Every Combinatorial Convex Polyhedron Can Unfold with Overlap

Joseph O'Rourke

CCCG 2023

Dürer's Problem: 1525

 (a)

11 Cube Unfoldings

Horiyama and Shoji, CCCG 2011:
No edge-unfolding overlap possible for any Platonic solid.

Truncated Icosahedron Overlap

Shiota \& Saitoh, 2023.

Overlap: $V=50$

Mohammad Ghomi Theorem

- Every convex polyhedron can be stretched via an affine transformation so that it has an edge-unfolding to a net.
- 三
- Every combinatorial polyhedron \mathcal{P} has a metric realization P that allows unfolding to a net via some spanning tree T.

Malkevitch Q \& Theorem

Joseph Malkevitch question:
Is there a combinatorial polyhedron \mathcal{P} such that, for every metric realization P in \mathbb{R}^{3}, and for every spanning cut-tree T of the 1 skeleton, P cut by T unfolds to a net?

Answer: NO:

Theorem

Any 3-connected planar graph G can be realized as a convex polyhedron P in \mathbb{R}^{3} that has a spanning cut-tree T such that the edge-unfolding of $P \backslash T$ overlaps in the plane.

Combinatorial Cube Overlap

Algorithm: Assume triangulated

Algorithm. Realizing G to unfold with overlap. Input: A 3-connected planar graph G.
Output: Polyhedron P realizing G and a cut-tree T that unfolds P with overlap.
(1) Select outer face B as base.
(2) Embed B as a convex polygon in the plane.
(3) Apply Tutte's theorem to calculate an equilibrium stress for G.
(9) Apply Maxwell-Cremona vertically lifting stressed G to P.
(6) Identify special triangle \triangle.
(0) Compress P vertically to reduce curvatures (if necessary).
(3) Stretch P horizontally to sharpen the apex of \triangle (if necessary).
(8) Form cut-tree T, including ' Z ' around \triangle.
(0) Unfold $P \backslash T \rightarrow$ Overlap.

Dodecahedron Maxwell-Cremona Lifting

Figure: André Schulz, by permission

Icosahedron Schlegel diagram

Icosahedron Lift

Algorithm

Algorithm. Realizing G to unfold with overlap. Input: A 3-connected planar graph G.
Output: Polyhedron P realizing G and a cut-tree T that unfolds P with overlap.
(1) Select outer face B as base.
(2) Embed B as a convex polygon in the plane.
(3) Apply Tutte's theorem to calculate an equilibrium stress for G.
(9) Apply Maxwell-Cremona vertically lifting stressed G to P.
(0) Identify special triangle \triangle.
(Compress P vertically to reduce curvatures (if necessary).
(3) Stretch P horizontally to sharpen the apex of \triangle (if necessary).
(8) Form cut-tree T, including ' Z ' around \triangle.
(0) Unfold $P \backslash T \rightarrow$ Overlap.

Icosahedron Lifted

Icosahedron Overlap

Icosahedron Overlap

Algorithm: Affine Transformations

Algorithm. Realizing G to unfold with overlap. Input: A 3-connected planar graph G.
Output: Polyhedron P realizing G and a cut-tree T that unfolds P with overlap.
(1) Select outer face B as base.
(2) Embed B as a convex polygon in the plane.
(3) Apply Tutte's theorem to calculate an equilibrium stress for G.
(9) Apply Maxwell-Cremona vertically lifting stressed G to P.
© Identify special triangle \triangle.
(0) Compress P vertically to reduce curvatures (if necessary).
(3) Stretch P horizontally to sharpen the apex of \triangle (if necessary).
(8) Form cut-tree T, including ' Z ' around \triangle.
(0) Unfold $P \backslash T \rightarrow$ Overlap.

Compress P vertically to reduce curvatures

Curvature $<20^{\circ}$

Stretch angle $\angle a_{1} a_{2} a_{3}$

Figure: a_{2} angle: $108^{\circ} \rightarrow 53^{\circ}$.

Algorithm: B and \triangle

Algorithm. Realizing G to unfold with overlap. Input: A 3-connected planar graph G.
Output: Polyhedron P realizing G and a cut-tree T that unfolds P with overlap.
(1) Select outer face B as base.
(2) Embed B as a convex polygon in the plane.
(3) Apply Tutte's theorem to calculate an equilibrium stress for G.
(9) Apply Maxwell-Cremona vertically lifting stressed G to P.
© Identify special triangle \triangle.
(Compress P vertically to reduce curvatures (if necessary).
(3) Stretch P horizontally to sharpen the apex of \triangle (if necessary).
(8) Form cut-tree T, including ' Z ' around \triangle.
(0) Unfold $P \backslash T \rightarrow$ Overlap.

Icosahedron Lifted

Icosahedron Overlap

Few $F: B \cap \triangle=v$.

Figure: $\omega\left(a_{3}\right)=117^{\circ}$.

Tetrahedron Overlap

- No two disjoint faces,
- Nor two faces that share just a single vertex:
- Every pair of faces shares two or more vertices
- 三 shares two or more edges

Theorem
Any 3-connected planar graph G can be realized as a convex polyhedron P in \mathbb{R}^{3} that has a spanning cut-tree T such that the edge-unfolding of $P \backslash T$ overlaps in the plane.

Open Problems

(1) Combinatorial un-zipping:
(1) Is there a combinatorial Hamiltonian polyhedron ${ }^{a}$ whose every metric realization and zipper unfolding avoids overlap?
(2) Metric conditions: Does any combination of
(1) acute angles, and
(2) small curvatures
guarantee a cut tree that unfolds to a (non-overlapping) net?
${ }^{2}$ E.g., rhombic dodecahedron not Hamiltonian.

"Edge-Unfolding Nearly Flat Convex Caps," SoCG, 2017

