
Optimal Polyline Simplification
under the
Local Fréchet Distance
in 2D in (Near-)Quadratic Time

Peter Schäfer, Sabine Storandt, Johannes Zink

CCCG 2023 Aug 3, Montreal



Polyline Simplification

Problem Setting

– a sequence of n vertices p1, . . . , pn
– straight segments

– select a minimal subset of vertices (no interpolation!)

– such that a distance measure is within a
given threshold 𝜹:

d(P, S) ≤ 𝛿
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Polyline Simplification

δ

Problem Setting

– a sequence of n vertices p1, . . . , pn
– straight segments

– select a minimal subset of vertices (no interpolation!)
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Local Simplification

δδ δ

Problem Setting

– Local Simplification = segment-wise

– distance measure applied to each segment

– select minimal subset of vertices such that

d(P[i,i+1] , S[j,k]) ≤ 𝛿
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Distance Measures

Hausdorff Distance

– minimize maximum distance between two vertices

– works for any set of points

– ignores their order p

Fréchet Distance

– minimize maximum distance over all mapping functions

– recognizes the course of the trajectory ⌣

– algorithmically challenging p
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Fréchet Distance

– it’s the dog-leash distance

– man and dog walk the curves

– at variable speed (but never backwards)

– find the minimum required length of the leash
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Fréchet Distance

Definition

Given two parameterized curves P,Q : [0, 1] → ℝ2

dF (P,Q) = inf
𝜎,𝜏

max
s∈[0,1],
t∈[0,1]

| | P(𝜎(s)) − Q(𝜏(t)) | |

the Fréchet distance is the infimum over all continuous and increasing
bijections 𝜎, 𝜏 : [0, 1] → [0, 1].
| | · | | is the underlying norm (Euclidean, or other)
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State of the Art

local Hausdorff Distance local Fréchet Distance

O(n3) Imai,Iri ’88 O(n3) Godau ’91

O(n2 log n) Melkman,O’Rourke ’88 O(n2.5) Buchin et al.’22

O(n2) Chan,Chin ’88 O(n log n) Approximation

Agarwal et al.’05
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Algorithm by Imai and Iri

– proceeds in two phases

– First phase
– valid shortcuts (brute force)
– build shortcut graph

– Second phase
– shortest path in graph
– optimal simplification

$ total running time O(n3)

5 - 1

Algorithm by Imai and Iri

■ proceeds in two phases

v1

vn
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Algorithm by Melkman & O’Rourke

– for each vertex vi, i ∈ {1, . . . , n}
– traverse each subsequent vertex vj, j > i
– while maintaining a cone
– and a wave front

– vivj is a valid shortcut
⇔
vj is inside the cone and behind the wave front

– can be updated incrementally ⌣

– why is the wave front used at all?

6 - 2

Algorithm by Melkman & O’Rourke
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vi
vn
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The Wave Front

– is a sequence of circular arcs

– how complex can it be?

– each vertex contributes ≤ 1 arc $ O(n) arcs

$ stored in a binary tree

– find intersections: O(log n)

– update: O(log n), amortized

$ total time O(n2 log n)
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Our Modifications

– order of vertices matters for Fréchet distance

$ narrow cone s.t. 𝛿-circle contains
the whole wave front

– determine ≤ 2 intersections

$ can be done in O(log n)

– narrow the cone

– correctness, for a shortcut vivk:
map each intermediate vj to the intersection
of vj’s wave front and vivk
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L1 and L∞ Norms

– sum-norm L1, max-norm L∞

– observation: the wave front consists of
at most two line segments

– created by intersecting axis-parallel squares

$ total time O(n2)

10 - 4

L1 and L∞ Norm
Observation: in L1 and L∞

Proof Idea for L∞:

(IB) The first wave front are ≤
parallel square with side length 2ε (
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Constructing Worst-case Instances

– worst case = wavefront size O(n)
– we can build worst-case examples ¥

$ O(n2 log n) is tight

– but: worst cases are contrived, unlikely to appear in the wild
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Wavefront Size

Conjecture

– worst-case is rare

– there is a ‘natural’ tendency to keep wavefronts small

$ total running time close to O(n2) ⌣

– open question: condition for worst-case instances®
– in the mean time...
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– there is a ‘natural’ tendency to keep wavefronts small

$ total running time close to O(n2) ⌣

– open question: condition for worst-case instances®
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Real-world Instances

– real-world data: trajectories from OSM, up to 3 Mio. vertices

– Wave-fronts are always small: avg. ≤ 6, max. ≤ 90

$ practical running-time close to O(n2)

(confirming our conjecture)
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Container Data Structure

– default: binary tree
– but: left / right decisions are not for free p

– but: wavefronts are small ≈ constant
$ try simpler containers:

linked-list, array, skip list, ...
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– (except on construed worst-case

instances)
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Comparison to other Algorithms

Our algorithm is ...

– significantly faster than state-of-the-art Imai-Iri / Godau ’91
(note that Imai-Iri is always Θ(n3))

– competitive to approx. algorithm Agarwal et al.’05
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Conclusion

– new algorithm (using some old ideas)

– improves state-of-the-art
to O(n2 log n)

– even O(n2) for L1, L∞

– bounds are tight, but...

– worst-case is unlikely on real-world data

$ practical running time ≈ O(n2)

– allows for simpler implementation

8 - 11

Our Modifications

■
cut segment matters for the Fréchet distance.

⇒ narrow the cone s.t. the ε-circle around vj
contains the whole wave front.

vi

vj

■ determine the ≤
the ε-circle around vj and the wave front

we show how to do this in O(log n) time

■ narrow the cone accordingly

■ Correctness: for a shortcut segment vivk,
map each intermediate vertex vj to the inter-
section point of vj’s wave front and vivk.

vk
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Open Questions

® define worst-case

® lower bounds < O(n2)

® higher dimensions

® norms Lp∈(1,∞)

® spherical geometry

® drop endpoints
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