Sabine Storandt, Johannes Zink
Universität Konstanz

CCCG 2023 Aug 3, Montreal

Polyline Simplification

Problem Setting

- a sequence of n vertices p_{1}, \ldots, p_{n}
- straight segments
- select a minimal subset of vertices (no interpolation!)
- such that a distance measure is within a given threshold δ :

$$
d(P, S) \leq \delta
$$

Polyline Simplification

Problem Setting

- a sequence of n vertices p_{1}, \ldots, p_{n}
- straight segments
- select a minimal subset of vertices (no interpolation!)
- such that a distance measure is within a given threshold δ :

$$
d(P, S) \leq \delta
$$

Polyline Simplification

Problem Setting

- a sequence of n vertices p_{1}, \ldots, p_{n}
- straight segments
- select a minimal subset of vertices (no interpolation!)
- such that a distance measure is within a given threshold δ :

$$
d(P, S) \leq \delta
$$

Polyline Simplification

Problem Setting

- a sequence of n vertices p_{1}, \ldots, p_{n}
- straight segments
- select a minimal subset of vertices (no interpolation!)
- such that a distance measure is within a given threshold δ :

$$
d(P, S) \leq \delta
$$

Local Simplification

Problem Setting

- Local Simplification = segment-wise
- distance measure applied to each segment
- select minimal subset of vertices such that

$$
d\left(P_{[i, i+1]}, S_{[j, k]}\right) \leq \delta
$$

Distance Measures

Hausdorff Distance

- minimize maximum distance between two vertices
- works for any set of points
- ignores their order © $^{-}$

Fréchet Distance

minimize maxinum distance over all mapping functions

- recognizes the course of the trajectory
alonrithmically challencing

Distance Measures

Hausdorff Distance

- minimize maximum distance between two vertices
- works for any set of points
- ignores their order - $^{\circ}$

Fréchet Distance

- minimize maximum distance over all mapping functions
- recognizes the course of the trajectory
- algorithmically challenging $)$

Fréchet Distance

- it's the dog-leash distance
- man and dog walk the curves
- at variable speed (but never backwards)
- find the minimum required length of the leash

Fréchet Distance

Definition

Given two parameterized curves $P, Q:[0,1] \rightarrow \mathbb{R}^{2}$

$$
d_{F}(P, Q)=\inf _{\sigma, \tau} \max _{\substack{s \in[0,1], t \in[0,1]}}\|P(\sigma(s))-Q(\tau(t))\|
$$

the Fréchet distance is the infimum over all continuous and increasing bijections $\sigma, \tau:[0,1] \rightarrow[0,1]$.
$\|\cdot\|$ is the underlying norm (Euclidean, or other)

State of the Art

local Hausdorff Distance		local Fréchet Distance	
$O\left(n^{3}\right)$	Imai,Iri '88	$\mathbf{O}\left(\mathrm{n}^{3}\right)$	Godau '91
$O\left(n^{2} \log n\right)$	Melkman,O'Rourke '88	$O\left(n^{2.5}\right)$	Buchin et al.'22
$O\left(n^{2}\right)$	Chan,Chin '88	$O(n \log n)$	Approximation

State of the Art

State of the Art

Algorithm by Imai and Iri

- proceeds in two phases
- First phase

- Second phase

Algorithm by Imai and Iri

- proceeds in two phases
- First phase
- valid shortcuts (brute force)
- build shortcut graph
- Second phase

\rightarrow total running time $O\left(n^{3}\right)$

Algorithm by Imai and Iri

- proceeds in two phases

\author{

- First phase
}
- valid shortcuts (brute force)
- build shortcut graph

- Second phase

Algorithm by Imai and Iri

- proceeds in two phases

- First phase

- valid shortcuts (brute force)
- build shortcut graph

- Second phase

Algorithm by Imai and Iri

- proceeds in two phases
- First phase
- valid shortcuts (brute force)
- build shortcut graph
- Second phase
- shortest path in graph
- optimal simplification

Algorithm by Imai and Iri

- proceeds in two phases
- First phase
- valid shortcuts (brute force)
- build shortcut graph
- Second phase
- shortest path in graph
- optimal simplification

Algorithm by Imai and Iri

- proceeds in two phases

- First phase

- valid shortcuts (brute force)
- build shortcut graph
- Second phase
- shortest path in graph
- optimal simplification

Algorithm by Imai and Iri

- proceeds in two phases
- First phase $O\left(n^{3}\right)$
- valid shortcuts (brute force)
- build shortcut graph $O\left(n^{2}\right)$
- Second phase
- shortest path in graph
- optimal simplification
\rightarrow total running time $O\left(n^{3}\right)$

Algorithm by Imai and Iri

- proceeds in two phases
- First phase $O\left(n^{3}\right)$
- valid shortcuts (brute force)
- build shortcut graph $O\left(n^{2}\right)$
- Second phase $O\left(n^{2}\right)$

- shortest path in graph
- optimal simplification

Algorithm by Imai and Iri

- proceeds in two phases
- First phase $O\left(n^{3}\right)$
- valid shortcuts (brute force)
- build shortcut graph $O\left(n^{2}\right)$
- Second phase $O\left(n^{2}\right)$

- shortest path in graph
- optimal simplification
\rightarrow total running time $O\left(n^{3}\right)$

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut
v_{j} is inside the cone and behind the wave front
- can be updated incrementally $)$
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

\Leftrightarrow
v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

\Leftrightarrow
v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

\Leftrightarrow
v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

\Leftrightarrow
v_{j} is inside the cone and behind the wave front
- can be updated incrementally ;)

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

v_{j} is inside the cone and behind the wave front
- can be updated incrementally

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

\Leftrightarrow
v_{j} is inside the cone and behind the wave front
- can be updated incrementally

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

\Leftrightarrow
v_{j} is inside the cone and behind the wave front
- can be updated incrementally

- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

\Leftrightarrow
v_{j} is inside the cone and behind the wave front
- can be updated incrementally
- why is the wave front used at all?

Algorithm by Melkman \& O'Rourke

- for each vertex $v_{i}, i \in\{1, \ldots, n\}$
- traverse each subsequent vertex $v_{j}, j>i$
- while maintaining a cone
- and a wave front
$-\overline{v_{i} v_{j}}$ is a valid shortcut

\Leftrightarrow
v_{j} is inside the cone and behind the wave front
- can be updated incrementally

- why is the wave front used at all?

The Wave Front

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes ≤ 1 arc $\rightarrow O(n)$ arcs
\rightarrow stored in a binary tree
- find intersections: $O(\log n)$
- update: $O(\log n)$, amortized
\rightarrow total time $\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right)$

The Wave Front

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes ≤ 1 arc $\rightarrow O(n)$ arcs
\rightarrow stored in a binary tree
- find intersections: $O(\log n)$
- update: $O(\log n)$, amortized
\rightarrow total time $\mathbf{O}\left(\mathbf{n}^{2} \log \mathbf{n}\right)$

The Wave Front

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes ≤ 1 arc $\rightarrow O(n)$ arcs
\rightarrow stored in a binary tree
- find intersections: $O(\log n)$
- update: $O(\log n)$, amortized
\rightarrow total time $\mathbf{O}\left(\mathbf{n}^{2} \log \mathbf{n}\right)$

The Wave Front

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes ≤ 1 arc $\rightarrow O(n)$ arcs
\rightarrow stored in a binary tree
- find intersections: $O(\log n)$
- update: $O(\log n)$, amortized
\rightarrow total time $\underline{\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right)}$

The Wave Front

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes ≤ 1 arc $\rightarrow O(n)$ arcs
\rightarrow stored in a binary tree
- find intersections: $O(\log n)$
- update: $O(\log n)$, amortized
\rightarrow total time $\mathrm{O}\left(\mathrm{n}^{2} \operatorname{logn}\right)$

The Wave Front

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes ≤ 1 arc $\rightarrow O(n)$ arcs
\rightarrow stored in a binary tree
- find intersections: $O(\log n)$
- update: $O(\log n)$, amortized
\rightarrow total time $\underline{\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)}$

The Wave Front

- is a sequence of circular arcs
- how complex can it be?
- each vertex contributes ≤ 1 arc $\rightarrow O(n)$ arcs
\rightarrow stored in a binary tree
- find intersections: $O(\log n)$
- update: $O(\log n)$, amortized
\rightarrow total time $\mathbf{O}\left(\mathbf{n}^{2} \log \mathbf{n}\right)$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains
the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$:
man each intermediate y to the intersection
of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$:
man each intermediate y to the intersection
of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$:
man each intermediate y to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$:
man each intermediate y to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$: man each intermediate v to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$: man each intermediate v to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$: man each intermediate $v_{\text {f }}$ to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$: map each intermediate v_{j} to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$: map each intermediate v_{j} to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$: map each intermediate v_{j} to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

Our Modifications

- order of vertices matters for Fréchet distance
\rightarrow narrow cone s.t. δ-circle contains the whole wave front
- determine ≤ 2 intersections
\rightarrow can be done in $O(\log n)$
- narrow the cone
- correctness, for a shortcut $\overline{v_{i} v_{k}}$: map each intermediate v_{j} to the intersection of v_{j} 's wave front and $\overline{v_{i} v_{k}}$

L_{1} and L_{∞} Norms

- sum-norm L_{1}, max-norm L_{∞}
- observation: the wave front consists of at most two line seaments
- created by intersecting axis-parallel squares
\rightarrow total time $\underline{\mathbf{O}\left(\mathbf{n}^{2}\right)}$

L_{1} and L_{∞} Norms

- sum-norm L_{1}, max-norm L_{∞}
- observation: the wave front consists of at most two line segments
- created by intersecting axis-parallel squares
\rightarrow total time $\underline{\mathbf{O}\left(\mathbf{n}^{2}\right)}$

L_{1} and L_{∞} Norms

- sum-norm L_{1}, max-norm L_{∞}
- observation: the wave front consists of at most two line segments
- created by intersecting axis-parallel squares
\rightarrow total time $\underline{\mathbf{O}\left(\mathbf{n}^{2}\right)}$

L_{1} and L_{∞} Norms

- sum-norm L_{1}, max-norm L_{∞}
- observation: the wave front consists of at most two line segments
- created by intersecting axis-parallel squares
\rightarrow total time $\underline{\mathbf{O}\left(\mathbf{n}^{2}\right)}$

Constructing Worst-case Instances

- worst case = wavefront size $O(n)$
- we can build worst-case examples ()
$\rightarrow O\left(n^{2} \log n\right)$ is tight
- but: worst cases are contrived, unlikely to appear in the wild

Constructing Worst-case Instances

- worst case = wavefront size $O(n)$
- we can build worst-case examples © $($
$\rightarrow O\left(n^{2} \log n\right)$ is tight
- but: worst cases are contrived, unlikely to appear in the wild

input curve

Constructing Worst-case Instances

- worst case = wavefront size $O(n)$
- we can build worst-case examples ©
$\rightarrow O\left(n^{2} \log n\right)$ is tight
- but: worst cases are contrived, unlikely to appear in the wild

input curve

wavefront

Constructing Worst-case Instances

- worst case = wavefront size $O(n)$
- we can build worst-case examples ()
$\rightarrow O\left(n^{2} \log n\right)$ is tight
- but: worst cases are contrived, unlikely to appear in the wild

input curve

wavefront

grows linear with n

Constructing Worst-case Instances

- worst case = wavefront size $O(n)$
- we can build worst-case examples ()
$\rightarrow O\left(n^{2} \log n\right)$ is tight
- but: worst cases are contrived, unlikely to appear in the wild

input curve

wavefront

grows linear with n

Wavefront Size

Conjecture

- worst-case is rare
there is a 'natural' tendency to keep wavefronts small
\rightarrow total running time close to $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- open question: condition for worst-case instances
- in the mean time...

Wavefront Size

Conjecture

- worst-case is rare
there is a 'natural' tendency to keep wavefronts small
\rightarrow total running time close to $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- open question: condition for worst-case instances
- in the mean time...

Wavefront Size

Conjecture

- worst-case is rare
- there is a 'natural' tendency to keep wavefronts small
\rightarrow total running time close to $\mathbf{O}\left(\mathrm{n}^{2}\right)$

- open question: condition for worst-case instances
- in the mean time.

Wavefront Size

Conjecture

- worst-case is rare
- there is a 'natural' tendency to keep wavefronts small
\rightarrow total running time close to $\mathbf{O}\left(\mathrm{n}^{2}\right)$

- open question: condition for worst-case instances

- in the mean time...

Wavefront Size

Conjecture

- worst-case is rare
- there is a 'natural' tendency to keep wavefronts small
\rightarrow total running time close to $\mathbf{O}\left(\mathrm{n}^{2}\right)$

- open question: condition for worst-case instances

- in the mean time...
evaluate on real-world data

Real-world Instances

- real-world data: trajectories from OSM, up to 3 Mio. vertices
- Wave-fronts are always small: avg. ≤ 6, max. ≤ 90
\rightarrow practical running-time close to $O\left(n^{2}\right)$ (confirming our conjecture)

Real-world Instances

- real-world data: trajectories from OSM, up to 3 Mio. vertices
- Wave-fronts are always small: avg. ≤ 6, max. ≤ 90
\rightarrow practical running-time close to $O\left(n^{2}\right)$ (confirming our conjecture)

Real-world Instances

- real-world data: trajectories from OSM, up to 3 Mio. vertices
- Wave-fronts are always small: avg. ≤ 6, max. ≤ 90
\rightarrow practical running-time close to $\boldsymbol{O}\left(\mathbf{n}^{2}\right)$ (confirming our conjecture)

Container Data Structure

- default: binary tree
- but: left / right decisions are not for free $)$
- but: wavefronts are small \approx constant
\rightarrow try simpler containers:
linked-list, array, skip list,

\rightarrow the winner is: linked-list $)$
- (excent on construed inorst-case instances)

Container Data Structure

- default: binary tree
- but: left / right decisions are not for free
- but: wavefronts are small \approx constant
\rightarrow try simpler containers:
linked-list, array, skip list, ...

\rightarrow the winner is: linked-list $;$
- (except on construed worst-case instances)

Container Data Structure

- default: binary tree
- but: left / right decisions are not for free $)$
- but: wavefronts are small \approx constant
\rightarrow try simpler containers: linked-list, array, skip list, ...

\rightarrow the winner is: linked-list $)$
- (except on construed worst-case instances)

Comparison to other Algorithms

Our algorithm is ...

- significantly faster than state-of-the-art Imai-Iri / Godau '91
(note that Imai-Iri is always $\Theta\left(n^{3}\right)$)
- competitive to approx. algorithm Agarwal et al.'05

Comparison to other Algorithms

Our algorithm is ...

- significantly faster than state-of-the-art Imai-Iri / Godau '91 (note that Imai-Iri is always $\Theta\left(n^{3}\right)$)
- competitive to approx. algorithm Agarwal et al.'05

Comparison to other Algorithms

Our algorithm is ...

- significantly faster than state-of-the-art Imai-Iri / Godau '91 (note that Imai-Iri is always $\Theta\left(n^{3}\right)$)
- competitive to approx. algorithm Agarwal et al.'05

Comparison to other Algorithms

Our algorithm is ...

- significantly faster than state-of-the-art Imai-Iri / Godau '91 (note that Imai-Iri is always $\Theta\left(n^{3}\right)$)
- competitive to approx. algorithm Agarwal et al.'05 (but we have exact results, of course)

Conclusion

- new algorithm (using some old ideas)
- improves state-of-the-art
to $\underline{\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right)}$
- even $0\left(n^{2}\right)$ for L_{1}, L_{∞}
- bounds are tight, but...
- worst-case is unll'kely on real-world data
\rightarrow practical running time $\approx \underline{\mathrm{O}\left(\mathrm{n}^{2}\right)}$
- allows for simpler implementation

Conclusion

- new algorithm (using some old ideas)
- improves state-of-the-art to $\underline{\mathbf{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)}$
- even $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for $\mathrm{L}_{1}, \mathrm{~L}_{\infty}$
- bounds are tight, but...
- worst-case is unlitrely on real-world data
\rightarrow practical running time $\approx \underline{\mathrm{O}\left(\mathrm{n}^{2}\right)}$
- allows for simpler implementation

Conclusion

- new algorithm (using some old ideas)
- improves state-of-the-art to $\underline{\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right)}$
- even $\mathbf{O}\left(\mathbf{n}^{2}\right)$ for L_{1}, L_{∞}
- bounds are tight, but...
- worst-case is unll'kely on real-world data
\rightarrow practical running time $\approx \underline{\mathrm{O}\left(\mathrm{n}^{2}\right)}$
- allows for simplar implamentation

Conclusion

- new algorithm (using some old ideas)
- improves state-of-the-art to $\underline{\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right)}$
- even $\mathbf{O}\left(\mathbf{n}^{2}\right)$ for L_{1}, L_{∞}
- bounds are tight, but...
- worst-case is unlikely on real-world data
\rightarrow practical running time $\approx \underline{O\left(n^{2}\right)}$
- allows for simpler implementation

Conclusion

- new algorithm (using some old ideas)
- improves state-of-the-art to $\underline{\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right)}$
- even $\mathbf{O}\left(\mathbf{n}^{2}\right)$ for $\mathrm{L}_{1}, \mathrm{~L}_{\infty}$
- bounds are tight, but...
- worst-case is unlikely on real-world data
\rightarrow practical running time $\approx \underline{O\left(n^{2}\right)}$
- allows for simpler implementation

Conclusion

- new algorithm (using some old ideas)
- improves state-of-the-art
to $\underline{\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right)}$
- even $\mathbf{O}\left(\mathbf{n}^{2}\right)$ for $\mathrm{L}_{1}, \mathrm{~L}_{\infty}$
- bounds are tight, but...
- worst-case is unlikely on real-world data
\rightarrow practical running time $\approx \underline{\mathrm{O}\left(\mathrm{n}^{2}\right)}$
- allows for simpler implementation

Open Questions

(3) define worst-case
(3) lower bounds $<\mathrm{O}\left(\mathrm{n}^{2}\right)$
(2) higher dimensions
(3) norms $\mathrm{L}_{p \in(1, \infty)}$
(2) spherical geometry
(3) drop endpoints

