
Proceedings of the 35th Canadian Conference on Computational
Geometry (CCCG 2023)

Montreal, Canada

Denis Pankratov, Concordia University

July 31 - August 4, 2023

Copyright information:
Compilation copyright @ 2023 Denis Pankratov.
Copyright of individual papers retained by authors.

Credits:
Logo design: Erik D. Demaine, Martin L. Demaine, Anna Lubiw. The CCCG 2001 Logo. Proceedings of CCCG 2001, pp.
iv-v, 2001.

Welcome from Denis Pankratov, Conference Chair

This volume contains the papers presented at the

CCCG 2023: 35th Canadian Conference on Computational Geometry.

CCCG 2023 was co-located with the 18th Algorithms and Data Structures Symposium (WADS
2023). Both conferences took place at Concordia University, Montreal, Quebec, Canada. WADS
was held on July 31 - August 2, 2023, followed by CCCG which was held on August 2 - August 4,
2023.
There were 49 submissions to CCCG 2023. One of the submissions was withdrawn during the
review process. Almost all of the remaining 48 submissions (except for a couple) were reviewed by
3 program committee members. The committee decided to accept 36 papers. We thank the authors
of all submitted papers and all those who have registered to attend the conference. We especially
thank the invited speakers: Dr. Diane Souvaine (the Memorial Lecture for Paul Erdős) and Dr.
Ileana Streinu (the Joint Memorial Lecture for Hurtado and Toussaint). In addition, we are grateful
for the support and assistance provided by Concordia University and its members: in particular,
the Department of Computer Science and Software Engineering, the Hospitality Services, and the
graduate student volunteers.
We acknowledge the generous support from our sponsors: the Office of Vice-President, Research
and Graduate Studies at Concordia University, the Gina Cody School of Engineering at Concordia
University, the Fields Institute for Research in Mathematical Sciences, Elsevier, Wiley.

iii

iv

Sponsors

v

Program Committee

Mohammad Ali Abam Sharif University
Yeganeh Bahoo Toronto Metropolitan University
Binay Bhattacharya Simon Fraser University
Therese Biedl University of Waterloo
Ahmad Biniaz University of Windsor
Prosenjit Bose Carleton University
Mirela Damian Villanova University
Mark De Berg Eindhoven University of Technology
Stephane Durocher University of Manitoba
David Eppstein University of California, Irvine
Hovhannes Harutyunyan University of Concordia
Meng He Dalhousie University
Shahin Kamali York University
Akitoshi Kawamura Kyoto University
Evangelos Kranakis Carleton University
Daniel Krizanc Wesleyan University
Yaqiao Li Concordia University
Anil Maheshwari Carleton University
Yoshio Okamoto The University of Electro-Communications
Denis Pankratov (chair) University of Concordia
Katharine Turner Australian National University
Ryuhei Uehara Japan Advanced Institute of Science and Technology

Invited Speakers

Diane Souvaine Tufts University
Ileana Streinu Smith College

vi

CONFERENCE PROGRAM

Day 1 - August 2, 2023

Session 1C
1 Nathan Wachholz, Subhash Suri

Spanning Tree, Matching, and TSP for Moving Points: Complexity and Regret

9 Stephane Durocher, Shahin Kamali, Pouria Zamani Nezhad
Online Square Packing with Predictions

19 Stephane Durocher, J. Mark Keil, Debajyoti Mondal
Minimum Ply Covering of Points with Unit Disks

Session 1D
27 Takumi Shiota, Tonan Kamata, Ryuhei Uehara

Overlapping of Lattice Unfolding for Cuboids

35 David Eppstein
A Parameterized Algorithm for Flat Folding

43 Ahmad Biniaz, Prosenjit Bose, Thomas C Shermer
Piercing Unit Geodesic Disks

Session 2C
51 Joseph O’Rourke, Hugo Akitaya, Erik Demaine, Adam Hesterberg, Anna Lubiw, Jayson Lynch, Frederick Stock

Super Guarding and Dark Rays in Art Galleries

63 Yeganeh Bahoo, Onur Cagirici, Kody Manastyrski, Rahnuma Islam Nishat, Christopher Kolios, Roni Sherman
Conflict-Free Chromatic Guarding of Orthogonal Polygons with Sliding Cameras

71 Ahmad Biniaz, Mohammad Hashemi
City Guarding with Cameras of Bounded Field of View

Session 2D
77 Therese Biedl, David Eppstein, Torsten Ueckerdt

On the complexity of embedding in graph products

89 Michael A. Bekos, Michael Kaufmann, Maria Eleni Pavlidi, Xenia Rieger
On the Deque and Rique Numbers of Complete and Complete Bipartite Graphs

97 Pilar Cano, Sujoy Bhore, Prosenjit Bose, Jean Cardinal, John Iacono
Dynamic Schnyder woods

vii

Day 2 - August 3, 2023

Session 3C
105 Diego Ihara, Karine Chubarian, Bohan Fan, Francesco Sgherzi, Thiruvenkadam S Radhakrishnan, Anastasios

Sidiropoulos, Angelo P Straight
Geometric Algorithms for k-NN Poisoning

113 Simon Weber, Josiah Rohrer
Reducing Nearest Neighbor Training Sets Optimally and Exactly

123 Georgiy Klimenko, Benjamin Raichel
Square Hardness for Clustering with Neighborhoods

Session 3D
129 Prosenjit Bose, Anthony D’Angelo, Stephane Durocher

CCOSKEG Discs in Simple Polygons

153 Chaeyoon Chung, Taehoon Ahn, Sang Won Bae, Hee-Kap Ahn
Parallel Line Centers with Guaranteed Separation

161 Shahin Kamali, Mohammadmasoud Shabanijou
Improved Algorithms for Burning Planar Point Sets

Session 4C
169 Sariel Har-Peled, Benjamin Raichel

On the Budgeted Hausdorff Distance Problem

175 Oliver Chubet, Parth Parikh, Donald R Sheehy, Siddharth S Sheth
Approximating the Directed Hausdorff Distance

183 Jesper Jansson, Christos Levcopoulos, Andrzej J Lingas
Convex Hulls and Triangulations of Planar Point Sets on the Congested Clique

Session 4D
191 Yuki Kawakami, Shun Takahashi, Kazuhisa Seto, Takashi Horiyama, Yuki Kobayashi, Yuya Higashikawa, Naoki

Katoh
Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman
Graphs and (2,2)-Tight Graphs

197 David Eppstein, Rose McCarty
Geometric Graphs with Unbounded Flip-Width

207 Sushovan Majhi
Graph Mover’s Distance: An Efficiently Computable Distance Measure for Geometric Graphs

Session 5C
213 Benjamin A Holmgren, Brittany T Fasy, Erin Chambers, Sushovan Majhi, Carola Wenk

Metric and Path-Connectedness Properties of the Fréchet Distance for Paths and Graphs

225 Peter Schäfer, Sabine Storandt, Johannes Zink
Optimal Polyline Simplification under the Local Fréchet Distance in 2D in (Near-)Quadratic Time

viii

Session 5D
239 Kyuseo Park, Markus Schneider

Partition, Reduction, and Conquer: A Geometric Feature-Based Approach to Convex Hull Computation
249 Auguste Gezalyan, Madeline Bumpus, Xufeng Dai, Samuel Munoz, Renita Santhoshkumar, Songyu Ye, David M

Mount
Software and Analysis for Dynamic Voronoi Diagrams in the Hilbert Metric

Best Paper Award
257 Joseph O’Rourke

Every Combinatorial Polyhedron Can Unfold with Overlap

Day 3 - August 4, 2023

Session 6C
265 Robert Alaniz, Michael Coulombe, Erik Demaine, Bin Fu, Ryan Knobel, Timothy Gomez, Elise Grizzell, Andrew

Rodriguez, Robert Schweller, Timothy Wylie
Reconfiguration of Linear Surface Chemical Reaction Networks with Bounded State Change

273 Emily Downing, Stephanie Einstein, Elizabeth Hartung, Aaron M Williams
Catalan Squares and Staircases: Relayering and Repositioning Gray Codes

283 Tuyen Pham, Hubert Wagner
Computing Representatives of Persistent Homology Generators with a Double Twist

291 Ovidiu Daescu, Ka Yaw Teo
Approximate Line Segment Nearest Neighbor Search amid Polyhedra in 3-Space

Session 6D
299 Mook Kwon Jung, Sang Duk Yoon, Hee-Kap Ahn, Takeshi Tokuyama

Universal convex covering problems under affine dihedral group actions
307 Qizheng He

On the FPT Status of Monotone Convex Chain Cover
313 Nilanjana G. Basu, Subhashis Majumder, Partha Bhowmick Bhowmick

On Density Extrema for Digital `1-Balls in 2D and 3D

321 List of Authors

ix

x

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Spanning Tree, Matching, and TSP for Moving Points:
Complexity and Regret

Nathan Wachholz Subhash Suri∗

Abstract

We explore the computational complexity, and regret,
of some geometric structures under the recently intro-
duced moving point model of Akitaya et al. [3]. Specif-
ically, we want to build a single geometric structure
(e.g. spanning tree, matching, or traveling salesman
path) whose maximum cost during the motion of the
input points is minimized. We call these structures,
whose cost (sum of edge lengths) changes with the mo-
tion of points but whose topology remains fixed, min-
imum moving point spanning tree (MMST), minimum
moving point matching (MMM), and minimum moving
point traveling salesman path (MMTSP), respectively.
We focus on linear motion of points in one dimension
and prove the following results: (1) each of these prob-
lems is (weakly) NP-hard in one dimension, (2) remains
NP-hard even under radial expansion where all points
are moving away from a center, (3) remains NP-hard
even if points are all moving with the same speed. A
fixed topology is attractive in that it avoids expensive
and continuous recomputation as input points move but
it is inevitably sub-optimal. To quantify this tradeoff,
we define the regret as the worst-case ratio between the
cost of an optimal moving point structure and the max-
imum cost for the same input when the structure is con-
tinuously updated. We show the following results: (4)
the regret ratio is Ω(

√
n) for all three problems even

in one dimension, but (5) has a tight bound of 2 for
MMST and MMTSP if all points are moving with the
same speed. We also point out some simple settings un-
der which optimal moving point structures are easy to
compute.

1 Introduction

Suppose we want to interconnect a collection of mo-
bile agents, modeled as points in d-dimensional space,
in one or more groups to enable a certain collabora-
tive task. For instance, a minimum spanning tree is
helpful if we want to form a single connected group, a
matching where we wish to pair each point with an-
other, or a traveling salesman path if we want a tour
of the points. These are natural problems arising in
applications such as multi-robot systems, mobile sensor

∗UC Santa Barbara, {nmwachholz, suri}@cs.ucsb.edu

networks, or a group of human and robotic agents per-
forming collaborative tasks. It is typically desirable that
these agents are able to communicate with others, which
can be abstracted as a problem of maintaining certain
graph structures among a set of moving points, with
edge lengths in the graph serving as a natural optimiza-
tion criterion. The minimum spanning tree, matching,
and TSP are classical graph optimization problems for
which polynomial time (exact or approximation) algo-
rithms have been known for several decades [7, 6].

When the underlying points are in motion, however,
the optimal (or near-optimal) graph structure must
be frequently recomputed, which is both inconvenient
and resource expensive. There is extensive research in
robotics, sensor networks, and computational geome-
try on how to efficiently detect when the underlying
graph structures must be updated and how to update
them [4, 9, 5, 1, 8, 2]. Our work is motivated by the
recent work of Akitaya et al [3], which explored an alter-
native approach to maintaining the spanning tree over
data in motion. Specifically, if we wanted to choose
a single spanning tree T for the entire motion, which
spanning tree would be the best? In other words, which
fixed spanning tree topology minimizes the maximum
total length obtained during the course of the motion?
Akitaya et al [3] show that this problem is NP-Hard in
the plane and describe a 2-approximation for it.

Our Results

In this paper, we continue the line of research in [3] and
explore moving point versions of three classical prob-
lems: minimum spanning tree, matching and travel-
ing salesman tour. We show that all of them are NP-
hard even in one dimension, and even under highly con-
strained linear motions. Second, we establish bounds
on the regret ratio of these moving point structures as
a way to quantify the tradeoff between convenience of a
fixed topology and the maximum cost of the structure.
Finally, we also point out two natural instances of the
moving point structures for which an optimal is easy to
find. In the interest of simpler presentation, we focus
on the moving point MST in describing our main re-
sults, and summarize their extensions to matching and
TSP at the end. Our key results can be summarized as
follows.

1

35th Canadian Conference on Computational Geometry, 2023

• The MMST problem is NP-hard even for unit speed
linear motion in one dimension.

• The problem remains NP-hard in 1D even if all
points linearly move away from the origin (radial
expansion).

• MMST regret ratio is Ω(
√
n) even for linear motion

in one dimension, but has a tight bound of 2 for unit
speed motion.

• The MMST problem can be solved in polynomial
time, in any fixed dimension d, if (1) all points are
moving away from the origin at uniform velocity
(uniform expansion), or (2) we want to minimize
the average cost of the MST during the motion.

• All the hardness results also hold for MMM and
MMTSP.

2 Preliminaries

Throughout this paper, we consider points under linear
motion, each moving along a straight line with constant
speed; different points can move with different speeds
unless otherwise specified. Thus, a moving point p is
a continuous function p : [0, 1] → Rd, and the distance
between two moving points p and q at time t is ∥p(t)−
q(t)∥.

Given a set S = {p0, . . . , pn−1} of n moving points,
we call a spanning tree T of S a moving spanning
tree whose weight (or length) at time t is wT (t) =∑

pq∈T ∥p(t) − q(t)∥. We use w(T) = supt wT (t) to de-
note the maximum weight of T during the motion. A
minimum moving spanning tree (MMST) of S is one
with minimum weight, namely,

arg min
T∈T (S)

w(T),

where T (S) is the set of all possible moving spanning
trees of S. Similar definitions hold for a minimum mov-
ing matching (MMM), where input is a set of 2n points
and the goal is to find a matching whose maximum
weight during the motion is minimized, or minimum
moving traveling salesman tour (MMTSP), where the
goal is to find a spanning path of the points with mini-
mum maximum weight during the motion.

A useful fact about linear motion, as observed in [3], is
that the Euclidean distance function d(t) = ∥p(t)−q(t)∥
is convex, and so the maximum distance between any
two points p and q, denoted |pq|max, occurs at an ex-
treme point of the interval [0, 1]. That is, |pq|max =
max{∥p(0) − q(0)∥, ∥p(1) − q(1)∥}. This in turn im-
plies that the weight function wT is also convex, and
so w(T) = max{wT (0), wT (1)}. We now argue that the
MMST is invariant under scaling, translation, and ve-
locity addition, a fact that will be crucial to some of our
proofs.

Let S = {p0, . . . , pn−1} be a set of moving points in
d dimensions. Pick any constant scaling factor α ∈ R+,
velocity vector β ∈ Rd and offset γ ∈ Rd. For each pi,
define the transformed moving point p′i : [0, 1]→ Rd as
p′i(t) = αpi(t) + βt + γ. Denote the transformed set as
S′ = {p′i | pi ∈ S}. Every spanning tree of S maps to
a corresponding spanning tree of S′ in the obvious way.
We then have the following claim.

Lemma 1 MMST is topologically invariant under scal-
ing, added velocity, and translation.

Proof. Let S be a set of moving points, and let S′

be the transformed set under scaling factor α, velocity
vector β and translation γ. We show that if T is an
MMST of S, then it is also an MMST of S′.

The distance between two points p, q ∈ S at time t
is ∥p(t)− q(t)∥, while the distance between their trans-
formed images p′ and q′ is ∥(αp(t) + βt+ γ)− (αq(t) +
βt + γ)∥ = α∥p(t) − q(t)∥. Since the weight of each
edge is simply scaled by α, for any spanning tree T
of S and its corresponding tree T ′ for S′, we have
wT ′(t) = αwT (t), which implies w(T ′) = αw(T), thus
proving the claim. □

The transform is invertible and so the previous lemma
also implies the following.

Corollary 2 An MMST of a transformed set S′ is also
an MMST of the original set S.

3 Hardness of MMST on the Line

In this section, we show that computing the MMST of
n linearly moving points on the line is NP-hard even if
all points have the same speed. We then show that a
number of other variations are also hard.

We adopt the convention that positive x-axis is the
rightward direction, and so points with positive (resp.
negative) velocity are moving to the right (resp. left).
In particular, since all points have the same speed, the
velocity of each point is either +1 or −1.

Our reduction uses the well-known NP-hard prob-
lem Partition, where given n positive integers
a0, . . . , an−1, we must decide if there is a subset I ⊆
{0, . . . , n− 1} such that

∑

i∈I

ai =
1

2

n−1∑

i=0

ai.

Given an instance of Partition, we construct an in-
stance of MMST on the line with unit-speed moving
points. We simplify the presentation by assuming the
velocity of each point is either 0 or −2, which is then
easily transformed into unit speeds by adding +1 to
each velocity without changing its MMST by virtue of
Corollary 2. We construct a decision version of the unit
speed MMST problem as follows.

2

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Construction 1 Let ℓ = max ai. For each i ∈
{0, . . . , n − 1}, we add the following five moving points
to our set S. See Figure 1 for illustration.

• Ai stationary at 10i.

• Bi stationary at 10i+ 2− ai

4ℓ .

• Ci stationary at 10i+ 2 + ai

4ℓ .

• Di stationary at 10i+ 4.

• Ei moving from 10i+ 3 to 10i+ 1.

For this input S, we ask if there is a moving spanning
tree T with w(T) ≤ 11n− 6.

Theorem 3 The decision version of the MMST prob-
lem is NP-Hard for unit speed points on a line.

Proof. Let Si = {Ai, Bi, Ci, Di, Ei}, for each i ∈
{0, . . . , n − 1}. Let K0 be the set of edges DiAi+1 for
i ≤ n − 2, and define K1 as K0 plus the edges joining
pairs of points within each Si, for each i ≤ n − 1. Ob-
serve that all edges in K1 have length ≤ 6 at all times,
and any edge not in K1 has length > 6 at all times.

We claim that there exists a moving minimum span-
ning tree T whose edges are all in K1. Assume the
contrary, and let T ′ be an MMST containing an edge
e ̸∈ K1. Removing this edge from T ′ disconnects the
tree into two components, which can be rejoined by an
edge in K1, contradicting the minimality of T ′. There-
fore we can assume that there is an MMST T with all
edges in K1.

Each edge in K0 is a bridge of the graph (S,K1)
and therefore must be included in T . Each of these
bridges connects two components, where each compo-
nent is some moving spanning tree Ti on Si.

We argue that each Ti has the following form: it con-
tains the path AiBiCiDi, with Ei connected either to Bi

(in which case wTi
(0) = 5+ai/4ℓ and wTi

(1) = 5−ai/4ℓ)
or connected to Ci (which flips these weights). The
other trees are all easily seen to be sub-optimal; in par-
ticular, both AiEiBiCiDi and AiBiCiEiDi have cost
at least 6 + ai/2ℓ at either the start or the end, while
AiBiEiCiDi has cost at least 6 − ai/2ℓ at both start
and end. All other trees are trivially suboptimal.

0 1 3 4

A0
B0 C0 E0 D0

0.4

Figure 1: The points in S0 when a0 = 8 and ℓ = 10.
The optimal trees include the path A0B0C0D0, with E0

connecting to either B0 or C0.

Define I = {i : Ei connects to Bi}, and let I ′ =
{0, . . . , n − 1} − I. This allows us to write the weights
of T as

wT (0) = w(K0) +
∑

i∈I

wTi(0) +
∑

i∈I′

wTi(0)

= 6(n− 1) +
∑

i∈I

(
5 +

ai
4ℓ

)
+
∑

i∈I′

(
5− ai

4ℓ

)

= 11n− 6 +
∑

i∈I

ai
4ℓ
−
∑

i∈I′

ai
4ℓ

and by symmetry

wT (1) = 11n− 6−
∑

i∈I

ai
4ℓ

+
∑

i∈I′

ai
4ℓ
.

The maximum weight of T is

w(T) = 11n− 6 +

∣∣∣∣∣
∑

i∈I

ai
4ℓ
−
∑

i∈I′

ai
4ℓ

∣∣∣∣∣ ,

which achieves its minimum value of 11n− 6 when

∑

i∈I

ai
4ℓ

=
∑

i∈I′

ai
4ℓ
⇐⇒

∑

i∈I

ai =
∑

i∈I′

ai =
1

2

n−1∑

i=0

ai.

Thus, if w(T) ≤ 11n− 6 holds, then the set I is also
a solution to Partition. This completes the proof. □

Naturally, the MMST problem is also NP-hard for
points moving on the line with arbitrary but constant
speeds. This can also be shown by a simple modification
of the construction in [3] used to show the hardness for
points moving in two dimensions. We omit that simple
construction, and simply state the result below, which
is then used to show additional hardness results.

Theorem 4 The decision version of the MMST prob-
lem is NP-Hard for points moving on a line with con-
stant but arbitrary speeds.

We next show that the problem remains NP-hard un-
der the bounded speed assumption, where the ratio be-
tween the maximum and the minimum speeds is upper
bounded by some constant c > 1. In particular, let
vi = pi(1)− pi(0) be the velocity of pi, where as before
positive velocity means rightward motion. Let si = ∥vi∥
be the speed of pi, where we assume that si > 0 for all
i, and that the ratio of max to min speeds is bounded:

max si
min si

≤ c

Lemma 5 MMST problem on a line under bounded
speed linear motion is NP-hard.

3

35th Canadian Conference on Computational Geometry, 2023

Proof. We reduce the MMST problem on the line with
arbitrary speeds to our bounded speed ratio problem.
First, let vmin = min vi and let vmax = max vi. We
transform the input set of moving points S into S′ by
first adding the velocity −vmin to each point. This shift
makes the new minimum velocity 0 and the new maxi-
mum velocity vmax − vmin.

Next, we add (vmax−vmin)/(c−1) > 0 to each point’s
velocity, which ensures that the ratio between the max-
imum and the minimum speeds is

max s′i
min s′i

=
vmax − vmin + (vmax − vmin)/(c− 1)

(vmax − vmin)/(c− 1)
= c.

Thus the transformed input S′ has bounded speed
ratio, and yet by Corollary 2, the two instances S and
S′ have the same MMST. This completes the proof. □

Finally, we consider another natural velocity-
constraint motion: radial expansion, where all points
are linearly (with different speeds) moving away from
the origin. We show that even under this restricted big
bang expansion model of motion, the MMST problem
remains hard even on the line.

Lemma 6 MMST problem on a line under radial ex-
pansion linear motion is NP-hard.

Proof. We again reduce the MMST problem on the
line with arbitrary speeds to our problem. Given a set
of moving points S = {p0, . . . , pn−1} on the line, let vi =
pi(1) − pi(0) be the velocity of pi. Let v = min{vi, 0}
equal the largest negative velocity (leftward speed) or
zero. Let o = min{pi(0)} denote the left-most position
in S at the start of the motion. We transform our input
instance S into S′ by adding velocity −v to all points
and translating their positions by −o.

We now claim that the moving points in S′ satisfy
radial expansion. This follows because all points in S′

have been shifted to the right of the origin, and none of
the points have negative velocity, meaning they are all
moving to the right. Because the transformation is addi-
tion of velocity and translation, by Corollary 2, MMST
remains invariant, which completes the proof. □

4 Regret Ratio of Moving Spanning Trees

The MMST problem is motivated by the attractiveness
of keeping a fixed topology throughout the motion, and
among all spanning trees, MMST is the one with the
smallest maximum weight during the motion. So, how
much worse is the MMST compared to a kinetic struc-
ture maintaining a minimum spanning tree throughout
the motion? We quantify this tradeoff using the worst-
case ratio between the two.

Given a set S of moving points, let T (S) be the set
of all spanning trees on S. Let K be a kinetic minimum

spanning tree, meaning wK(t) = minT∗∈T (S) wT∗(t),
the weight of a minimum spanning tree at time t. Then
w(K) = supt wK(t) is the maximum cost of a kinetic
minimum spanning tree during the motion of S.

For any fixed spanning tree T of S, we define its regret
ratio as r(T) = w(T)/w(K). Clearly, among all fixed
trees, an MMST has the minimum regret. We now show
bounds on MMST’s regret ratio for moving points in one
dimension.

4.1 Regret Ratio for Arbitrary Speed Linear Motion

Theorem 7 MMST regret is at least Ω(
√
n) for n mov-

ing points on the line.

Proof. For any b ≥ 1, we can construct a set S of
O(b2) moving points on the line where r(T) ≥ b for any
spanning tree T of S. Setting b =

√
n establishes the

claim. Our construction works as follows.
Let pij denote a moving point such that pij(0) = i and

pij(1) = j. That is, pij moves from i to j. Let k = 2⌈b⌉,
and choose S as the set of all pij , where 0 ≤ i, j ≤ k.

We now show that any tree on S has regret at least
k/2 = ⌈b⌉ ≥ b. To aid analysis, we interpret the set S
of 1D moving points as a set of 2D stationary points,
where a point p is placed at P = (p(0), p(1)). Thus,
in our construction, each pij maps to Pij = (i, j). See
Figure 2 for illustration.

Now, consider any tree T on these points. At the
start, the weight of T is the sum of the horizontal com-
ponents of the edges of T . At the end, the weight is
the sum of the vertical components. Suppose there are
h edges with a non-zero horizontal component, and v
edges with a non-zero vertical component. The weight
of each of these non-zero components is at least 1,
and so wT (0) ≥ h and wT (1) ≥ v. Furthermore,
h + v ≥ (k + 1)2 − 1, the number of edges in T . Fi-
nally, because the moving points always lie between p00
and pkk on the line, we have w(K) = k. This gives that

r(T) =
w(T)

w(K)
≥ max{v, h}

k
≥ (k + 1)2 − 1

2k
≥ k

2
≥ b.

□

4.2 Regret Ratio for Unit Speed

Complementing the previous lower bound on the regret
ratio, we show that for unit speed motion, the regret
ratio has a tight bound of 2.

Theorem 8 Regret ratio of an MMST for unit speed
moving points on a line is at most 2, and this bound is
tight.

Proof. Partition S into the set of leftwards-moving
points Sl and rightwards-moving points Sr. Let Pl be a

4

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 2: The 2D interpretation of the construction for
b = 2, along with two sample spanning trees. The tree
on the right results by connecting the points in the left-
to-right order of their initial positions.

t = 0

t = 1

Figure 3: A set of unit speed moving points. Any
MMST on this construction will have regret approach-
ing 2 as the number of points increases. One possible
MMST is shown in blue.

path connecting Sl in order and let Pr be a path con-
necting Sr in order. Let e be an edge between the right-
most point of Pl and the right-most point of Pr. Then
T ∗ = Pl ∪ {e} ∪Pr is a moving spanning tree on S. Let
ℓ = w(K) be the maximum distance the points span
throughout the motion.

It’s easy to see that at all times either wPl∪{e}(t) ≤ ℓ
and wPr

(t) ≤ ℓ, or wPr∪{e}(t) ≤ ℓ and wPl
(t) ≤ ℓ.

Thus wT∗(t) = wPl
(t) +w{e}(t) +wPr (t) ≤ 2ℓ, meaning

r(T ∗) ≤ 2. The weight of an MMST is no greater,
so its regret is also bounded by 2. Figure 3 shows a
construction proving that this bound is tight. □

5 Some Tractable Cases of Moving Spanning Trees

In this section, we complement the negative (hardness)
results of the previous section with some natural models
of motion or cost for which optimal is easy to compute.

5.1 Motion with Uniform Expansion

Our first result complements Lemma 6: if the motion is
radial expansion (big bang model) but all points move
away from the origin at the same constant speed then
MMST is easy to compute. In fact, this holds for any
fixed dimension d ≥ 1.

We say that a set S ∈ Rd of moving points is under
uniform expansion if all points in S move away from
the origin at a constant speed c > 0. That is, if the
start position of a point p ∈ S is at p(0) ̸= 0, then its

end position is at p(1) = p(0) + c p(0)
∥p(0)∥ . We have the

following easy result.

Lemma 9 Let S be a set of n moving points under uni-
form expansion in d dimensions. Then, a minimum
spanning tree of S at t = 1 (end of the motion) is also
an MMST of S.

Proof. Consider any pair of points p, q ∈ S, and let
θ, where 0 ≤ θ ≤ π, be the angle between p(0) and
q(0) with the respect to the origin. During the mo-
tion, the distance between the points will increase by√
c2 + c2 − 2c2 cos θ = c

√
2 sin(θ/2) ≥ 0 (see Figure 4).

Since the distance monotonically increases, we must
have |pq|max = ∥p(1)− q(1)∥.

It follows that, for any moving spanning tree T , the
weight of every edge in T achieves its maximum at t = 1,
and so w(T) also achieves its maximum at that time.
Therefore, a minimum weight spanning tree at end of
the motion t = 1 is also an MMST of the set S. □

0

p(0)

p(1)

q(0)

q(1)θ

Figure 4: The distance
between two points never
decreases if they are under
uniform expansion.

Since the minimum
spanning tree of n
points in any fixed
dimension d can be
computed in polyno-
mial time, the MMST
problem for uniform
expansion is tractable.

In fact, Lemma 9
holds for any restric-
tion that causes the
distance between any
two points to be non-
decreasing over the mo-
tion. For example, proportional expansion requires that
each point p move from p(0) to p(1) = ap(0) for some
constant a ≥ 1. An MMST of points under proportional
expansion can be found by calculating an MST at the
end of their motion, using the same reasoning as above.

5.2 Minimum Average Weight

The MMST problem minimizes the maximum weight of
the spanning tree at any time during the motion. A
different but also sensible objective might be the total
weight of a moving spanning tree, integrated over the
entire motion. For instance, if tree length is a measure
of resource consumption, then this reflects the total con-
sumption during the motion. Since we have normalized
the motion duration to unit interval [0, 1], this is also
equivalent to the average weight of the moving spanning
tree:

w(T) =

∫ 1

0

wT (t) dt.

Unlike MMST, computing a moving spanning tree
with minimum average weight (MAMST) is easy.

5

35th Canadian Conference on Computational Geometry, 2023

Lemma 10 For a set S of n moving points in d dimen-
sions, an MAMST of S can be found in O(n2) time, for
any fixed d.

Proof. Let S be a set of n moving points. For any

pair p, q ∈ S, define |pq|avg =
∫ 1

0
∥p(t) − q(t)∥ dt. We

can then rewrite the average weight of a tree T on S
as w(T) =

∑
pq∈T |pq|avg. Now construct a complete

graph G with S as the vertex set, and weight of each
edge pq set to |pq|avg. The graph G can be constructed
in O(n2) time because each |pq|avg can be calculated in
constant time.

It is now easy to see that the an MST of G is an
MAMST of the moving points, and an MST of G can
be found in O(n2) time using Prim’s algorithm. □

In [3], it was shown that the minimum bottleneck
moving point spanning tree (MBMST) can be com-
puted efficiently, and our average weight spanning tree
adds another natural easy-to-compute variant for mov-
ing points. (Recently, Wang et al. [10] presented a sub-
quadratic algorithm for the MBMST, improving the
O(n2) bound of [3]. It is an interesting open ques-
tion whether a similar time bound is also possible for
MAMST.)

6 Moving Point Matching and TSP

In this section, we briefly sketch the constructions for
proving NP-hardness of matching and TSP, and state
without proof their regret bounds. Technical details
are similar to those in MMST, and omitted from this
extended abstract.

6.1 Minimum Moving Matching

Let S be a set of 2n moving points. A moving matching
M is a set of n edges such that each point is matched
with exactly one other. The weight of M is the maxi-
mum weight of M throughout the motion.

We show that the problem of finding a minimum mov-
ing matching (MMM) is NP-Hard even for unit speed
moving points on the line. The construction is similar
to the one from Theorem 3, and illustrated in Figure 5.

0 4 10 14 20 240.25 0.1 0.5

Figure 5: The matching instance corresponding to the
Partition input (a0, a1, a2) = (5, 2, 10). The Parti-
tion problem has a solution if and only if there is an
MMM with weight at most n+ 1

4ℓ

∑n−1
i=0 ai.

The regret of an MMM is unbounded in general, using
a similar construction to Theorem 7. We do not have
a non-trivial upper bound for the MMM regret under

unit speed motion, but can show that it is strictly larger
than 2. Specifically, we show a construction (see the
Appendix) with regret ratio of 11/5.

6.2 Minimum Moving TSP

Let S be a set of n moving points. A moving trav-
eling salesman path P is a path of n − 1 edges that
visits every point in S. The weight of P is the maxi-
mum weight of the path throughout the motion. The
construction shown in Figure 6 is used to prove that the
problem of finding the minimum moving traveling sales-
man path (MMTSP) is NP-Hard even for unit speed
moving points on the line.

0 4 10 14 20 240.25 0.1 0.5

Figure 6: The TSP instance corresponding to the Par-
tition input (a0, a1, a2) = (5, 2, 10). The Partition
problem has a solution if and only if there is an MMTSP
with weight at most 12n− 6.

We also can show that regret ratio of an MMTSP
is unbounded in general, but is bounded by 2 for unit
speed motion, using constructions similar to Theorem 7
and Theorem 8.

7 Concluding Remarks

We explored several classical geometric problems under
the moving point model of [3], and showed that they
remain NP-hard even in one dimension and even under
highly constrained motions. We did not discuss approx-
imation algorithms but a 2-approximation of MMST is
easily computed in O(n log n) time using the approach
of [3], namely, map the 1D moving points into 2D sta-
tionary points and compute their MST under the L1

norm.
We also analyzed the regret ratio of these structures,

showing that even in one dimension this can be un-
bounded in general, but is modest for unit speed. Fi-
nally, we suggested two simple settings (uniform expan-
sion and minimum average weight) where the optimal
structures are easy to compute.

A number of open problems are suggested by our
work. First, it will be interesting to derive a non-trivial
upper bound on the regret ratio of these structures in
higher dimension under unit speed motion. (Proving a
tight bound for the regret of moving point matching in
one dimension is also an interesting problem.) Second,
without the unit speed restriction, it will also be inter-
esting to bound the regret ratio if we are allowed to
update the structure k times. In particular, how large
must k be to guarantee a constant regret ratio?

6

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] P. K. Agarwal, D. Eppstein, L. J. Guibas, and
M. R. Henzinger. Parametric and kinetic mini-
mum spanning trees. In 39th Annual Symposium
on Foundations of Computer Science, FOCS ’98,
November 8-11, 1998, Palo Alto, California, USA,
pages 596–605. IEEE Computer Society, 1998.

[2] P. K. Agarwal, L. J. Guibas, H. Edelsbrunner,
J. Erickson, M. Isard, S. Har-Peled, J. Hershberger,
C. S. Jensen, L. E. Kavraki, P. Koehl, M. C. Lin,
D. Manocha, D. N. Metaxas, B. Mirtich, D. M.
Mount, S. Muthukrishnan, D. K. Pai, E. Sacks,
J. Snoeyink, S. Suri, and O. Wolfson. Algorithmic
issues in modeling motion. ACM Comput. Surv.,
34(4):550–572, 2002.

[3] H. A. Akitaya, A. Biniaz, P. Bose, J. D. Carufel,
A. Maheshwari, L. F. S. X. da Silveira, and
M. Smid. The minimum moving spanning tree
problem. J. Graph Algorithms Appl., 27(1):1–18,
2023.

[4] M. J. Atallah. Dynamic computational geometry
(preliminary version). In 24th Annual Symposium
on Foundations of Computer Science, Tucson, Ari-
zona, USA, 7-9 November 1983, pages 92–99. IEEE
Computer Society, 1983.

[5] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. J. Algorithms, 31(1):1–
28, 1999.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT press,
2009.

[7] M. De Berg, M. Van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational geometry. In Com-
putational geometry. Springer, 1997.

[8] C. S. Helvig, G. Robins, and A. Zelikovsky. The
moving-target traveling salesman problem. J. Al-
gorithms, 49(1):153–174, 2003.

[9] C. L. Monma and S. Suri. Transitions in geometric
minimum spanning trees. Discret. Comput. Geom.,
8:265–293, 1992.

[10] H. Wang and Y. Zhao. Computing the minimum
bottleneck moving spanning tree. In S. Szeider,
R. Ganian, and A. Silva, editors, 47th International
Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2022, August 22-26, 2022,
Vienna, Austria, volume 241 of LIPIcs, pages 82:1–
82:15, 2022.

Appendix

We provide an example where the regret ratio of a min-
imum moving point matching (MMM) is strictly larger
than 2 under unit speed motion on a line. For clarity,
our points are transformed with added velocity +5 us-
ing Corollary 2. Construct the following 6 points, which
are illustrated in Figure 7:

• p0, p1, p2 moving from 0, 1, 2 to 10, 11, 12; and

• q0, q1, q2 static at 3, 6, 9.

Consider a kinetic minimal matching. In the ini-
tial positions, the matching (p0p1, p2q0, q1q2) is opti-
mal, having weight 5. With a few edge changes during
the motion, it can maintain this cost (or less), eventu-
ally ending as the matching (q0q1, q2p0, p1p2). Therefore
w(K) = 5.

On the other hand, consider the MMM
(p0q0, p1p2, q1q2). It has initial cost 11, and final
cost 7. There is a similar MMM (p0p1, p2q2, q0q1) with
these costs reversed. But this is as good as we can do.
So the MMM regret is 11/5 = 2.2 > 2.

0 4 8 12

p0
p1 p2 q0 q1 q2

Figure 7: A set of 6 unit speed moving points (trans-
formed for clarity to have velocities 0 and +10). An
MMM on these points has regret 11/5 = 2.2.

7

8

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Online Square Packing with Predictions∗

Stephane Durocher† Shahin Kamali‡ Pouria Zamani Nezhad§

Abstract

Square packing is a geometric variant of the classic
bin packing problem, which asks for the placement of
squares of various lengths into a minimum number of
unit squares. In this work, we study the online variant
of the problem in which the input squares appear se-
quentially, and each square must be packed before the
next square is revealed. We study the problem under
the prediction setting, where the online algorithm is en-
hanced with a potentially erroneous prediction about
the input sequence. We design an online algorithm that
receives predictions concerning the sizes of input squares
and analyze its consistency (the competitive ratio as-
suming no error in the predictions) and robustness (the
competitive ratio under adversarial error). In particu-
lar, our algorithm has consistency 1.779̄ and robustness
at most 5.89. These results show improvements over the
best previous algorithm [24], designed for perfect pre-
dictions, with a consistency of 1.84 and a robustness of
at least 21.

1 Introduction

Given a multiset of n square items, each with a fixed
sidelength in (0, 1], the square packing problem seeks
to assign each item to a unit square bin, such that the
number of bins is minimized. We consider orthogonal
packings, in which each item’s interior is contained in
the interior of its assigned bin, each item’s edges are
oriented parallel to its assigned bin’s edges (axis paral-
lel), and no two items’ interiors in the same bin inter-
sect (pairwise interior-disjoint). We refer to a square’s
sidelength as its size. This is a geometric variant of
the classic bin packing problem. Similarly to the bin
packing problem, square packing is NP-hard, but ad-
mits an Asymptotically Polynomial-Time Approxima-
tion Scheme (APTAS) [10].

We consider online square packing, in which input
square items are revealed one at a time in an online
sequence. Upon receiving each item, an algorithm must
assign it to a bin with sufficient space immediately, with-
out any knowledge about future items. Bin assignments

∗This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

†University of Manitoba, stephane.durocher@umanitoba.ca
‡York University, kamalis@yorku.ca
§University of Manitoba, zamaninp@myumanitoba.ca

are irrevocable. The standard measure for evaluating
an online algorithm is the asymptotic competitive ratio,
which compares the cost of the online algorithm against
the optimal (offline) cost in the worst case. For the
online square packing problem, the asymptotic compet-
itive ratio of an online algorithm Alg is

lim
n→∞

sup
σ:|σ|=n

|Alg(σ)|
|Opt(σ)| ,

where |Alg(σ)| denotes the number of bins used by
Alg to pack the input sequence σ, and |Opt(σ)| de-
notes the minimum number of bins required by any (op-
timal) packing of σ. We refer to asymptotic competi-
tive ratio simply as competitive ratio. No online square
packing algorithm can achieve a competitive ratio bet-
ter than 1.75 [8], while the best previous algorithm has
a competitive ratio of at most 2.0885 [20].

Square packing has been studied under the advice set-
ting, which relaxes the assumption that the algorithm
has no advance information about the input sequence,
and provides the online algorithm access to error-free in-
formation about the input sequence called advice before
packing the first item in the input sequence [18]. The
objective is to quantify trade-offs between the compet-
itive ratio and the number of bits of advice. For square
packing, there is an online algorithm that achieves a
competitive ratio of at most 1.84 with O(log n) bits of
advice [24]. Unfortunately, this result has little practi-
cal significance, partially because the advice is assumed
to be error-free.

In this paper, we study the online square packing prob-
lem under a recently developed and more practical
model, which seeks to leverage predictions about the
input sequence [28]. Specifically, the algorithm can ac-
cess some machine-learned information about the input
sequence. Unlike with advice, predictions may be erro-
neous. Moreover, the predictions should be efficiently
learnable (e.g., via sampling the input sequence). The
objective is to design an algorithm that performs well
if the prediction is accurate while maintaining a good
competitive ratio even when the prediction is highly er-
roneous (i.e., adversarial). We refer to the competi-
tive ratio of an online algorithm with an error-free pre-
diction as its consistency and to the competitive ratio
with an adversarial prediction as its robustness [28].
Several online optimization problems have been stud-

9

35th Canadian Conference on Computational Geometry, 2023

ied under the prediction model, including bin pack-
ing [3, 4], scheduling [2, 12, 30, 32], knapsack [11, 23, 33],
caching [28, 31], matching [5, 25, 26], and various graph
problems [7, 9, 14, 15, 19]. See also the survey by
Mitzenmacher and Vassilvitskii [29] and the collection
at [1].

1.1 Contribution

We study the square packing problem under a set-
ting where the online algorithm exploits natural pre-
dictions concerning the frequency of item sizes. We
classify square items based on their sizes and con-
sider predictions on the number of items within cer-
tain classes. To be more precise, predictions specify
the number of items in the input sequence with side-
lengths in the ranges (2/3, 4/5], (3/5, 2/3], (11/20, 3/5],
(1/2, 11/20], and (1/3, 2/5]. For an input sequence of n
items, these predictions can be encoded in O(log n) bits,
and they are Probably Approximately Correct (PAC)-
learnable [13]. We design an algorithm, named Reserve-
and-Pack (Rap), which makes use of the above predic-
tions. Our results can be summarized as follows:

• We show that Rap has a consistency of 1.779̄ (The-
orem 6). In other words, when predictions are
error-free (they are advice), the competitive ratio
of Rap is at most 1.779̄. This result is an improve-
ment over the algorithm of [24], Almost-Online-
Square-Packing (Aosp), which has a consistency
of 1.84. Both algorithms use a prediction (advice)
of size O(log n).

• We show that the robustness of Aosp is at least 21
(Theorem 7). Moreover, we prove that the robust-
ness of Rap is at most 100/17 ⪅ 5.89 (Theorem 8).
In other words, Rap dominates Aosp regarding
both consistency and robustness. This is due to
its improved item classification and increased flex-
ibility in adapting to patterns in the input rather
than overly relying on the predicted patterns.

2 Reserve and Pack (RAP) Algorithm

In this section, we present our algorithm Reserve-And-
Pack (Rap). Rap works by classifying items based
on their sizes and receiving predictions about the fre-
quency (number) of items from certain classes with
larger sizes. The algorithm proceeds by reserving a
placeholder for each of these items in anticipation of
their arrival. We point out that Aosp receives sim-
ilar predictions and also uses placeholders [24]. Rap
improves over Aosp by refining the item classification,
which results in improved consistency. In addition, Rap
only reserves space for certain items of larger size, unlike
Aosp, which forms an offline packing of the predicted
input and reserves placeholders for all items (except for

Class Interval Class Interval

1a (4/5, 1] 2a (2/5, 1/2]
1b (2/3, 4/5] 2b (1/3, 2/5]
1c (3/5, 2/3] 3–29 (1/i+ 1, 1/i]
1d (11/20, 3/5] 30 (0, 1/30]
1e (1/2, 11/20]

Table 1: Item classification used by Rap

“tiny” items). In other words, Rap’s reliance on predic-
tion is minimal compared to Aosp. As a result, it has
superior robustness in the case of erroneous predictions.

Item Classification. Rap classifies items into 30
classes based on their sizes. For i ∈ [1. . 29], items
with size in the range (1

i+1 ,
1
i] belong to class i. Items

with sizes in the (0, 1/30] form the 30th class and are
called tiny items. Items of Class 1, which are larger
than 0.5, are called large items and are further divided
into 5 subclasses 1a, 1b, 1c, 1d, and 1e with sizes corre-
sponding to the intervals

(
4
5 , 1
]
,
(
2
3 ,

4
5

]
,
(
3
5 ,

2
3

]
,
(
11
20 ,

3
5

]
,

and
(
1
2 ,

11
20

]
, respectively. Similarly, items of Class 2

are called medium items and are further divided into
two subclasses 2a and 2b with respective associated in-
tervals

(
2
5 ,

1
2

]
and

(
1
3 ,

2
5

]
. Table 1 summarizes defined

classes and their corresponding size intervals.

In addition to items, each bin of Rap has a type, which
is determined by the class of items it contains. Specif-
ically, LM-bins contain a large or a medium item, say
of type ℓ, and smaller items of the same type t ≥ 3,
in which case the bin is referred to as a ⟨ℓ, t⟩ bin. For
example, when ℓ = 2b and t = 10, the LM-bin is of type
⟨2b, 10⟩ and only contains medium items of type 2b and
small items of type 10 (see Figure 1c). When the large
item is of type ℓ = 1e and the small item is of type
t = 4, an LM-bin is called a critical bin and is allowed
to contain items of a third type t′, in which case it is
referred to as a ⟨1e, 4, t′⟩ bin. In addition to LM-bins,
Rap maintains harmonic bins that only include items
of the same type, say t, in which case the bin is said to
be a harmonic-t bin. A harmonic-t bin is said to be a
large harmonic bin if t is a large or medium type and
small harmonic bin otherwise. We note that large har-
monic bins may change their type to become LM-bins
(when a small or tiny item is placed in them).

Preprocessing. Rap relies on predictions about the
number of items belonging to large and medium
types. Specificly, Rap uses a frequency vector f =
⟨f1b, f1c, f1d, f1e, f2b⟩, where ft is the predicted num-
ber of class t items in the input sequence σ. Note that
the predictions do not concern 1a and 2a items as they
are “easy to pack”; i. e., they can be packed into almost

10

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

full bins without involving other items, as will be clar-
ified later. Before packing the input sequence, for each
predicted frequency ft, RAP creates ft placeholders of
class t, that is, a reserved space of equal size to the
maximum size of class t items. Rap assigns placehold-
ers of each class in separate bins, while groups of four 2b
placeholders share one bin. These bins are “virtually”
open, and they contribute to the cost of Rap only after
an item is placed into them. We assume placeholders
are positioned on the top-left of their respective bins.

Online Packing. When possible, Rap places large and
medium items in placeholders reserved in the prepro-
cessing step. This is done through a procedure called
AssignLM that we will describe shortly. Small and
tiny items, however, are packed into designated contain-
ers that are formed and placed in an online manner. A
container is a dedicated space that can accommodate
either a single small item or multiple tiny items. Upon
the arrival of a small or tiny item of class c, it is placed
in an available container of the same class using the cor-
responding AssignSmall or AssignTiny procedures,
which will also be described later. If no such container
exists, Rap creates a new set of class c containers using
a subroutine called Reserve.

The Reserve subroutine, for any given class c ≥ 3
(small or tiny), first attempts to place containers of class
c in a critical bin, and if not possible, a large harmonic
bins using the L-shape tiling of [24]. This involves plac-
ing containers of type c in the non-reserved space of
the bin in a greedy manner in columns and rows that
collectively form an “L”-shape. If no critical or large
harmonic bin is available, it opens a new small har-
monic bin of type c. More precisely, Reserve takes the
following steps to create new containers of type c:

1. If c ≥ 5 and there is a critical bin B (i.e., a bin of
type ⟨1e, 4⟩), add containers of type c to B, using L-
shape tiling, and update the type of B to ⟨1e, 4, c⟩.

2. If a large harmonic bin B of type ℓ with a reserved
space of r is available, and 1/c ≤ 1−r, use L-shape
tiling to place containers of class c to B, and update
the type of B to ⟨ℓ, c⟩. Here, “available” means that
B does not contain any other containers.

3. Otherwise, open a new harmonic bin of type c and
place c2 containers of class c into it.

Rap consists of three main components: AssignLM,
AssignSmall, and AssignTiny, packing correspond-
ing items of large/medium, small, and tiny classes.

• AssignLM assigns each 1a, or four 2a items into
a single bin. In addition, it packs an item of class
c ∈ {1b, 1c, 1d, 1e, 2b} into any available placeholder
of class c. If no placeholder is available (due to a

prediction error), it opens a new bin and declares
it as a large harmonic bin of type c.

• AssignSmall packs small items of class c into the
next empty container of size 1/c. If no such con-
tainer is available, it creates a new set of containers
by invoking the Reserve subroutine.

• AssignTiny places tiny items into tiny containers.
A tiny container is of size 1/5 and is dedicated to
tiny items. As before, if no tiny container exists,
AssignTiny first creates a new set of tiny con-
tainers by calling Reserve. We borrow the algo-
rithm of [22] to pack tiny items into tiny containers.
The algorithm repeatedly splits tiny containers into
smaller sub-containers to pack a tiny item of size
s into a sub-container of size 1/2k, where k is the
largest integer such that s ≤ 1/2k.

Figure 1 shows examples of bins packed by Rap. In
particular, Figures 1a and 1e are bins that used to be
critical and had their types changed after receiving ad-
ditional small containers.

3 Consistency Analysis

Overview. In this section, we analyze the consistency
of Rap. First, we use the following lemma to show
that all tiny containers, except possibly the last one,
are almost full.

Lemma 1 [22] Consider the square packing problem
where all items are smaller than or equal to 1/M for
some integer M ≥ 2. There is an online algorithm that
creates a packing in which all bins, except possibly a
constant number of them, have an occupied area of size
at least (M2 − 1)/(M + 1)

2
.

In our context, tiny items of size at most 1/30 are packed
into containers of size 1/5. With a scaling argument, the
above result applies with M = 6. Another ingredient in
our proof is a lower bound for the number of containers
of a given class placed into a bin using L-shape tiling.
In particular, we will use the following lemma:

Lemma 2 Consider a square space S of sidelength s ∈
{0.75, 1}, from which a square space of size r < s is
reserved. It is possible to pack 2ki − k2 containers of
size c in the remainng area of S, where i = ⌊s/c⌋ and
k = ⌊(s− r)/c⌋.

Proof. Consider an empty bin of size s; it fits i2 con-
tainers of size c, where i = ⌊s/c⌋. However, (i − k)2 of
these containers overlap with the reserved space, where

11

35th Canadian Conference on Computational Geometry, 2023

1e
4

4

4

4444

5

5

555

(a) ⟨1e, 4, 5⟩

1e
4

4

4

4444

(b) critical

2b 2b

2b2b

(c) ⟨2b, 10⟩ (d) small harmonic-4

1e
4

4

4

4444

(e) ⟨1e, 4, 12⟩

1d
3

3

333

(f) ⟨1d, 3⟩

1b

(g) ⟨1b, 9⟩ (h) large harmonic-2a

Figure 1: Examples of possible bin types of Rap. The light-colored areas represent reserved spaces, while
dark-colored areas show the minimum occupied area by items of each specified type. Blue areas are placeholders,
while green and purple areas are containers. Purple containers are extra containers added to critical bins.

k = ⌊(s− r)/c⌋. It implies that there is room to add

⌊s/c⌋2 − (⌊s/c⌋ − ⌊(s− r)/c⌋)2

= i2 − (i− k)2

= k(2i− k)

= 2ki− k2

containers to this bin which completes the proof. □

When using L-shape tiling to place containers in large
harmonic bins (packing green containers in Figure 1), we
have s = 1. When using L-shape tiling to place small
containers in critical bins (packing purple containers in
the figure), we have s = 0.75. Table 2 in Appendix
presents the minimum occupied area of all LM bins by
applying Lemmas 1 and 2.

To prove an upper bound of 1.779̄ for the consistency of
Rap, we consider three possibilities for the final pack-
ings of Rap. The first case is when all bins in the final
packing contain a large or medium item. In other words,
no small harmonic bin is opened. In this case, we use
a standard weighting technique [6] to prove the upper
bound for the competitive ratio (Lemma 3). The sec-
ond case is when the final packing has a harmonic bin
of class c ≥ 5. In this case, we show that all bins are
sufficiently full to prove the upper bound (Lemma 4).
Finally, the third case concerns situations in which there
is no harmonic bin of class c ≥ 5 in the final packing.
In this case, we use a more complicated weighting argu-

ment that involves solving an integer program to prove
the upper bound (Lemma 5).

Case I: No small harmonic bin. Suppose no bin is
opened for containers of tiny or small items. We assign
a weight of w(x) to an item of size x, and prove that
(i) the total weight of items in any bin of Rap, except
possibly a constant number of them, is at least 1, while
(ii) the weight of items in any bin of Opt is at most
α. Therefore, if W denotes the total weight of all items
in the input, we can write Rap(σ) ≤ W + c, for some
constant c, while Opt(σ) ≥ ⌈W/α⌉, which yields to a
competitive ratio of at most α.

Lemma 3 Suppose there is no small harmonic bin of
class c ≥ 3, in the final packing of Rap. Then, the
competitive ratio of Rap is at most 1.75.

Proof. We assign to all items of class c ≥ 3 a weight of
0. Large items have a weight of 1, and medium items
have a weight of 1/4. All bins in the final packing of
Rap, except possibly two of them, either contain a large
item or four medium items. Therefore, all bins opened
by Rap have a total weight of at least 1. It follows
that |Rap(σ)| ≤ W , where W is the total weight of
all items in σ. On the other hand, a bin of Opt(σ)
may contain three medium and one large item, e. g.,
an item of size 0.5 + ϵ and three items of size 0.5 − ϵ.
Moreover, no more than one large item and four medium
items fit into the same bin, giving a maximum total

12

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

weight of 1.75 for items in any bin of Opt. Therefore,
|Opt(σ)| ≥ W/1.75, resulting in a competitive ratio of
at most 1.75 for Rap. □

Case II: There is a small harmonic bin of type t ≥ 5.
Suppose there is at least one small harmonic bin of type
t ≥ 5 in the final packing. We show that all opened bins,
except possibly a constant number of them, have an
occupied area of at least 9/16, which indeed guarantees
a competitive ratio of at most 16/9.

Lemma 4 Assume there is a harmonic-t bin in the fi-
nal packing of Rap, for some t ≥ 5. Then, the occupied
area in all bins, except possibly a constant number of
them, is at least 9/16.

Proof. We begin by observing that large harmonic bins
with an item of Class 1a or four items of Class 2a have an
occupied area of at least 16/25 = 0.64. Next, we show
that the final packing of Rap contains no large harmonic
or critical bins. For the sake of contradiction, suppose
there is a large harmonic or critical bin B of type ℓ, and
note that B receives a placeholder in the preprocessing
step. Therefore, before opening small harmonic bins,
specifically t-harmonic bins, Reserve must use L-shape
tiling to place containers of class t in B. This would
change the type of B to ⟨ℓ, t⟩, contradicting its final
type being a large harmonic bin of type ℓ. We conclude
that the final packing of Rap only contains LM bins
and small harmonic bins.

Note that Reserve procedure adds new containers to
one bin upon each call, and it is only invoked once there
are no empty containers left for an arrived item. It
implies there is at most a constant number of empty
containers at any time during the execution of the algo-
rithm. Therefore, harmonic bins of type t′ ≥ 3, except
possibly a constant number of them (which have empty
containers), each contains t′2 items of class t′ and a min-
imum occupied area of at least t′2/(t′ + 1)2 ≥ 9/16.
Similarly, by Lemma 1, each tiny bin has a minimum
occupied area of 35/49 > 9/16. Finally, Lemmas 1 and
2 show that all LM-bins, except those with empty con-
tainers, each has a minimum occupied area of at least
9/16, as reported in Table 2 [Appendix]. Therefore, all
bins in the final packing of Rap, except possibly a con-
stant number of them, have a minimum occupied area
of at least 9/16. □

Case III: All small harmonic bins are of Class 3 or 4.
We consider the case where there is no small harmonic
bin of type t ≥ 5 in the final packing of Rap, while there
is a small harmonic of Type 3 or 4. In this case, there
are critical bins in the packing, and not enough small
items of class t ≥ 5 were revealed to cover the “wasted”

space in these critical bins. Similar to Case I, we use a
weighting argument to prove the following lemma.

Lemma 5 Assume there is no small harmonic bin of
type t ≥ 5 in the final packing, while there is a small
harmonic-t′ bin, where t′ < 5. Then, the competitive
ratio of Rap is at most 1.779̄.

Proof. We assign a fixed weight to all items of the same
class except for tiny items, which receive a weight pro-
portional to their sizes. We define w = ⟨w1, . . . , w34⟩,
where wi is the weight assigned to items of (sub)class
i ≤ 34. Additionally, we assign a weight of w(x) =
d × s(x)2 to a tiny item x, where s(x) is the size of x
and d is a fixed constant called the density of tiny items.
The specific weights are specified in Table 3 [Appendix].
These weights are defined in a way to guarantee a to-
tal weight of at least 1 for all bins in the final packing,
except possibly a constant number of them. We use an
integer program to prove an upper bound on the weight
of bins in Opt. Let t = ⟨t1, . . . , t35⟩ denote the max-
imum size of items in each class, in decreasing order;
that is, for i ≤ 7, ti denotes the maximum size of large
or medium items of subclass i and, for j ≥ 7, tj denote
the maximum size of items of class j− 5. Let xi denote
the number of items of class i in a bin, say B, packed
by Opt. To maximize the weight of the items in B, we
can write the following integer program:

maximize:

α =

34∑

i=1

wi · xi + d ·
(

1−
34∑

i=1

xi · t2i+1

)

subject to:

34∑

i=1

xi · t2i+1 ≤ 1 (1)

34∑

i=1

⌊ti+1 · (u+ 1)⌋2 · xi ≤ u2, ∀u ∈ {1, . . . , 60} (2)

xi ≥ 0 and xi ∈ Z , ∀i ∈ {1, . . . , 34}

The first component of the objective function is the total
weight of all non-tiny items, and the second is an upper
bound on the weight of all tiny items in B. Constraint 1
ensures the total area of non-tiny items of B does not
exceed 1, and Constraint 2 ensures all items fit into B
without overlap. This constraint must hold because,
for any integer u ≥ 1, a bin cannot contain more than
u2 squares of size above 1

u+1 . Figure 2 represents the
optimal solution to the integer program resulting in a
1.779̄ upper bound on α which completes the proof. □

13

35th Canadian Conference on Computational Geometry, 2023

1e
4

4

44 4

4 4

3

3

3

3 2b

7

Figure 2: The packing that maximizes the total weight
of items in a bin of Opt, as discussed in Lemma 5

Wrapping up. Our results imply the following upper
bound for the consistency of Rap.

Theorem 6 Rap has a consistency of at most 1.779̄.

Proof. Lemmas 3 and 4 show that the competitive
ratio is at most 1.779̄ in Cases I and III. In case II,
Lemma 5 shows that Rap opens at most 16W/9 + c
bins, where W is the total area of all items, and c is
a constant. Given that Opt opens at least W bins,
the competitive ratio, in this case, is at most 16/9 <
1.779̄. □

4 Robustnes Analysis

In this section, we study the robustness of online square-
packing algorithms. We first present a lower bound on
the robustness of the previously proposed algorithm,
Aosp of [24]. Aosp forms an offline packing of predicted
frequency to reserve a placeholder for all non-tiny items.
Therefore, Aosp is overly reliant on the correctness of
the predictions. In particular, one can generate adver-
sarial inputs, formed only by tiny items, in which all
placeholders of Aosp remain empty.

Theorem 7 The Aosp algorithm of [24] has a robust-
ness of at least 21.

Proof. We show that Aosp has a competitive ratio of
841/40 ≈ 21 on an input sequence σ and adversarial

frequency predictions f̂ , which implies a lower bound of
21 on its robustness.

Aosp forms an offline packing of predicted frequency to
reserve a placeholder for all expected items, except for
“tiny” items. In the context of the Aosp algorithm, tiny
items have a size of at most 1/15. As a result, Aosp is
overly reliant on the correctness of the predictions. e. g.,
all placeholders of some class t remain empty if items of
that type never arrive.

Given a frequency prediction f̂ , encoded by an adver-
sarial oracle, predicting 7n small items of size at most
1/4 and n large items of size at most 3/5, Aosp forms
an offline packing of n bins, where each bin contains

one placeholder for a large item, seven placeholders for
small items, and forty containers of size at most 1/15
to pack tiny items online.

Consider an input sequence σw consist of 40n tiny items
of size 1/30 + ϵ. Given the prediction f , Aosp(σ, f)
has n bins that are partially filled by tiny items. Opt,
however, fits each 292 = 841 of these tiny items into
a one bin; therefore, Opt(σ) = 40n/841. It follows,
Aosp(σ, f) has a competitive ratio of 841/40 ≈ 21 which
completes the proof. □
We now show that Rap has a robustness of at most
5.89. For that, we prove a lower bound for the minimum
occupied area of the bins that Rap opens.

Theorem 8 Rap has a robustness of at most 5.89.

Proof. The final packing of Rap consists of harmonic,
LM, and critical bins. A small harmonic bin of class
i has a minimum occupied area of i2/(i + 1)2, which
implies a minimum occupied area of 9/16 for all small
harmonic bins. Moreover, the occupied area in bins that
include large or medium items is at least 1/4.

Next, we consider bins with an empty placeholder.
Placeholders for these items were reserved during the
preprocessing step and remained empty due to predic-
tion errors. We note that these bins have received non-
empty containers with small or tiny items; otherwise,
they would be virtually open (do not contain any items),
and do not contribute to the final cost. Therefore, the
occupied area of LM-bins is at least the minimum total
occupied area of the small or tiny items they contain.
Table 4 in Appendix shows lower bounds for the occu-
pied area. In particular, the worst-case scenario is real-
ized by the ⟨1b, 9⟩ bins, as shown in Figure 1g, when the
placeholder for 1b-items stays empty and the occupied
area is at least 0.17. We can conclude that all bins in the
final packing of Rap, except possibly a constant num-
ber of them, have a minimum occupied area of at least
0.17, regardless of the quality of predictions. It follows,
Rap has a robustness of at most 100/17 ⪅ 5.89. □

5 Concluding Remarks

In this paper, we introduced Rap, an online square-
packing algorithm that leverages frequency predictions
and has superior consistency and robustness over an
existing algorithm of [24], Aosp, which overly relies
on predictions. The techniques we used for the de-
sign of Rap, e.g., differentiating between placeholders
and containers, and its analysis, e.g., solving the inte-
ger program in Lemma 5, are likely helpful in studying
other geometric packing problems under the prediction
model such as 2-dimensional box packing [16, 27] and
d-dimensional cube packing [17, 21] problems.

14

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] Algorithms with predictions. https:

//algorithms-with-predictions.github.io/.
Accessed: 2023-02-19.

[2] S. Angelopoulos and S. Kamali. Contract schedul-
ing with predictions. J. Artif. Intell. Res., 77:395–
426, 2023.

[3] S. Angelopoulos, C. Dürr, S. Jin, S. Kamali, and
M. Renault. Online computation with untrusted
advice. In Proc. ITCS, pages 52:1–52:15, 2020.

[4] S. Angelopoulos, S. Kamali, and K. Shadkami. On-
line bin packing with predictions. In Proc. IJCAI,
pages 4574–4580, 2022.

[5] A. Antoniadis, T. Gouleakis, P. Kleer, and
P. Kolev. Secretary and online matching problems
with machine learned advice. In Proc. NeurIPS,
2020.

[6] S. Assmann, D. Johnson, D. Kleitman, and J.-T.
Leung. On a dual version of the one-dimensional
bin packing problem. Journal of Algorithms, 5(4):
502–525, 1984.

[7] Y. Azar, D. Panigrahi, and N. Touitou. Online
graph algorithms with predictions. In Proc. SODA,
pages 35–66, 2022.

[8] J. Balogh, J. Békési, G. Dósa, L. Epstein, and
A. Levin. Lower bounds for several online variants
of bin packing. Theory of Computing Systems, 63
(8):1757–1780, 2019.

[9] S. Banerjee, V. Cohen-Addad, A., and Z. Li. Graph
searching with predictions. In Proc. ITCS, volume
251, pages 12:1–12:24, 2023.

[10] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviri-
denko. Bin packing in multiple dimensions: Inap-
proximability results and approximation schemes.
Mathematics of Operations Research, 31(1):31 – 49,
2006.

[11] J. Boyar, L. M. Favrholdt, and K. S. Larsen. Online
unit profit knapsack with untrusted predictions. In
Proc. SWAT, pages 20:1–20:17, 2022.

[12] J. Boyar, L. M. Favrholdt, S. Kamali, and K. S.
Larsen. Online interval scheduling with predic-
tions. In Proc. WADS, 2023.

[13] C. L. Canonne. A short note on learning discrete
distributions, 2020. arXiv math.ST:2002.11457.

[14] J. Y. Chen, T. Eden, P. Indyk, H. Lin,
S. Narayanan, R. Rubinfeld, S. Silwal, T. Wagner,
D. P. Woodruff, and M. Zhang. Triangle and four

cycle counting with predictions in graph streams.
In Proc. ICLR, 2022.

[15] J. Y. Chen, S. Silwal, A. Vakilian, and F. Zhang.
Faster fundamental graph algorithms via learned
predictions. In Proc. ICML, volume 162, pages
3583–3602, 2022.

[16] F. R. K. Chung, M. R. Garey, and D. S. Johnson.
On packing two-dimensional bins. SIAM Journal
on Algebraic and Discrete Methods, 3:66–76, 1982.

[17] J. Csirik and G. J. Woeginger. On-line packing
and covering problems. In Online Algorithms, The
State of the Art, volume 1442 of LNCS, pages 147–
177. Springer, 1996.

[18] S. Dobrev, R. Královič, and D. Pardubská. Mea-
suring the problem-relevant information in input.
RAIRO - Theor. Inf. Appl., 43(3):585–613, 2009.

[19] F. Eberle, A. Lindermayr, N. Megow, L. Nölke,
and J. Schlöter. Robustification of online graph
exploration methods. In Proc. AAAI, pages 9732–
9740, 2022.

[20] L. Epstein and L. Mualem. Online bin packing of
squares and cubes. In Algorithms and Data Struc-
tures, pages 357–370. Springer International Pub-
lishing, 2021.

[21] L. Epstein and L. Mualem. Online bin packing of
squares and cubes. In WADS, volume 12808, pages
357–370. Springer, 2021.

[22] L. Epstein and R. van Stee. Optimal online al-
gorithms for multidimensional packing problems.
SIAM Journal on Computing, 35(2):431–448, 2005.

[23] S. Im, R. Kumar, M. M. Qaem, and M. Purohit.
Online knapsack with frequency predictions. In
Proc. NuerIPS, pages 2733–2743, 2021.

[24] S. Kamali and A. López-Ortiz. Almost online
square packing. In Proc. CCCG, 2014.

[25] T. Lavastida, B. Moseley, R. Ravi, and C. Xu.
Learnable and instance-robust predictions for on-
line matching, flows and load balancing. In Proc.
ESA, volume 204, pages 59:1–59:17, 2021.

[26] T. Lavastida, B. Moseley, R. Ravi, and C. Xu.
Using predicted weights for ad delivery. In Proc.
ACDA, pages 21–31, 2021.

[27] A. Lodi, S. Martello, and M. Monaci. Two-
dimensional packing problems: A survey. Eur. J.
Oper. Res., 141(2):241–252, 2002.

15

35th Canadian Conference on Computational Geometry, 2023

[28] T. Lykouris and S. Vassilvitskii. Competitive
caching with machine learned advice. In Proc.
ICML, pages 3302–3311, 2018.

[29] M. Mitzenmacher and S. Vassilvitskii. Algorithms
with predictions. In T. Roughgarden, editor, Be-
yond the Worst-Case Analysis of Algorithms, pages
646–662. Cambridge University Press, 2020.

[30] M. Purohit, Z. Svitkina, and R. Kumar. Improv-
ing online algorithms via ML predictions. In Proc.
NeurIPS, pages 9661–9670, 2018.

[31] D. Rohatgi. Near-optimal bounds for online
caching with machine learned advice. In Proc.
SODA, pages 1834–1845, 2020.

[32] A. Wei and F. Zhang. Optimal robustness-
consistency trade-offs for learning-augmented on-
line algorithms. In Proc. NeurIPS, 2020.

[33] A. Zeynali, B. Sun, M. Hajiesmaili, and A. Wier-
man. Data-driven competitive algorithms for on-
line knapsack and set cover. In Proc. AAAI, pages
10833–10841, 2021.

16

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Appendix (Omitted Tables)

reserved types

small
type

1b 1c 1d 1e 1e, 4 —

3 — 0.67 0.61 0.56 — 0.56
4 — 0.64 0.58 0.53* — 0.64
5 0.69 0.60 0.74 0.69 0.66 0.69
6 0.66 0.76 0.71 0.65 0.67 0.73
7 0.64 0.73 0.67 0.76 0.67 0.76
8 0.62 0.70 0.78 0.73 0.66 0.79
9 0.61 0.81 0.75 0.81 0.64 0.81
10 0.74 0.78 0.83 0.77 0.72 0.82
11 0.72 0.75 0.80 0.75 0.72 0.84
12 0.70 0.83 0.77 0.81 0.71 0.85
13 0.68 0.80 0.83 0.78 0.69 0.86
14 0.67 0.78 0.81 0.83 0.68 0.87
15 0.76 0.84 0.86 0.81 0.75 0.87
16 0.74 0.82 0.84 0.85 0.74 0.88
17 0.73 0.80 0.82 0.83 0.72 0.89
18 0.71 0.85 0.86 0.87 0.72 0.89
19 0.70 0.83 0.84 0.84 0.71 0.90
20 0.77 0.82 0.88 0.88 0.76 0.90
21 0.75 0.86 0.86 0.86 0.74 0.91
22 0.74 0.84 0.84 0.84 0.74 0.91
23 0.73 0.83 0.88 0.87 0.73 0.91
24 0.72 0.87 0.86 0.85 0.73 0.92
25 0.77 0.85 0.89 0.88 0.75 0.92
26 0.76 0.84 0.87 0.86 0.75 0.92
27 0.75 0.87 0.86 0.89 0.75 0.92
28 0.74 0.86 0.89 0.87 0.74 0.93
29 0.73 0.84 0.87 0.90 0.73 0.93
tiny 0.70 0.61 0.75 0.70 0.67 0.71

Table 2: A summary of the minimum occupied area in
each LM bin type with no empty containers, rounded
to 2 decimal places. For each large type, the minimum
occupied area is highlighted. The entry marked with *
shows the minimum occupied area of critical bins in the
final packing.

Class ti+1 weight

1a 4/5 1.0
1b 2/3 0.765625
1c 3/5 0.6785570840932904
1d 11/20 0.4650876739816575
1e 1/2 0.4650876739816575
2a 2/5 0.25
2b 1/3 0.19140625
3 1/4 0.1111111111111111
4 1/5 0.0764160465740489
5 1/6 0.04
6 1/7 0.0277777777777777
7 1/8 0.0222880135840976
8 1/9 0.015625
9 1/10 0.0137867647058823
10 1/11 0.01
11 1/12 0.0082644628099173
12 1/13 0.0069444444444444
13 1/14 0.0059171597633136
14 1/15 0.0051020408163265
15 1/16 0.0044444444444444
16 1/17 0.00390625
17 1/18 0.0034602076124567
18 1/19 0.0030864197530864
19 1/20 0.002770083102493
20 1/21 0.0025
21 1/22 0.0022675736961451
22 1/23 0.0020661157024793
23 1/24 0.0018903591682419
24 1/25 0.0017361111111111
25 1/26 0.0016
26 1/27 0.0014792899408284
27 1/28 0.0013717421124828
28 1/29 0.0012755102040816
29 1/30 0.0011890606420927

tiny density 1.2500557840816486

Table 3: Weights of items of different classes, as used in
Lemma 5

17

35th Canadian Conference on Computational Geometry, 2023

reserved types

small
types

1b 1c 1d 1e
containers total area containers total area containers total area containers total area

3 — — 5 0.3125 5 0.3125 5 0.3125
4 — — 7 0.2800 7 0.2800 7 0.2800
5 9 0.2500 9 0.2500 16 0.4444 16 0.4444
6 11 0.2244 20 0.4081 20 0.4081 20 0.4081
7 13 0.2031 24 0.3750 24 0.3750 33 0.5156
8 15 0.1851 28 0.3456 39 0.4814 39 0.4814
9 17 0.1700 45 0.4500 45 0.4500 56 0.5600
10 36 0.2975 51 0.4214 64 0.5289 64 0.5289
11 40 0.2777 57 0.3958 72 0.5000 72 0.5000
12 44 0.2603 80 0.4733 80 0.4733 95 0.5621
13 48 0.2448 88 0.4489 105 0.5357 105 0.5357
14 52 0.2311 96 0.4266 115 0.5111 132 0.5866
15 81 0.3164 125 0.4882 144 0.5625 144 0.5625
16 87 0.3010 135 0.4671 156 0.5397 175 0.6055
17 93 0.2870 145 0.4475 168 0.5185 189 0.5833
18 99 0.2742 180 0.4986 203 0.5623 224 0.6204
19 105 0.2625 192 0.4799 217 0.5424 240 0.5999
20 144 0.3265 204 0.4625 256 0.5804 279 0.6326
21 152 0.3140 245 0.5061 272 0.5619 297 0.6136
22 160 0.3024 259 0.4896 288 0.5444 315 0.5954
23 168 0.2916 273 0.4739 333 0.5781 360 0.6250
24 176 0.2816 320 0.5120 351 0.5615 380 0.6079
25 225 0.3328 336 0.4970 400 0.5917 429 0.6346
26 235 0.3223 352 0.4828 420 0.5761 451 0.6186
27 245 0.3125 405 0.5165 440 0.5612 504 0.6428
28 255 0.3032 423 0.5029 495 0.5885 528 0.6278
29 265 0.2944 441 0.4899 517 0.5744 585 0.6500
tiny 9 0.2571 9 0.2571 16 0.4571 16 0.4571

Table 4: Lower bounds for the area ccupied by tiny and small items in LM bins of Rap. The minimum occupied
area over all classes is highlighted.

18

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Minimum Ply Covering of Points with Unit Disks*

Stephane Durocher� J. Mark Keil� Debajyoti Mondal§

Abstract

Let P be a set of points and let U be a set of unit disks
in the Euclidean plane. A minimum ply cover of P with
U is a subset of U that covers P and minimizes the
number of disks that share a common intersection. The
size of a minimum ply cover is called the minimum ply
cover number. Biedl et al. [Comput. Geom., 94:101712,
2020] showed that determining the minimum ply cover
number for a set of points by a set of unit disks is NP-
hard, and asked whether there exists a polynomial-time
O(1)-approximation algorithm for this problem. They
showed the problem to be 2-approximable in polynomial
time for the special case when the minimum ply cover
number is constant. In this paper, we settle the ques-
tion posed by Biedl et al. by providing a polynomial-
time O(1)-approximation algorithm for the minimum
ply cover problem.

1 Introduction

The minimum set cover problem is a widely studied op-
timization problem. The input to the set cover problem
is a set P and a collection C of subsets over P . The
goal is to identify a subset C ′ of C with minimum car-
dinality that contains all the elements of P . The mem-
bership of an element q in P with respect to a subset
C ′ of C is the number of sets in C ′ that contain q. The
minimum membership set cover problem is a variant in
which the goal is to find a subset C ′ of C that mini-
mizes the maximum membership of elements in P . A
rich body of literature studies the minimum membership
set cover problem [2, 10, 12, 13, 15, 16]. In this paper,
we consider a set cover scenario in which the given sets
of C may contain elements outside P and membership
is evaluated for all elements covered by C ′, including
those outside P . This concept appears in the literature
as ply cover, which is formalized below.

The ply of a collection S of sets, denoted ply(S), is
the maximum cardinality of any subset of S that has a
non-empty common intersection. The set S covers a set

*This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

�University of Manitoba, Winnipeg, Canada,
stephane.durocher@umanitoba.ca

�University of Saskatchewan, Saskatoon, Canada,
keil@cs.usask.ca

§University of Saskatchewan, Saskatoon, Canada,
dmondal@cs.usask.ca

P if P ⊆ ⋃Si∈S Si. Given a set P and a collection of
sets U , a subset S ⊆ U is a minimum ply cover of P if
S covers P and S minimizes ply(S) over all subsets of
U . Formally:

plycover(P,U) = arg min
S⊆U

S covers P

ply(S). (1)

The ply of such a set S is called the min-
imum ply cover number of P with U , denoted
ply∗(P,U). For example, if P = {1, 3, 5, 7, 8}
and U = {{1, 2, 3, 4}, {8}, {3, 4, 5}, {4, 5, 7}}, then
plycover(P,U) = {{1, 2, 3, 4}, {8}, {4, 5, 7}} and the
minimum ply cover number is two.

Motivated by applications in covering problems, in-
cluding interference minimization in wireless networks,
Biedl et al. [3] introduced the minimum ply cover prob-
lem in the geometric setting: given sets P and U , find
a subset S ⊆ U that minimizes (1). When U is a set of
unit disks representing transmission ranges of potential
locations for placing wireless transmitters and P repre-
sents locations of wireless clients, S ⊆ U corresponds to
locations to install transmitters that minimize interfer-
ence at any point in the plane.

Biedl et al. [3] showed that the problem is NP-hard
to solve exactly, and remains NP-hard to approximate
by a ratio less than two when P is a set of points in R2

and U is a set of axis-aligned unit squares or a set of
unit disks in R2. They also provided 2-approximation
algorithms parameterized in terms of ply∗(P,U) for unit
disks and unit squares in R2. Their algorithm for axis-
parallel unit squares runs in O((k + |P |)(2 · |U |)3k+1)
time, where k = ply∗(P,U), which is polynomial when
ply∗(P,U) ∈ O(1).

Biniaz and Lin [4] generalized this result for any fixed-
size convex shape and obtained a 2-approximation algo-
rithm when ply∗(P,U) ∈ O(1). The problem of finding
a polynomial-time approximation algorithm to the min-
imum ply cover problem remained open for both unit
squares and unit disks when the minimum ply cover
number, ply∗(P,U), is not bounded by any constant.

Recently, Durocher et al. [11] settled this question
affirmatively for unit squares by designing a polynomial-
time (8 + ε)-approximation algorithm for the problem,
where ε > 0. We refer the reader to [19] for subsequent
work that achieves faster algorithms, but with larger
approximation factors.

Our contribution: In this paper we consider the
minimum ply cover problem for a set P of points in R2

19

35th Canadian Conference on Computational Geometry, 2023

(a) (b) (c)

Figure 1: (a) An input consisting of points and unit disks. (b) A covering of the points with ply 1, which is also the
minimum ply cover number for the given input. (c) A covering of the same instance with ply 3.

with a set U of unit disks in R2. We show that for
every ε > 0, the minimum ply cover number can be
approximated in polynomial time for unit disks within
a factor of (63+ε). This settles an open question posed
in [3] and [4].

Our idea is to leverage the minimum discrete unit
disk cover problem that seeks to cover a given point set
with a smallest cardinality subset of the given disks. We
show that there exist instances where the cardinality of
the minimum discrete unit disk cover is at least 9.24
times the minimum ply cover. Hence, obtaining an ap-
proximation factor of 10 would be interesting, and we
believe that achieving an approximation factor smaller
than 10 would require a different technique that does
not rely predominantly on a discrete unit disk cover.

Recent Developments: Recently, and indepen-
dently of our work, Bandyapadhyay et al. [1] have shown
that minimum ply cover can be approximated within a
constant factor in O(n·polylog(n)) time for fat objects,
which includes unit disks and unit squares. Their idea
is similar to the one that we used for disks. For unit
squares, the technique yields an approximation factor of
36. For disks, they only provide a high-level argument
for obtaining an O(1)-factor approximation rather than
aiming for an exact value.

2 Approximating Minimum Ply Covering by Dis-
crete Unit Disk Cover

Let P be a set of points in R2 and let U be a set of
unit disks in R2. We assume that no three disks in
U have boundaries that intersect at a common point.
In this section we give a polynomial-time algorithm to
approximate the minimum ply cover number for P with
U within a factor of O(1). We first give an overview of
the algorithm and then describe its details.

2.1 Overview

Consider an axis-aligned grid G over P , where each grid
cell is of size (1/

√
2) × (1/

√
2). We choose a grid that

is in general position relative to the disks in U , i.e., no
disk is tangent to a grid line. A grid cell is called non-
empty if it contains some point of P , otherwise, we call
it empty.

We leverage the minimum discrete unit disk cover
problem that, given a set of points and a set of unit disks
on the Euclidean plane, seeks a minimum-cardinality
subset of the input disks that covers the input points,
for which a PTAS exists [17]. We show that one can
first find an approximate solution to the minimum dis-
crete unit disk cover for each non-empty grid cell, and
then combine the solutions to obtain an approximate
solution to the minimum ply cover for P .

2.2 Details of the Algorithm

We first remove all the disks in U that do not contain
any point of P as they are not needed for covering P .
Let R be a non-empty grid cell of G. We first provide an
upper bound on the cardinality of the minimum discrete
unit disk cover in terms of the minimum ply cover num-
ber for the points and disks that overlap R (Lemma 1).
We then show how to combine the respective solutions
from each cell to obtain a cover of P by a subset of U
whose ply cover number is at most (63 + ε) ply∗(P,U)
(Theorem 2).

Lemma 1 Let Q ⊆ P be the points that lie in R and let
W ⊆ U be the set of unit disks that intersect R. Let S
be a set of k points in the plane (i.e., not necessarily in
P) such that every disk in W includes at least one point
in S (points in S may lie outside R). The cardinality
of every minimum discrete unit disk cover of Q by W is
at most k times the minimum ply cover number for Q.

Proof. Let δ be the cardinality of a minimum discrete
unit disk cover for covering Q by W . Let β be the

20

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

R

Figure 2: Illustration for Corollary 1.1, where R is
shown in gray, Q is shown in black disks and S is shown
in orange. Any disk that intersects the center grid cell
must cover at least one orange point.

minimum ply cover number for covering Q by W . If
δ ≤ kβ, then β ≥ δ/k.

Suppose for a contradiction that the minimum ply
cover number is less than δ/k. Since every disk in the
minimum ply cover must hit at least one point in S, the
number of disks in the cover is strictly less than δ. This
contradicts our initial assumption that δ is the cardi-
nality of a minimum discrete unit disk cover of Q. �

It is straightforward to verify that for Lemma 1, it
suffices to choose the centers of the 8 neighbouring cells
of R as the point set S (Figure 2). Specifically, let D be
a unit disk that intersects R. The unit disks centered at
the points of S cover the entire region inside the convex
hull of S. Therefore, if the center of D lies inside the
convex hull of S, then D must include at least one point
from S. The remaining case is when the center of D lies
outside of S. If D does not include the points of S, then
it can intersect a segment of length at most 1/

√
2 from

the convex hull boundary of S. However, this chord
length is too short for D to reach R, which contradicts
the assumption that D intersects R. Hence we obtain
the following corollary.

Corollary 1.1 Let Q ⊆ P be the points that lie in R
and let W ⊆ U be set of unit disks that intersect R. The
cardinality of a minimum discrete unit disk cover for Q
by W is at most 8 times the minimum ply cover number
for Q by W .

In the following theorem we show how to combine
the approximate solutions for the cells of G to obtain an
O(1)-approximation for the minimum ply cover prob-
lem.

Theorem 2 Let P be a set of points and let U be a set
of unit disks, both in R2. Assume that for every Q ⊆ P

C ′

Figure 3: The friend cells for C ′. The red circles illus-
trate that for every friend cell, there is a unit disk that
intersects both that cell and C ′.

and W ⊆ U , there exists a f(Q,W)-time algorithm A
that can approximate the cardinality of the minimum
discrete unit disk cover of Q with W within a factor of
γ. Then the minimum ply cover number for P using U
can be approximated within a factor of 360γ in O(|P | ·
f(P,U)) time.

Proof. Let U∗ be a minimum ply cover for covering
P with U . We consider a grid G over the point set P
where each grid cell is of size (1/

√
2) × (1/

√
2). Apply

the algorithm A iteratively to find a γ-approximation
for the cardinality of the minimum discrete unit disk
cover for each grid cell. Let the maximum cardinality
that we attain for a cell be δmax. Let C be the cell
that attains δmax, and let QC and WC be the points
and unit disks corresponding to C, respectively. By
Corollary 1.1, the cardinality of the minimum discrete
unit disc cover is at most 8 times the minimum ply cover
number for covering QC with WC . Therefore, δmax at
most 8γ times the minimum ply cover number for QC .
Since QC ⊆ P and WC ⊆ U , the minimum ply cover
number for covering QC with WC is smaller than the
minimum ply cover number (ply(U∗)) for covering P
with U . Therefore, we have δmax ≤ 8γ ply(U∗).

Let O be the union of all the approximate discrete
unit disk covers obtained by applying the algorithm A
to cells of G, and let r be a point in the plane that does
not fall on any grid line of G. Let C ′ be the cell of G
that contains r. In the following we show that r can
belong to at most 45δmax disks in O.

We refer to a cell D to be a friend of C ′ if a solution
to the discrete unit disk cover for covering QD intersects
C ′. In other words, for every friend D, there is a unit
disk that intersects both D and C ′. There are 45 friend
cells for C ′ (see Figure 3). Therefore, the number of
disks that contains r in O is at most 45δmax. Since
δmax ≤ 8γ ply(U∗), the number of unit disks in O that
may contain r is at most 360γ ply(U∗). Thus the ply of
O is at most 360γ ply(U∗). �

Since there exists a PTAS for the discrete unit disk

21

35th Canadian Conference on Computational Geometry, 2023

cover problem [17], we obtain the following corollary.

Corollary 2.1 Given a set P of points and a set U of
unit disks, both in R2, a ply cover of P using U can
be computed in polynomial time whose ply is within a
constant factor of the minimum ply cover number of P
by U .

3 Further Improvements

Note that we have some freedom when choosing the set
S in Lemma 1 and the grid resolution in Theorem 2.
Therefore, it is natural to leverage such freedom to fur-
ther lower the approximation factor.

Note that there are several choices for S. For ex-
ample, consider a regular pentagon inscribed in a unit
circle centered at the center of R. Once can choose the
corners of the pentagon as the points of S, as illustrated
in Figure 4. Specifically, every unit disk with center ly-
ing inside the unit circle (shown in red) includes at least
one point from S, and every unit disk with center lying
outside the unit circle and avoiding S is unable to reach
R, as illustrated in blue disks.

If we choose the corners of the pentagon as the points
of S, then the approximation factor 8 in Corollary 1.1
improves to 5 and the overall approximation factor in
Theorem 2 improves to 45 · 5 · γ = 225γ. The factor 225
is determined partly by the number of fried cells, which
is 45. To reduce this factor, we choose a hexagonal grid
instead of a square grid. This requires us to design a new
set of S, but it turns out that the overall approximation
factor reduces to 63γ. We now give the details of the
construction.

Let H be a regular hexagon that inscribes a unit circle
with a side parallel to the x-axis (Figure 5(a)). Consider
now a hexagonal grid H on the point set P where each
hexagon is a copy of H. We compute the approximate
discrete unit disk cover for each cell of H. Let δmax

R

Figure 4: An alternative choice for S.

be the largest approximate discrete unit disk cover that
has appeared for a cell C.

Observe that each hexagonal cell can be partitioned
into 6 triangles by drawing a line segment between op-
posite corners of the hexagon (Figure 5(b)). While com-
bining the solutions, we consider each triangular region
instead of each hexagonal region, as follows.

Let T be a triangular region, as illustrated in Fig-
ure 5(c). We first use the idea of Lemma 1 to compute
an upper bound on the minimum discrete unit disk cover
for the points and unit disks corresponding to T . To ob-
tain such an upper bound, we design a set S of 7 points
such that any unit disk intersecting T contains at least
one point from S. Let H ′ be the hexagonal cell that
contains T and let o be the center of T . Then S in-
cludes the point o and the 6 points obtained from the
intersection of the hexagonal grid and the circle of ra-
dius 1.5 centered at o. Figure 5(c) illustrates the circle
of radius 1.5 in dashed lines and the points of S in or-
ange. To verify that any unit disk D that intersects
T contains a point from S, consider two cases. If the
center c of D lies inside the hexagon H ′′ determined by
S \ {o}, then c lies in an equilateral triangle with side
length 1.5, which is determined by three points of S.
Figure 5(c) illustrates the equilateral triangle in green.
The radius of the circumscribed circle of this equilat-
eral triangle is 1.5/

√
3 < 1. Therefore, D must contain

a point from S. If the center c of D lies outside H ′′,
then it can reach T only when D passes through two
points of S, as illustrated in Figure 5(d).

We now compute the approximation factor using the
same proof technique as in Theorem 2. Let O be the
union of all the approximate discrete unit disk covers
obtained by applying the algorithm A to the hexagonal
cells of H, and let r be a point in the plane that does
not fall on any grid line of H. Let C ′ be a triangular
region that contains r. We now count the hexagonal
cells that are within unit distance to the C ′. In other
words, the discrete unit disk cover solution for only these
cells may contain r. There are 9 friend cells for C ′

(see Figure 5(e)). Therefore, the number of disks that
contains r in O is at most 9δmax. Since |S| = 7, we
have δmax ≤ 7γ ply(U∗), where γ is the approximation
factor for the minimum discrete unit disk cover and U∗

is the minimum ply cover. Consequently, the number
of unit disks in O that may contain r is at most 9 · 7 ·
γ ply(U∗). Thus the ply of O is at most 63γ ply(U∗).
Since there is a polynomial-time (1 + ε′)-approximation
for the minimum discrete unit disk cover [17], we obtain
a (63 + ε)-approximation for the minimum ply cover
number where we choose ε′ to be ε/63.

The following theorem summarizes the result of this
section.

Theorem 3 Given a set P of points and a set U of unit
disks, both in R2, and a constant ε > 0, a ply cover of P

22

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

(a) (e)

C ′

(b) (c) (d)

TT

Figure 5: Improving the approximation factor by choosing a hexagonal grid.

using U can be computed in polynomial time whose ply
is at most (63+ε) times the minimum ply cover number
of P by U .

The bottleneck of the running time of our algorithm
is the time to compute the discrete unit disk cover.
In 1995, Brönnimann and Goodrich gave an O(1)-
approximation algorithm for minimum discrete unit
disk cover [5]. A rich body of research attempted to
lower the approximation factor since then [6, 18, 7, 8].
The (1 + ε)-approximation result for the minimum
discrete unit disk cover [17] has a running time of

O(m2(c/ε)2+1n), where m and n are the numbers of
disks and points, respectively, and c is a constant.
This running time is large, i.e., the fastest achievable
running time is O(m65n) by setting ε = 2, which
gives a 3-approximation [14]. Das et al. [9] gave an
18-approximation algorithm that runs in O(n log n +
m logm+mn) time, which may be used to compute an
approximate solution to the minimum ply cover prob-
lem faster, but the approximation factor would increase
to 1134.

4 Lower Bound

Our approximation algorithm for the minimum ply
cover problem relies heavily on finding a discrete unit
disk cover. In this section, we construct instances where
the cardinality of the minimum discrete unit disk cover
is at least 9.2444 times the minimum ply cover num-
ber. The bound 9.24 is constructed to complement our
approach, i.e., in general, the number of disks in a dis-
crete unit disk cover could be unbounded compared to
the minimum ply cover number. This 9.24 lower bound
indicates that achieving an approximation factor less
than 10 may be unlikely using our approach.

Choose any n ≥ 2. We construct a set {D1, . . . , Dn}
of n unit disks such that the boundary of each disk is
tangent to a common point o (each disk center is a unit
distance from o), and the disks are positioned uniformly
around o. Figure 6 shows these disks in gray. Consider
a circle C of radius 2 centered at o (shown in orange

in Figure 6). For each i ∈ {1, . . . , n}, we add a point
pi (shown in red in Figure 6) at the intersection of the
boundaries of C and Di, and place a unit diskD′i (shown
in black in Figure 6) such that pi is the midpoint of the
centers of Di and D′i.

D′
1

D′
2

o

Figure 6: Illustration for the construction of a ply cover
instance (P,U) when n = 12. The points of P are shown
in red, and U consists of the black and gray disks.

Consider an instance of the minimum ply cover
problem (P,U), where P = {p1, . . . , pn} and U =
{D1, . . . , Dn, D

′
1, . . . , D

′
n}. For each i ∈ {1, . . . , n}, the

point pi ∈ P is covered by exactly two disks in U , Di and
D′i; furthermore, Di and D′i cover no points in P \ {pi}.
Therefore, any disk cover of P by U must contain at
least n disks and must contain either Di or D′i for each
i ∈ {1, . . . , n}.

The set U ′ = {D′1, . . . , D′n} covers P and |U ′| = n.
Therefore, U ′ is a minimum discrete unit disk cover of
P . Similarly, the set U ′′ = {D1, . . . , Dn} covers P ,
|U ′′| = n, and U ′′ is also a minimum discrete unit disk

23

35th Canadian Conference on Computational Geometry, 2023

cover of P . U ′′ has ply n. We now calculate the ply of
U ′.

See Figure 7, illustrating the point o and disks Di

and D′i, for some i ∈ {1, . . . , n}. The segment oci is the
diameter of Di plus the radius of D′i; therefore it has
length 3. Consequently, θ = 2 sin−1(1/3), and the ply

of U ′ is dn2 sin−1(1/3)
2π e.

opi θ

ai

bi

ci

D′
i

Di

Figure 7: The sector rooted at o with boundary tangent
to the disk D′i forms an angle θ = 2 sin−1(1/3) at o.

An adversarial choice of minimum discrete unit disk
cover of P by U selects U ′. Consequently, no minimum
discrete unit disk cover can guarantee to approximate
the minimum ply by less than

lim
n→∞

ply(U ′′)
ply(U ′)

= lim
n→∞

n

d2n sin−1(1/3)e/(2π)

=
π

sin−1(1/3)

> 9.2444.

The following theorem summarizes the result of this
section.

Theorem 4 For sufficiently large n, there exists a set
of n points and 2n disks for which the ply of a mini-
mum discrete unit disk cover is at least 9.24 times the
minimum ply cover.

5 Conclusion

We have shown that given a set of points and a set of
unit disks in the Euclidean plane, one can compute a
ply cover whose ply is within a constant factor of the
minimum ply cover number. The approximation fac-
tor we obtain is large (i.e., 63 + ε), whereas only a 2-
inapproximability result is known [3]. Therefore, a nat-
ural direction of future research is to narrow down this
gap.

Our approximation algorithm relies on finding an ap-
proximate discrete unit disk cover and we have con-
structed instances where a minimum discrete unit disk
cover is at least 9.24 times the minimum ply cover num-
ber. This raises the question of whether the approx-
imation factor could be brought down closer to 10, or
whether the existing 2-inapproximability result could be
strengthened further using the disk configurations that
we used in this paper.

References

[1] S. Bandyapadhyay, W. Lochet, S. Saurabh, and J. Xue.
Minimum-membership geometric set cover, revisited.
In Proceedings of the 39th International Symposium
on Computational Geometry (SoCG 2023). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[2] M. Basappa and G. K. Das. Discrete unit square
cover problem. Discret. Math. Algorithms Appl.,
10(6):1850072:1–1850072:18, 2018.

[3] T. C. Biedl, A. Biniaz, and A. Lubiw. Minimum ply cov-
ering of points with disks and squares. Comput. Geom.,
94:101712, 2021.

[4] A. Biniaz and Z. Lin. Minimum ply covering of points
with convex shapes. In Proc. 32nd Canadian Confer-
ence on Computational Geometry (CCCG), pages 2–5,
2020.

[5] H. Brönnimann and M. T. Goodrich. Almost opti-
mal set covers in finite vc-dimension. Discret. Comput.
Geom., 14(4):463–479, 1995.

[6] G. Călinescu, I. Măndoiu, P.-J. Wan, and A. Zelikovsky.
Selecting forwarding neighbors in wireless ad hoc net-
works. In Proceedings of the 5th international workshop
on Discrete algorithms and methods for mobile comput-
ing and communications, pages 34–43, 2001.

[7] P. Carmi, M. J. Katz, and N. Lev-Tov. Covering points
by unit disks of fixed location. In Algorithms and Com-
putation: 18th International Symposium, ISAAC 2007,
Sendai, Japan, December 17-19, 2007. Proceedings 18,
pages 644–655. Springer, 2007.

[8] F. Claude, G. K. Das, R. Dorrigiv, S. Durocher,
R. Fraser, A. López-Ortiz, B. G. Nickerson, and
A. Salinger. An improved line-separable algorithm for
discrete unit disk cover. Discret. Math. Algorithms
Appl., 2(1):77–88, 2010.

[9] G. K. Das, R. Fraser, A. López-Ortiz, and B. G. Nick-
erson. On the discrete unit disk cover problem. Int. J.
Comput. Geom. Appl., 22(5):407–420, 2012.

[10] E. D. Demaine, U. Feige, M. Hajiaghayi, and M. R.
Salavatipour. Combination can be hard: Approximabil-
ity of the unique coverage problem. SIAM J. Comput.,
38(4):1464–1483, 2008.

[11] S. Durocher, J. M. Keil, and D. Mondal. Minimum ply
covering of points with unit squares. In Proc. of the 16th
International Conference and Workshops on Algorithms
and Computation (WALCOM), volume 13973 of LNCS,
pages 23–35. Springer, 2023.

[12] T. Erlebach and E. J. van Leeuwen. Approximating
geometric coverage problems. In Proc. 19th ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 1267–1276. SIAM, 2008.

[13] T. Erlebach and E. J. van Leeuwen. PTAS for weighted
set cover on unit squares. In M. J. Serna, R. Shaltiel,
K. Jansen, and J. D. P. Rolim, editors, Proc. of the 13th
International Workshop on Approximation, Random-
ization, and Combinatorial Optimization (APPROX),
volume 6302 of LNCS, pages 166–177. Springer, 2010.

24

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[14] R. Fraser and A. López-Ortiz. The within-strip discrete
unit disk cover problem. Theor. Comput. Sci., 674:99–
115, 2017.

[15] F. Kuhn, P. Rickenbach, R. Wattenhofer, E. Welzl, and
A. Zollinger. Interference in cellular networks: The
minimum membership set cover problem. In Proc. of
the 11th Conference on Computing and Combinatorics
(COCOON), volume 3595 of LNCS, pages 188–198.
Springer-Verlag, 2005.

[16] N. Misra, H. Moser, V. Raman, S. Saurabh, and S. Sik-
dar. The parameterized complexity of unique coverage
and its variants. Algorithmica, 65(3):517–544, 2013.

[17] N. H. Mustafa and S. Ray. Improved results on geo-
metric hitting set problems. Discret. Comput. Geom.,
44(4):883–895, 2010.

[18] S. Narayanappa and P. Vojtechovský. An improved ap-
proximation factor for the unit disk covering problem.
In Proceedings of the 18th Annual Canadian Conference
on Computational Geometry, CCCG 2006, August 14-
16, 2006, Queen’s University, Ontario, Canada, 2006.

[19] S. Sarkar. Faster algorithm for minimum ply cov-
ering of points with unit squares. arXiv preprint
arXiv:2301.13108, 2023.

25

26

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Overlapping of Lattice Unfolding for Cuboids

Takumi Shiota∗ Tonan Kamata† Ryuhei Uehara†

Abstract

A polygon obtained by cutting the surface of a poly-
hedron is called an unfolding of the polyhedron. An
unfolding obtained by cutting along only edges is called
an edge unfolding. An unfolding may have overlapping,
which are self-intersections on its boundary. It is a fa-
mous open problem in computational origami whether
or not every convex polyhedron has a non-overlapping
edge unfolding. Recently, to get a foothold on the open
problem, an overlapping of unfolding by other cutting
restrictions was studied. Lattice unfoldings of a cuboid
made by unit cubes are a specific example. A lattice
unfolding of a cuboid is a polygon obtained by cutting
the faces along the edges of unit squares. An unfolding
may have overlapping, even in the case of small cuboids.
In particular, Uno showed that a (1, 1, 3)-cuboid has an
overlapping lattice unfolding, while Mitani and Uehara
showed the same for three faces of a (1, 2, 3)-cuboid. In
contrast, it is known that some cuboids have no overlap-
ping lattice unfolding. Hearn showed it for a (1, 1, 2)-
cuboid, and Sugihara showed the same for a (2, 2, 2)-
cuboid. In this study, we completely determine the ex-
istence of overlapping lattice unfoldings which also con-
tains the case where the sizes are non-integers.

1 Introduction

To represent a polyhedron, we sometimes use a planer
layout of arranged faces according to their adjacency re-
lations. The origin of this method can be traced back
to Albrecht Dürer’s 1525 book “Underweysung der mes-
sung mit dem zirckel un richt scheyt” [4]. He repre-
sented several polyhedra using flat polygons (edge un-
foldings) obtained by cutting along the edges. All edge
unfoldings of convex polyhedra in this book are drawn
so that “no two faces overlap or in touch.” However,
edge unfoldings of polyhedra do not always satisfy this
condition (e.g., Namiki and Fukuda’s overlapping edge
unfolding as shown in Figure 1 [11]). The following
problem is open:

Open Problem 1 ([5], Open Problem 21.1) Does
every convex polyhedron have a non-overlapping edge
unfolding?

∗Kyushu Institute of Technology,
shiota.takumi779@mail.kyutech.jp

†Japan Advanced Institute of Science and Technology,
{kamata,uehara}@jaist.ac.jp

Figure 1: An overlapping edge unfolding of a cube with
cut-off corners [11]. Cut along thick lines to get
the figure on the right.

Table 1: Overlapping edge unfoldings for convex regular-
faced polyhedra

Convex regular-faced
polyhedra

Is there an overlapping
edge unfolding?

Platonic solids
(Total 5 types)

No [9]

Archimedean solids
(Total 13 types)

No (7 types) [8, 14]
Yes (6 types) [3, 9, 14]

n-gonal Archimedean
prisms (n ≥ 3)

No (3 ≤ n ≤ 23)
Yes (n ≥ 24)

[14]

n-gonal Archimedean
antiprisms (n ≥ 3)

No (3 ≤ n ≤ 11)
Yes (n ≥ 12)

[14]

Johnson solids
(Total 92 types)

No (48 types)
Yes (44 types)

[13]

Research on the existence of unfolding with overlap
for polyhedra has been conducted under several differ-
ent conditions. Biedl et al. discovered concave poly-
hedra where all edge unfoldings overlap in 1998, and
Grünbaum found another instance in 2003 [2, 6]. For the
class of polyhedra whose faces are all regular polygons,
referred to as convex regular-faced polyhedra, it has
been completely determined whether they have over-
lapping edge unfoldings (see Table 1).

There are also studies on general unfoldings that allow
cutting the faces of the polyhedron, not just its edges.
Sharir and Schorr showed that any convex polyhedron
could unfold without overlapping when allowed to cut
its faces [12, 1].

In our study, we consider another restriction of un-
folding called lattice unfolding, which can be applied to
cuboids of specific sizes.

2 Preliminaries

2.1 Definition of cuboids

We consider a square lattice where each square has an
area of 1 × 1. Let A and B be a pair of lattice points
and a and b be the differences in x coordinates and y

27

35th Canadian Conference on Computational Geometry, 2023

Figure 2: Determining the length L of one edge of a cube.

(a) The cube with length√
10 on a side.

(b) A (3
√
10, 2

√
10, 1

√
10)-cuboid

obtained by connecting six
units of (a).

(c) An example of the lattice unfolding of (b).

Figure 3: Examples of cube, cuboid, and lattice unfolding

(a) A (2
√
2 × 2

√
2 × 2

√
2)-

cuboid (L =
√
2,

x = y = z = 2).

(b) A (2
√
2 × 2

√
2 × 2

√
2)-

cuboid (L = 2
√
2,

x = y = z = 1).

Figure 4: Two cuboids which can be regarded as the same
shape.

coordinates between them (Figure 2). We assume a ≥ b
without loss of generality. Here, we consider a square
with a side AB, whose length is L =

√
a2 + b2. We

construct a cube with length L on a side by assembling
the squares as its faces (Figure 3(a)).

We also define a (xL, yL, zL)-cuboid by a box
with edge lengths xL, yL, and zL along x-axis, y-
axis, and z-axis, respectively for some positive inte-
gers x, y, and z (Figure 3(b)). We assume x ≤
y ≤ z without loss of generality. We only consider
the cuboids that satisfy gcd(a, b) = 1 because the
(c(xL), c(yL), c(zL))-cuboid (multiplied (xL, yL, zL)-
cuboid by c) and the (x(cL), y(cL), z(cL))-cuboid (mul-
tiplied (cL, cL, cL)-cuboid by x, y, z) can be regarded as
the same shape (Figure 4).

(a) Faces-in-touch (b) Edges-in-touch (c) Vertices-in-touch

Figure 5: Overlapping lattice unfoldings in the (1, 2, 3)-
cuboid [10].

Figure 6: A faces-in-touch unfolding in the (1, 1, 3)-
cuboid [16].

2.2 Definition of overlapping lattice unfoldings

A lattice unfolding of a cuboid is an unfolding obtained
by cutting the face of the cuboid along the edges of unit
squares (Figure 3(c)). As we will mention in Lemma 7,
the cutting line of the lattice unfolding forms a tree
structure.

On a lattice unfolding, the original cuboid’s unit
squares are arranged planarly so that their edges are
glued together. Any pair of unit squares not adjacent
to each other on the surface can be classified into posi-
tional relationships as follows:

(1) Overlap in the same position (Figure 5(a)).

(2) Share one edge (Figure 5(b)).

(3) Share one vertex (Figure 5(c)).

(4) Without sharing any edges or vertices.

Herein, we say that an unfolding is faces-in-touch if
it has a pair of unit squares satisfying (1). Sim-
ilarly, we define edges-in-touch and vertices-in-touch
for (2) and (3), respectively. When all pairs of unit
squares not adjacent on the surface satisfy (4), it is
called non-overlapping. When any of the conditions
(1), (2), or (3) are satisfied, it is termed overlapping.
Note that the inclusion relationship {faces-in-touch
unfoldings}⊂{edges-in-touch unfoldings}⊂{vertices-in-
touch unfoldings} holds for any cuboid.

2.3 Background on overlapping lattice unfoldings

The overlapping of lattice unfoldings has been mainly
researched in the case of L = 1, which is the size of unit
cubes.

In 2008, Uno showed that the (1, 1, 3)-cuboid has a
faces-in-touch lattice unfolding (Figure 6) [16]. Fur-
thermore, in 2008, Mitani and Uehara showed that

28

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

the (1, 2, 3)-cuboid has a faces-in-touch lattice unfold-
ing (Figure 5(a)) [10].

Each of these cutting methods can be extended to
the cases of (1, 1, z), where z ≥ 3 and (1, y, z), where
y ≥ 2, z ≥ 3, respectively, and the following theorems
are obtained:

Theorem 2 ([16]) A faces-in-touch lattice unfolding
exists for any (1, 1, z)-cuboid, where z ∈ N, z ≥ 3.

Theorem 3 ([10]) A faces-in-touch lattice unfolding
exists for any (1, y, z)-cuboid, where y, z ∈ N, y ≥ 2, z ≥
3.

On the other hand, the following results are known
for the non-existence of overlapping unfolding:

Theorem 4 ([7]) A faces-in-touch lattice unfolding
does not exist for the (1, 1, 2)-cuboid.

Theorem 5 ([15]) A faces-in-touch lattice unfolding
does not exist for the (2, 2, 2)-cuboid.

We have revisited the classes described above and com-
piled an extended list that applies to a wider range of
classes.

2.4 Representation of polyhedra using graphs

Let Q be a polyhedron, and let GQ = (VQ, EQ) be the
graph such that VQ is the set of the vertices of Q and EQ

is the set of the edges of Q. We call this graph an edge
representation graph of Q. An edge unfolding of Q can
be regarded as an unfolding obtained from a subgraph
of GQ. The following lemma holds:

Lemma 6 (See e.g., [5], Lemma 22.1.1) A sub-
graph G ⊂ GQ yields an unfolding if and only if G is a
spanning tree of GQ.

Now, we introduce a new graph representation for lat-
tice unfoldings. Let C be a cuboid. We define the lattice
representation graph GC = (VC , EC) such that VC is the
set of vertices of unit squares on the face of C, and EC is
the set of edges of the unit squares. The lattice unfold-
ing is one of the general unfolding, which allows cutting
the surface across faces. Thus, we can apply the follow-
ing lemma, which holds for the general unfolding (see
Figure 7):

Lemma 7 ([10], Theorem 1, Theorem 3) Let
GC = (VC , EC) be the lattice representation graph of
a cuboid C, and let S(VC) ⊂ VC be the set of lattice
points located at the vertices of C. Then, the following
are equivalent for a subgraph G ⊂ GC :

1. G yields a lattice unfolding.

2. G is a tree that satisfies S(VC) ⊂ G, and for any
vertex v in G, if deg(v) = 1, then v ∈ S(VC) (where
deg(v) is the degree of vertex v).

Figure 7: The thick lines form a tree that includes all the
lattice cube’s vertices (the starred ones).

(a) Confirm all pairs. (b) Use rotational
unfolding.

Figure 8: Pairs of squares must be checked for overlap in
a certain edge unfolding.

2.5 Methods for checking the overlap

Herein, we introduce a method for verifying the non-
existence of overlapping edge unfoldings used in the pre-
vious research [14].

To prove that there is no edge unfolding with over-
lap for a given polyhedron, we must check the overlap-
ping for all pairs of faces of all edge unfoldings. For
example, a cube has 11 edge unfoldings, and each un-
folding has 6C2 = 15 pairs of squares that need to be
checked for overlap (see Figure 8(a)). However, focus-
ing on the symmetry of relative positions, the number of
pairs that actually need to be checked is six, as shown in
Figure 8(b). In other words, if we confirm that none of
them overlap, we can conclude that all edge unfoldings
do not overlap.

An algorithm called rotational unfolding has been de-
veloped with a focus on this point [14]. The method
of rotational unfolding enumerates minimum unfoldings
containing two faces for each pair of faces of the poly-
hedron. In the method, each unfolding is drawn by
“Rolling the polyhedron on a plane from the state that
one face is bottom to the state that another is bottom.”
This method greatly reduces the number of checking
patterns for overlap. For details on rotational unfold-
ing, refer to [14].

3 Results

This study presents the following theorem for cuboids:

29

35th Canadian Conference on Computational Geometry, 2023

…

…
…

…

(a) An unnecessary path in rota-
tion unfolding.

…
…

(b) A desired path.

Figure 9: The pair of gray faces of the path (a) do not
need to be considered because they have already
checked in the path (b).

Theorem 8

• For the (1, 1, 1)-cuboid or (
√

2,
√

2,
√

2)-cuboid,
there is no overlapping lattice unfolding.

• For the (1, 1, 2)-cuboid, there are no faces-in-touch
lattice unfoldings and no edges-in-touch lattice un-
foldings, but a vertices-in-touch lattice unfolding
exists.

• For the (1, 2, 2)-cuboid or (2, 2, 2)-cuboid, there is
no faces-in-touch lattice unfoldings, but edges-in-
touch lattice unfolding and vertices-in-touch lattice
unfolding exist.

• For any other cases, faces-in-touch lattice unfold-
ings, edges-in-touch lattice unfoldings, and vertices-
in-touch lattice unfoldings exist.

First, we show the method to check the overlapping
of lattice unfoldings by computational experiment. By
implementing the following method, we check the non-
existence side of the statements of Theorem 8. This
experiment includes the verification of the previous re-
sults [7] and [15].

3.1 The method to check the overlapping of lattice
unfoldings by computational experiment

The method of rotational unfolding in Section 2.5 is
used to enumerate edge unfoldings, but cannot be di-
rectly used for lattice unfolding. This section shows the
method of extending rotational unfolding to lattice un-
folding.

In the rotational unfolding, the dual graph D(GP)
of its edge representation graph GP is used for tech-
nical reasons. According to this, we consider the dual
graph D(GC) of the lattice representation graph GC for
the lattice unfolding of a cuboid C. Lemma 7 implies
that GC has no leaf nodes other than the vertices of
the cuboid. When enumerating D(GC), it is necessary
to remove redundant parts of the path, such as the one
shown in Figure 9(a). Therefore, we introduce the fol-
lowing characters for information about the “direction
of rolling when viewed from one step before”:

R : Roll to the right from one step before.

C : Roll straight from one step before.

…

(a) “CCRCL”

…

(b) “CLRRCRLLC”

Figure 10: Strings of paths obtained by rotational unfold-
ing.

(a) “CR” (b) “CC” (c) “CL”

(d) “CRRR” (e) “CCRR” (f) “CLRR”

Figure 11: (a)-(c): Paths for steps 2. (d)-(f): Paths for
steps 3 and 4 when rolling “RR”.

L : Roll to the left from one step before.

In addition, the path obtained using the rotational un-
folding will be represented as a string (Figure 10 shows
examples). In the rotational unfolding, the first step is
to roll straight ahead, so the path obtained in the first
step is “C”. We can state the following lemma:

Lemma 9 When representing the path obtained by ro-
tational unfolding as a string, it includes redundant
parts if it contains “RR” or “LL”.

Proof. In the second step of the rotational unfolding,
we have three cases: (1) rolling to the right (string:
“CR”, Figure 11(a)), (2) rolling straight (string: “CC”,
Figure 11(b)), and (3) rolling to the left (string: “CL”,
Figure 11(c)). If we repeat the action of rolling right, or
“RR”, twice after the second step, we get (1) “CRRR”
(Figure 11(d)), (2) “CCRR” (Figure 11(e)), and (3)
“CLRR” (Figure 11(f)). For case (1), this situation
cannot occur because we have already used the face
as part of the constructed path. For cases (2) and
(3), the paths represented by “CR” and “CC” (Figures
11(a) and 11(b)) have already been checked for overlap.
Therefore, if “RR” is included in the path, it contains
redundant parts. Similarly, we can show this in the case
of “LL”. □

When a cuboid has an overlapping lattice unfolding,
we can determine how they overlap using the following
observation:

Observation 10 In rotational unfolding, compute the
center coordinates of the face at one endpoint, assuming
its center coordinates are (0, 0). Then, while rolling the

30

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

… …

…

(a) The coordinates of
the center of each
face.

… …

…

(b) The coordinates of the
center of the face at the
other endpoint.

Figure 12: The method to check for overlap in rotational
unfoldings, including their type.

path sequentially, compute the center coordinates of the
face at the other endpoint (see Figure 12(a)). We can
determine the type of unfolding based on the coordinates
of the center of the face at the other endpoint:

• If the coordinate is (0, 0), it is a faces-in-touch un-
folding (a red face ■ in Figure 12(b)).

• If the coordinates are (0, 1), (−1, 0), or (0,−1), it
is an edges-in-touching unfolding (blue faces ■ in
Figure 12(b)).

• If the coordinates are (1, 1), (1,−1), (−1,−1), or
(−1, 1), it is a vertices-in-touch unfolding (green
faces ■ in Figure 12(b)).

3.2 Construction of specific overlapping unfoldings

Hereafter, we prove the existence side of the statements
of Theorem 8 by showing specific overlapping unfold-
ings.

3.2.1 Case of L = 1

From Theorem 2 and Theorem 3, a faces-in-touch, an
edges-in-touch, and vertices-in-touch unfoldings exist
for the (x, y, z)-cuboid, where z ≥ 3. For the remaining
cases for the case of L = 1, we provide specific examples
of unfoldings as follows:

Lemma 11

• A vertices-in-touch unfolding exists for the (1, 1, 2)-
cuboid, as shown in Figure 13(a).

• An edges-in-touch unfolding and a vertices-in-touch
unfolding exist for the (1, 2, 2)-cuboid, as shown in
Figure 13(b), and Figure 13(c) respectively.

• An edges-in-touch unfolding and a vertices-in-touch
unfolding exist for the (2, 2, 2)-cuboid, as shown in
Figure 13(d), and Figure 13(e) respectively.

3.2.2 Case of L =
√

2, L =
√

5, and L =
√

10

From the inclusion relationship between the edges-in-
touch and vertices-in-touch unfolding, we have only to
show the existence of the faces-in-touch unfolding.

(a) A (1, 1, 2)-
cuboid.

(b) A (1, 2, 2)-
cuboid.

(c) A (1, 2, 2)-
cuboid.

(d) A (2, 2, 2)-
cuboid.

(e) A (2, 2, 2)-
cuboid.

(f) A
(
√
2,

√
2, 2

√
2)-

cuboid.

Figure 13: Overlapping lattice unfolding by cutting along
the red lines.

Figure 14: The lattice unfolding QL.

Figure 15: The lattice unfolding QL can be embedded in
the three faces in front of the (

√
2,
√

2, 2
√

2)-
cuboid.

A faces-in-touch unfolding exist for the
(
√

2,
√

2, 2
√

2)-cuboid, as shown in the lower part
of Figure 13(f). From now on, we will refer to this
lattice unfolding as QL (Figure 14). Moreover, the
(
√

2,
√

2, 2
√

2)-cuboid can be unfolded to partially
include the lattice unfolding QL, because QL can
be embedded on the three faces in front of the
(
√

2,
√

2, 2
√

2)-cuboid. Note that we have to fold the
three triangular faces indicated in pink (■), light blue
(■), and light green colors (■) in the positive direction
of the y-axis, the positive direction of the x-axis, and
the positive direction of the x-axis, respectively (see
Figure 15). This embedding method can also be applied
to the (x

√
2, y
√

2, z
√

2)-cuboid, where x, y, z ≥ 2, as
shown in Figure 16.

31

35th Canadian Conference on Computational Geometry, 2023

…
…

…

…
…

……
… …

…
…

Figure 16: The lattice unfolding QL can be embedded in the
(x
√

2, y
√

2, z
√

2)-cuboid, where z ≤ 2-cuboid.

(a) The (
√
5,

√
5,

√
5)-cuboid. (b) The (

√
10,

√
10,

√
10)-

cuboid.

(c) The (
√
13,

√
13,

√
13)-

cuboid.

(d) The (L,L, L)-cuboid,
where L ≥

√
13.

Figure 17: The lattice unfolding QL can be embedded in
each cuboid.

The same embedding can be performed for cases
where L =

√
5 and L =

√
10 (refer to Figure 17).

3.2.3 Case of L ≥
√

13

The lattice unfolding QL can be embedded in the
(
√

13,
√

13,
√

13)-cuboid, as shown in Figure 17(c).
Here, we present the following lemma:

Lemma 12 The lattice unfolding QL can be embedded
in the (L,L,L)-cuboid, where L ≥

√
13.

Proof. Consider three unit squares with vertex v in
common (Figure 17(d)). The three-unit squares en-
closed in blue in Figure 14 can be embedded in this
point. Let S be the side face of a cone with the length of
the axis

√
13 and central angle 270◦ (Figure 18). Here-

after S is called the cone. Since the central angle of
the cone S is 270◦, the three unit squares enclosed in
blue in Figure 14 can be embedded with vertex v coin-
ciding. Additionally, due to the Euclidean distance be-
tween the point v and the furthest point w in Figure 14
being

√
22 + 32 =

√
13, the remaining faces except for

the three faces enclosed in blue can be embedded as
shown in Figure 18 (right). The cone S can be embed-
ded in the three front faces of a (L,L,L)-cuboid where

Figure 18: The side face of a cone with the length of the
axis

√
13 and central angle 270◦. By rounding

the left fan shape, the right solid is obtained.
We can embed a lattice unfolding QL in this.

Figure 19: A cone S can be embedded in the three faces in
front of the (L,L, L)-cuboid, where L ≥

√
13.

L ≥
√

13, as shown in Figure 19. From the fact that
the cone S can be embedded on a (L,L,L)-cuboid and
that the lattice unfolding QL can be embedded on top
of the cone S, it can be concluded that the lattice un-
folding QL can be embedded on the three front faces of
a (L,L,L)-cuboid. □

From this lemma, a faces-in-touch unfolding exists for
the (xL, yL, zL)-cuboid in any of the x, y, z, where
L ≥

√
13. The same can be said for edges-in-touch

and vertices-in-touch unfolding due to the inclusion re-
lationship.

4 Conclusion

In this paper, we completely clarified the condition for
an unfolding to have an overlapping when we unfold a
cuboid into a polyomino. This result gives us a bound-
ary condition for whether the unfolding of a polyhedron
has overlap, depending on the fineness of the cut lines.
This result could be immediately extended to the trian-
gular lattice unfolding of an octahedron or icosahedron.

Moreover, our technique in Section 3.1 would be use-
ful for more general ways of unfolding; for example, the
case to allow cutting diagonals of the faces of convex
regular-faced polyhedra. This approach would also be
important, as it would provide more information than
Table 1 about the conditions that an unfolding has over-
laps.

Acknowledgments.

This work was supported in part by JSPS KAK-
ENHI Grant JP20H05961, 20H05964 , 22H01423, and
JP22KJ1480.

32

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] B. Aronov and J. O’Rourke. Nonoverlap of the star
unfolding. Discrete Comput. Geom., 8:219–250, 1992.

[2] T. C. Biedl, E. D. Demaine, M. L. Demaine, A. Lu-
biw, M. H. Overmars, J. O’Rourke, S. Robbins, and
S. Whitesides. Unfolding some classes of orthogonal
polyhedra. In 10th Canadian Conference on Computa-
tional Geometry, 1998.

[3] H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved
Problems in Geometry. Springer-Verlag, reissue edition,
1991.

[4] A. Dürer. Underweysung der messung, mit dem zir-
ckel und richtscheyt in linien ebenen unnd gantzen
corporen, 1525. Available electronically for example
http://books.google.com/books?id=5fxOAAAAcAAJ.

[5] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, 2007.

[6] B. Grünbaum. Are your polyhedra the same as my
polyhedra? In Discrete and Computational Geometry,
volume 25, pages 461–488. Springer, 2003.

[7] R. Hearn. personal communication, 2018.

[8] K. Hirose. Hanseitamentai no tenkaizu no kasanari
ni tsuite (On the overlap of Archimedean solids), in
Japanese, 2015. Saitama Univ. graduation thesis. Su-
pervisor : Takashi Horiyama.

[9] T. Horiyama and W. Shoji. Edge unfoldings of platonic
solids never overlap. In 23rd Canadian Conference on
Computational Geometry, 2011.

[10] J. Mitani and R. Uehara. Polygons folding to plural
incongruent orthogonal boxes. In 20th Canadian Con-
ference on Computational Geometry, 2008.

[11] M. Namiki and K. Fukuda. Unfolding 3-dimensional
convex polytopes. A package for Mathematica 1.2 or
2.0. Mathematica Notebook, 1993.

[12] M. Sharir and A. Schorr. On shortest paths in polyhe-
dral spaces. SIAM J. Comput., 15(1):193–215, 1986.

[13] T. Shiota. Overlapping edge unfoldings for convex
regular-faced polyhedrons, 2023. Kyushu Institute of
Technology master’s thesis. Supervisor : Toshiki Saitoh.

[14] T. Shiota and T. Saitoh. Overlapping edge unfoldings
for archimedean solids and (anti)prisms. In 17th In-
ternational Conference and Workshops of Algorithms
and Computation, volume 13973 of LNCS, pages 36–
48. Springer, 2023.

[15] H. Sugiura. personal communication, 2018.

[16] T. Uno. personal communication, 2008.

33

34

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

A Parameterized Algorithm for Flat Folding

David Eppstein∗

Abstract

We prove that testing the flat foldability of an origami
crease pattern (either labeled with mountain and valley
folds, or unlabeled) is fixed-parameter tractable when
parameterized by the ply of the flat-folded state and
by the treewidth of an associated planar graph, the cell
adjacency graph of an arrangement of polygons formed
by the flat-folded state. For flat foldings of bounded
ply, our algorithm is single-exponential in the treewidth;
this dependence on treewidth is necessary under the
exponential time hypothesis.

1 Introduction

In a foundational result in the computational complexity
of mathematical paper folding, Bern and Hayes proved
in 1996 that it is NP-complete to determine whether a
crease pattern, described as a set of straight fold lines on
a flat piece of paper, can be folded to lie flat again after
exactly the prescribed folds have been made [5]. This
result holds regardless of whether the folds are given
purely as line segments, or whether they additionally
specify whether each fold is to be a mountain fold or a
valley fold. It assumes a general model of folding where
only the existence of the desired folded state is to be
determined, and not a sequence of motions that reach it,
but subsequent work has also proved similar hardness
results for other models such as box pleating, where the
folds are aligned with the axes and diagonals of a square
grid [2], and the simple folding typical of sheet-metal
manufacturing in which this motion must only be made
on one fold line at a time [3, 4].

On the positive side, not much is known about classes
of crease patterns for which foldability is easier to deter-
mine. One such class, but a very limited one, is the class
of patterns where the folds meet in a single vertex (or as
a degenerate case, where they all lie on parallel lines). In
this case, a linear-time greedy algorithm follows from the
big-little-big lemma, in which creases forming a sharp
angle between two wider angles must fold in a fixed way,
allowing a reduction to a simpler configuration [5]. Two
more polynomial cases are simple folding of rectangles
subdivided into congruent rectangles (“map folding”) [4],
and general map folding of 2× n grids of rectangles [21].

∗Department of Computer Science, University of California,
Irvine. Research supported in part by NSF grant CCF-2212129.

In this work, we provide the first algorithmic upper
bounds on testing flat foldability of arbitrary crease pat-
terns, not restricted to special cases such as map folding.
Our work analyzes this problem using tools from pa-
rameterized complexity. We show that flat-foldability
is fixed-parameter tractable when parameterized by two
values: the ply of the crease pattern (how many layers of
paper can overlap at any point of the flat-folded result),
and the treewidth of an associated cell adjacency graph
constructed by overlaying the flat polygons of the crease
pattern in the positions they would take in their folded
state. The pattern may either be labeled with mountain
and valley folds or unlabeled. We identify a wide class
of patterns for which flat foldability is easy: those with
bounded ply and bounded treewidth. For flat foldings
of bounded ply, our algorithm is single-exponential in
the treewidth. As we show in an appendix, this expo-
nential dependence is necessary under the exponential
time hypothesis, both for unlabeled and labeled crease
patterns. We do not have as strong an argument for
why the dependence on ply is necessary, but if it could
be eliminated, we could solve map folding in polynomial
time, a major open problem in this area.
Bounded ply is natural in paper folding, as large ply

can lead to difficulty in the physical realization of a
folding [12]. The treewidth parameter is intended to
capture the notion of a crease pattern that is complicated
only in one dimension, and simple in a perpendicular
dimension, as occurs (with large ply) for 2 × n map
folding. Single-vertex crease patterns also automatically
have low treewidth (their cell adjacency graph is just
a cycle; see Section 2.3) but may again have high ply.
Fixed-parameter tractability of an algorithm means that
its worst-case time bound has the form of a polynomial in
the input size, multiplied by a non-polynomial function
of the parameters; in our case this function is factorial in
the ply and exponential in the treewidth. On inputs for
which the parameters are bounded, this function value
is also bounded and the time bound simplifies to being
purely a polynomial of the input size.

Another class of example patterns for which the param-
eters of our algorithm are naturally bounded comes from
the origami font of Demaine, Demaine, and Ku [8–10].
Rendering text in this font converts it into an origami
crease pattern (Fig. 1). When folded, this pattern
produces a three-dimensional structure consisting of
letterform-shaped vertical walls on a flat background
surface (Fig. 2). The resulting structures are not ac-

35

35th Canadian Conference on Computational Geometry, 2023

Figure 1: A crease pattern for the origami font of Demaine, Demaine, and Ku, produced by http://erikdemaine.
org/fonts/maze/?text=origami.

Figure 2: The 3d folded form of the pattern from
Fig. 1, as produced by http://erikdemaine.org/
fonts/maze/?text=origami.

tually flat foldings (because of the vertical walls) but
can easily be modified to be. The resulting crease pat-
tern, for a line of text, has bounded ply, high complexity
along any horizontal line through the pattern, and low
complexity along any vertical line. Its cell adjacency
graph has bounded bandwidth, but for a modified ver-
sion of the font that included ascenders and descenders
it would instead have bounded pathwidth, both of which
are special cases of our bounded treewidth assumption.

2 Preliminaries

2.1 Flat folding

Following our previous work [15], we base our definition
of flat folding on a local flat folding, a simplified model
of folding which describes only how the folding maps a
flat surface to itself, and does not describe the spatial
arrangement of the layers of paper as a flat-folded sur-
face. We will then augment this model to include layer
ordering, to define a flat folding.

Thus, we define a local flat folding of a planar polygon
P to be a continuous piecewise isometry ϕ from P to the
plane. That is, it is a continuous function that acts as
a distance-preserving mapping of the plane within each
of a system of finitely many interior-disjoint polygons

whose union is P . The points at which ϕ is not locally
an isometry lie on the boundaries of these polygons,
forming creases (line segments between two polygons
mapped differently by ϕ) and vertices (points where
multiple creases meet). We may choose the polygons of
ϕ so that each polygon is bounded by creases and by
the boundary of P . The crease pattern of a local flat
folding is this system of creases and vertices. At this
level of detail, there is no distinction between mountain
folds and valley folds.

Observation 1. Given a decomposition of a polygon P
into smaller polygons, we can determine in linear time
whether this decomposition forms the crease pattern of
a local flat folding, and if so reconstruct a function ϕ
having that decomposition as its crease pattern.

Proof. We choose an arbitrary starting polygon, set ϕ
to be the identity within this polygon, and then traverse
the adjacencies between polygons of the decomposition.
When we traverse the edge between a polygon whose
mapping under ϕ has been determined to another poly-
gon whose mapping has not, we set the mapping for the
new polygon to be the mapping for the old polygon, re-
flected across the line through the traversed edge. When
we traverse an edge to a polygon whose mapping has
already been determined, we check that its mapping is
consistent with this reflection.

The function ϕ, constructed in this way, is unique up
to rigid transformations of the plane.
We define the arrangement of a local flat folding to

be the result of overlaying the transformed copies of
each of its polygons. It partitions the plane into cells,
polygons that are not crossed by the image of any crease.
Within each cell, all points have preimages coming from
the same set of polygons of the crease pattern. The ply
of a cell is the number of these preimages, and the ply
of the crease pattern is the maximum ply of any cell.
See Fig. 3. Using standard methods from computational
geometry, an arrangement of a local flat folding with n
creases has complexity O(n2) and can be constructed
(including the calculation of its ply) in time O(n2).

Our previous work [15] defined a global flat folding
to be “a local flat folding that, for every ε > 0, is ε-

36

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 3: The crease pattern of a local flat folding (left)
and the arrangement of the folding (right), with shading
indicating the ply of each arrangement cell. The ply of
the overall pattern is four, equal to the maximum ply in
the small triangular cell.

Figure 4: Cyclically-ordered box-top flaps

Figure 5: A crease pattern with two valley folds that,
when flat-folded, causes its two L-shaped polygons to
have two different above-below orderings in the two cells
of the arrangement where they overlap.

close to a topological embedding of the plane into three-
dimensional space”, but for our purposes we need to
actually describe the three-dimensional embedding com-
binatorially, not merely to assert its existence. Instead,
we define a layering of a local flat folding to be an as-
signment, for each cell of the arrangement of the folding,
of a vertical ordering on the preimage polygons of the
cell. We allow different cells to have different and in-
consistent vertical orderings. This may be necessary to
model real-world foldings in which the vertical order-
ing of polygon has cycles, as happens for instance in

flexagons [17] and in a common method for folding the
four flaps of a box top (Fig. 4). It is even possible for
the same two polygons of a crease pattern to have two
different above-below orderings in two different cells of
the arrangement in which they overlap (Fig. 5).
We define a flat folding to be a local flat folding to-

gether with a layering that, for every ε > 0, is consistent
with the layering coming from a topological embedding
of the crease pattern into three-dimensional space that
is ε-close to the local flat folding. Here, “close” means
there exists a local flat folding into a plane in space so
that, for every point of the crease pattern, its images
under the topological embedding and under the local
flat folding have distance at most ε from each other. To
avoid topological difficulties we additionally require that
a line perpendicular to the plane, through a point of the
plane farther than ε from any crease, has exactly one
point of intersection with each polygon in the topological
embedding: the embedding cannot be “crumpled” far
from its creases. With this restriction, the polygons that
map to each cell have a consistent layering, the ordering
in which they meet any such perpendicular line.
If we look at a cross-section of such a topological

embedding, across any crease of the embedding, we will
see the layers in two adjacent cells of the arrangement.
Two layers in the same cell can be paired up to form a
crease, two layers from the two cells can be paired up
to form parts of a polygon that span the cell without
forming a crease, and it is also possible to have an
unpaired layer whose boundary at the crease coincides
with a boundary of the overall crease pattern (Fig. 6,
left). These layers and pairs of layers must meet certain
obvious conditions:

• If two polygons span the two cells without being
creased, they must be consistently ordered in both
cells instead of crossing at the crease (Fig. 6, top
right).

• If two layers of the same cell meet in a crease, and
another polygon spans the two cells without being
creased, the polygon cannot lie between the two
creased layers of the first polygon, as their crease
would block it from extending into the second cell
(Fig. 6, middle right).

• If two pairs of layers in the same cell meet in the
same crease, then their layers cannot alternate, as
this would again form a crossing (Fig. 6, bottom
right). However, it may be possible to have alter-
nating pairs of layers that meet in different creases,
along different edges of the same cell.

• If two layers of the same cell meet in a crease, and are
labeled as being a mountain fold or valley fold in the
crease pattern, then the ordering of the layers must
be consistent with that type of fold (not shown).

37

35th Canadian Conference on Computational Geometry, 2023

Figure 6: Left: cross-section through a crease (shaded
region) of a uncrossed layering. Right: Three ways
that a layering can be inconsistent across a crease: two
uncreased polygons cross (top), an uncreased polygon
is blocked by two layers that connect to form a crease
(middle), or two pairs of creased layers cross (bottom).

We define a layering for a local flat folding to be uncrossed
when, at each crease, it meets all of these conditions.

Lemma 2. A local flat folding comes from a flat folding
if and only if it has an uncrossed layering.

Proof. In one direction, if a flat folding exists, it can-
not violate any of the conditions above, because each
describes a certain type of crossing, and topological em-
beddings forbid crossings. In the other direction, every
uncrossed layering comes from a flat folding: one can
form a 3d embedding from it, by shrinking each cell a
small distance from its boundary, making parallel copies
of the cell in 3d in the order given by the layering, all
separated from each other but within distance ε of the
plane of the local flat folding, and connecting them with
curved patches of surface near each crease.
It is unnecessary to add more case analysis for the

way layerings can interact at a vertex, instead of across
a crease. Two surfaces in 3d cannot cross each other at
a single point, without crossing along a curve touching
that point, so if a system of surfaces in 3d defined from
a uncrossed layering avoids crossings except at points ε-
close to the vertices, it can be converted into a topological
embedding for the same layering that avoids crossing
everywhere.

2.2 Treewidth

A tree decomposition of a graph G consists of an un-
rooted tree T , and an assignment to each tree vertex ti
of a set Bi of vertices from G (called a bag), such that
each vertex of G belongs to the bags from a connected
subtree of T , and each edge of G has endpoints that
belong together in at least one bag. Its width is the
maximum size of a bag, minus one, and the treewidth of
G is the minimum width of any tree decomposition of G.
Many optimization problems that are hard on arbitrary
graphs can be solved in linear time on graphs of bounded
treewidth, using dynamic programming over their tree
decompositions. Although finding the treewidth is itself
a hard optimization problem, it can be solved in linear

a

c d

e

f

b

acf
acf acf

abcf
bcf
cf
f

acef
cef
cdef
def
ef
f

Figure 7: The arrangement from Fig. 3, its cell adjacency
graph, and a nice tree decomposition of the cell adjacency
graph.

time for graphs of bounded treewidth, with a time bound
that is exponential in the cube of the width [6]. In our ap-
plication we will be using the treewidth of planar graphs,
derived from the arrangement of a crease pattern. It is
unknown whether planar treewidth is hard, but it can
be approximated in (unparameterized) polynomial time
with an approximation ratio of 3/2 by an algorithm for a
closely related width parameter called branchwidth [23].

It will simplify the description of our algorithm to use
a tree decomposition of a special form, called a nice tree
decomposition. This differs from a tree decomposition
in being a rooted tree. The tree vertices and their bags
have four types:

• Leaf bags, leaves of the rooted tree, have exactly
one graph vertex in the bag.

• Introduce bags have exactly one child vertex in the
tree, and their bag differs from that of the child by
the addition of exactly one graph vertex.

• Forget bags have exactly one child vertex in the tree,
and their bag differs from that of the child by the
removal of exactly one graph vertex.

• Join bags have exactly two children, whose bags are
both equal to the join bag.

A nice tree decomposition can be constructed in lin-
ear time from an arbitrary tree decomposition, without
increasing the width, and it has size linear in the size of
the input tree decomposition [20].

2.3 Cell adjacency graphs and their treewidth

Recall that our definition of flat folding involves con-
structing an arrangement of polygons, the images of the
polygons in the crease pattern under the mapping that
defines a local flat folding. The usual notion of an ar-
rangement graph is a planar graph with a vertex for each
crossing or endpoint of a line segment in this arrange-
ment, and an edge for each piece of polygon boundary
connecting two of these vertices [7]. Instead, we use its

38

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

dual graph, which we call the cell adjacency graph. This
has a vertex for each cell of the arrangement, and an
edge between each two neighboring cells. It has been
used before in computational geometry (e.g. [14]), but
appears to lack a standard name.
Even when a cell has ply zero, we include it in this

graph, in order to check for crossings along the creases
between this cell and its neighbors. For example, in the
map folding problem, a square grid crease pattern is
folded down to a single square, but the arrangement has
two cells, the inside of the square and the outside, so
the cell adjacency graph is K2. In the case of a single-
vertex crease pattern, the local flat folding produces an
arrangement consisting of wedges all having this vertex
as their apex, and its cell adjacency graph is a cycle.
The two main parameters for the analysis of our al-

gorithm will be the ply of the local flat folding, and the
treewidth of the cell adjacency graph. Fig. 7 depicts an
example of a cell adjacency graph of treewidth 2, and a
nice tree decomposition with a join bag at its root.

3 The algorithm

We will test the flat foldability of a crease pattern by
first attempting to construct its local flat folding. If this
step fails, a flat folding does not exist, and our algorithm
exits with a negative answer. Next, we construct its
arrangement and its cell adjacency graph, find an optimal
or near-optimal tree decomposition of the cell adjacency
graph using any of the various algorithms known for this
problem, and convert the tree decomposition to a nice
tree decomposition of the same width.
Finally, we reach the main part of our algorithm: a

bottom-up dynamic program on the bags of the tree
decomposition. If B is any bag (that is, a set of cells of
the arrangement, associated with a vertex of the nice tree
decomposition), we define a state of B to be a layering
of each cell in B.

Observation 3. In a tree decomposition of width w for
a crease pattern of ply p, every bag has at most (p!)w+1

states.

If B has a child C in the tree decomposition, then
we say that a state of B is consistent with a state of
C if they have the same layering in all of the cells that
belong to both bags. We say that a state of bag B is
locally uncrossed if, for all pairs of adjacent cells that
both belong to B, the layerings of these two cells in
this state meet the same conditions that we used earlier
to define a global layering as being uncrossed. We say
that a state is valid when it is locally uncrossed and is
consistent with (recursively defined) valid states for all
child bags.

Lemma 4. For any bag B of the tree decomposition,
there exists a valid state for B if and only if there exists

a layering for the entire local flat folding that meets the
conditions of being uncrossed at all creases between pairs
of cells that occur together in B or one of its descendants
in the tree decomposition.

Proof. If such a layering exists, its restriction to the
cells in B and its descendant bags produces a valid
state. If a valid state exists, coming from a recursively
constructed set of valid states among its descendant
bags, then each of these states must consistently layer
the cells that they have in common, by the requirement
of tree-decompositions that each graph vertex belong
to bags in a connected subtree. Form a global layering
by choosing arbitrarily a layering for each cell that is
not included among these descendants. Then it must
be uncrossed at all creases between pairs of cells that
occur together in B or one of its descendants, because
any crossing would cause the state to be invalid at that
bag, violating the assumption that we have a recursively
constructed set of valid states.

Lemma 5. If we have already computed the valid states
of each child of a given bag B of a nice tree decomposition,
we can compute the valid states for B itself in time
O(pw(p!)w+1).

Proof. We apply a case analysis according to the type
of B in the decomposition.

• At a leaf bag, all states are valid, because there are
no creases between pairs of cells to cause crossings.

• At an introduce bag, we must add a layering for
the introduced cell to all valid layerings of the other
cells from the child node. For each child layering,
and each layering of the introduced cell, we check
at most w previously-unrepresented creases, each
in time O(p), to determine whether it forms any of
the forbidden crossing types.

• At a forget bag, all valid states of the child node
determine a valid state of the bag, by forgetting the
layering on the cell that is not included.

• At a join bag, a state is valid when it is valid in
both child states. We can intersect the sets of valid
states in both children, in time linear in the number
of possible states, using a bit array.

Putting these pieces together gives our main result:

Theorem 6. Testing flat foldability of a crease pattern
with n creases and ply p, with a cell adjacency graph
of treewidth w, can be performed in time that is fixed-
parameter tractable in p and w, and quadratic in n.

Proof. We construct the nice tree decomposition as de-
scribed above, and traverse it in bottom-to-top order,
using Lemma 5 to determine the valid states in each

39

35th Canadian Conference on Computational Geometry, 2023

bag. A folding exists if and only if there is a valid state
at the root bag, by Lemma 4. The quadratic depen-
dence on n comes from the size of the arrangement of
the local flat folding, and the size of the tree decompo-
sition of its cell adjacency graph. The dependence on
ply and width comes from the time bound per bag in
Lemma 5, the time to construct a tree decomposition
using known algorithms, and the relation between the
width of the cell adjacency graph and the width of the
constructed decomposition coming from the choice of
these algorithms.

4 Conclusions

We have shown that flat foldability, in a general model
allowing cyclic overlaps between polygons, can be tested
in fixed-parameter tractable time when parameterized
both by ply and by the treewidth of an associated cell
adjacency graph. Both parameters appear necessary
for this result: the known NP-hardness reductions for
flat foldability can be made to have bounded ply (but
unbounded treewidth), while the still-open map fold-
ing problem has bounded treewidth and more strongly
bounded cell adjacency graph size (but unbounded ply).
It would be of interest to extend our algorithms to

other forms of flat folding, such as the simple folding
models [3, 4]. Another direction for possible future work
concerns models of folding that require the existence
of a three-dimensional continuous motion respecting
the given fold lines (rigid origami [1, 22,24]), as well as
inputs where the desired folded state is in some way three-
dimensional (such as the raised ridges in the origami fonts
of Demaine, Demaine, and Ku [8–10]. Although there
has been extensive study of types of instance that can or
cannot be guaranteed to have a continuous motion taking
them between their unfolded and folded states [11,13,16],
there is little work on algorithmic time bounds for testing
the existence of this sort of motion. Whether these
three-dimensional models of origami can be reduced to
a combinatorial problem to which the sort of methods
described here can apply remains a challenge.

References

[1] Zachary Abel, Jason Cantarella, Erik D. De-
maine, David Eppstein, Thomas Hull, Jason S. Ku,
Robert J. Lang, and Tomohiro Tachi. Rigid origami
vertices: Conditions and forcing sets. J. Comput.
Geom., 7(1):171–184, 2016. doi:10.20382/jocg.
v7i1a9.

[2] Hugo A. Akitaya, Kenneth C. Cheung, Erik D.
Demaine, Takashi Horiyama, Thomas Hull, Ja-
son S. Ku, Tomohiro Tachi, and Ryuhei Uehara.
Box pleating is hard. In Jin Akiyama, Hiro Ito,

Toshinori Sakai, and Yushi Uno, editors, Dis-
crete and Computational Geometry and Graphs –
18th Japan Conference, JCDCGG 2015, Kyoto,
Japan, September 14–16, 2015, Revised Selected
Papers, volume 9943 of Lecture Notes in Com-
put. Sci., pages 167–179. Springer, 2015. doi:
10.1007/978-3-319-48532-4_15.

[3] Hugo A. Akitaya, Erik D. Demaine, and Jason S.
Ku. Simple folding is really hard. J. Informa-
tion Processing, 25:580–589, 2017. doi:10.2197/
ipsjjip.25.580.

[4] Esther M. Arkin, Michael A. Bender, Erik D. De-
maine, Martin L. Demaine, Joseph S. B. Mitchell,
Saurabh Sethia, and Steven S. Skiena. When can
you fold a map? Comput. Geom. Theory & Appl.,
29(1):23–46, 2004. doi:10.1016/j.comgeo.2004.
03.012.

[5] Marshall Bern and Barry Hayes. The complexity of
flat origami. In Proc. 7th ACM-SIAM Symposium
on Discrete Algorithms (SODA ’96), pages 175–183,
Philadelphia, PA, 1996. Society for Industrial and
Applied Mathematics. URL: https://portal.acm.
org/citation.cfm?id=313852.313918.

[6] Hans L. Bodlaender. A linear-time algorithm
for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:
10.1137/S0097539793251219.

[7] Prosenjit Bose, Hazel Everett, and Stephen Wis-
math. Properties of arrangement graphs. Inter-
nat. J. Comput. Geom. Appl., 13(6):447–462, 2003.
doi:10.1142/S0218195903001281.

[8] Erik D. Demaine and Martin L. Demaine. Fun with
fonts: algorithmic typography. Theor. Comput. Sci.,
586:111–119, 2015. doi:10.1016/j.tcs.2015.01.
054.

[9] Erik D. Demaine and Martin L. Demaine. Adven-
tures in maze folding art. J. Information Processing,
28:745–749, 2020. doi:10.2197/ipsjjip.28.745.

[10] Erik D. Demaine, Martin L. Demaine, and Jason S.
Ku. Origami maze puzzle font. In Exchange Book of
the 9th Gathering for Gardner (G4G9). March 24–28
2010. URL: https://erikdemaine.org/papers/
MazeAlphabet_G4G9/.

[11] Erik D. Demaine, Satyan L. Devadoss, Joseph S. B.
Mitchell, and Joseph O’Rourke. Continuous fold-
ability of polygonal paper. In Proceedings of the
16th Canadian Conference on Computational Ge-
ometry, CCCG’04, Concordia University, Montréal,
Québec, Canada, August 9-11, 2004, pages 64–67,
2004. URL: https://www.cccg.ca/proceedings/
2004/55.pdf.

40

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[12] Erik D. Demaine, David Eppstein, Adam Hester-
berg, Hiro Ito, Anna Lubiw, Ryuhei Uehara, and
Yushi Uno. Folding a paper strip to minimize
thickness. J. Discrete Algorithms, 36:18–26, 2016.
doi:10.1016/j.jda.2015.09.003.

[13] Erik D. Demaine and Joseph S. B. Mitchell. Reach-
ing folded states of a rectangular piece of paper.
In Proceedings of the 13th Canadian Conference on
Computational Geometry, University of Waterloo,
Ontario, Canada, August 13-15, 2001, pages 73–75,
2001. URL: https://erikdemaine.org/papers/
PaperReachability_CCCG2001/.

[14] Linda Deneen and Gary Shute. Polygonizations of
point sets in the plane. Discrete Comput. Geom.,
3(1):77–87, 1988. doi:10.1007/BF02187898.

[15] David Eppstein. Realization and connectivity of
the graphs of origami flat foldings. J. Comput.
Geom., 10(1):257–280, 2019. doi:10.20382/jocg.
v10i1a10.

[16] David Eppstein. Locked and unlocked smooth em-
beddings of surfaces. In Proc. 34th Canadian Con-
ference on Computational Geometry (CCCG 2022),
pages 135–142, 2022.

[17] Martin Gardner. Flexagons: In which strips
of paper are used to make hexagonal figures
with unusual properties. Scientific American,
195(6):162–168, December 1956. doi:10.1038/
scientificamerican1256-162.

[18] Russell Impagliazzo, Ramamohan Paturi, and Fran-
cis Zane. Which problems have strongly exponential
complexity? J. Comput. System Sci., 63(4):512–530,
2001. doi:10.1006/jcss.2001.1774.

[19] Peter Jonsson, Victor Lagerkvist, Gustav Nordh,
and Bruno Zanuttini. Complexity of SAT problems,
clone theory and the exponential time hypothesis. In
Sanjeev Khanna, editor, Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 1264–1277. SIAM,
2013. doi:10.1137/1.9781611973105.92.

[20] Ton Kloks. Treewidth, Computations and Approxi-
mations, volume 842 of Lecture Notes in Comput.
Sci. Springer, 1994. doi:10.1007/BFb0045375.

[21] Thomas D. Morgan. Map Folding. Master’s thesis,
Massachusetts Institute of Technology, June 2012.
URL: https://hdl.handle.net/1721.1/77030.

[22] Gaiane Panina and Ileana Streinu. Flattening single-
vertex origami: The non-expansive case. Computa-
tional Geometry, 43(8):678–687, 2010. arXiv:1003.
3490, doi:10.1016/j.comgeo.2010.04.002.

[23] Paul D. Seymour and Robin Thomas. Call routing
and the ratcatcher. Combinatorica, 14(2):217–241,
1994. doi:10.1007/BF01215352.

[24] Ileana Streinu and Walter Whiteley. Single-vertex
origami and spherical expansive motions. In Dis-
crete and Computational Geometry: Japanese Con-
ference, JCDCG 2004, Tokyo, Japan, October 8-11,
2004, Revised Selected Papers, volume 3742 of Lec-
ture Notes in Comput. Sci., pages 161–173. Springer,
2005. doi:10.1007/11589440_17.

41

35th Canadian Conference on Computational Geometry, 2023

A ETH-hardness

In our parameterized algorithm for flat folding, the de-
pendence on ply comes from Lemma 5, which provides
a time bound of O(pw(p!)w+1) for computing the valid
states of a single bag in a nice tree decomposition. The
overall time bound is then this same bound, multiplied
by the O(n) bags of the decomposition. When p = O(1),
this bound reduces to single-exponential in w: the total
time is O(n2O(w)).
As we now show, a bound of this form is necessary

under the exponential-time hypothesis [18], which for our
purposes is most conveniently phrased as the assumption
that there does not exist an algorithm for the 3SAT
(satisfiability of 3-CNF Boolean formulae with n variables
and m clauses) that has a sublinear running time bound
of the form 2o(n+m). Our proof uses NAE3SAT (not-all-
equal-3-satisfiability), a variant of 3SAT in which there
are again n Boolean variables, and in which certain
triples of variables and their negations are not allowed
to be equal. Standard NP-completeness reductions from
3SAT to NAE3SAT produce instances with O(n + m)
variables and clauses, from which it follows that under
the exponential time hypothesis it is not possible to
solve NAE3SAT instances in time subexponential in their
numbers of variables or clauses. The same is known to be
true more generally for a wide class of satisfiability-like
problems including both 3SAT and NAE3SAT [19].

We base our hardness result on the proof by Bern and
Hayes that flat foldability is NP-complete [5]. Bern and
Hayes actually provide two proofs, one for unlabeled
crease patterns and one for crease patterns labeled with
mountain folds and valley folds, but both follow the same
outline. They are reductions from NAE3SAT, and they
produce crease patterns in the shape of a rectangle, where
each variable of a NAE3SAT instance is represented by
two closely spaced parallel zigzag paths of creases from
the left side of the rectangle to the right side; none
of these paths cross each other. Each clause of the
NAE3SAT instance is represented by a small folded area
near the top of the rectangle. Pairs of closely-spaced
vertical fold lines connect the clauses to the variables,
passing through the zigzag paths of variables that they
do not interact with. Additional “noise” pairs of closely-
spaced vertical fold lines are necessary to produce the
zigzag pattern of the variable creases, but otherwise pass
through the other variables without interacting with
them. Each variable path, and each vertical pair of fold
lines, have two locally-consistent folded states (used in
the proof to represent the true and false truth assignment
to each variable). The clause regions can only be flat-
folded for truth assignments that satisfy the given clause.
When a flat folding exists, and the construction is flat-
folded, most of the paper has ply 1, with ply 3 along
the folded regions near each variable gadget and vertical
fold line, ply 5 at the points where two of these folded

Figure 8: Schematic view of the crease patterns pro-
duced by the hardness reductions of Bern and Hayes [5].
The red regions at top are clause gadgets and the blue
zigzag paths from left to right are variable gadgets. The
variable gadgets are connected to the clause gadgets
by vertical creases (light green) and additional “noise”
vertical creases (yellow) connect to bends (“reflector gad-
gets”) in the paths of the variable gadgets. Not shown:
the additional reflectors needed to complement variables.
Illustration modeled after Fig. 10 of Bern and Hayes.

regions cross, and somewhat larger ply within the clause
gadgets. Fig. 8 provides a schematic view of the crease
patterns produced by these two reductions.

Observation 7. The local flat foldings of the crease
patterns of Bern and Hayes have ply O(1). For a
NAE3SAT instance with n vertices and m clauses, they
have treewidth O(n), obtained by a path decomposition
whose bags are the subsets of cells of the local flat folding
intersected by vertical lines, in left-to-right order.

Theorem 8. If the exponential time hypothesis is true,
it is not possible to test flat foldability of crease patterns
of ply O(1) and treewidth w in time 2o(w), regardless of
whether the pattern is labeled with mountain and valley
folds or unlabeled.

Proof. If such a fast test existed, then applying it to the
crease patterns produced by the hardness reductions of
Bern and Hayes would give an algorithm for NAE3SAT
with time 2o(m), contradicting the exponential time hy-
pothesis.

42

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Piercing Unit Geodesic Disks∗

Ahmad Biniaz† Prosenjit Bose‡ Thomas Shermer§

Abstract

We prove that at most 3 points are always sufficient
to pierce a set of m pairwise-intersecting unit geodesic
disks inside a simple polygon P with n vertices of which
nr are reflex. We provide an O(n+m log nr) time algo-
rithm to compute these at most 3 piercing points. Our
bound is tight since it is known that in certain cases, 3
points are necessary.

1 Introduction

The study of problems related to piercing a collection
of convex sets has a rich history in Computational Ge-
ometry [10]. One of the most famous results in this
area is Helly’s theorem [15, 16] which states the fol-
lowing: Given n convex sets in <d, with n > d, if
every d + 1 convex sets have a nonempty intersection,
then all n sets have a nonempty intersection. In other
words, if a point pierces every d + 1 sets, then a point
pierces all n sets. For Helly’s theorem to hold, it is
critical that every d + 1 sets have a point in common.
Helly’s theorem no longer holds if only d sets have a
point in common. For example, given n lines in the
plane, i.e. d = 2, where every pair of lines intersects
but no three have a point in common, then Ω(n) points
are required to pierce every line. On the other hand,
given a set of n pairwise-intersecting disks in the plane,
Danzer and Stachó independently showed that 4 points
pierce all the disks [9, 22, 23]. Grünbaum [11] showed
that 4 points are sometimes necessary thereby prov-
ing optimality. Neither the proof by Danzer nor the
proof by Stachó lends itself to an efficient algorithm
to actually compute these 4 points. From the compu-
tational perspective, Har-Peled et al. [14] presented a
linear time algorithm to compute 5 points that pierce a
set of pairwise-intersecting disks. Biniaz et al. [6] pre-
sented a simple linear time algorithm to find 5 piercing
points using elementary geometric observations. Carmi
et al. [8] presented a fairly involved linear time algo-
rithm to compute 4 piercing points. In the case of a

∗Research support in part by NSERC.
†School of Computer Science, University of Windsor,

abiniaz@uwindsor.ca
‡School of Computer Science, Carleton University,

jit@scs.carleton.ca
§School of Computing Science, Simon Fraser University,

shermer@sfu.ca

set of pairwise-intersecting unit disks, Hadwiger and
Debrunner [13] showed that 3 points are sufficient to
pierce the set. Biniaz et al. [6] showed that 3 points
are sometimes necessary and presented a simple linear
time algorithm to compute the piercing points. It is the
fact that disks are fat, as opposed to lines which are
thin, that allows a constant number of points to pierce
pairwise-intersecting disks. This relationship between
the number of points needed to pierce a family of planar
pairwise-intersecting convex sets and the fatness of these
sets has been explored in the literature [2, 5, 18, 20].
The most recent result we are aware of is by Bazarghani
et al. [5] who show that O(α) points can pierce a set of
pairwise-intersecting α-fat convex sets. Although there
are several definitions of fatness in the literature, the
definition that is used in [5] is the following: a convex
set C is deemed α-fat if the ratio of the radius of the
smallest disk that contains C and the largest disk that
is contained in C is at most α.

In this paper, we focus on piercing problems in the
geodesic setting. Specifically, we explore the following
question: given a set of pairwise-intersecting geodesic
disks inside a simple polygon, can a constant number
of points pierce every disk? Given a simple polygon P ,
a geodesic disk centered on a point x ∈ P is the set
of points y ∈ P such that the length of the shortest
path from x to y in P is at most a constant r, the
radius. This setting is more general than the setting
in the Euclidean plane. In this setting, Bose et al. [7]
showed that 14 points suffice to pierce a set of pairwise-
intersecting geodesic disks inside a simple polygon and
gave anO(n+m log nr) time algorithm to compute these
at most 14 piercing points where n is the number of
vertices of P , nr is the number of reflex vertices and m is
the number of geodesic disks. Subsequently, Abu-Affash
et al. [1] showed that 5 points suffice in this setting and
provide anO((n+m) log nr) time algorithm to find these
5 piercing points. This upper bound may not be tight
since the best known lower bound on the number of
points required to pierce a set of pairwise-intersecting
geodesic disks is 4. Our main result is the following: we
show that 3 points are always sufficient to pierce a set of
pairwise-intersecting unit geodesic disks inside a simple
polygon and provide an O(n+m log nr) time algorithm
to compute these 3 piercing points. Our bound is tight
since the lower bound of 3 points in the plane also holds
in the more general geodesic setting.

43

35th Canadian Conference on Computational Geometry, 2023

2 Notation and Preliminaries

Before presenting our main results, we first introduce
some notation and preliminary lemmas. Let P =
v0, . . . , vn−1 be a simple n-vertex polygon. We use the
convention that the interior of P lies to the right of the
edge directed from vi to vi+1, i.e. the polygon is de-
scribed in a clockwise fashion. In what follows, index
manipulation is modulo the size of the set. In the case
of the polygon, it is modulo n.

A segment between two points a, b is denoted as ab
and its length is denoted as |ab|. Given two points x, y ∈
P , the geodesic (or shortest) path from x to y in P is
denoted Π(x, y). The length of this path, referred to as
the geodesic distance, is the sum of the lengths of its
edges and is denoted by |Π(x, y)|. The geodesic metric
refers to P together with the geodesic distance function.
A subset S of P is geodesically convex if, for all pairs of
points x, y ∈ S, the geodesic path in P between x and
y (i.e. Π(x, y)) is in S. Pollack et al. [21] proved the
following lemma about distances between a point and a
geodesic path.

Lemma 1 [21] Let a, b, c be 3 distinct points in P . De-
fine the function g : Π(b, c) → <, as g(x) = |Π(a, x)|.
Then g is a convex function with its maximum occurring
either at b or c.

Informally, a polygon P is weakly simple provided
that a slight perturbation of the points on the boundary
results in a simple polygon. See Akitaya et al. [4] for
a formal definition of weakly-simple polygons as well
as an algorithm to quickly recognize such polygons.
A pseudo-triangle is a simple polygon with 3 convex
vertices (the shaded region in Figure 1 is a pseudo-
triangle). A geodesic triangle on points a, b, c ∈ P ,
denoted 4(a, b, c), is a weakly-simple polygon whose
boundary consists of Π(a, b),Π(b, c) and Π(c, a). In Fig-
ure 1, 4(c0, c1, c2) consists of the red paths and the
shaded region. A geodesic hexagon is defined in a similar
fashion but on six points in P . Let X = {x0, x1, . . . , xk}
be a set of at least 3 points in P . The set X is geodesi-
cally collinear if ∃xi, xj ∈ X such that X ⊂ Π(xi, xj).
Given points a, b, and c in P that are not geodesically
collinear, the shortest paths Π(a, b) and Π(a, c) follow
a common path from a until they diverge at a point a′

(note that a′ could be a). Similarly, let b′ be the point
where Π(b, a) and Π(b, c) diverge, and c′ be the point
where Π(c, a) and Π(c, b) diverge. The geodesic triangle
4(a′, b′, c′) is simple (not weakly simple), has a′, b′, and
c′ as its convex vertices, and is a pseudo-triangle. We
refer to 4(a′, b′, c′) as the geodesic core of 4(a, b, c) and
denote it as O(a, b, c); the shaded region in Figure 1 is
the geodesic core of 4(c0, c1, c2). These properties were
also observed in Pollack et al. [21].

This leads to a natural generalization of the notions of
orientation, angles, and sidedness for geodesics. Given

two distinct points a, b ∈ P , the orientation of a point
a with respect to b in P is the counter-clockwise an-
gle that the first edge of Π(a, b) makes with the posi-
tive x-axis. Orientations are between 0 (inclusive) and
2π (exclusive). Given 3 points a, b, c ∈ P that are not
geodesically collinear, we denote by ∠abc the convex an-
gle at b′ in the geodesic core O(a, b, c). When a, b, c are
geodesically collinear then ∠abc is π if b ∈ Π(a, c), and
0 otherwise. We say that b is to the left of Π(a, c) if the
convex vertices in O(a, b, c) appear in the order a′, b′, c′

when traversing the boundary in clockwise order start-
ing at a′; otherwise, b is to the right. When referring to
points of P to the left or right of an edge ab of P , we
consider ab to be Π(a, b).

p0

p1p2

D∗

c0

c1

c2

c′0

c′1

c′2

Figure 1: Basic definitions.

A geodesic disk centered at c ∈ P with radius r ≥ 0
is the set {y ∈ P : |Π(c, y)| ≤ r}. A geodesic disk is
geodesically convex and its boundary may be composed
of several arcs of different curvature [21]. Two geodesic
disks are tangent when the geodesic distance between
the centers of the disks is exactly the sum of the radii.
A unit geodesic disk is a geodesic disk with radius 1.

3 Upper bound on number of piercing points

In this section, we prove that 3 points suffice to
pierce any set of pairwise-intersecting geodesic unit
disks. Throughout this paper, we will be working
with a collection D = {D0, D1, . . . , Dm−1} of pairwise-
intersecting unit geodesic disks whose respective centers
c0, c1, . . . cm−1 are in P . We define D∗ as the smallest
geodesic disk that intersects each member of D, with c∗

and r∗ being the center and radius of D∗, respectively.
The set D is called Helly if there is one point that pierces
all the disks. Every disk in D, by definition, intersects
D∗. We use D∗ to compute the 3 points that suffice to
pierce D, when D is not Helly. The following lemma

44

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

about properties of D∗ when D is not Helly, proven in
[7], will be useful in the sequel.

D0

D2
D1

p0

p2

p1

c∗

D∗

Figure 2: Close-up of p0, p1, p2.

Lemma 2 [7] If D is not Helly, then the disk D∗ has
the following properties:

1. the radius r∗ > 0, where r∗ is the radius of D∗,

2. D∗ is tangent to at least 3 geodesic disks D0, D1, D2

in D at 3 distinct points t0, t1 and t2, respectively,

3. D∗ does not intersect the boundary of the geodesic
core O(c0, c1, c2), where ci is the center of disk Di,
for i ∈ {0, 1, 2},

4. The boundary of D∗ is a circle,

5. c∗ is contained in the interior of 4(t0, t1, t2).

The properties of D∗ that are important to note are
the following. First, even though D∗ is a geodesic disk
in P , its boundary is actually a circle that does not
intersect the boundary of P ; see Figure 1. Second, the
fact that D consists of pairwise-intersecting unit disks
implies that D∗ must be tangent to 3 disks in D as
opposed to 2, which can be the case when the disks are
not pairwise-intersecting. In the remainder of the paper,
we use the notation in Lemma 2 to refer to the three
disks tangent to D∗, their tangency points, and centers.
We begin by giving an upper bound on the radius r∗ of
D∗.

Lemma 3 The radius r∗ of D∗ is at most (2/
√

3)− 1.

Proof. If D is Helly, then r∗ = 0, thus, we only
need to consider the case when D is not Helly. Since∑2

i=0∠cic∗ci+1 = 2π, we can assume without loss of
generality that ∠c1c∗c2 ≥ 2π/3. Denote by ray(a, b)
the half-line with initial point a containing b. Let c∗b1
be the first edge of Π(c∗, c1), as in Figure 4. Define
b′1 as the first point along ray(c∗, b1) where it intersects
with Π(c1, c2). This intersection must exist by the Jor-
dan Curve Theorem [24] since c∗ is inside O(c0c1c2).
Note that it may be the case that b′1 is b1. Let c′1 be

the point on ray(c∗, b′1) such that |c∗c′1| = |Π(c∗, c1)|.
Define b′2 and c′2 analogously. The segment c∗c′1 can
be viewed as an unfolding of Π(c∗, c1) onto ray(c∗, b′1).
Thus, since D∗ and D1 are tangent, we have that
|Π(c∗, c1)| = |c∗c′1| = |c∗b′1| + |b′1c′1| = 1 + r∗. Sim-
ilarly, |Π(c∗, c2)| = |c∗b′2| + |b′2c′2| = 1 + r∗. Since
∠c′1c∗c′2 ≥ 2π/3, by the cosine law, we have that
|c′1c′2| ≥

√
3(1 + r∗).

By the triangle inequality of the geodesic metric,
|Π(c∗, c1)| ≤ |c∗b′1| + |Π(b′1, c1)|. Since |Π(c∗, c1)| =
|c∗b′1|+ |b′1c′1|, we have that |b′1c′1| ≤ |Π(b′1, c1)|. By the
same argument, |b′2c′2| ≤ |Π(b′2, c2)|. Therefore, we have
that |Π(c1, c2)| = |Π(c1, b

′
1)|+ |Π(b′1, b

′
2)|+ |Π(b′2, c2)| ≥

|c′1b′1|+ |Π(b′1, b
′
2)|+ |b′2c′2| ≥ |c′1c′2|.

Since D1 and D2 have unit radius and intersect, we
have that 2 ≥ |Π(c1, c2)| ≥ |c′1c′2| ≥

√
3(1 + r∗). We

conclude that r∗ ≤ (2/
√

3)− 1.
�

c∗

c1

c2
c′1

c′2

b2
b′2

b1

b′1

t1t2

Figure 4: Illustration of the proof of Lemma 3.

For i ∈ {0, 1, 2}, let pi be the point of Di ∩ Di−1
closest to c∗ (Figure 2). These points must exist because
the disks in D are pairwise-intersecting. Moreover, in
our main theorem, we will prove that these three points
pierce the set D.

Lemma 4 The points p0, p1 and p2 are in the geodesic
core O(c0, c1, c2).

Proof. We show that p2 ∈ O(c0, c1, c2). The same ar-
gument shows that both p1 and p0 are in O(c0, c1, c2).
Consider 4(b′1, b

′
2, c
∗) where b′1 and b′2 are defined as in

the proof of Lemma 3 and illustrated in Figure 4. Recall
that |Π(c∗, c1)| = 1 + r∗ since D1 is tangent to D∗. By
construction, we have that |Π(c∗, c1)| = |c∗b′1| + |b′1c′1|.
Since |c∗b′1| > r∗, we have that |b′1c′1| = |Π(c1, b

′
1)| < 1.

Note that by construction of b′1, we have that Π(c1, c2) =
Π(c1, b

′
1)+Π(b′1, c2). Given that |Π(c1, b

′
1)| < 1, we have

that the boundary of D1 intersects Π(c1, c2) at a point
x on Π(b′1, c2). Similarly, the boundary of D2 intersects
Π(c1, c2) at a point y on Π(b′2, c1).

By construction, we have that c∗ is a convex vertex
of the geodesic triangle 4(b′1, b

′
2, c
∗). Since D1 and D2

45

35th Canadian Conference on Computational Geometry, 2023

A0

A2
A1

p2

p1
p0

θ0

θ2

θ1

α0 β0

α2

β2 α1

β1

A0

A2
A1

p1
p0

p2

(a) (b)

Figure 3: Points, arcs, and angles.

intersect, we have that |Π(c1, c2)| ≤ 2. If |Π(c1, c2)| = 2,
in other words, the point x and y coincide, then p2 is
on Π(c1, c2) and therefore p2 ∈ O(c0, c1, c2). Otherwise,
we consider the case when |Π(c1, c2)| < 2. In this case,
notice that as we traverse Π(c1, c2) from c1 to c2, we
must encounter y before x.

Consider the arc B1 to be the portion of the boundary
of D1 from t1, the point of tangency between D1 and
D∗, to x. Since this arc at t1 enters 4(b′1, b

′
2, c
∗), by the

Jordan curve theorem [24], it intersects either Π(b′1, b
′
2)

or the segment c∗b′2. Let us consider the latter case first.
Assume that B1 intersects c∗b′2 at a point z. Let B′1
be the portion of B1 from t1 to z. Consider the closed
region R consisting of the segment zc∗, the segment c∗t1
and B′1. We now define the arc B2 to be the portion of
the boundary ofD2 from t2 to y. At t2, the arc B2 enters
the region R. Since y is outside of R, by the Jordan
curve theorem, B2 must intersect the boundary of R.
This intersection point, which is p2, must be on B′1 since
B2 cannot intersect c∗t1 as every point on that segment
is farther than 1 from c2. Thus, p2 is in 4(b′1, b

′
2, c
∗)

since B′1 is.
For the case where B1 intersects Π(b′1, b

′
2), we use the

same argument except that the boundary of the region
R consists of B1, Π(x, b′2), b′2c

∗ and c∗t1. Since we en-
counter y before x when we traverse Π(c1, c2) from c1 to
c2, the point y is outside R. Thus B2 must intersect the
boundary of R, and similar to previous case this inter-
section which is p2 must be through B1 in the triangle
4(b′1, b

′
2, c
∗). Therefore, we have that p2 ∈ O(c0, c1, c2).

�

By the proof of Lemma 4, p2 lies in4(b′1, b
′
2, c
∗) which

is essentially a star shaped polygon with center c∗. Thus
the segment c∗p2 lies in 4(b′1, b

′
2, c
∗) which is a subset

of O(c0, c1, c2). Applying a similar argument to p0 and
p1 we have the following corollaries.

Corollary 5 The line segment c∗pi is in O(c0, c1, c2).

Recall c′0, c′1, and c′2 as the convex vertices of the
geodesic core O(c0, c1, c2).

Corollary 6 The geodesic hexagon c′0p1c
′
1p2c

′
2p0 is a

subset of the geodesic triangle 4c0c1c2.

Refer to Figure 3(a) for the following. For i ∈
{0, 1, 2}, let Ai be the arc on the boundary of Di from
pi to pi+1. Let θi be the clockwise angle from Ai−1 to
Ai at pi. If θi = 0 then the disks Di−1 and Di are tan-
gent at pi. If θi > 0 then Di−1 and Di have a positive
area of overlap, starting at pi. The case when θi < 0
cannot happen since pi is the intersection point closest
to c∗. Note this in Figure 3(b) where p0 should be at
the other intersection of arcs A0 and A2.

For i ∈ {0, 1, 2}, let αi be the angle from Ai to the
line segment pipi+1 at pi, and βi be the angle from Ai

to the line segment pipi+1 at pi+1; see Figure 3(a).

Lemma 7 For i ∈ {0, 1, 2}, |pipi+1| ≤ 1.

Proof. Consider a parameter s that denotes the dis-
tance we have moved as we move from pi to pi+1 along
Ai. The coordinates of a point x ∈ Ai as well as the tan-
gent t to Ai at point x can be expressed as a function of
this parameter s. See Figure 5, where the tangents are
shown as red arrows. Let ∆t denote the change in angle
of this tangent from pi to pi+1. Then ∆t = αi+βi. This
can be seen in the figure, letting q be the point where
the tangent is parallel to the segment pipi+1. Then the
tangent sweeps out αi as it moves from pi to q, and then
sweeps out βi as it moves from q to pi.

Ai

pi+1pi+1

pi

q

αi βi

βi

Figure 5: Tangents to Ai.

Let κ(s) denote the curvature of Ai with respect to
parameter s. Then, by definition of the integral of cur-
vature taken along Ai, we have that ∆t =

∫
Ai
κ(s)ds.

46

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Since Di is a unit geodesic disk, it has curvature at least
1 on all of its boundary arcs. This is because every
boundary arc of Di comes from a circle whose radius is
at most 1. Since κ(s) ≥ 1, we have ∆t ≥

∫
Ai

1ds. But
the latter integral is simply the length of the arc Ai.
Since αi + βi = ∆t, we have that αi + βi ≥ |Ai|.

Because of the lower bound of 1 on the curvature,
the length of Ai will be at least as large as the length
of a (uniformly) curvature-1 curve from pi to pi+1 This
uniform curve is a circular arc A′i of radius 1 with some
center which we denote as c′i; see Figure 6. Denote by
C ′i the unit circle centered at c′i. We have A′i ⊂ C ′i.

AiAi

A′
i

α′
i β′

i

pi+1pi

Figure 6: A curvature-1 curve A′i.

Claim 1 For i ∈ {0, 1, 2}, |pipi+1| is maximized when
C ′0, C ′1, and C ′2 are pairwise tangent.

Proof. By definition, C ′i and C ′i+1 have a non-empty
intersection. Define L′i as the line through c′i and c′i+1.
For sake of a contradiction, we first consider the case
where none of the disks are tangent to each other but
|pipi+1| is maximized. Move c′0 in the direction perpen-
dicular to L′1 away from L′1 until C ′0 becomes tangent
to either C ′1 or C ′2. During this process, p2 remains
fixed and p0p2, p1p2, p0p1 increase in length, which is a
contradiction. Now, without loss of generality, assume
that only C ′0 and C ′1 are tangent. By moving c′2 in the
direction perpendicular to L′0 away from L′0 until C ′2
becomes tangent to either C ′0 or C ′1, once again, p1 re-
mained fixed and p0p1, p1p2, p0p2 increase in length,
which is a contradiction. Finally, without loss of gen-
erality, assume that only C ′0 and C ′2 are not tangent.
Rotate C ′0 around c′1, while keeping it tangent to C ′1,
until C ′0 is tangent to C ′2. Here we note that p2 remains
fixed, and p0p2, p1p2, p0p1 increase in length. There-
fore, we conclude that each |pipi+1| is maximized when
C ′0, C ′1, and C ′2 are pairwise tangent. This finishes our
proof of Claim 1.

By Claim 1, each |pipi+1| is maximized when C ′0, C ′1,
and C ′2 are pairwise tangent, in which case 4(p0, p1, p2)
must be an equilateral triangle with side length 1.

�

Corollary 8 For i ∈ {0, 1, 2},

|c∗pi| ≤
√
r∗(2 + r∗) ≤ 0.578.

Proof. Using the same transformation as in the proof
of Claim 1, we can see that for i ∈ {0, 1, 2}, |c∗pi| is
maximized when the circles C ′i are pairwise tangent and
the points p0, p1, p2 form an equilateral triangle. This
means that c′i, c

∗ and pi form a right triangle with side
lengths 1, 1 + r∗ and |c∗pi|. Pythagoras’ theorem gives
the bound on |c∗pi| and the numerical upper bound we
get from the upper bound on r∗ in Lemma 3. �

Theorem 9 Let D be a collection of pairwise-
intersecting unit geodesic disks inside a simple polygon
P . Then there are three points inside P such that each
disk of D contains at least one of the points.

Proof. Let D+ be the radius-1 + r∗ geodesic disk cen-
tered at c∗, and C+ be the geodesic circle that is the
boundary of D+. The circle C+ contains arcs at dis-
tance 1 + r∗ from c∗ and segments of the boundary of
P at distances less than that. If we extend the line seg-
ment c∗pi in a straight line from pi, we will hit C+ at
some point qi (which could be the same as pi). The ci’s
(the centers of the three disks tangent to D∗) and qi’s
divide the circle C+ into six sections; we concentrate on
the section between c1 and q1; a symmetric argument
applies to the other five sections.

Since both ends of Π(c1, c0) are at geodesic distance
1 + r∗ from c∗, any point on Π(c1, c0) is at distance no
more than 1 + r∗ from c∗ (by Lemma 1). This implies
that the arcs of C+ (which are at distance 1+r∗ from c∗)
do not intersect the interior of the geodesic core of the
geodesic triangle 4c0c1c2. Since there is no boundary
of P in the interior of any geodesic core, the segments
of C+ also do not intersect the interior of the geodesic
core of 4c0c1c2. Because this is true for all six sections
of C+, C+ does not intersect the interior of the geodesic
core.

Let cT be a point on C+ non-strictly between c1 and
q1. Because cT is not in the interior of the geodesic core
of 4c0c1c2, Π(cT , c

∗) intersects Π(c1, c0). This implies
that Π(cT , c

∗) also intersects Π(c1, p1), as the geodesic
hexagon c′0p1c

′
1p2c

′
2p0 (which contains c∗) must be in-

side the geodesic core of 4c0c1c2, by Corollary 6. Let u
be the intersection point of Π(cT , c

∗) and Π(c1, p1), and
let tT be the point where Π(cT , c

∗) crosses the boundary
of D∗. See Figure 7.

The distance d(c1, p1) is equal to d(c1, u) +d(u, p1) =
1 since p1 is on the boundary of D1. The distance
d(c1, u) + d(u, tT) ≥ 1, since D1 is tangent to D∗. So
d(u, tT) ≥ d(u, p1) and therefore d(cT , u) + d(u, tT) ≥
d(cT , u) + d(u, p1). The left-hand side of that last in-
equality is simply 1, and the right-hand side is an upper
bound on the distance d(cT , p1), so we get 1 ≥ d(cT , p1),
or that p1 pierces the disk of radius one centered at cT .

Now consider a unit disk D in our collection of disks
D. The center c of D lies inside the radius 1 + r∗ disk
around c∗, and without loss of generality, it lies in a

47

35th Canadian Conference on Computational Geometry, 2023

c∗

C+

D∗

q1

cT

tT

u

p1

c1

D1

D0

Figure 7: Π(cT , c
∗) intersects Π(c1, p1) at u.

direction between c1 and p1 from c∗. We extend the
last segment of Π(c∗, c) until it reaches the radius 1+r∗

circle at a point cT . The center c lies on Π(cT , c
∗),

the distance d(cT , p1) ≤ 1 as discussed above, and the
distance d(c∗, p1) ≤ 1 (by Corollary 8). Thus d(c, p1) ≤
1 by Lemma 1, and hence p1 pierces D.

Therefore, the three points p0, p1, and p2 pierce the
entire collection D. �

4 Algorithmic Considerations

In this section, we describe an algorithm to compute the
piercing points. The input to the algorithm is D. First,
compute D∗ in O(n+m log nr) time using the algorithm
described in [7]. This is achieved since it was shown in
[7] that computing D∗ is an LP-type problem.

The reason that the run-time has a log nr term as
opposed to a log n term is that given a polygon P , we
first apply a geodesic-preserving simplification of P in
O(n) time to get a polygon P ′ ⊃ P of size O(nr) where
nr is the number of reflex vertices in P , such that the
shortest path from x to y in P is identical to the shortest
path from x to y in P ′ [3]. Then, we preprocess P ′ in
O(nr) time to answer in O(log nr) time the length of the
shortest path from x to y and O(log nr + k) to report
the k edges on the shortest path [12, 17]. With these
tools in hand, Bose et al. [7] apply Matousek et al.’s [19]
general framework for solving LP-type problems to find
D∗ within the stated amount of time.

If r∗ = 0, then c∗ is returned as the point that pierces
D. If r∗ > 0, then in O(n) time, compute O(c0c1c2) with
3 queries to the shortest path data structure constructed
above. Now all that remains is to compute p0, p1 and p2.
We show how to compute p0 in O(n) time. The other
two points are computed in a similar manner. Recall
ti as the point of tangency between D∗ and Di. To
compute p0, we need to intersect the arc A0 with the
arc A2. Each arc Ai consists of at most nr pieces of

circular arcs inside O(c0c1c2). Essentially, to find p0, we
walk along A0 from t0 towards Π(c0, c2), and along A2

from t2 towards Π(c0, c2). By always advancing on the
arc that is furthest away from Π(c0, c2), we eventually
find p0 in O(n) time.

The cost of finding p0, p1, p2 is dominated by the cost
of finding D∗. We conclude with the following:

Theorem 10 Given a set D of m pairwise-intersecting
disks in a simple polygon P on n vertices and nr reflex
vertices, we can compute the at most 3 points that pierce
D in O(n+m log nr) time.

5 Conclusion

Theorem 10 settles the question of how many points are
sufficient to pierce a set of pairwise-intersecting unit
disks in the geodesic setting. It would be interesting
to prove that the runtime of our algorithm is optimal.
We leave as an open question to determine whether 4
or 5 points are necessary to pierce pairwise-intersecting
geodesic disks of arbitrary radius. When the radii are
arbitrary, 4 points are sometimes necessary and always
sufficient in the Euclidean setting. In the geodesic set-
ting, the best known lower bound is 4 (from the lower
bound example in the Euclidean setting) and the upper
bound is 5 piercing points [1]. It would be interesting
to close this gap.

References

[1] A. K. Abu-Affash, P. Carmi, and M. Maman. Pierc-
ing pairwise intersecting geodesic disks by five points.
Comput. Geom., 109:101947, 2023.

[2] P. K. Agarwal, M. J. Katz, and M. Sharir. Com-
puting depth orders for fat objects and related prob-
lems. Computational Geometry: Theory and Applica-
tions, 5(4):187–206, 1995.

[3] O. Aichholzer, T. Hackl, M. Korman, A. Pilz, and
B. Vogtenhuber. Geodesic-preserving polygon simplifi-
cation. Int. J. Comput. Geometry Appl., 24(4):307–324,
2014.

[4] H. A. Akitaya, G. Aloupis, J. Erickson, and C. D. Tóth.
Recognizing weakly simple polygons. Discret. Comput.
Geom., 58(4):785–821, 2017.

[5] S. Bazargani, A. Biniaz, and P. Bose. Piercing pairwise
intersecting convex shapes in the plane. In LATIN,
volume 13568 of Lecture Notes in Computer Science,
pages 679–695. Springer, 2022.

[6] A. Biniaz, P. Bose, and Y. Wang. Simple linear time
algorithms for piercing pairwise intersecting disks. In
CCCG, pages 228–236, 2021 (to appear in CGTA).

[7] P. Bose, P. Carmi, and T. C. Shermer. Piercing pairwise
intersecting geodesic disks. Comput. Geom., 98:101774,
2021.

48

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[8] P. Carmi, M. J. Katz, and P. Morin. Stabbing
pairwise intersecting disks by four points. CoRR,
abs/1812.06907, 2018.

[9] L. Danzer. Zur Lösung des Gallaischen Problems über
Kreisscheiben in der Euklidischen Ebene. Studia Scien-
tiarum Mathematicarum Hungarica, 21(1-2):111–134,
1986.

[10] J. E. Goodman, J. O’Rourke, and C. Toth, editors.
Handbook of Discrete and Computational Geometry,
Third Edition. Chapman and Hall/CRC, 2017.

[11] B. Grünbaum. On intersections of similar sets. Portu-
gal. Math., 18:155–164, 1959.

[12] L. J. Guibas and J. Hershberger. Optimal shortest path
queries in a simple polygon. J. Comput. Syst. Sci.,
39(2):126–152, 1989.

[13] H. Hadwiger and H. Debrunner. Ausgewählte Einzel-
probleme der kombinatorischen Geometrie in der
Ebene. Enseignement Math. (2), 1:56–89, 1955.

[14] S. Har-Peled, H. Kaplan, W. Mulzer, L. Roditty,
P. Seiferth, M. Sharir, and M. Willert. Stabbing pair-
wise intersecting disks by five points. Discret. Math.,
344(7):112403, 2021.

[15] E. Helly. Über Mengen konvexer Körper mit gemein-
schaftlichen Punkten. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 32:175–176, 1923.

[16] E. Helly. Über Systeme von abgeschlossenen Men-
gen mit gemeinschaftlichen Punkten. Monatshefte für
Mathematik, 37(1):281–302, 1930.

[17] J. Hershberger. A new data structure for shortest
path queries in a simple polygon. Inf. Process. Lett.,
38(5):231–235, 1991.

[18] M. J. Katz. 3-d vertical ray shooting and 2-d point en-
closure, range searching, and arc shooting amidst con-
vex fat objects. Computational Geometry, 8(6):299–
316, 1997.

[19] J. Matousek, M. Sharir, and E. Welzl. A subexpo-
nential bound for linear programming. Algorithmica,
16(4/5):498–516, 1996.

[20] F. Nielsen. On point covers of c-oriented polygons.
Theo. Comp. Sci., 265(1–2):17–29, 2001.

[21] R. Pollack, M. Sharir, and G. Rote. Computing the
geodesic center of a simple polygon. Discrete & Com-
putational Geometry, 4:611–626, 1989.

[22] L. Stachó. Über ein Problem für Kreisscheibenfamilien.
Acta Scientiarum Mathematicarum (Szeged), 26:273–
282, 1965.

[23] L. Stachó. A gallai-féle körletuzési probléma megoldása.
Mat. Lapok, 32(1-3):19–47, 1981-84.

[24] C. Thomassen. The jordan–schönflies theorem and
the classification of surfaces. American Mathematical
Monthly, 99(2):116–130, 1992.

49

50

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Super Guarding and Dark Rays in Art Galleries

MIT CompGeom Group∗ Hugo A. Akitaya† Erik D. Demaine‡ Adam Hesterberg§ Anna Lubiw¶

Jayson Lynch‖ Joseph O’Rourke∗∗ Frederick Stock††

Abstract

We explore an Art Gallery variant where each point of
a polygon must be seen by k guards, and guards cannot
see through other guards. Surprisingly, even covering
convex polygons under this variant is not straightfor-
ward. For example, covering every point in a triangle
k=4 times (a 4-cover) requires 5 guards, and achieving
a 10-cover requires 12 guards. Our main result is tight
bounds on k-covering a convex polygon of n vertices, for
all k and n. The proofs of both upper and lower bounds
are nontrivial. We also obtain bounds for simple poly-
gons, leaving tight bounds an open problem.

1 Introduction

The original Art Gallery Theorem showed that bn/3c
guards are sometimes necessary and always sufficient
to guard a simple polygon P of n vertices [O’R87].
(Throughout, P includes its boundary ∂P .) There have
been many interesting variants explored since then. In
this paper we explore two variants that are interesting
in combination, although not individually.

(1) Guards blocking guards: Suppose guards cannot see
through other guards.1 More precisely, if g1 and g2
are guards, and g1, g2, p are on a line in that order,
then point p is not visible from g1. Still the original
bound bn/3c holds, because g2 can continue g1’s
line-of-sight to p, picking it up where that line-of-
sight terminates at g2.

(2) Multiple coverage: Suppose every point in the
closed polygon must be seen by k guards i.e., the
guards must k-cover the polygon. The problem of
k-guarding has been explored under various restric-
tions on guard location [BBC+94, Sal09, BEK13].

∗Artificial first author to highlight that the other authors (in
alphabetical order) worked as an equal group. Please include all
authors (including this one) in your bibliography, and refer to the
authors as “MIT CompGeom Group” (without “et al.”).
†U. Mass. Lowell, hugo akitaya@uml.edu
‡MIT, edemaine@mit.edu
§Harvard U., achesterberg@gmail.com
¶U. Waterloo, alubiw@uwaterloo.ca
‖MIT, jaysonl@mit.edu
∗∗Smith College, jorourke@smith.edu
††U. Mass. Lowell, fbs9594@rit.edu
1This was posed as an exercise in [DO11], Exercise 1.28, p. 14.

If multiple guards can be co-located at the same
point, then this is trivial. If co-location is disal-
lowed, but guards can see through other guards,
then this still reduces to the case k = 1 since we
can replace a single guard by a cluster of k guards.
(We detail the argument in Section 4.)

So neither of these variations is “interesting” by itself
in the sense that easy arguments lead to bn/3c bounds.
However, consider now mixing these two variants:

Q: How many guards are necessary and suffi-
cient to cover a simple polygon P of n vertices
so that every point of P is seen by at least
k guards, where guards cannot be co-located,
and each guard blocks lines-of-sight through
it?

To our surprise, answering Q is not straightforward,
even for convex polygons, even for triangles. For exam-
ple, to cover a triangle to depth k = 3, one guard at
each vertex suffices. Note here we consider a guard to
see itself. But to cover to depth k = 4 requires g = 5
guards; see Fig. 9. And covering to depth k = 10 re-
quires g = 12 guards.

The main result of this paper is the following theorem.
We use n for the number of vertices, k for the depth of
cover, and g for the number of guards.

Theorem 1 For a closed convex n-gon, coverage to
depth k requires g ∈ {k, k + 1, k + 2} guards:

(1) For k ≤ n: g = k guards are necessary and suffi-
cient.

(2) For n < k < 4n−2: g = k+1 guards are necessary
and sufficient.

(3) For 4n − 2 ≤ k: g = k + 2 guards are necessary
and sufficient.

Thus there are three regimes depending on the relation-
ship between n and k. For triangles, n = 3, the following
table details those regimes:

k 1 2 3 4 5 6 7 8 9 10 11 · · ·
g 1 2 3 5 6 7 8 9 10 12 13 · · ·

51

35th Canadian Conference on Computational Geometry, 2023

Another example: For n = 4, g = 14 guards 13-cover,
but a 14-cover requires g = 16 guards. See ahead to
Fig. 10.

Our primary focus is proving Theorem 1. We also
obtain in Lemma 8 tight bounds for a convex wedge,
which can be viewed as a 2-sided unbounded convex
polygon. Finally, we briefly address simple polygons in
Theorem 7, which we do not consider as natural a fit as
the question for convex polygons.

1.1 Dark Rays and Dark Points

With some abuse of notation, we will identify both a
guard and that guard’s location as gi. Let g1 and g2
be two guards visible to one another. We say that g2
generates a dark ray at g1, which is a ray contained
in the line through g1 and g2, incident to and rooted
at g1 and invisible to g2. And similarly, g1 generates a
dark ray at g2.

A point is called dark if it is contained in a dark ray,
and d-dark if it is contained in at least d dark rays.

Because a d-dark point is hidden from d guards, we
obtain an immediate relationship between dark rays and
multiple guarding for convex polygons.

Observation 1

(1) k-guarding with g = k guards is possible if and only
if there is no dark point inside P , i.e., all dark rays
are strictly exterior to P .

(2) k-guarding with g = k + 1 guards is possible if and
only if there is no 2-dark point inside P .

(3) k-guarding with g = k+ 2 guards is always possible
because we can perturb the guards to avoid 3-dark
points, as justified in Appendix A.4.

1.2 Outline of Proof of Theorem 1

Most steps of the proof follow directly from Observa-
tion 1, with the exception of the following non-trivial
result.

Theorem 2 The maximum number of guards that can
be placed in a convex n-gon P without creating 2-dark
points in P is 4n− 2.

We prove the upper bound (at most 4n − 2 guards)
in Section 2 and the lower bound (4n − 2 is possible)
by a direct construction in Section 3. Both directions
are non-trivial, and their proofs constitute the main fo-
cus of the paper. Assuming these results, the proof of
Theorem 1 proceeds as follows:

To k-cover when k ≤ n (regime (1)) it is clear that k
guards are necessary. For sufficiency, place k guards at
vertices of polygon P . Then all dark rays are exterior
to P , so by Observation 1(1), this is a k-cover.

To k-cover when n < k < 4n − 2 (regime (2)) the
necessity of k + 1 guards follows from Lemma 9 (Ap-
pendix A.2) where we show that any placement of n+ 1
guards in a convex P results in a dark point inside P .
Sufficiency is proved by Observation 1(2) (that we only
need to avoid 2-dark points) and the lower bound of
Theorem 2 (that we can place k+ 1 points without cre-
ating 2-dark points), since k + 1 ≤ 4n− 2.

To k-cover when 4n − 2 ≤ k (regime (3)) the suffi-
ciency of k + 2 guards follows from Observation 1(3).
Necessity is proved by the upper bound of Theorem 2.

2 4n− 2 Upper Bound

In this section we prove that at most 4n− 2 guards can
be placed in a convex n-gon P without creating 2-dark
points in P .

2.1 Triangle Lemma

The following lemma is a key tool in the proof of the
upper bound. It establishes that, excluding the excep-
tional case, any triangle of guards in P may only contain
one additional guard if we are to avoid 2-dark points in
T .

Lemma 3 (Triangle) Suppose some guards are placed
in P without creating 2-dark points. Let T be a closed
triangle in P with guards g1, g2, g3 at its corners. Then,
with one exception, T contains at most one more guard.

The exceptional case allows two guards, g4, g5, in T
when (up to relabelling) g1g3 is an edge of P , g4 lies on
that edge, and g2, g5, g4 are collinear.

Proof. Refer to Fig. 1(a,b) throughout. We first dis-
cuss the non-exceptional case. First suppose that there
is an extra guard g4 strictly interior to T . Then g1, g2, g3
generate 3 dark rays at g4, each of which crosses a dif-
ferent edge of T . The same would be true for a second
strictly interior guard g5. So a dark ray at g5 must cross
a dark ray at g4 to reach an edge of T . The result is a
2-dark point, marked x in (a) of the figure. Since we as-
sumed no 2-dark points in P , there cannot be two extra
guards interior to T .

Suppose now that g4 lies on edge e = g1g3 of T . Then
left and right of g4 on e are dark rays generated by g1
and g3. Placing g5 at any point not collinear with g4 and
g2 leads to a dark ray at g5, generated by g2, crossing e
to form a 2-dark point there.

We are left with the exceptional case, illustrated in
(b) of the figure: g4 lies on an edge of T , and g5 is
collinear with g4 and the opposite corner of the triangle,
g2 in the case illustrated. There are no 2-dark points
inside T . The dark ray at g5 generated by g2 contains
the dark ray at g4 generated by g5 so, to avoid 2-dark
points inside P , g4 must be on the boundary of P . By
the same argument, g1 and g3 must be vertices of P . �

52

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

ext

ext

ext

g4

g1

g5

g2

g3

x

g5

g1

g4

g2

g3

(a) (b)

Figure 1: In this and following figures, guards are indi-
cated by hollow circles. (a) Generic placements of g4, g5
produce a 2-dark point x. (b) The exceptional case,
with dark rays exterior to P .

We now sketch the main idea of the 4n − 2 upper
bound. Consider a placement of guards in P such that
there are no 2-dark points in P . Our goal is to prove
that there are at most 4n − 2 guards. Let C be the
convex hull of the guards. We will show in Lemma 4
that the number of guards on ∂C, not counting collinear
guards interior to P , is at most 2n. Triangulating C
leads to at most 2n− 2 triangles. Lemma 3 then shows
that there is at most one extra guard inside each trian-
gle, which leads to the 4n − 2 upper bound. To make
this rigorous, we must take into account collinear guards
and the exceptional case of Lemma 3.

We first shrink P so that it maximally touches C, as
follows. Move each edge of P parallel to itself toward
the interior until it hits a guard. If an edge e only
has a guard at one endpoint, then rotate e about that
endpoint toward the interior until it hits another guard.
The reduced polygon contains all the guards, has no
2-dark point, and has at most n vertices, so it suffices
to prove the bound on the number of guards for the
reduced polygon. Henceforth we assume every edge of
P has either one or more guards in its interior, or a
guard at its endpoint (or at both endpoints).

The proof requires careful handling of collinear
guards: a guard is called collinear if it lies on a line
between two other guards.

Define G∗ as the set of guards on ∂C, but exclud-
ing those guards that are collinear and not on ∂P . So
collinear guards on ∂P are in G∗, but collinear guards
on ∂C and internal to P are excluded from G∗. See
Fig. 2. Equivalently, G∗ consists of the guards on ∂P
together with any guard that is a corner of C in the
interior of P . Define g∗ = |G∗|. This is the key count
that is needed to complete the upper-bound proof.

Lemma 4 The number of guards g∗ as defined above is
at most 2n.

Proof. Let gP be the number of guards on ∂P and let
c be the number of guards that are corners of C in the

g*=6

P

C

v2v1

g4g5

(a) (b)

v6 v3

v5 v4

Figure 2: (a) The two pink guards are not included in
g∗ = |G∗|. (b) v1, v2 are darkened but have no guard;
g4, g5 are both guards and darkened vertices. So d = 4
and gP = n+ 1

2d = 8.

interior of P . As noted above, g∗ = gP + c. We will
bound gP and c separately. Both bounds are in terms
of the number of darkened vertices, where a vertex v
of P is darkened if guards on ∂P generate a dark ray
through v.

We first bound gP . The constraint that limits gP is
that a vertex v cannot be darkened from both incident
edges, as that would render v a 2-dark point.

The idea is to count guards and darkened vertices
per edge. A guard internal to an edge counts towards
the edge, and a vertex guard counts half towards each
incident edge. More precisely, for an edge e, let g(e) be
the number of guards internal to e plus half the number
of vertex guards on e. Then gP =

∑
e g(e).

Fig. 3 shows the possibilities: g(e) = 2, either from
two internal guards, or one internal guard and two end-
point guards; g(e) = 1 1

2 from one endpoint guard and
one internal guard; or g(e) = 1 from one internal guard
or two endpoint guards.

These are the only possibilities: (a) An edge cannot
have four or more guards, as then the extreme points
would be at least 2-dark. (b) And an edge can only
have three guards when two are at the endpoints of the
edge: an endpoint without a guard would be rendered
2-dark by the three guards on the edge. (c) An edge
cannot have just a guard at one endpoint, because the
shrinking procedure would rotate that edge about the
endpoint until it hit another guard.

Next we observe from Fig. 3 a relationship between
g(e) and d(e), the number of dark rays on edge e gen-
erated by guards on e: if g(e) = 2 then d(e) = 2; if
g(e) = 1 1

2 then d(e) = 1; and if g(e) = 1 then d(e) = 0.
Equivalently, d(e) = 2(g(e)− 1).

Finally, we note that d, the number of darkened ver-
tices, is

∑
e d(e), since each dark ray on e darkens an

endpoint of e, and no vertex can be darkened from both
incident edges.

53

35th Canadian Conference on Computational Geometry, 2023

Putting these together,

d =
∑

e

d(e) =
∑

e

2(g(e)−1) = 2
∑

e

g(e)−2n = 2gP−2n

which gives gP = n+ 1
2d. For example, for even n, plac-

ing a guard at every vertex and a guard in the interior
of every other edge darkens every vertex, so gP = 3

2n.

g(e) = 1 g(e) = 1

g(e) = 2 g(e) = 2 g(e) = 1½

Figure 3: Edge counts. Arrows indicate darkened ver-
tices.

We next bound c, the number of guards strictly inter-
nal to P that are corners of C. Let g0 be such a corner
guard. Moving left and right on C, let g1 and g2 be
the first guards that are on ∂P , say on edges e1 and e2.
Note that there cannot be another vertex of C internal
to P between g1 and g2, as then two dark rays would
cross inside P : see Fig. 4(a). Also note that g0 is not
collinear with g1 and g2, because we are counting g∗,
which excludes collinear guards on C. Since every edge
has a guard, edges e1 and e2 must be incident at a vertex
v of P , and v has no guard (because otherwise g0 would
be internal to C). The dark rays incident to g0 from
g1 and g2 cross e1 and e2 as shown in Fig. 4(b). So v
cannot be darkened by the guards on e1 or e2 otherwise
again two dark rays would cross.

Thus each guard g0 counted in c corresponds to a
non-darkened vertex, so c ≤ n− d.

In total,

g∗ = gP + c ≤ n+
1

2
d+ (n− d) = 2n− 1

2
d ≤ 2n .

Equality is achieved when there is one guard inter-
nal to each edge, and one guard inside P between each
consecutive pair, and no collinear guards nor darkened
vertices of P . See Fig. 4(c). �

Theorem 5 The number of guards g that can be placed
in a convex n-gon so that no two dark rays intersect
inside is at most g = 4n− 2.

Proof. Consider a placement of guards inside P that
avoids 2-dark points. We use G∗ and g∗ as defined
above. By Lemma 4, g∗ ≤ 2n. Triangulate the guards
in G∗. By definition of G∗, this includes collinear guards
on ∂P but excludes collinear guards internal to P .

v v

g0 g'0 g2g1 g2g1

e2e1 e2e1(a) (b)

(c)

PC

Figure 4: (a) g0 and g′0 create intersecting dark rays in
P . (b) v cannot be a darkened vertex. (c) The upper
bound g∗ = 2n can be achieved.

There are at most 2n − 2 triangles in this triangula-
tion. By Lemma 3, there is at most one extra guard in
each triangle, for a total of at most 2n+(2n−2) = 4n−2
guards, so long as we rule out the exceptional case of
Lemma 3 where a triangle of guards can contain two
extra guards. But that exception only happens when
one of the extra guards is on ∂P , and all the guards on
∂P were already included in G∗. �

3 Lower Bound

The challenge is to locate g = 4n − 2 guards so that
there are no 2-dark points in P , thus proving the lower
bound of Theorem 2.

We first illustrate a placement in a triangle of g = 10
guards without 2-dark points, i.e., so that no two dark
rays intersect inside the triangle. We then introduce
the general strategy for the triangle, and hint at the
strategy for convex n-gons, but proofs are deferred to
Appendix A.3.

3.1 g = 4n− 2 guards achievable for triangle

Fig. 5 illustrates a placement of 10 guards in a triangle
P such that all dark-ray intersections are strictly exte-
rior to P . Although it is difficult to verify visually, even
enlarged, a calculation described in the Appendix veri-
fies that all dark-ray intersections lie strictly exterior to
the triangle. This demonstrates g = 4n−2 is achievable
for triangles.

54

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

g10

g1

g2

g4 g3

g8

Figure 5: g = 10 guards 9-covering a triangle. Apex
enlargement below. Indexing follows Fig. 6.

Several features of this construction will repeat for
general n-gons:

(1) n guards are on edges of P .

(2) 2n guards are on the hull ∂C (the maximum by
Lemma 4).

(3) Three guards are placed near each vertex,

(4) Two of the three guards near a vertex are nearly
co-located.

(5) There is one extra guard in each triangle of a tri-
angulation of P (this is g10 in Fig. 5).

This construction leads to 3 guards near each of P ’s n
vertices, plus n− 2 guards in the triangles of a triangu-
lation, yielding g = 4n− 2. Note that the triangulation
is of the n-gon P , not the 2n-gon convex hull C used in
the proof of Theorem 5.

Idea of the construction in Fig. 5. Before turning
to the general construction, we first provide intuition
for the triangle construction, illustrated in Fig. 6. The
triangle is partitioned into six sectors with g10 in the
center. Three guards are placed in the yellow sectors
near each vertex, so that the dark rays they generate
at g10 exit through the empty white sectors. First, two
of three guards are placed as illustrated: g2, g4, g6 on

triangle edges, and g1, g3, g5 slightly inside the adja-
cent edges. The final three guards will be placed in-
side the convex hull of g1, . . . , g6, but their locations
are tightly constrained. The guards placed so far define
three dark wedges apexed at guards g1, g3, g5, where the
wedge apexed at gi contains all the dark rays at gi. The
last three guards g7, g8, g9 are placed quite close to the
even-index guards g2, g4, g6 so that none of their dark
rays enter the dark wedges. For further explanation, see
Section A.3. The construction works for any triangle:
there are no shape assumptions.

g4

g10

g5

g6
g1

g2

g3

Figure 6: Dark rays from g10 exit through empty white
sectors. Dark wedges apexed at g1, g3, g5 contain the
dark rays from all other guards, illustrated for the g1
wedge.

The conclusion of the lower bound construction in the
Appendix (Section A.3) is this theorem:

Theorem 6 It is possible to place 4n − 2 guards in a
convex n-gon P so that all dark-ray intersections lie
strictly exterior to P .

Theorems 5 and 6 establish the tight bounds in Theo-
rem 2.

4 Simple Polygon

We mentioned in the Introduction that the variant we
are exploring—multiple coverage and guards-blocking-
guards—is not a natural fit for arbitrary simple poly-
gons. In a convex polygon P , each pair of guards sees all
of P except for their dark rays, whereas in an arbitrary
polygon, guard visibility is also blocked by reflexivities
of ∂P .

55

35th Canadian Conference on Computational Geometry, 2023

4.1 Necessity

The comb example that establishes necessity of bn/3c
guards to cover a simple polygon of n vertices, also
shows the necessity of kbn/3c guards to cover to depth
k—since no guard can see into more than one spike of
the comb, each of the bn/3c spikes needs at least k dis-
tinct guards. In fact, if the comb has at least two spikes,
then kbn/3c guards also suffice. The general construc-
tion for k ≥ 2 is illustrated in Fig. 7 for depth k = 4
and n = 9.

Figure 7: 4 · 3 = 12 guards suffice to 4-cover the comb
of 9 vertices.

Place k guards in a convex arc below each spike of
the comb so that none of the dark rays generated by
these guards enters any spike. Points in a spike are
covered to depth k by the k guards below it. Although
many dark rays cross in the base corridor of the comb,
slight vertical staggering of the convex arcs of k guards
ensures that no corridor point is at the intersection of
three dark rays, which ensures coverage to depth k for
k ≥ 2 and at least two spikes.

4.2 Sufficiency

For sufficiency, we have not obtained a tight bound:
To cover a simple polygon P of n vertices to depth k,
we show that g = (k + 2)bn/3c guards suffice. First
triangulate P , 3-color, and choose the smallest color
class, which has cardinality at most bn/3c [Fis78]. In
Fig. 8, say we select color 1. If a color-1 vertex v is
convex, then define a cone C apexed at v bounded by
the edges incident to v. If a color-1 vertex v is reflex,
then define C to be the “anticone” at v: the cone apexed
at v and bound by the extensions of the incident edges
into the interior.

To cover P to depth k, place k + 2 guards along a
convex arc near a color-1 vertex v, and inside v’s cone.
In the figure, we aim to 3-cover and so place 5 guards in
each cone. Now it is clear that the k+2 guards at color-
1 vertex v see into all the triangles incident to v. These
guards generate crossing dark rays, but by perturbing
the locations of the guards we can avoid three dark rays
meeting in P . The result is coverage to depth 2 less
than the number of guards at each color-1 vertex:

3

1

2

1

3

2

Figure 8: Cones at the color-1 reflex vertices each con-
tain k + 2 guards. Here the 5 guards achieve a 3-cover.

Theorem 7 To cover a simple polygon of n vertices to
depth k, g = kbn/3c guards are sometimes necessary,
and g = (k + 2)bn/3c guards always suffice.

5 10 Guards in a Wedge

Finally, in Appendix A.5 we establish a tight bound for
a wedge, which can be viewed as an unbounded 2-sided
convex polygon with one vertex and two rays:

Lemma 8 Covering a wedge to depth k requires the
same number of guards as it does to cover a triangle
to depth k, except that to 3-cover requires 4 guards. In
particular, g = 10 guards can cover to depth 9.

The surprising part of this result is that 10 guards can
be placed in a wedge without creating 2-dark points—
despite the fact that our triangle construction (see
Fig. 6) fails for a wedge because it has 2-dark points
just outside each triangle edge.

6 Open Problems

1. Investigate bounds or the complexity (NP-hard?)
of placing points in a simple polygon so that no
two dark rays intersect. (As noted in Section 4, the
connection between this problem and k-guarding
fails for non-convex polygons.)

2. Close the simple polygon gap in Theorem 7.

3. Can the tight bound for a wedge in Lemma 8 be
generalized to tight bounds for unbounded convex
polygons with two rays joined by a chain of n − 1
vertices and n− 2 edges?

56

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Acknowledgements. We benefited from suggestions of
three referees.

References

[AAM21] Mikkel Abrahamsen, Anna Adamaszek, and
Tillmann Miltzow. The art gallery problem
is ∃R-complete. J. ACM, 69(1), 2021.

[BBC+94] Patrice Belleville, Prosenjit Bose, Jurek Czy-
zowicz, Jorge Urrutia, and Joseph Zaks. K-
guarding polygons on the plane. In Proc. 6th
Canad. Conf. Comput. Geom., pages 381–
386, 1994.

[BEK13] Daniel Busto, William S Evans, and David G
Kirkpatrick. On k-guarding polygons. In
Proc. 25th Canad. Conf. Comput. Geom.,
2013.

[DO11] Satyan Devadoss and Joseph O’Rourke. Dis-
crete and Computational Geometry. Prince-
ton University Press, 2011.

[Fis78] Stephen Fisk. A short proof of Chvátal’s
watchman theorem. J. Combin. Theory Ser.
B, 24:374, 1978.

[O’R87] Joseph O’Rourke. Art Gallery Theorems and
Algorithms. Oxford University Press, New
York, NY, 1987. http://cs.smith.edu/

~jorourke/books/ArtGalleryTheorems/.

[Sal09] Ihsan Salleh. K-vertex guarding simple
polygons. Comput. Geom. Theory Appl,
42(4):352–361, 2009.

A Appendix

A.1 4-guarding a Triangle

g1

g3

g4 g2 g1

g3

g5

g2

(a) (b)

g4

Figure 9: Five guards needed to 4-cover. (a) All strictly
interior points are 4-covered, but the blue segments to
either side of g4 are only 3-covered. (b) Points on the
dark rays (blue segments) incident to g4 and g5 are 4-
covered; all other points are 5-covered.

A.2 Regime (2) Lemma

Lemma 9 Any placement of n + 1 guards in a convex
n-gon P results in a dark point in P .

Proof. If a guard g0 is strictly internal to P , then there
is a dark ray at g0 generated by every other guard. So
it must be that all guards are on ∂P .

View each edge of P as half-open, including its clock-
wise endpoint but not its counterclockwise endpoint. So
the edges are disjoint and their union is ∂P . Every edge
e can contain at most one guard: If e contains two or
more, one, g1, is interior to e and so there is a dark ray
at g1 along e. So there can be at most n guards while
avoiding dark points. �

A.3 General Lower Bound Construction

Example: Square. Before commencing with the gen-
eral construction, we illustrate it with a square. Plac-
ing 4n− 2 = 14 guards in a square without any 2-dark
points follows the same construction as with the triangle
in Fig. 5: 3 guards near each vertex, and n− 2 = 2 “el-
bow” guards `i determined by a special triangulation, in
this case just a diagonal of the square. See Fig. 10. Co-
ordinates may be found in the Appendix (Section A.6).

v2v1

v4 v3

ℓ 33

ℓ11

Figure 10: 14 guards covering to depth 13. Trian-
gulation diagonal is v1v3. Elbow guards `1, `3. Vertex
guards xi, yi, zi near the four corners.

Overall Construction. The overall plan of the con-
struction is the same as for a triangle and a square:

57

35th Canadian Conference on Computational Geometry, 2023

3n guards, 3 near each vertex, plus one guard per tri-
angle in a triangulation of P of n − 2 triangles. The
three guards to be placed near vi will be called vertex
guards. The triangulation is a serpentine triangula-
tion formed by a zigzag path that visits all the vertices,
as illustrated in Fig. 11. The single guard in each tri-
angle will be called an elbow guard.

vi ℓi

vi+1

vi-1

ℓ j

ℓj+1

vj

vj+1

e

Figure 11: Zigzag triangulation and elbow guards `i.

Notation. We label the vertices in counterclockwise
(ccw) order: v0, . . . , vn−1 with index arithmetic mod-
ulo n. Thus “before” means clockwise (cw) and “after”
means ccw. Let vi be one of the n− 2 internal vertices
of the zigzag path. Then vi is the apex of a triangle Ti
bounded by two edges of the zigzag path plus a base
that is an edge of the polygon. The elbow guard of Ti,
which we denote `i, will be placed close to vertex vi.
For ease of notation, we will focus on one triangle with
apex vi and base vjvj+1. In each edge of P we place
two “dividing points” that are used to separate wedges
of dark rays. The dividing points adjacent to vi are la-
beled mi (on the minus (cw) side) and pi (on the plus
(ccw) side). See Fig. 12.

Note that there are two vertices of P with no el-
bow guard, and consequently either `j or `j+1 (or both)
might not exist. For example, in Fig. 10, neither `2 nor
`4 exist.

Dark-ray Wedges. The elbow guard `i will be located
close to vi, and vi’s three vertex guards even closer to
vi. We first place the elbow guards and define “safe
regions” for vertex guards so that the dark rays incident
to elbow guards lie in disjoint “dark ray wedges.” Exact
placement of vertex guards will be described later.

Let e be the base edge of Ti, e = vjvj+1. Then the
three portions of e demarcated by pj ,mj+1 each are
crossed by wedges of dark rays incident to elbow guards.
The central portion of e is crossed by rays generated by

vi’s vertex guards through `i (blue). The vjpj segment
of e is crossed by the rays at `j , generated by all the
vertex guards and elbow guards associated with vertices
ccw from vi+1 to vj−1, and symmetrically the mj+1vj+1

segment of e is crossed by dark rays at `j+1, generated
by all the vertex guards and elbow guards associated
with vertices ccw from vj+2 to vi−1.

From the viewpoint of `i, there are three dark wedges
emanating from it, one crossing pjmj+1 and two (shown
in pink) crossing vimi and vipi, before and after vi.

vi+1

mi+1

vi-1

vi

vj

vj+1

Ti

pi

mi

pi-1

mj+1

pjℓi

ℓj

ℓj+1

Figure 12: The dark-ray wedges that cross e = vjvj+1

and the dark-ray wedges emanating from `i.

Locating `i. We now describe how to place each `i so
that the dark-ray wedges illustrated in Fig. 12 indeed
contain the claimed rays, and create a “safe region” for
vi’s vertex guards.

Place `i at the intersection of two lines: the line mipi,
and the line through vi and the midpoint of pjmj+1.

Let bi be the point where the line through pj and `i
exits P . Observe that bi lies in the segment vimi. Our
mnemonic is that bi is just “before” vi. Let ai be the
point where the line through mj+1 and `i exits P . Then
ai lies in the segment vipi, just after vi.

For a vertex vi that has an elbow guard, define its
safe region Ri to be the convex quadrilateral biviai`i,
which is contained in the triangle mivipi. For a vertex
vi without an elbow guard (the first and last vertices of
the zigzag path), its safe region is the triangle mivipi.
Observe that the safe regions are pairwise disjoint.

Claim 1 If vertex guards for vi are placed in Ri then
the dark rays incident with elbow guards lie in the wedges
as specified above and do not enter the safe regions.

58

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Proof. Consider the dark rays incident to `i. Since vi’s
vertex guards lie in the wedge ai`ibi, they generate dark
rays at `i that lie in the complementary wedgemj+1`ipj .
Vertex guards and elbow guards associated with vertices
ccw from vi+1 to vj lie in the wedge pi`ipj so they gener-
ate dark rays at `i that lie in the complementary wedge
mi`ibi (yellow wedges in Fig. 13). Similarly vertex and
elbow guards associated with vertices ccw from vj+1 to
vi−1 lie in the wedge mj+1`imi so they generate dark
rays at `i that lie in the complementary wedge ai`ipi.
(green wedges in Fig. 13). �

bi

ai

vi

vj

vj+1

mj+1

pj

vi+1

vi-1

pi

mi

mi+1

pi-1

ℓi

Figure 13: Constraints on locating `i, and for locating
vertex guards in a safe region Ri = biviai`i.

Locating 3 vertex guards. Call the three vi vertex
guards xi, yi, zi. We will place them in that order, inside
the safe region Ri. xi will be placed on an edge of P ,
and xi and yi will be on the convex hull C of the guards,
with zi strictly inside C.

The following construction references ai and bi so it
applies to the case when `i exists. But for a vertex vi
without an elbow guard, the same construction works
with mi and pi in place of bi and ai.

Construct a triangle with apex vi and two points on
∂P strictly inside the safe region Ri. Place xi at the
corner of this triangle on edge vivi−1, and place yi on
the base of the triangle and on the pi side of the line
vi`i. Observe that all the elbow guards are inside the
resulting hull C. Because xi is the only guard on its
edge, there are no dark rays incident to xi inside P .

vi+1

xi+1

yi-1

vi-1

vi

xi

yi

ai

c
vi

c

yi-1
xi

zi

yi

bi

(a) (b)

xi+1

vi+1

vi-1

ℓi

Figure 14: (a) Locating xi and yi. Wedge of dark rays
apexed at yi shaded. (b) Locating zi so that dark rays
incident to zi exit P safely.

Because yi lies on C with neighbours xi and xi+1, all the
dark rays incident to yi lie in the complementary wedge
bounded by the lines yixi and yixi+1, and including
vi (gray in Fig. 14(a)). Note that no other dark rays
intersect this wedge because it lies inside the safe region.

We now place zi. Let c be the point where the line
xi+1yi intersects the edge vivi−1. See Fig. 14(a).

We will ensure that the dark rays incident to zi—
except for the one generated by xi—lie in the wedge
czibi (yellow in Fig. 14(b)). This implies that these
rays do not intersect any other dark rays.

We place zi:

1. inside C,

2. on the xi side of lines yibi and yi−1c,

3. on the yi side of line xiai.

Observe that these constraints determine a non-
empty region for zi.

Conditions 1 and 3 ensure that the dark ray incident
to zi generated by xi hits the edge vivi+1 in the segment
between yi’s dark wedge and ai, so it intersects no other
dark ray.

Conditions 1 and 2 ensure that, if we ignore xi, then zi
lies on the convex hull C ′ of the guards, with neighbours
yi and yi−1. Therefore the dark rays incident to zi lie
in the complementary wedge—apexed at zi and exterior
to C ′—which lies inside the wedge bizic, as required.

We note that, although our construction places
guards quite close together, the coordinates have
polynomially-bounded bit complexity, since we used a
finite sequence of linear constraints. By contrast, irra-

59

35th Canadian Conference on Computational Geometry, 2023

tional coordinates may be required for the conventional
art gallery problem in a simple polygon [AAM21].

Note that at no point do we rely on the metrical prop-
erties of P , so the construction works for all convex
polygons:

Theorem 6 It is possible to place 4n − 2 guards in a
convex n-gon P so that all dark-ray intersections lie
strictly exterior to P .

To repeat our earlier claim, Theorems 5 and 6 estab-
lish the tight bounds in Theorem 1.

A.4 General Position Guards

At several junctures we claimed we can avoid 3-dark
points inside P by perturbing the guard locations to be
in “general position.” Although this follows from general
perturbation results, we give a straightforward inductive
construction.

We show how to place g guards in a specified open
region of the plane (a convex polygon in regime (3),
or near the vertex of a vertex cone in the situation of
Section 4) while avoiding 3-dark points anywhere in the
plane.

Place the guards sequentially. After placing i guards,
let Ai be the arrangement of lines determined by:
(a) pairs of guard points; and (b) a guard point and
a 2-dark point at the intersection of two dark rays. (For
i ≤ 3 noncollinear guards, there are no 2-dark points.)
Place the (i+1)-st guard at any point in the open region
not on a line of Ai. This is possible since the region is
open. Note that this avoids three collinear guards and
also avoids three dark rays crossing. Now update the
arrangement to Ai+1 and repeat.

A.5 10 Guards in a Wedge

Define a wedge as the region of the plane bounded by
two rays from a convex vertex a, i.e., a cone with apex
a. The connection between k-guarding and dark points
(Observation 1) still holds, and the main issue is the
analogue of Theorem 2—what is the maximum number
of guards that can be placed in a wedge without creating
2-dark points? For a triangle, the bound is 4n−2 = 10.
In this section we prove that the same bound holds for
a wedge.

The upper bound of 10 is easy: If we could place
11 guards in a wedge without 2-dark points, then we
could simply cut off the empty part of the wedge to
create a triangle with 11 guards and no 2-dark points,
a contradiction to the Theorem 5 upperbound.

However, the lower bound of 10, i.e., a placement of 10
guards without 2-dark points, does not carry over from
our triangle construction, because there were dark ray
intersections beyond every edge of the triangle. Nev-
ertheless, we now show this bound is tight, with the

example illustrated in Figs. 15 and 16. We number the
guards from bottom to top. Here is a description of the
construction:

• g1 is directly below the apex a, and far below.

• g2 is slightly left of g1, so that the upward dark ray
at g2 exits the wedge at a particular “safe” spot
between g7 and g10.

• Guard pairs g3, g4, g5, g6, g7, g8 are symmetrically
placed with respect to a vertical line L through a.

• Guards g7, g8 are located on the two edges of the
wedge.

• g10 is on L near a, while g9 is right of L.

• There are six guards on the convex hull C of the
guards: {g1, g3, g7, g10, g8, g4}.

• g5, g6 are just slightly inside C.

We provide coordinates for the guards in Appendix A.6,
and have verified that there are no 2-dark points in the
wedge.

Note that this construction provides an alternative
arrangement of guards for a triangle: Introduce a trian-
gle edge bc below g1, and apply an affine transformation
to 4abc to match Fig. 15.

We summarize the implications for k-guarding a
wedge in this lemma.

Lemma 8 Covering a wedge to depth k requires the
same number of guards as it does to cover a triangle
to depth k, except that to 3-cover requires 4 guards. In
particular, g = 10 guards can cover to depth 9.

Proof. If k ≤ 2, a guard at the one vertex, or one
guard on the interior of each edge, suffices. However,
any placement of 3 guards creates a dark point in the
wedge, so for k ≥ 3, at least k+1 guards are needed to k-
guard. For k ≤ 9, the configuration just described shows
that k+1 guards suffice—this covers the middle regime.
For k ≥ 10, g = k + 2 guards are needed and suffice,
from Observation (3) in Section 1.1 and its explanation
in Section A.4. �

A.6 Guard Coordinates

We include here explicit coordinates for guards in a tri-
angle, a square, and a wedge. In all cases, Mathematica
code has verified that dark-ray intersections are strictly
exterior.

Coordinates for 10 guards in an equilateral triangle,
Fig. 5. Triangle corners are (0, 200), (±100

√
3,−100).

Guard locations for the other gi are symmetrical place-
ments following Fig. 6.

60

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

1

2

a

L

Figure 15: Wedge apex a, 10 guards with no 2-dark
points.

3 4

5 6
7 89

10

3 4

5 6
9 87

10

a

L

Figure 16: Closeup of upper portion of Fig.15.

gi x, y

5 −102.57, −96
6 −102.6, −100
7 −118, −49
10 0, 0

Coordinates for 14 guards in a square, Fig. 10. Square
corner coordinates (±200,±200). Guard locations
g6, . . . , g14 are symmetrical placements of g3, g4, g5.

gi x, y

1 −65, −120
2 65, 120
3 −180, −180
4 −198, −137.7
5 −200, −135

Coordinates for 10 guards in a wedge, Figs. 15 and 16.
Apex at (0, 200), apex angle π/3. Guard locations
g4, g6, g8 are symmetrical placements of g3, g5, g7.

gi x, y

1 0, −600
2 −9, −270
3 −70, 50
4 70, 50
5 −41, 120
6 41, 120
7 −38.1, 134
8 38.1, 134
9 8, 150
10 0, 180

61

62

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Conflict-Free Chromatic Guarding of Orthogonal Polygons
with Sliding Cameras

Yeganeh Bahoo∗ Onur Çağırıcı∗ Kody Manastyrski∗ Rahnuma Islam Nishat† Christopher Kolios∗

Roni Sherman∗

Abstract

In conflict-free chromatic guarding of a polygon, every
guard is assigned a color such that every point in the
polygon, including the points on the boundaries, must
see at least one unique color. The goal of this prob-
lem is to minimize the number of colors needed. In
this paper, we study the conflict-free chromatic guard-
ing of simple orthogonal polygons with sliding cameras,
where cameras are allowed to slide along the length of
the corresponding edge. We investigate two versions of
the Conflict-free Sliding Camera problem: for orthogo-
nal polygons without holes (CFSC), and for orthogonal
polygons with holes (CFSC-H), we show that two col-
ors are always sufficient and sometimes necessary for a
CFSC, and give an O(n log n) time algorithm to com-
pute a CFSC using two colors, where n is the number
of vertices of the polygon. We give an O(n log n) time
algorithm to obtain a CFSC-H using three colors. We
also show that for a special case of CFSC-H two colors
suffice.

1 Introduction

The polygon guarding problem is a well-studied prob-
lem in the field of computational geometry, which is
also known as the art gallery problem [7, 18]. Given a
polygon P , the goal of the polygon guarding problem is
to find the minimum number of guards needed so that
any point in P is visible to at least one guard. Two
points p and q are visible to each other when the line
segment pq, also known as line-of-sight visibility, does
not intersect any edges of P . This problem has been
studied in many different settings, such as for general
polygons [10, 11, 17], for weak-visibility polygons [2, 3],
and for orthogonal polygons [15,16].

The very first version of this problem, introduced by
Victor Klee [18] considered line-of-sight visibility. Later,
variations of the problem were studied while assuming

∗Department of Computer Sciece, Toronto Metropoli-
tan University, Toronto, ON, Canada, {bahoo, cagirici,

kody.a.manastyrski, ckolios, roni.sherman}@torontomu.ca
†Department of Computer Science, Mathematics, Physics and

Statistics, University of British Columbia, Kelowna, BC, Canada,
rahnuma.nishat@ubc.ca

different visibility models, such as α-visibility [14], and
π-visibility [19].

(a) (b)

Figure 1: (a) An assignment with conflicts: the yel-
low region is covered by two blue guards and no green
guards; the blue-green region has a blue and a green
guard and causes no conflict. (b) A conflict-free assign-
ment.

Although Fisk applied graph coloring in the proof of
bounds in art gallery problems [13], chromatic guard-
ing of polygons is a more recent topic. In chromatic
guarding problem, we look for a set of guards such that
each point of the polygon is visible to a subset of the
guards and assign a color to each guard from a set of
available colors. The set of guards along with the color
assignment is conflict-free if for each point of the poly-
gon, there is at least one guard with a unique color [1].
Conflict-free chromatic guarding has applications in the
assignment of radio frequencies to sensors placed on the
vertices of the polygon to guide mobile robots in trian-
gulating their positions in the polygon [1, 5].

Conflict-free chromatic guarding has been studied in
the context of orthogonal polygons, and bounds have
been given on chromatic numbers χP of an orthogo-
nal polygon P , i.e., the minimum number of colors re-
quired to guard P without conflict. Given a polygon P ,
Bärtschi and Suri [1] showed that χP ∈ O(log n), where
n refers to the number of vertices of the polygon, by sub-
dividing P into “weak-visibility suppolygons”. Erickson
and LaValle [12] showed that for orthogonal staircase
polygons, the bound is χP ≤ 3.

In this work, we use sliding cameras as guards [4, 8,
9, 16], where a guard or camera is directional (i.e. it
has directional view oriented towards the interior of the
given polygon) and can travel along a boundary edge

63

35th Canadian Conference on Computational Geometry, 2023

of the polygon. See Figure 1(b) for an example, where
sliding cameras or guards are assigned (only to horizon-
tal) edges of the polygon. Note that two consecutive
horizontal edges on the polygon have not been assigned
cameras of the same color as that would create conflict
at the boundary of the two guarded regions. Through-
out the paper, the terms sliding camera and guard are
used interchangeably.

Our contributions. We give upper and lower bounds
on χP for both CFSC and CFSC-H. In Section 3, we
prove that two colors are sometimes necessary and al-
ways sufficient for a conflict-free chromatic guarding
of an orthogonal polygon without holes. Our bound
on the chromatic number is tight. We also give an
O(n log n) time algorithm that solves CSFO with two
colors, where n refers to the number of vertices of P . In
Section 4.1, we propose an O(n log n) time algorithm to
solve a CSFO-H, using three colors (χP ≤ 3). Finally, in
Section 4.2, we study a special case of CFSC-H, where
each hole has a rectangular boundary and the order of
the holes inside the polygon is X-monotone. In this
case, we show that two colors are sufficient (χP = 2).
In all our algorithms, the outer boundary of the polygon
and the boundaries of the holes are axis-parallel.

2 Preliminaries

We define the terminology used throughout the paper.

A simple polygon P is an enclosed area in the Eu-
clidean plane bounded by a finite number of straight
line segments that form a polygonal chain; each such
straight line segment is called an edge of P , and a pair
of edges meet in a vertex. In this paper, first we consider
simple polygons; i.e. no pair of edges intersect except at
their common endpoints (vertices). Starting from Sec-
tion 4, we suppose that a polygon with holes is given. A
polygon with holes is a polygon enclosing several other
polygons; the inner polygons are known as holes.

The boundary of P is the closed polygonal chain
formed by the edges of P . We assume that the bound-
ary is directed clockwise, i.e., while walking along the
boundary of the polygon the interior would always be
on the right. The vertices of a polygon are denoted by
v1, v2, . . . , vn in clockwise order. The edge that connects
the pair of vertices vi and vi+1 is denoted by ei, where
1 ≤ i ≤ n, and the edge from vn to v1 is denoted by en.

The polygon P is called an orthogonal polygon, if ev-
ery pair of consecutive edges are perpendicular to each
other. Throughout this manuscript, we assume that a
given orthogonal polygon is oriented in a way such that
each edge is parallel to either x-axis (horizontal), or y-
axis (vertical). We classify the edges as north-facing,
south-facing, east-facing and west-facing depending on
the orientation of the perpendicular ray towards the in-
terior of the polygon.

An X-monotone polygon is an orthogonal polygon
that intersects any vertical line ` at most twice, where
an intersection is either a point on a horizontal edge of
the polygon, or an entire vertical edge.

Definition 1 A maximal monotonous south-facing
chain is a maximal set of south-facing edges e1, . . . , ek
such that the x-coordinates of the starting points of the
edges are in increasing order, and ei and ei+1, for each
i < k, are connected by a vertical edge.

Let S be the set of all maximal monotonous south-
facing chains S1, S2, . . . , Sq in P . For any chain Si ∈ S,
we denote the edges of Si by ei1, e

i
2, . . . , e

i
ki

from left
to right. The visibility region of a chain S of S is the
region of P , including the boundary of P , that is visible
to the guards assigned to the edges of S. We observe
the following property of the set S.

Lemma 1 A sliding camera at each edge of S collec-
tively guards the entire polygon P .

Proof. From any point p ∈ P , if we draw a vertical line
upward, the first edge e that the line intersects must be
south-facing; hence, e must belong to a chain in S. �

Lemma 1 forms the basis of our algorithms in this
paper, where we find efficient ways to put a camera on
each of the edges of S such that the number of colors
needed for a conflict-free guarding of P is minimized.

We use blue, red and green for the three colors as-
signed to guards or cameras. When a guard is assigned
a color, say red, we write red guard or red camera.

3 Orthogonal polygons without holes

In this section, we discuss the CFSC problem (for or-
thogonal polygons without holes) and give tight upper
and lower bounds on the conflict-free chromatic number
χP for them. We show that two colors are sometimes
necessary and always sufficient to guard an orthogonal
polygon with sliding cameras, thus giving a lower and
an upper bound on the number of colors required to
guard any orthogonal polygons. The lower bound holds
for polygons with holes as well.

We first prove the lower bound on χP .

Theorem 2 There exists an orthogonal polygon that
requires sliding cameras of at least two colors for CFSC.

Proof. Let P be the orthogonal polygon in Figure 2.
By exhaustive search, we conclude that a sliding camera
on any of the 8 edges of P cannot guard the whole poly-
gon. If there exists only one color of gaurds, any com-
bination of guards in this figure will result in a conflict
as no consecutive edges of P can be assigned the same
color. Therefore, we need at least two cameras. The

64

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

visibility regions of any two cameras guarding P will in-
tersect at least at the boundaries. Therefore, we must
need at least two different colors for the cameras. �

(a) (b)

Figure 2: (a) Two black guards guarding the whole poly-
gon; the patterned regions are visible to a single guard,
and the solid region to both guards. (b) A conflict-
free guarding by a black (patterned regions) and a gray
guards. The dark solid region is covered by both guards.

We now show that two colors are always sufficient
for a CFSC of any given orthogonal polygon. First,
we describe an algorithm to obtain a CFSC for an X-
monotone polygon, and then we generalize the idea to
non-monotone polygons.

By definition, an X-monotone polygon P has exactly
one maximal monotonous south-facing chain S. We
place a blue camera on all the edges ei of S, where
i is odd, and a red camera on the edges ei, where i
is even; see Figure 3 for an example. We name this

e1

e3

e4

e6

e5

e8

e7

e9

e2

Figure 3: Two colors are sufficient to guard a monotone
orthogonal polygon.

algorithm CFSC-monotone. The following theorem
proves the correctness and running time of the above
algorithm. The proof is in the appendix.

Theorem 3 Algorithm CFSC-monotone computes a
CFSC of an X-monotone polygon P without holes in
O(n) time using only two colors, which is optimal.

Now consider the case where the input polygon P is
not X-monotone. Then S has more than one chain. We
then need some special data structure to assign colors
to the edges in S efficiently.

u

v
w

s

t

(a)

s

u

v

(b) (c)

s

v

u t

Figure 4: Maximal monotonous south-facing chain with
(a) no upward connection, (b) one upward connection,
and (c) two upward connections.

Before describing the data structures for our algo-
rithm, we need to define some terminology. Let the
vertical edges preceding and following a chain Si ∈ S
be (u, v) and (s, t), respectively, where v and s are the
endpoints of the first edge ei1 and last edge eik of Si, re-
spectively. If u has a higher y-coordinate than v then we
say that ei1 is a upward connection Si. Similarly, eik is an
upward connection of Si if t has a higher y-coordinate
than s. Clearly, Si can have upward connections 0, 1,
or 2 as shown in Figure 4.

We now describe the data structures we need. In
the preprocessing step, we populate a list called L that
stores pointers for each S ∈ S of the chains that are
influenced by or influence the coloring of S. For this
we build a trapezoidal map T and the associated search
structure D with the south-facing edges of P using the
algorithm proposed in [7]. Therefore, with each edge,
the chain associated with S is given. Now for each up-
ward connection v of each S ∈ S, we traverse the search
structure D to find the edge e and the associated chain
Si just above v. Let v be incident to edge e′ in S. We
then put (e′, e, Si) in the L entry of S, and put (e, e′, S)
in the corresponding entry for Si. Building T and D
takes expected O(n log n) time using the incremental
randomized algorithm in [7], and finding the edge above
each endpoint takes O(log n) time. Therefore, L can be
populated from D in O(n log n) time.

Figure 5 shows an orthogonal polygon without holes,
and Table 1 shows the corresponding data structure L.

We now briefly describe the algorithm for assigning
two-color sliding guards to the edges of S to obtain
a conflict-free guarding of P . We call the algorithm
CFSC-TwoColors.

We pick any chain S from S and assign guards to the
chain by putting a red camera on the edges ei, where
i is odd, and a blue camera on the edges ei, where i is
even. For each entry (e, e′, S′) in the influence list L of
S, where e is an edge of S and c(e) denotes the color

65

35th Canadian Conference on Computational Geometry, 2023

S1

S2

S3

S4

S5

S6

e11

e61
e51

e41

e22

e23

e32

e12

e21

e31

Figure 5: The chains in S are shown, with the edges,
and the upward connections with dotted lines.

Si influence list
S1 (e61, e

1
2, S6), (e21, e

1
2, S2)

S2 (e21, e
1
2, S1), (e51, e

2
1, S5), (e31, e

2
3, S3)

S3 (e23, e
3
1, S2), (e31, e

4
1, S4)

S4 (e41, e
3
1, S3)

S5 (e51, e
2
1, S2)

S6 (e61, e
1
2, S1)

Table 1: Data structure L for the polygon in Figure 5.

assigned to edge e, we put (c(e), e′, S′) in a queue Q. In
the next step, when we remove that entry (c(e), e′, S′)
from Q, we assign the opposite color of c(e) to e′ of S′,
and continue to assign alternating colors to the edges
on each side of S′. After that, we put all the chains in
the influence list of S′ that have not been colored into
Q. We stop when the queue is empty.

Figure 6 shows how the algorithm works by showing
the first step. The following theorem proves the cor-
rectness and running time of the algorithm. See the
appendix for the complete proof.

S1

S2

S3

S4

S5

S6

(blue, e12, S1), (blue, e
5
1, S5), (blue, e

3
1, S3)Q

Figure 6: A CFSC with two colors, after assigning colors
to the edges of S2 ∈ S; and the queue Q after coloring
S2.

Theorem 4 Algorithm CFSC-TwoColors computes

a CFSC of an orthogonal polygon P without holes in
O(n log n) time using two colors.

Proof Sketch. After coloring a chain S, if we remove
the visibility region of S from P , we get disjoint sub-
polygons for each of which only one endpoint of one
south-facing edge has been assigned a color. Since the
corresponding chain S′ is placed in Q before any other
chains in that sub-polygon, S′ also gets a conflict-free
coloring. By inductively applying the above logic, we
can prove the correctness. Assigning colors to all the
south-facing edges takes O(n) time. Building T , D,
and then populating L from D takes O(n log n) time.
Therefore, the total time is O(n log n).

4 Orthogonal polygons with holes

In this section, we study the problem conflict-free chro-
matic guarding of orthogonal polygons with holes or
CFSC-H for short. We first give an algorithm that
we call CFSC-H-ThreeColors that uses three colors,
thus proving an upper bound on the chromatic number
for orthogonal polygons with holes.We also define a spe-
cial class of polygons for which two colors are sufficient
for CFSC-H, and give an algorithm to achieve such an
assignment of colors.

4.1 Three colors are sufficient

Let P be an orthogonal polygon with holes (see Figure 7
for an example), and let S be the set of all maximal
monotonous south-facing chains in P . Note that the
chains in S belong to the outer boundary of P as well as
the holes of P . By Lemma 1, a guard assigned to each of
the south-facing edges, including the south-facing edges
on the holes, covers the entire polygon P . Therefore,
our goal is to assign a guard to each of the south-facing
edges in a conflict-free manner.

S1

S2

S3

S4

Figure 7: An orthogonal polygon with an orthogonal
hole shown in blue; outer boundary has one and the hole
has three maximal monotonous south-facing chains.

Since we are allowing one more color to be used than
CFSC, a straightforward idea could be to follow a sim-
ilar techniques to Algorithm CFSC-TwoColors from
the previous section. However, that may not be pos-
sible. Take the polygon P in Figure 7 as an example.

66

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Suppose that we first assign guards to S3, which puts
S2 and S4 in Q. After assigning guards to S2, the queue
Q contains S4 and S1. Now when we assign guards to
S4, we either have to put a duplicate entry for S1 in the
Q, or retrieve S1 from Q to update the color constraints
and then put it back again. In either case, searching the
queue Q for an entry for a specific chain increases the
time complexity of the algorithm. Therefore, we need
some tool to obtain an efficient algorithm for CFSC-H.
In this regard, we introduce the notion of relationship
graph.

Definition 2 (Relationship graph) The relation-
ship graph GS,P of P is a directed graph whose nodes
are the chains of S such that for each pair of chains
S, S′ ∈ S, G has a directed edge from S to S′ for each
upward connection of S that is in the visibility region
of S′. See Figure 8 for an example.

S1

S5
S6S4

S3

S2

S8

S7

(a)

S1

S2 S7 S5

S3 S4

S8

S6

(b)

Figure 8: (a) Set S of maximal monotonous south-facing
chains of orthogonal polygon P with holes, the holes are
blue. (b) The relationship graph GS,P .

We observe some properties of GS,P .

Lemma 5 GS,P is a directed acyclic graph (DAG)
where each node of G has at most two outgoing edges.

Proof. Since P is connected and simple, by Defini-
tion 2, there cannot be a directed cycle. Since a chain
can have at most two upward connections, the num-
ber of outgoing edges of a node of G must be at most
two. �

We can build the relationship graph GS,P of P us-
ing the trapezoidal map T of the chains of S as in the
previous section. For each upward connection e of each
S ∈ S, we traverse the search structure D associated
with T to find the edge e′ and the associated chain S′

just above e. Let v be incident to edge e in S. We
then add the edge (S, S′) with the label (e, e′) in GS,P .
Building T and D takes expected O(n log n) time using
the incremental randomized algorithm in [7], and find-
ing the edge above each endpoint takes O(log n) time.

Therefore, the relationship graph G can be built from
D in O(n log n) time.

We now describe Algorithm CFSC-H-
ThreeColors. Since GS,P is a DAG by Lemma 5,
we obtain a topological ordering of the nodes of the
graph [6] in O(n) time. We then assign guards to the
chains of S according to topological ordering. For any
chain S ∈ S, one of these cases holds. Case 1. S
does not have any upward connections. We
place a blue camera at all edges ei, where i is odd,
and a red camera when i is even. Case 2. S has
only one upward connection. Let the label of the
upward connection edge be (e, e′) where e belongs to S.
Without loss of generality, assume that c(e′) is red. We
then color e blue, and on either side of e, we assign red
and blue cameras alternatingly to the rest of the edges
of S. Case 3. S has two upward connections.
Let the labels of the upward connections be (e1, e

′
1)

and (eq, e
′
q) where e1 and eq are edges of S. Without

loss of generality, assume that e′1 is colored red. If e′q is
also red, we color e1, . . . , eq with colors blue and green
alternatingly. If e′q has a different color than e′1, say
blue, we assign the colors green and red to e1, . . . , eq
starting with green. Then, we will not have conflict
whether q is odd or even.

We now prove the correctness and time complexity of
the algorithm. See the appendix for the complete proof.

Theorem 6 CFSC-H-ThreeColors computes a
conflict-free chromatic guarding of an orthogonal
polygon P in O(n log n) time using three colors.

Proof Sketch. The correctness follows from the fact
that the topological ordering of the chains would ensure
that any chain S with an upward connection to another
chain S′ would be colored after S. The calculation of
running time is similar to Theorem 4.

4.2 Special case: monotonous rectangular holes

We describe a restricted class of orthogonal polygons,
where the boundary of each hole is a rectangle and
the order of the holes inside the polygon is monotone
with respect to either x-axis or y-axis; see Figure 9(a).
We call this restricted class of polygons orthogonal poly-
gons with monotonous rectangular holes. Without loss
of generality, we assume that the order of the holes is
X-monotone. We give an algorithm that we call CFSC-
H-TwoColors to obtain a CFSC-H using two colors.

Let S and H be the sets of maximal monotonous
south-facing chains from the outer boundary of P
and from the holes of P . As in Algorithm CFSC-
TwoColors, we build the trapezoidal map T with S
and H, and from it we build the data structure L. How-
ever, when checking the search structure of T for the
edges above a chain H ∈ H, we add all the chains that
are above H.

67

35th Canadian Conference on Computational Geometry, 2023

S1

S5
S6S4

S3

S2 H2 H3

H1

H1 H2 H3 H4

(a)

H4

S2

S3

S4

S5

S6

S1
H1 H2 H3

H4

(b)

H4

Figure 9: (a) An orthogonal polygon with rectangular
X-monotone holes; the projection of the hole bound-
aries on the X-axis are nonoverlapping. (b) List of holes
under each chain ordered from left to right according to
the holes’ projections on the X-axis.

We need another data structure to keep track of holes
that are directly under a chain S ∈ S. We consider the
list A in Figure 9(b), where the holes directly under a
chain S are listed from left to right. We can populate
A at the same time as L; and later sort each individual
list of holes for each chain in S in ascending order of the
x-coordinates of the holes.

Algorithm CFSC-H-TwoColors uses the same idea
as Algorithm CFSC-TwoColors. For the first chain
S chosen, we start from the leftmost edge e1 of S. We
assign blue to e1, red to e2, and continue this way until
we reach a hole H1 under S. Let e′, e′′ ∈ S, where e′ =
e′′ may hold, be the two edges intersected by the two
vertical edges of hole H when extended in the direction
of positive y-axis. We assign the same color to all the
edges of S from e′ to e′′, and assign the opposite color
to e′ to the top edge and the bottom edge of H1. We
then continue as before until we reach the next hole H2

and follow the same procedure.

After coloring S and all the holes under it, we put
the entries for all the uncolored chains in S that are
influenced by the coloring of S in the queue Q. Since all
the holes under S have already been colored, no holes
will be added to Q at this step. Then for each hole
Hi under S, we check if a chain S′ influenced by it is
already in Q. If S′ is in Q, that means that it is also
influenced by S. Then both S and S′ must be above Hi

and influenced by the guard of the north-facing edge eh
of Hi. Then we can assign the same color to all edges
of S and S′ that are in the visibility region of eh. So
we remove the entry for S′ from Q and add a new entry
that applies the opposite color of eh to the visible edges
of S′. Since the holes are X-monotone, no holes would
be added to Q at this stage also.

We then remove the chain at the front of Q and apply

the same procedure. We keep dequeuing chains from Q
and assigning guards to them until Q is empty. Note
that since the holes under a chain are colored at the
time of coloring the chain, no hole would be added to Q
at any point. Figure 10 describes some scenarios that
may occur. Note that, in the case where e′′ belong to
a different chain Sj 6= Si (as in S5 and S6 for the hole
H4 in Figure 9), the guards on the top edge of H will
see some edges of Sj . When coloring Sj , we propagate
the opposite color of H on Sj from where the visibility
of the top edge of H ends.

H H

e′

e′′

(b)

e′ = e′′

(a)

H

e′
e′′

(c)

Figure 10: Different scenarios when assigning colors to
the hole; the dark gray regions are covered by one blue
(black patterned) and one red (solid light gray) guard:
(a) e′ = e′′, (b) e′, e′′ are adjacent, and (c) there are
edges between e′ and e′′.

The following theorem summarizes the time complex-
ity and correctness of the above algorithm.

Theorem 7 Algorithm CFSC-H-TwoColors com-
putes a CFSC-H of an orthogonal polygon P with
monotonous rectangular holes in O(n2) time using two
colors.

Proof. Building the data structure L and A takes
O(n log n) time each by Theorem 4. Sorting all lists
in A takes O(n log n) time in total. Since the holes are
colored at the time of coloring the chains, the coloring
is done in O(n) time. However, when adding chains in-
fluenced by a hole, we have to look for them in Q. This
may take O(n) time. Therefore, the total running time
of the algorithm is O(n2). �

5 Conclusion

We have given an O(n log n) time algorithm for CFSC
with two colors for orthogonal polygons without holes
and showed that the bound is tight. We have given
an O(n log n) time algorithm for CFSC-H with three
colors for polygons with holes, while a special case re-
quires two colors. The question of whether two colors
are sufficient for the general case of CFSC-H remains
open. In our algorithms, the guards are placed only on
horizontal edges. It would be interesting to investigate
whether less guards are needed when placed on vertical
and horizontal edges.

68

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] A. Bärtschi and S. Suri. Conflict-free chromatic art
gallery coverage. Algorithmica, 68:265–283, 2014.

[2] P. Bhattacharya, S. K. Ghosh, and B. Roy. Vertex
Guarding in Weak Visibility Polygons. In CAL-
DAM, pages 45–57, 2015.

[3] P. Bhattacharya, S. K. Ghosh, and B. Roy. Ap-
proximability of guarding weak visibility polygons.
Discrete Applied Mathematics, 228:109–129, 2017.

[4] T. Biedl, T. M. Chan, S. Lee, S. Mehrabi, F. Mon-
tecchiani, and H. Vosoughpour. On guarding or-
thogonal polygons with sliding cameras. In WAL-
COM: Algorithms and Computation: 11th Inter-
national Conference and Workshops, WALCOM
2017, Hsinchu, Taiwan, March 29–31, 2017, Pro-
ceedings, pages 54–65. Springer, 2017.

[5] O. Çağırıcı, S. K. Ghosh, P. Hliněný, and B. Roy.
On conflict-free chromatic guarding of simple poly-
gons. In COCOA, 2019.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edi-
tion. The MIT Press and McGraw-Hill Book Com-
pany, 2001.

[7] M. de Berg, O. Cheong, M. Kreveld, and M. Over-
mars. Computational Geometry, Algorithms and
Applications. Springer-Verlag, 3rd edition, 2008.

[8] M. de Berg, S. Durocher, and S. Mehrabi. Guard-
ing monotone art galleries with sliding cameras in
linear time. Journal of Discrete Algorithms, 44:39–
47, 2017.

[9] S. Durocher, O. Filtser, R. Fraser, A. D. Mehrabi,
and S. Mehrabi. Guarding orthogonal art galleries
with sliding cameras. Comput. Geom., 65:12–26,
2017.

[10] A. Efrat and S. Har-Peled. Guarding galleries and
terrains. Inf. Process. Lett., 100:238–245, 2006.

[11] S. Eidenbenz, C. Stamm, and P. Widmayer. Inap-
proximability Results for Guarding Polygons and
Terrains. Algorithmica, 31:79–113, 2001.

[12] L. H. Erickson and S. M. LaValle. An art gallery
approach to ensuring that landmarks are distin-
guishable. In Robotics: science and systems, vol-
ume 7, pages 81–88, 2012.

[13] S. Fisk. A short proof of Chvátal’s watchman the-
orem. J. Comb. Theory, Ser. B, 24:374, 1978.

[14] M. Ghodsi, A. Maheshwari, M. N. Baygi, J.-R.
Sack, and H. Zarrabi-Zadeh. α-visibility. Comput.
Geom. Theory Appl., pages 435–446, 2014.

[15] C. Iwamoto and T. Ibusuki. Computational Com-
plexity of the Chromatic Art Gallery Problem for
Orthogonal Polygons. In WALCOM, pages 146–
157, 2020.

[16] M. J. Katz and G. Morgenstern. Guarding Or-
thogonal Art Galleries with Sliding Cameras. Int.
J. Comput. Geometry Appl., 21:241–250, 2011.

[17] J. King and D. G. Kirkpatrick. Improved Approx-
imation for Guarding Simple Galleries from the
Perimeter. Discrete & Computational Geometry,
46:252–269, 2011.

[18] J. O’Rourke. Art Gallery Theorems and Algo-
rithms. Oxford University Press, 1987.

[19] J. Urrutia. Chapter 22 - Art Gallery and Illumi-
nation Problems. In Handbook of Computational
Geometry, pages 973–1027. Elsevier, 2000.

69

35th Canadian Conference on Computational Geometry, 2023

Appendix

Lemma 1. A sliding camera on each south-facing edge
of S collectively guards the entire polygon P .

Proof. From any point p ∈ P if we draw a vertical line
upward, the first edge e that the line intersects must be
south-facing. Then e must belong to one of the chains
in S. Therefore, each point of P is covered by an edge
of S, and thus putting a sliding camera on each of these
edges will cover the whole polygon. �

Theorem 3. Algorithm CFSC-monotone computes
a CFSC of an X-monotone polygon P without holes in
O(n) time using only two colors, which is optimal.

Proof. By Lemma 1, a sliding camera on each edge of
S will guard the whole polygon. Since we are assign-
ing alternating colored guards for adjacent edges of S,
each point of P will have at least one unique colored
guard. The guards can be assigned by a walk along the
boundary of P , which takes O(n) time. By Theorem 2,
the lower bound for the number of colors needed for the
guards is also two. Therefore, the number of colors used
in this algorithm is optimal. �

Theorem 4. Algorithm CFSC-TwoColors com-
putes a CFSC of an orthogonal polygon P without holes
in O(n log n) time using two colors.

Proof. We first prove that the algorithm assigns guards
to all the south-facing edges of P using only two colors.
It is easy to see that the first chain S considered by
the algorithm gets a conflict-free coloring with two col-
ors. Now, if we remove the visibility region of S from
P , we get disjoint sub-polygons P1, P2, . . . , Pq for some
q < n. For each Pi, 1 ≤ i ≤ q, only one endpoint of
one south-facing edge has been assigned a color. Since
the corresponding chain S′ is placed in Q before any
other chains in that sub-polygon, S” gets a conflict-free
coloring with two colors. We then remove the visibility
region of S′ and prove the claim inductively for all the
Si ∈ S.

We now prove the running time of the algorithm.
We assume that P is input as the sequence of ver-
tices v1, . . . , vn in clockwise order. Then we can find
the chains in S by walking around the polygon. We
represent each chain S ∈ S by a tuple (vi, vj), where
vi is the first vertex and vj is the last vertex of S
on the walk. The south-facing edges in S can eas-
ily be calculated from the indices of the end vertices
of S as ei, ei+2, . . . , vj−1. Therefore, assigning colors
to all the south-facing edges takes O(n) time. Build-
ing the trapezoidal map T , searching the structure D,
and then populating the data structure L from D takes
O(n log n) time. Therefore, the total time required is
O(n log n). �

Theorem 6. Algorithm CFSC-H-ThreeColors
computes a conflict-free chromatic guarding of an or-
thogonal polygon P in O(n log n) time using three col-
ors.

Proof. The correctness follows from the fact that the
topological ordering of the chains would ensure that any
chain S with an upward connection to another chain S′

would be colored after S.
We assume that the outer boundary of P is given as a

clockwise sequence of vertices on it, and the hole bound-
aries are given as counterclockwise sequence of vertices
on them. Building the trapezoidal map T takes ex-
pected O(n log n) time, and building the graph G from
the search structure takes O(n log n) time. We obtain
a topological ordering of the chains of S from the DAG
G in O(n) time. We then color the chains in O(n) time
in total. Therefore, the total time complexity of the
algorithm is O(n log n). �

Figure 11 shows how Algorithm CFSC-H-
ThreeColors works by showing the first two
steps.

S1

S5

S6S4

S3

S2

S8

S7

(a)
S1

S5

S6S4

S3

S2

S8

S7

(b)

Figure 11: A conflict-free chromatic guarding of the
polygon in Figure 8 with three colors. (a) After col-
oring S1 and S2. (b) After coloring S7.

70

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

City Guarding with Cameras of Bounded Field of View

Ahmad Biniaz* Mohammad Hashemi�

Abstract

We study two problems related to the city guarding and
the art gallery problems.

1. Given a city with k rectangular buildings, we prove
that 3k+1 cameras of 180◦ field of view are always
sufficient to guard the free space (the ground, walls,
roofs, and the sky). This answers a conjecture of
Daescu and Malik (CCCG, 2020).

2. Given k orthogonally convex polygons of total m
vertices in the plane, we prove that m

2 +k+ 1 cam-
eras of 180◦ field of view are always sufficient to
guard the free space (avoiding all the polygons).
This answers another conjecture of Daescu and Ma-
lik (Theoretical Computer Science, 2021).

Both upper bounds are tight in the sense that there are
input instances that require these many cameras. Our
proofs are constructive and suggest simple polynomial-
time algorithms for placing these many cameras.

1 Introduction

Fixed cameras are common devices that are being used
to monitor streets and buildings in cities. These cam-
eras usually monitor the ground and walls. Due to an
increasing use of drones and other flying objects, mon-
itoring the entire space (including the ground, walls,
roofs, and sky) is becoming crucial. The problem of
monitoring the entire space with minimum number of
cameras is usually referred to as the city guarding prob-
lem in computational geometry.

To the best of our knowledge the problems related to
guarding cities were first introduced by Bao et. al [2].
They introduced three different versions of the problem
where the goal is to guard (1) only the roofs of the
buildings, (2) the walls of the buildings and the ground,
and (3) the roofs, walls, and the ground. This latter
version is called “city guarding”.

In the city guarding problem we should take into ac-
count many factors such as the city’s layout, buildings’
orientation, and the cameras’ field of view. These fac-
tors usually led to different variations of the city guard-
ing problem.

*School of Computer Science, University of Windsor,
abiniaz@uwindsor.ca

�School of Computer Science, University of Windsor,
hashem62@uwindsor.ca

In this paper we study a version of the city guard-
ing problem that is introduced by Daescu and Ma-
lik [5]: Given k pairwise disjoint rectangular-base build-
ings, find a minimum number of cameras that guard the
city such that (i) each camera is a half-sphere with 180◦

field of view and infinite range, and (ii) each camera is
placed at a corner on top of the roof of a building in a
direction orthogonal to a wall.

According to Bao et al. [2] the city guarding problem
can be interpreted as a 2.5-dimensional version of the
well-studied art gallery problem. In the standard art
gallery problem we are given a simple polygon and the
goal is to place the minimum number of guards/cameras
to cover the entire polygon [8]. In other words, each
point of the polygon is visible by some guard. A point
p is said to be visible by a guard g if the line segment pg
lies inside the polygon. The art gallery problem and its
variations have been well-studied in recent years [12].
The variations usually enforce constraints on the shape
of the polygon, the existence of holes, the shape of holes,
the orientation of holes, locations of guards, guards’ field
and range of vision, to name a few. The city guarding
problem has the same flavor as the art gallery problem
with rectangular holes.

The city guarding also has the same flavor as a free-
space illuminating problem, studied by Blanco et al. [3],
in which the input consists of pairwise disjoint rectan-
gles in the plane and the goal is to place minimum num-
ber of lights at the corners of the rectangles to light up
the free space (the entire plane minus the the rectan-
gles).

2 Related Works and Results

In this section we focus only on results that are directly
related to the city guarding problem. There is a rich
literature for the art gallery problem for which we refer
the reader to [1, 3, 4, 7, 8, 9, 10, 11].

Bao et al. [2] studied the city guarding problem for k
rectangular-base buildings that are orthogonal (to the
xy-axis) and for cameras with 360◦ field of view. Re-
call that the cameras should be placed at top corners

of buildings. They showed that ⌊ 2(k−1)
3 ⌋+ 1 guards are

always sufficient and sometimes necessary to guard the
roofs. They also showed that k+⌊k4 ⌋+1 guards are suf-
ficient to guard walls and ground. For the city guarding
(roofs, walls, the ground) they showed the sufficiency of

71

35th Canadian Conference on Computational Geometry, 2023

C

(a) (b)

Figure 1: (a) A city with rectangular buildings. (b) Orthogonally convex polygons.

k + ⌊k2 ⌋+ 1 guards.

Recently, Daescu and Malik [5] studied the city guard-
ing problem for cameras with 180◦ field of view. They
proved that 2k+ ⌊k4 ⌋+4 cameras are sufficient to guard
axis-aligned buildings. For arbitrary oriented buildings
they gave an example that requires 3k + 1 cameras for
any k ≥ 1. They conjectured that 3k + 1 cameras
are also sufficient. See Figure 1(a) for an example of
arbitrary-oriented rectangular buildings.

In a companion paper, Daescu and Malik [6] studied
another problem of the same flavor; guard free space
formed by orthogonally convex polygons. Given k pair-
wise disjoint orthogonally convex polygons with total
m vertices, the goal is to place cameras of 180◦ field of
view to guard the free space and the boundaries of the
polygons (cameras should be placed at corners of poly-
gons and orthogonal to its sides). An orthogonal poly-
gon is a polygon whose edges are orthogonal to each
other (not necessarily orthogonal to the xy-axis). An
orthogonal polygon is orthogonally convex if its inter-
section with any line orthogonal to its edges is either
empty or a single line segment; see for example poly-
gon C in Figure 1(b). Daescu and Malik show that for
axis-aligned polygons m

2 + ⌊k4 ⌋ + 4 cameras are always
sufficient and for arbitrary-oriented polygons m

2 + k+ 1
cameras are sometimes necessary for any k ≥ 1 and
any valid m. They conjectured that m

2 + k+ 1 cameras
are also sufficient. See Figure 1(b) for an example of
arbitrary-oriented orthogonally convex polygons.

2.1 Our Contributions

We prove both conjectures of Daescu and Malik [5, 6]
that 3k + 1 cameras are sufficient to guard arbitrary-
oriented rectangular buildings, and m

2 + k + 1 cameras
are sufficient to guard arbitrary-oriented orthogonally
convex polygons. Our proofs are constructive and sug-
gest polynomial-time algorithms for finding these many

guards. The two proofs share some similarities in the
sense that both partition the free space into convex re-
gions and then provide an upper bound for the number
of these regions. We explain our proof for rectangular
buildings first as it is easier to explain. Then we give a
short description of how to generalize it for monotone
orthogonal polygons.

3 City Guarding

In this section we present our algorithm for the city
guarding problem. The following lemma, borrowed from
[5], implies that to guard the entire space it suffices to
guard roofs, walls, and the ground. Therefore in the
algorithm we focus on guarding roofs, walls, and the
ground.

Lemma 1 (Daescu and Malik [5]) If in a city the
roofs, walls, and the ground are guarded by a set of cam-
eras, then every point in the aerial space of the city is
visible by a camera.

Recall that the city consists of k arbitrary-oriented
buildings with rectangular basis, and that the cameras
have 180◦ field of view and should be placed at corners
on top of the roofs orthogonal to a wall. (We clarify
that a camera could be placed in such a way that it sees
the roof of the building, as in Figure 3.)

Daescu and Malik [5] gave an example which requires
3k + 1 cameras. This example is given in Figure 2.
Each building Bi+1 is higher than the building Bi. They
conjectured that the bound 3k + 1 is tight.

We show how to guard the city with at most 3k + 1
cameras, and thus proving the conjecture of [5]. We
project the buildings onto the plane to obtain rectan-
gles (in dimension 2). Then we guard the the rectangles
(representing roofs), their sides (representing walls),
and the space between them (representing the ground).

72

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

B1

B2

B3

B4

Figure 2: A city with k = 4 buildings that needs 3k+ 1
guards; borrowed from [5].

By Lemma 1, this would give a guarding of the city in
dimension 3.

h1

h2
h3

h4

h5

Figure 3: A city with k = 5 buildings. The sides are
extended in order h1, h2, h3, h4, h5. The pink area is a
bad region. The green marks are corner guards and the
blue mark is an edge guard.

We start by projecting the buildings vertically into
the plane; this is a typical first step for problems of this
type, see e.g. [2, 5]. Thus we obtain k pairwise disjoint
rectangles in the plane. We may assume without loss
of generality that the k rectangles lie in a bigger rect-
angle called P . One can think of P as a polygon and
of rectangles as holes. Thus after this projection, each
building becomes a hole in P and each wall becomes a
side of some hole. One can think of this as an instance
of the art gallery problem consisting of a polygon with
rectangular holes.

Our next step is to guard P by cameras with 180◦

field of view. This would give (after lifting the rectangles
back to their original height) a guarding of walls and the
ground. As we will see later, our placement of cameras
would guard the roofs as well.

Let h1, h2, . . . , hk denote the rectangular holes or-
dered arbitrarily. For each hi in this order, we extend
the sides of hi in counterclockwise direction and stop
as soon as reaching another hole, an extension of a pre-
vious side, or the boundary of P ; see Figure 3. Each
extension is essentially a directed line segment whose
initial point is a hole corner. These extensions partition
P into some regions that we denoted R1, R2, . . . ; notice
that we exclude the holes.

Lemma 2 Each region Ri is convex.

Proof. The region Ri is an intersection of a set of quad-
rants (which are convex). Each quadrant is defined by
extensions of two adjacent sides of the same hole. Since
the intersection of any set of convex objects is known to
be convex, the region Ri is convex. □

Lemma 3 The number of regions R1, R2, . . . is 3k+ 1.

Proof. We define a plane graph G = (V,E) as follows.
The vertex set V consists of the corners of the holes and
the intersection points of the extended sides. We refer to
them by corner and intersection vertices, respectively.
The edges in E are formed by the sides of the holes, the
extensions of sides, and the boundary of P .

We claim that each vertex of G has degree 3, and
thus G is 3-regular. Each corner vertex is incident to
two sides of a hole and an extension, thus has degree 3.
Each intersection vertex is incident to an extension and
two segments obtained from the intersected segment,
and thus has degree 3. Degenerate cases are rather easy
to handle, for example if two extensions hit a segment
at the same point p, then we treat p as two vertices of
degree 3 instead of one vertex of degree 4.

The number of corner vertices is 4k. Each extension
(of a side of a hole) defines an intersection vertex. Thus
the number of intersection vertices is the same as the
total number of sides of holes, which is 4k. Therefore
|V | = 8k. Since the sum of the vertex degrees in any
graph is twice the number of edges and G is 3-regular,
we have the following equality,

2|E| = 3|V |.

Therefore,

|E| = 3|V |
2

=
3 · 8k

2
= 12k.

Let F be the set of faces of G, which includes the
holes, the outerface (exterior of P), and the regions

73

35th Canadian Conference on Computational Geometry, 2023

R1, R2, Using Euler’s formula for connected planar
graphs, we have

|F | = |E| − |V |+ 2 = 12k − 8k + 2 = 4k + 2.

Excluding the outerface and the k holes, the number
of regions R1, R2, . . . is 3k + 1. □

Lemma 4 Each region Ri contains a corner of a hole
on its boundary.

Proof. Recall the extensions of h1, . . . , hk in this or-
der. Observe that the boundary of Ri contains (parts
of) some extensions. Consider the last extension that
was added to the boundary of Ri, or say, closes the re-
gion Ri. The entire directed line segment that defines
this extension is part of the boundary of Ri. The ini-
tial point of this directed line segment is a corner of a
hole. □

By Lemma 4 each region Ri has a hole corner on its
boundary. If the boundary of Ri has a 90◦ angle at some
corner, then we call it a good region, and otherwise a bad
region; see Figure 3.

Camera Placement: Take any region Ri. If Ri is
a bad region then let c be an arbitrary corner on the
boundary of Ri. We place a camera at c facing towards
the interior of Ri and perpendicular to the boundary
segment of Ri containing c. We call this camera an
edge guard—it lies on an edge of Ri. If Ri is a good
region then let c be the lowest (i.e. with the smallest
y-coordinate) corner at which the boundary of Ri has
angle 90◦. We place a camera at c facing towards the
interior of Ri and perpendicular to the clockwise bound-
ary segment at c (which is the extension at c). We call
this camera a corner guard—it lies on a corner of Ri.

Since Ri is convex (by Lemma 2) the camera that is
placed on the boundary of Ri covers the entire interior
of Ri. Since we place exactly one camera for each region
Ri, (i) all regions R1, R2, . . . are guarded, and (ii) the
number of cameras is equal to the number of regions Ri

which is 3k+1 by Lemma 3. Therefore we have guarded
the polygon P by 3k + 1 guards. As discussed earlier,
this gives a guarding of walls and the ground in the city.

We claim that our camera placement, also guards the
roofs. Observe that for each hole h it holds that one
of its corners is the lowest corner of angle 90◦ on the
boundary of some good region Ri. Notice that such
a lowest corner of Ri is uniquely defined by h. The
camera that is placed at that corner (perpendicular to
the extended side), guards the roof of h. The following
theorem summarizes our result of this section.

Theorem 5 Given k arbitrary-oriented rectangular-
base buildings, we can guard the entire space (the
ground, walls, roofs, and the sky) with at most 3k + 1

cameras of 180◦ field of view that are placed at top cor-
ners of buildings orthogonal to a wall. The bound 3k+1
is the best achievable.

4 Guarding Orthogonally Convex Polygons

In this section we present our algorithm for guarding
the free space formed by orthogonally convex polygons.
Recall that the scene consists of k arbitrary-oriented or-
thogonally convex polygons, and that the cameras have
180◦ field of view and should be placed on corners of
polygons orthogonal to a side. We may assume without
loss of generality that the k polygons lie in a rectangu-
lar polygon called P . The free space, that we need to
guard, is the interior of P minus the k given polygons.

h1

h2

h3

Figure 4: Three orthogonally convex polygons in the
plane. The green marks are corner guards.

Similar to our algorithm for the city guarding in pre-
vious section we extend the sides of the polygons to
partition the free space into convex region and then use
one camera for each region. Let h1, h2, . . . , hk denote
the polygons in an arbitrary order. For each hi in this
order, we extend the sides of hi in counterclockwise di-
rection and stop as soon as reaching another polygon,
an extension of a previous side, or the boundary of P .
We only extend the sides whose extensions do not inter-
sect the interior of hi; see Figure 4. Thus we extend one
side for every convex corner of a polygon. These exten-
sions partition the free space into some regions that we
denoted R1, R2,

By an argument similar to that of Lemma 2 we can
show that each Ri is convex.

By an argument similar to that of Lemma 3 we can
show that the number of regions Ri is m

2 + k + 1. We
define a 3-regular plane graph G = (V,E) as before.
Among all corners, we only introduce vertices for convex
ones. By a simple counting argument one can show

74

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

that the total number of convex corners is c = m
2 + 2k;

see also [6]. Thus the number of vertices of G is 2c,
one vertex for each convex corner and one vertex for its
extension. Thus |V | = 2c = m + 4k. Since the graph
is 3-regular, the total degree is 3|V | = 3m+ 12k, which
is equal to 2|E|. Hence |E| = 3m

2 + 6k. Thus, for the
number of faces we get

|F | =
(

3m

2
+ 6k

)
− (m+ 4k) + 2 =

m

2
+ 2k + 2.

Excluding the outerface and the k holes, the number of
regions Ri is m

2 +k+1. Similar to Lemma 4 we can show
that each Ri has a corner on its boundary. We classify
the regions by good and bad and then place cameras
on the corners (one camera for each Ri) similar to our
placement in the previous section. This would guard
the free space with m

2 + k + 1 cameras. The following
theorem summarizes our result in this section.

Theorem 6 Given k pairwise disjoint arbitrary-
oriented orthogonally convex polygons of total m ver-
tices in the plane, we can guard the entire free space
with at most m

2 + k + 1 cameras of 180◦ field of view
that are placed at the corners of the polygons orthogonal
to a side. The bound m

2 + k + 1 is the best achievable.

Remark. It is easily seen that the algorithm of this
section can be generalized to guard cities with buildings
that have orthogonally convex bases. In fact, the city
guarding in the previous section is a special case of this
problem where m = 4k.

References

[1] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann
Miltzow. The art gallery problem is ∃R-complete. In
Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 65–73, 2018.

[2] Lichen Bao, Sergey Bereg, Ovidiu Daescu, Simeon
Ntafos, and Junqiang Zhou. On some city guarding
problems. In International Computing and Combina-
torics Conference, pages 600–610. Springer, 2008.

[3] Gregoria Blanco, Hazel Everett, Jesus Garcia Lopez,
and Godfried Toussaint. Illuminating the free space
between quadrilaterals with point light sources. In Pro-
ceedings of Computer Graphics International, World
Scientific, 1994.

[4] Vasek Chvátal. A combinatorial theorem in plane ge-
ometry. In Journal of Combinatorial Theory, Series B
18, pages 39–41, 1975

[5] Ovidiu Daescu and Hemant Malik. City guarding with
limited field of view. In Proceedings of 32nd Cana-
dian Conference on Computational Geometry (CCCG),
pages 300-311, 2020.

[6] Ovidiu Daescu and Hemant Malik. New bounds on
guarding problems for orthogonal polygons in the plane

using vertex guards with halfplane vision. In Theoretical
Computer Science, 882, Pages 63-76, 2021.

[7] Frank Hoffmann. On the rectilinear art gallery problem.
In International Colloquium on Automata, Languages,
and Programming, pages 717–728. Springer, 1990.

[8] Joseph O’Rourke. Art gallery theorems and algorithms.
Oxford University Press Oxford, 1987

[9] Joseph O’Rourke. Galleries need fewer mobile guards:
A variation on Chvátal’s theorem. In Geometriae Ded-
icata, 14, pages 273–283, 1983.

[10] Csaba D. Tóth. Art galleries with guards of uniform
range of vision. In: Computational Geometry, Volume
21, pages 185–192, 2002.

[11] Csaba D. Tóth. Art gallery problem with guards whose
range of vision is 180. In Computational Geometry:
Theory and Applications, 17, pages 121–134, 2000.

[12] Jorge Urrutia. Art gallery and illumination prob-
lems. In Handbook of computational geometry, pages
973–1027. Elsevier, 2000.

75

76

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

On the complexity of embedding in graph products∗

Therese Biedl† David Eppstein‡ Torsten Ueckerdt§

Abstract

Graph embedding, especially as a subgraph of a grid, is
an old topic in VLSI design and graph drawing. In this
paper, we investigate related questions concerning the
complexity of embedding a graph G in a host graph that
is the strong product of a path P with a graph H that
satisfies some properties, such as having small treewidth,
pathwidth or treedepth. We show that this is NP-hard,
even under numerous restrictions on both G and H. In
particular, computing the row pathwidth and the row
treedepth is NP-hard even for a tree of small pathwidth,
while computing the row treewidth is NP-hard even for
series-parallel graphs.

1 Introduction

Layered treewidth, layered pathwidth, and row treewidth
are structural parameters of graphs that have played
a central role in recent developments in graph product
structure theory. (The original graph product struc-
ture theorem was proved by Dujmovíc et al. [7]; see
also [6, 9, 19] for improvements and related results.)
Testing whether a graph has layered pathwidth ≤ 1
is NP-complete [2]. In this work we ask analogous ques-
tions about the computational complexity of the row
treewidth of a graph G, the minimum possible treewidth
of a graph H such that G is a subgraph of the strong
product H�P∞ where P∞ is a 1-way infinite path:

• Is it NP-hard to compute the row treewidth?
• Is it NP-hard to test whether a planar graph has

row treewidth 1, its smallest nontrivial value?
• How complicated must G be for these problems to

be hard? Are they easier for planar graphs?
Row treewidth can be naturally generalized to other

product forms for H. For example, the row pathwidth
of a graph G is the smallest possible pathwidth of a
graph H such that G is a subgraph of H�P∞, and
similarly one can define the row treedepth or row simple

∗Work initiated at the Workshop on Graph Product Struc-
ture Theory (BIRS21w5235) at the Banff International Research
Station, November 21-26, 2021.

†David R. Cheriton School of Computer Science, University of
Waterloo. Supported by NSERC.

‡Department of Computer Science, University of California,
Irvine. Research supported in part by NSF grant CCF-2212129.

§Institute of Theoretical Informatics, Karlsruhe Institute of
Technology

treewidth or row simple pathwidth. The above questions
could be asked for any of these parameters.

These questions have a geometric flavor coming from
the grid-like graph products they concern. They are
special cases of subgraph isomorphism, which is hard
even under strong restrictions on both G and the host
graph [17]. Our answers are that these problems are in-
deed hard, even for very simple graphs. It is NP-hard to
test whether a tree of bounded pathwidth has row path-
width one, and the same holds for row simple pathwidth
and row treedepth. Row treewidth is trivial for trees,
but it is NP-hard to test whether series-parallel graphs
of bounded degree and bounded pathwidth have row
treewidth one. Under the small set expansion conjecture
(a strengthening of the unique games conjecture from
computational complexity theory), row treewidth, row
pathwidth, layered treewidth, and layered pathwidth are
hard to approximate with constant approximation ratio.
We provide a few positive results as well: Testing embed-
dability in P�P (a grid with diagonals) is polynomial for
caterpillars, and testing embeddability in P�P (a grid)
is polynomial for planar graphs of bounded treewidth
and bounded face size.

1.1 Definitions

A tree decomposition of a graph G is a tree T whose
vertices (‘bags’) are labeled with subsets of vertices of G.
Each vertex must belong to bags forming a connected
subtree of T , and each edge of G must have both end-
points included together in at least one bag. If T is
a path, it forms a path decomposition. The width of
the decomposition is the size of the largest bag, minus
one. The treewidth of G is the smallest width of a tree
decomposition of G, and the pathwidth is the smallest
width of a path decomposition. A tree decomposition
is w-simple if each set of w vertices belongs to at most
two bags. The simple pathwidth [simple treewidth] of
G is the smallest w such that G has a w-simple path
[tree] decomposition of width ≤ w. The treedepth of a
graph G is the smallest height of a rooted tree T on
the vertices of G such that every edge of G connects an
ancestor-descendant pair in T .
For connected graphs with at least one edge, these

width parameters have minimum value one. The graphs
with treewidth one are trees. The graphs with treewidth
two are the series-parallel graphs and their subgraphs.
The graphs with pathwidth one are not just paths, but

77

35th Canadian Conference on Computational Geometry, 2023

caterpillars: trees whose non-leaf vertices form a path
called the spine. (The leaves of a caterpillar are called
legs.) The graphs with simple pathwidth one are paths.
The graphs with treedepth one are stars, graphs K1,` for
integer `. To avoid having to specify a specific number of
vertices, it is convenient to let P∞ = 〈p0, p1, . . . 〉 denote
a ray, a one-way infinite path, to let C∞ denote the
caterpillar with infinite-length spine and infinitely many
legs at each spine-vertex, and to let S∞ be a star with
infinitely many degree-1 vertices.
The strong product of two graphs G�H has a vertex

(ui, vj) for each pair of a vertex ui in G and a vertex
vj in H, and an edge connecting two pairs (ui, vj) and
(ui′ , vj′) when ui and ui′ are either adjacent in G or
identical, and vi and vi′ are either adjacent in H or
identical. For instance, the strong product of two paths
is a king’s graph, the graph of moves of a chess king on
a chessboard whose rows and columns are indexed by
the vertices of the paths (see also Fig. 1).
A layering of a graph G is a partition of the vertices

into sets L0, L1, . . . such that for any edge the endpoints
are in the same or in consecutive sets. It can be under-
stood as a representation of a graph G as a subgraph of
P�K for a path P and a complete graph K; the layers
of the layering are the subsets of vertices in this prod-
uct coming from the same vertex of the path. Layered
tree decompositions and path decompositions of a graph
consist of a tree or path decomposition of the graph,
together with a layering. Their width is the size of the
largest intersection of a bag with a layer, minus one.
The layered treewidth [8, 18] or layered pathwidth [2]
of G is the minimum width of such a decomposition.
Instead, the row treewidth or row pathwidth of G is the
minimum treewidth or pathwidth of a graph H for which
G is a subgraph of P�H for some path P . Intuitively,
row treewidth and row pathwidth restrict the notion
of layered treewidth and layered pathwidth by requir-
ing each layer to have the same decomposition. These
concepts are not equivalent: the layered treewidth of
any graph G is at most its row treewidth plus one, but
there exist graphs with layered treewidth one and arbi-
trarily large row treewidth. A similar separation occurs
also between layered pathwidth and row pathwidth [5].
We can similarly define layered simple treewidth/simple
pathwidth/treedepth and row simple treewidth/simple
pathwidth/treedepth; to our knowledge these parameters
have not been studied previously.

We show that the following problems are NP-hard:
• RowSimplePathwidth: Given a graph G and an

integer k, does G have row simple pathwidth at
most k? We will show that this is NP-hard even for
k = 1, where it becomes the question whether G is
a subgraph of P∞�P∞, i.e., the king’s graph, which
is why we also call this problem KingGraphEm-
bedding. See Section 2 and Appendix A.

• RowPathwidth: Given a graph G and an integer
k, does G have row pathwidth at most k? We will
show that this is NP-hard even for k = 1, where it
becomes the question whether G is a subgraph of
C∞�P∞. See Section 3.

• RowTreewidth: Given a graph G and an integer
k, does G have row treewidth at most k? We will
show that this is NP-hard even for k = 1, where
it becomes the question whether G is a subgraph
of T�P∞ for some tree T . See Section 4 and Ap-
pendix B.

• RowTreedepth: Given a graph G and an integer
k, does G have row treedepth at most k? We will
show that this is NP-hard even for k = 1, where it
becomes the question whether G is a subgraph of
S∞�P∞. See Appendix C.

It is helpful to introduce some notation for the strong
product H�P∞. Recall that P∞ is a ray 〈p0, p1, . . . 〉.
For any vertex v ∈ H, the P -extension is the set of
vertices 〈(v, p0), (v, p1), . . . 〉. For any vertex (v, pi) ∈
H × P∞, the H-projection is the vertex v and the P -
projection is the vertex pi. These concepts naturally
extend to edges and paths. Inspired by the case H = P∞
(whereH�P∞ is the king’s graph) we define the following
edge-orientations: An edge vw of H�P∞ is horizontal
if v, w have the same H-projection, vertical if they have
the same P -projection, and diagonal otherwise. Since
we expand along a path P∞, every vertex of H�P∞ has
only two incident horizontal edges.

We will occasionally also study the Cartesian product
H�P∞ of two graphs, which is the same as the strong
product except diagonals are omitted.

2 Grid embeddings

In this section we study KingGraphEmbedding. This
problem is closely related to GridEmbedding, the ques-
tion whether a given graph G is a subgraph of the rect-
angular grid P∞�P∞. GridEmbedding is old and
well-studied since at least the 1980s due to its connec-
tions to VLSI design. Bhatt and Cosmadakis showed
in 1987 [3] that GridEmbedding is NP-hard even for
trees of pathwidth 3 (the pathwidth was not studied
explicitly by the authors, but can be verified from the
construction). Gregori [13] expands their proof to binary
trees. Both proofs use a technique later called the “logic
engine” by Eades and Whitesides [10]. Recently, Gupta
et al. [15] strengthened the result to trees of pathwidth 2.
Theorem 1 (Gupta et al. [15]). GridEmbedding is
NP-hard even for a tree of pathwidth 2.

The reductions in [3, 15] can be modified to work
for KingGraphEmbedding. Even easier is to use the
following general-purpose transformation.
Define T1 and T2 to be the trees shown in Fig. 2,

formed by subdividing one edge of K1,1 and K1,4 respec-

78

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

T : T�P∞:

Figure 1: The graphs P∞�P∞, C∞�P∞, and T�P∞ for a tree T .

T2T1

v

T (v)

Av

Figure 2: The trees T1, T2, and T (v) in Observation 2.

u v

wx

⇝

u v

wx

Au Av

AwAx

Figure 3: If G ⊂ P∞�P∞, then G′ ⊂ P∞�P∞. (We
show a 45◦ rotation of P∞�P∞.)

tively. For a given vertex v, define T (v) toto be a tree
rooted at v with eight children: four copies each of T1
and T2, connected to v at their degree-2 vertices. The
following is not hard to verify (see Appendix A):

Observation 2. Let G be a simple graph. Form G′

by replacing each vertex v in G by a new tree T (v),
and connecting a degree-4 vertex in T (u) with a degree-4
vertex in T (v) for each edge uv in G. Then G ⊂ P∞�P∞
if and only if G′ ⊂ P∞�P∞.

The transformation clearly maintains a tree. Replac-
ing each vertex v by a tree T (v) of radius 3 increases the
pathwidth by at most 3, so applying the transformation
to the tree of Gupta et al. [15] gives the following.

Corollary 3. KingGraphEmbedding is NP-hard,
even for a tree of pathwidth at most 5.

In fact, one can easily adapt the reduction of Gupta et

al. [15] to show NP-hardness of KingGraphEmbedding
even for a tree of pathwidth 2; see Fig. 5 in Appendix A
for an illustration.

2.1 Caterpillars

On the other hand, for pathwidth 1 (i.e., caterpillars),
we can solve KingGraphEmbedding in linear time.

Theorem 4. For any caterpillar G the following are
equivalent.
(1) G ⊂ P∞�P∞
(2) G can be embedded in P∞�P∞ such that all spine

edges are diagonal
(3) For every subpath Q of the spine of G we have∑

v∈V (Q) deg(v) ≤ 6|V (Q)|+ 2.

Proof. (1)=⇒ (3): Assume that G is a caterpillar
that is a subgraph of H = P∞�P∞. Let Q be any
fixed subpath of the spine of G. Clearly, for any vertex
v ∈ P∞�P∞ the neighbourhood NH(v) of v in graph H
satisfies |NH(v)| ≤ 8 and for any edge uv ∈ P∞�P∞ we
have |NH(u) ∩ NH(v)| ≥ 2. As caterpillar G contains
no triangles, for any two adjacent vertices x, y in G we
have NG(x) ∩NG(y) = ∅. Hence

∑

v∈V (Q)

deg(v) ≤ 8|V (Q)| − 2|E(Q)| = 6|V (Q)|+ 2.

(3) =⇒ (2): Assume that G = (V,E) is a caterpillar,
say with spine 〈v1, . . . , vk〉. The vertices of P∞�P∞
naturally corresponds N×N, where (pi, p

′
j) is mapped to

(i, j). We embed the spine of G along the main diagonal,
i.e., place vi at (i, i) for i = 1, . . . , k. Then, we proceed
along the spine from v1 to vk, always placing the next
leg at vi at the positions (x, y) adjacent to (i, i) with
x+y as small as possible. Let us say that vi is free if two
leaves at vi are embedded successfully at (i− 1, i) and
(i, i− 1), respectively. In particular, the first vertex with
degree at least 4 is always free. (We assume there exists
such a vertex, otherwise G clearly can be embedded.)
Assume that this embedding procedure fails to find

a suitable position for a leaf at vj for some j ∈ [k]. Let
i ≤ j be the largest index such that vi is free, and Q =
〈vi, . . . , vj〉 be the subpath of the spine of G from vi to vj .

79

35th Canadian Conference on Computational Geometry, 2023

Observe that degG(vi),degG(vj) ≥ 4 and further that for
A = {(i, i), . . . , (j, j)}, there is a vertex in V (Q)∪NG(Q)
on each of the 5(j−i)+9 points in A∪N(A) in P∞�P∞.
With |V (Q) ∪NG(Q)| = ∑

v∈V (Q) deg(v)− (j − i) + 1,
it follows that

|V (Q) ∪NG(Q)| > |A ∪N(A)|
⇔

∑

v∈V (Q)

deg(v)− (j − i) + 1 > 5(j − i) + 9

⇔
∑

v∈V (Q)

deg(v) > 6(j − i) + 8 = 6(j − i+ 1) + 2

= 6|V (Q)|+ 2,

which implies that G does not satisfy (3).

(2) =⇒ (1): This is immediate.

Corollary 5. KingGraphEmbedding can be solved
in linear time for n-vertex caterpillars.

Proof. Let G be a caterpillar with spine 〈v1, . . . , vk〉,
k ≤ n. Using (3) in Theorem 4, G admits no embedding
into P∞�P∞ if and only if the sequence (deg(vi)−6)i∈[k]
has a contiguous subsequence whose sum is at least 3.
Finding such a subsequence is the MaximumSubarray
problem and can be solved in time O(k) [14].

3 Row pathwidth

Now we consider the row pathwidth, and show that test-
ing whether the row pathwidth is 1 is NP-hard. This is
the same as asking whether a given graph G is a sub-
graph of C∞�P∞. We also consider the related problem
of embedding in C∞�P∞. Both problems are easily
shown NP-hard using another observation concerning
how graph transformations affect embeddability.

Observation 6. Let G be a simple graph, and for k ∈
{4, 6} let G′k be the result of adding (at any original
vertex v of G) max{0, k−deg(v)} leaves that are adjacent
to v. Then

• G ⊂ P∞�P∞ if and only if G′4 ⊂ C∞�P∞.
• G ⊂ P∞�P∞ if and only if G′6 ⊂ C∞�P∞.

Proof. The forward direction is obvious: If G is such a
subgraph, then take the embedding of G in the grid, and
use the P -extensions of k legs at each spine-vertex of
C∞ to place the added leaves at each vertex v.
For the other direction, observe that all vertices on

P -extensions of legs of C∞ have degree at most 3 in
C∞�P∞, and degree at most 5 in C∞�P∞. We con-
structed G′k (for k ∈ {4, 6}) such that the vertices of G
have degree k, so they must be placed on the P -extension
of a spine-vertex. If we set π to be the spine of C∞,
therefore G is embedded in π�P∞ (respectively π�P∞)
as desired.

Theorem 7. It is NP-hard to test whether a tree is a
subgraph of C∞�P∞. It is also NP-hard to test whether
a tree is a subgraph of C∞�P∞. Both results hold even
for trees with constant maximum degree and pathwidth 3.

Proof. By the discussion after Corollary 3, testing
whether G ⊂ P∞�P∞ is NP-hard, even for a tree with
pathwidth 2. Convert G into G′ using Observation 6
with k = 6. This preserves a tree, increases the path-
width by at most 1, and the maximum degree is 8. Also
G ⊂ P∞�P∞ if and only if G′ ⊂ C∞�P∞, which proves
the first claim. The second claim is similar, using Theo-
rem 1 and Observation 6 with k = 4.

Corollary 8. RowPathwidth is NP-hard, even for
trees of bounded degree and pathwidth, and even if we
only want to know whether the row pathwidth is 1.

4 Row treewidth

We now sketch why computing row treewidth NP-hard.
(The full proof is in Appendix B.)

Theorem 9. It is NP-hard to test whether a graph G
is a subgraph of T�P∞ for some tree T , even for a
series-parallel graph G.

Our reduction from NAE-3SAT uses the logic engine
of Eades and Whitesides [10], a general approach to
convert an instance I of NAE-3SAT into a geometric
shape that can be realized in the plane if and only if I
has a solution. We only explain this for our particular
problem. We may assume that I has a clause xn ∨ xn,
because we can add this without affecting existence of a
solution. We first construct a graph G0 and designate
some edges as horizontal/vertical. (Fig. 6 in the appendix
shows G0, while Fig. 4 shows the graph derived from it.)
Start with the frame (orange) which consists of three
paths connecting two vertices t, b; the middle path has
H := m + 2n + 1 vertical edges, while the two outer
paths have 2n horizontal, H vertical, and then another
2n horizontal edges each. Next add the armature of xi

(light/dark cyan) for each variable xi, which consists of
two paths that attach at the vertices of the middle path
at distance i from t and b. The paths are assigned to
literals xi and xi and consist of 2n+ 1− 2i horizontal
edges at both ends with H − 2i vertical edges inbetween.
The middle m rows of our drawing are called the clause-
rows and assigned to one clause each. Finally we attach
flags (green). Namely, at the vertex where the armature
of literal `i intersects the row of cj , we attach a leaf (via
a horizontal edge) if and only if `i does not occur in cj .
This finishes the construction of G0.

Next we add more vertices and edges that force edge-
orientations to be what we specified for G0. First, “triple
the width”: insert a new column before and after every
column that we had in our drawing of G0, subdivide

80

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

x1 x1

x4 x4

x3 x3

c1 : x1 ∨ x2 ∨ x3

c2 : x2 ∨ x3 ∨ x4

c3 : x1 ∨ x2 ∨ x4

c4 : x1 ∨ x3 ∨ x4

x2x2

c5 : x4 ∨ x4

armature

armature

armature

armature

frame

flag

flag

flag

flag

flag

t

b

H

Figure 4: The reduction for row-treewidth. Bold edges indicate an attached K2,5. Vertices of G0 are solid.

each horizontal edge of G, and for every vertex v with k
incident horizontal edges, add 2−k new leaves connected
via horizontal edges. (New vertices are hollow in Fig. 4.)
Next add an arrow-head at some vertical edges vw. As-
suming v is below w, this means adding the edges (v`, w)
and (vr, w), where v`, vr are the two neighbours of v
adjacent to it via horizontal edges. We add arrow-heads
at all vertical edges except those of the middle path
where an armature or outer path attaches at the lower
endpoint. Call the result G′. Finally we turn G′ into
G by adding a K2,5 at every horizontal edge uv, i.e.,
adding five new vertices that are adjacent to both u and
v. (To avoid clutter we do not show K2,5 in Fig. 4, but
indicate it with a bold edge.) Call the resulting graph
G, and verify that it is indeed a series-parallel graph.
One can argue (see the appendix) that if G is em-

bedded in T�P∞ for some tree T , then all edges with
attached K2,5 must be horizontal. This in turn forces
that G′ is actually embedded within P∞�P∞ (this is
the hardest part). The arrow-heads force the edges
at which they are attached to be vertical, and with a
counting-argument therefore the embdding of G′ implies
an embedding of G0 in P∞�P∞ where the designated
orientations are respected. This is (with the standard
logic engine argument) easily seen to be equivalent to
the NAE-3SAT instance having a solution.

The graph in our construction has maximum degree 16

and pathwidth O(1), so computing the row treewidth
remains NP-hard even under these restrictions.

Corollary 10. RowTreewidth is NP-hard, even for
series-parallel graphs of bounded degree and pathwidth,
even if we only want to know whether the row treewidth
is 1.

A similar construction shows that testing whether
G ⊂ T�P∞ for some tree T is also NP-hard. Namely,
use the same construction (G0 to G′ to G), except omit
the diagonal edges and replace ‘K2,5’ by ‘three paths of
length 2’. This forces all horizontal edges to have the
desired orientation in any embedding of G in T�P∞.
Argue as above that then G lies within π�P∞ for a path
π. Therefore any vertical edge uv must have this orien-
tation, because both u, v have two incident horizontal
edges. So this gives an embedding of G0 in the grid
that respects the given orientation, hence a solution to
NAE-3SAT.

5 Inapproximability

The best approximation ratio known for a polynomial-
time approximation algorithm for the treewidth is
O(
√

logw), where w is the treewidth [11]. No
polynomial-time constant-factor approximation algo-
rithms are known, and they are unlikely to exist, since

81

35th Canadian Conference on Computational Geometry, 2023

such algorithms would violate a standard assumption in
computational complexity theory, the small set expan-
sion conjecture [20]. As we now show, the same hardness
results apply to the approximation of row treewidth and
row pathwidth:

Theorem 11. If there exists an approximation algo-
rithm for row treewidth, row pathwidth, layered treewidth,
or layered pathwidth with approximation ratio ρ, then
there exists an approximation algorithm for treewidth or
pathwidth (respectively) with approximation ratio at most
3ρ. As a consequence, the small set expansion conjecture
implies that ρ cannot be O(1).

Proof. Let G be a graph for which we wish to approxi-
mate the treewidth or pathwidth, let w be its treewidth
or pathwidth, and form graph G+ with treewidth or
pathwidth w+ 1 by adding a universal vertex to G. The
universal vertex forces every layering of G+ to use at
most three layers. G+ has a trivial layering with one
layer and row treewidth or row pathwidth w + 1. Any
other layering has row treewidth, row pathwidth, lay-
ered treewidth, or layered pathwidth at least (w + 1)/3,
because it gives a tree decomposition for G+ with bags
that are the unions of bags in three layers. Therefore,
any approximation for the row treewidth, row pathwidth,
layered treewidth, or layered pathwidth of G+ gives an
approximation for the treewidth or pathwidth of G+,
and therefore of G, with approximation ratio increased
by at most a factor of three.

Note that the constructed graph G+ is not necessar-
ily planar. In fact, for planar graphs there are O(1)-
approximation algorithms for the treewidth [16].

6 Outlook

In this paper, we proved that computing graph parame-
ters such as the row pathwidth and row treewidth are
NP-hard to compute, even under strong restrictions on
the input graph. In fact, most of these restrictions rule
out hopes for fixed-parameter tractability (or at least
the possibility of finding polynomial-time algorithms in
special situations). We do state here a few possibili-
ties of situations where finding an embedding may be
polynomial, but this mostly remains for future work:

• Given a graph with bounded radius, is it possible
to solve RowTreewidth or RowPathwidth in
polynomial time? In all our hardness constructions,
the graph had radius Θ(n). Bounded radius forces
any layering to use a bounded number of rows, so if
the row treewidth or row pathwidth is also bounded,
then the treewidth or pathwidth of the original
graph must also be bounded, but it is not obvious
how to take advantage of this in an algorithm.
GridEmbedding is polynomial for graphs of
bounded radius, because a graph can be embedded

in a grid only if it has bounded maximum degree,
and together with bounded radius this would imply
bounded size, hence a constant-time algorithm.

• For the results for GridEmbedding ([3] and graph
G0 in the proof of Theorem 9) we very much needed
the ability to change the embedding of the graph,
so that we could flip armatures and flags. What is
the status if the embedding is fixed? In particular,
is testing whether a tree can be embedded in a
grid NP-hard if the embedding of the tree is fixed,
possibly similar to the results in [1]?

One could also ask for results for planar graphs with
a fixed embedding where faces are small (e.g. triangula-
tions). In all our constructions, some faces have degree
Θ(n). Can we solve any of the problems (but espe-
cially KingGraphEmbedding) for triangulated planar
graphs? This remains open, but we can make some
progress if additionally also the treewidth is small.

Theorem 12. Let G be a planar graph with treewidth t
and a planar drawing Γ where all faces have degree at
most ∆. Then we can test whether G can be embedded
in the grid (in a way that respects embedding Γ) in time
O∗(n3(t+1)∆), i.e., in polynomial time if t ·∆ ∈ O(1).

Proof. In 2013, the first author and Vatshelle [4] studied
the PointSetEmbedding problem, where we are given
a set of points S and a planar graph G, and we ask
whether G has a planar straight-line drawing where all
vertices are placed at points of S. They showed that if G
has treewidth at most t and face-degree at most ∆, then
PointSetEmbedding can be solved in O∗(|S|1.5(t+1)∆)
time. Their approach is to use a so-called carving decom-
position of the dual graph, which results in a hierarchical
decomposition of G into ever smaller subgraphs H (end-
ing at one face) for which the boundary (the vertices of
H that may have neighbours outside H) has small size.
The main idea to solve PointSetEmbedding is then
to do dynamic programming in this carving decomposi-
tion, and the parameter for the dynamic program is all
possible embeddings of the boundary of H in the given
point set S.
To adapt this algorithm to our situation, we need

two changes. First, we fix the point set S to be the
points of an n× n-grid. (Clearly no bigger grid can be
required.) In particular, we have |S| = n2. Second, when
considering possible embeddings of the boundary of H,
we only consider such embeddings where this boundary
is drawn along edges of the grid with diagonals. With
this restriction, the same dynamic program will test
whether a grid embedding exists in the desired time.

Sadly this approach does not seem to generalize to
our other embedding problems.

82

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] Hugo A. Akitaya, Maarten Löffler, and Irene
Parada. How to fit a tree in a box. Graphs
and Combinatorics, 38(5):155, 2022. doi:10.1007/
s00373-022-02558-z.

[2] Michael J. Bannister, William E. Devanny, Vida
Dujmović, David Eppstein, and David R. Wood.
Track layouts, layered path decompositions, and
leveled planarity. Algorithmica, 81(4):1561–1583,
2019. doi:10.1007/s00453-018-0487-5.

[3] Sandeep Bhatt and Stavros Cosmadakis. The com-
plexity of minimizing wire lengths in VLSI layouts.
Information Processing Letters, 25(4):263–267, 1987.
doi:10.1016/0020-0190(87)90173-6.

[4] Therese Biedl and Martin Vatshelle. The point-
set embeddability problem for plane graphs. Int.
J. Comput. Geom. Appl., 23(4-5):357–396, 2013.
doi:10.1142/S0218195913600091.

[5] Prosenjit Bose, Vida Dujmović, Mehrnoosh
Javarsineh, Pat Morin, and David R. Wood. Sep-
arating layered treewidth and row treewidth. Dis-
crete Mathematics & Theoretical Computer Science,
24(1):P18:1–P18:10, 2022. doi:10.46298/dmtcs.
7458.

[6] Prosenjit Bose, Pat Morin, and Saeed Odak. An
optimal algorithm for product structure in pla-
nar graphs. In Artur Czumaj and Qin Xin, ed-
itors, 18th Scandinavian Symposium and Work-
shops on Algorithm Theory, SWAT 2022, volume
227 of LIPIcs, pages 19:1–19:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. doi:10.
4230/LIPIcs.SWAT.2022.19.

[7] Vida Dujmovic, Gwenaël Joret, Piotr Micek, Pat
Morin, Torsten Ueckerdt, and David R. Wood. Pla-
nar graphs have bounded queue-number. J. ACM,
67(4):22:1–22:38, 2020. doi:10.1145/3385731.

[8] Vida Dujmović, Pat Morin, and David R. Wood.
Layered separators in minor-closed graph classes
with applications. J. Combinatorial Theory, Ser.
B, 127:111–147, 2017. doi:10.1016/j.jctb.2017.
05.006.

[9] Zdeněk Dvořák, Tony Huynh, Gwenael Joret, Chun-
Hung Liu, and David R. Wood. Notes on graph
product structure theory. In Jan de Gier, Cheryl E.
Praeger, and Terence Tao, editors, 2019-20 MA-
TRIX Annals, pages 513–533. Springer Interna-
tional Publishing, Cham, 2021. doi:10.1007/
978-3-030-62497-2_32.

[10] Peter Eades and Sue Whitesides. The logic
engine and the realization problem for nearest
neighbor graphs. Theoretical Computer Science,
169(1):23–37, 1996. doi:10.1016/S0304-3975(97)
84223-5.

[11] Uriel Feige, Mohammadtaghi Hajiaghayi, and
James R. Lee. Improved approximation algorithms
for minimum weight vertex separators. SIAM
J. Comput., 38(2):629–657, 2008. doi:10.1137/
05064299X.

[12] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[13] Angelo Gregori. Unit-length embedding of bi-
nary trees on a square grid. Information Process-
ing Letters, 31(4):167–173, 1989. doi:10.1016/
0020-0190(89)90118-X.

[14] David Gries. A note on a standard strategy for
developing loop invariants and loops. Science of
Computer Programming, 2(3):207–214, 1982. doi:
10.1016/0167-6423(83)90015-1.

[15] Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi.
Grid recognition: Classical and parameterized com-
putational perspectives. In Hee-Kap Ahn and Kuni-
hiko Sadakane, editors, 32nd International Sympo-
sium on Algorithms and Computation, ISAAC 2021,
volume 212 of LIPIcs, pages 37:1–37:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ISAAC.2021.37.

[16] Frank Kammer and Torsten Tholey. Approxi-
mate tree decompositions of planar graphs in lin-
ear time. Theor. Comput. Sci., 645:60–90, 2016.
doi:10.1016/j.tcs.2016.06.040.

[17] Jirí Matousek and Robin Thomas. On the complex-
ity of finding iso- and other morphisms for partial
k-trees. Discret. Math., 108(1-3):343–364, 1992.
doi:10.1016/0012-365X(92)90687-B.

[18] Farhad Shahrokhi. New representation results for
planar graphs. In Proc. 29th European Workshop
on Computational Geometry (EuroCG ’13), pages
177–180, 2013. arXiv:1502.06175.

[19] Torsten Ueckerdt, David R. Wood, and Wendy
Yi. An improved planar graph product struc-
ture theorem. Electron. J. Comb., 29(2), 2022.
doi:10.37236/10614.

[20] Yu Wu, Per Austrin, Toniann Pitassi, and David
Liu. Inapproximability of treewidth, one-shot peb-
bling, and related layout problems. J. Artifi-
cial Intelligence Research, 49:569–600, 2014. doi:
10.1613/jair.4030.

83

35th Canadian Conference on Computational Geometry, 2023

A Missing details from Section 2

We first give a proof of Observation 2: Any graph G can
be modified into a graph G′ such that G has an embed-
ding in P∞�P∞ if and only if G′ has an embedding in
P∞�P∞.

Proof. The forward direction is obvious: If G ⊂
P∞�P∞, then take the embedding, rotate it by 45◦
and stretch it such that neighboring grid vertices are
5
√

2 units apart. Place this in P∞�P∞ and verify that
each T (v) can be placed, and for each edge of G the two
respective degree-4 can be connected as in Fig. 3.

For the other direction, assume G′ has an embedding
in P∞�P∞. Observe that for any vertex v in G, the set
Sv = {w ∈ V (G′) : dist(v, w) ≤ 2} has size |Sv| = 1+8+
16 = 25, and occupies a 5×5 square area Av in P∞�P∞.
For any edge e = uv in G, the corresponding 5-path u-
s1-s2-s3-s4-v must be embedded along five diagonals of
P∞�P∞ with the same slope. This holds as s2 has four
neighbors outside Su (s3 and three vertices of T (u) \Su)
and thus must be on a corner of Au; and symmetrically s3
lies on a corner of Av. Finally (s2, s3) must be diagonal
(and have the same slope), otherwise there would not
be six vertices of P∞�P∞ that are outside Su ∪ Sv but
adjacent to s2 or s3.

Next we sketch (in Fig. 5) how to take the specific
tree from the NP-hardness construction from [15], and
directly construct a tree T ′ of pathwidth 2 that has an
embedding in P∞�P∞ if and only if T has an embedding
in P∞�P∞. Thus KingGraphEmbedding is NP-hard
even for trees of pathwidth 2.

B Row treewidth

We prove here Theorem 9: It is NP-hard to test whether
a graph G is a subgraph of T�P∞ for some tree T , even
for a series-parallel graph G. We already sketched the
construction in Section 4; we repeat the full construction
here for ease of reading.
The reduction is from NAE-3SAT and uses the logic

engine by Eades and Whitesides [10], which maps in-
stances of NAE-3SAT to geometric gadgets called frames,
armatures and flags, in such a way that the entire con-
struct has an embedding in the plane if and only if the
NAE-3SAT instance has a solution. The frame here
has only one embedding (up to symmetry), while the
armatures have some flexibility (and express whether a
variable is true or false), and the flags are used to enforce
that every clause has at least one true and at least one
false variable. In our case we ask for an embedding in a
graph, and therefore the gadgets are small subgraphs.
We first show NP-hardness of a closely related prob-

lem. Assume that with a graph G, we are also given
labels ‘hor’ and ‘ver’ on some of its edges. We say that

an embedding of G in T�P∞ is orientation-constrained
if the edges marked ‘hor/ver’ are horizontal and verti-
cal, respectively. (Recall that horizontal/vertical means
that the two endpoints of the edge have the same T -
projection/P -projection.)
Claim 13. Consider the following problem: ‘Given a
graph G with labels hor/ver on some edges, does it have
an orientation-constrained embedding in T�P∞ for some
tree T?’ This is NP-hard, even for a series-parallel
bipartite graph G.
Proof. Let I be an instance of NAE-3SAT with n vari-
ables and m clauses. We construct G and at the same
time discuss possible orientation-constrained embeddings
of G in the grid, see also Fig. 6. (Since we restrict all
edges to be horizontal or vertical, it does not matter
whether the grid includes the diagonals or not.) Start
with the frame (orange in the figure) which consists of
three paths connecting two vertices t, b; the middle path
has H := m+ 2n+ 1 vertical edges, while the two outer
paths have 2n horizontal, H vertical, and then another
2n horizontal edges each. An orientation-constrained
embedding of the frame in the grid is unique up to sym-
metry. The middle m rows of this embedding are called
the clause-rows and marked with one clause each.

Next we add the armature of xi (light/dark cyan) for
each variable xi. This consists of two paths that attach
at the vertices of the middle path at distance i from t
and b. Each path consist of 2n+ 1− 2i horizontal edges
at both ends with H − 2i vertical edges inbetween. The
paths are assigned to literals xi and xi. An orientation-
constrained embedding of frames and armatures in the
grid is unique up to symmetry and up to horizontally
flipping each armature; in particular the row of each
vertex is unchanged over all such embeddings.

Finally we attach flags (green) at the intersections
of armatures and clause-rows. Namely, at the vertex
where the armature of literal `i intersects the row of cj ,
we attach a leaf (via a horizontal edge) if and only if `i

does not occur in cj . For each flag we have the choice of
whether to place it to the right or to the left of its attach-
ment vertex, as long as this spot has not been used by a
different flag already. Graph G is clearly series-parallel,
because we can reduce it to an edge by deleting leaves
and multiple edges and contracting degree-2 vertices.
(We remind the reader of the following equivalent defi-
nitions of series-parallel graphs: (a) Connected graphs
without aK4-minor, (b) connected graphs of treewidth 2,
(c) graphs obtained from an edge by attaching leaves and
duplicating or subdividing edges, (d) connected graphs
for which all 3-connected components contain at most
three vertices.)
If I has a solution, then flip the armatures such that

the left paths correspond to the literals of the solution.
For each clause cj there exists at least one true literal,
hence there are at most n − 1 flags in the row of cj

84

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

set x1 to true

set x2 and x3 to false

Figure 5: Left: The tree of pathwidth 2 of Gupta et al. [15] for the NAE-SAT instance ϕ = (x1∨x2∨x3)∧(x1∨x2∨x3)
in its GridEmbedding for solution {x1 = true, x2 = false, x3 = false}. Right: A corresponding tree of pathwidth 2
in its corresponding king’s graph embedding. (P∞ � P∞ is rotated 45◦.)

x1 x1

x4 x4

x3 x3

c1 : x1 ∨ x2 ∨ x3

c2 : x2 ∨ x3 ∨ x4

c3 : x1 ∨ x2 ∨ x4

c4 : x1 ∨ x3 ∨ x4

x2x2

c5 : x4 ∨ x4

armature

armature

armature

armature

frame

flag

flag

flag

flag

flag

t

b

H

Figure 6: The reduction for row-treewidth if we can fix the orientation of edges.

and left of the middle path; we can arrange them as to
fit within the gaps. There also exists at least one false
literal, hence at most n− 1 flags in the row of cj to the
right of the middle path. So we can find an orientation-
constrained embedding of G in the grid. Vice versa, if
we have such an embedding, then taking the literals that
are left of the middle path gives a solution to I because
for each clause cj there must be at most n− 1 flags on
each side of the middle path, so at least one literal is
true and at least one literal is false.

So I has a solution if and only if G has an orientation-

constrained embedding in the grid. To finish the
NP-hardness, we must argue that any orientation-
constrained embedding of G in T�P∞ for some tree
T actually must reside within a grid. To see this, let π
be the path in T that corresponds to the T -projection of
one outer path of the frame. Since the edge-orientations
on the outer path are fixed, π has length H and connects
the T -projections t′, b′ of t and b, so t′, b′ have distance
H in T . We claim that the embedding of G actually
resides within π�P∞, i.e., for any vertex v of G the
T -projection v′ of v is on π. To show this, observe that

85

35th Canadian Conference on Computational Geometry, 2023

we can find a path from t to v by walking through the
frame, then (perhaps) an armature and then (perhaps)
along a flag, and always only go downward. Similarly
find a path from v to b that only goes downward. The
combined walk σv from t to b via v uses exactly H non-
horizontal edges. The T -projection σ′v of σv connects t′
to b′ and has length H, which by uniqueness of paths in
trees implies that σ′v = π contains v′.

To prove Theorem 9, we take the construction of
Claim 13, but add more vertices and edges to obtain a
graph G for which edge-orientations are forced in any
embedding of G in T�P∞.
So assume that we are given an instance I of NAE-

3SAT. We may assume that one clause of I is xn ∨ xn,
for if there is no such clause, then we can add it without
affecting the solvability of I. Now let G0 be the graph
constructed for instance I as in the proof of Claim 13.
As before, G0 has a unique orientation-constrained em-
bedded in the grid up to horizontal flipping of armatures
and flags, so the y-coordinates of vertices are fixed. We
call the vertices and edges of G0 original.
As our next step, we “triple the width”. Roughly

speaking, we insert a new column before and after every
column that we had in the drawing of G0. Formally
(and explained on the graph, rather than the drawing),
subdivide every horizontal edge twice, and at any vertex
v incident to k horizontal edges, attach 2− k leaves. All
new edges are again required to be horizontal. See Fig. 4,
ignoring bold lines and diagonal edges for now. The re-
sulting graph G1 likewise has an orientation-constrained
embedding in the grid if and only if the NAE-3SAT
instance has a solution. It also clearly is series-parallel
since it is obtained from G0 by subdividing edges and
attaching leaves.

Next we obtain G2 by adding an arrow-head at some
vertical edges vw. Assuming v is below w, this means
adding the edges (v`, w) and (vr, w), where v`, vr are the
two neighbours of v adjacent to it via horizontal edges.
We add arrow-heads at all vertical edges of G1except
those of the middle path where an armature or outer path
attaches at the lower endpoint. The graph stays series-
parallel since each arrow-head {v`, v, vr, w} contains a
cutting pair that separates it from the rest of the graph,
so adding the edges of the arrow-heads does not affect
whether there are non-trivial 3-connected components.

For the final modification we need a simple but cru-
cial observation, which one proves by inspecting the
neighbourhood of two adjacent vertices in T�P∞ for all
possible orientations of the edge between them.

Observation 14. Let G be a graph embedded in T�P∞
for some tree T . If uv is an edge of G for which u, v
have at least five common neighbours, then uv must be
horizontal.

Thus, we turn G2 into G by adding a K2,5 at every
‘hor’ edge uv of G2, i.e., adding five new vertices that are
adjacent to both u and v. This keeps the graph series-
parallel and force uv to be horizontal in any embedding
of G in T�P∞. To avoid clutter we do not show K2,5
in Fig. 4, but indicate it with a bold edge.
This ends the description of our construction. It

should be straightforward to see that a solution to the
NAE-3SAT instance I implies that G can be embedded
in C∞�P∞. Namely, we can embed G0 in π�P∞ where
π is the spine of C∞, subdivide each edge of P∞ twice
to embed G1, realize the arrow-heads along diagonals,
and finally use 5 legs at each vertex of π to embed the
attached K2,5’s on their P -extensions. Vice versa, as-
sume that G is embeded in T�P∞ for some tree T . We
know that all bold edges must be horizontal. We also
claim that if vw was a ‘ver’ edge of G1 that received an
arrow-head, then the orientation of vw in the embedding
is vertical. To see this, assume that the arrow-head
was {v`, v, vr, w}, with v`, vr connected to v via horizon-
tal edges. Then vw belongs to two triangles {v`, v, w}
and {vr, v, w}, and the two horizontal edges (v`, v) and
(vr, v) of these triangles share endpoint v. No two such
triangles exist at a diagonal edge, and vw cannot be
horizontal since the two horizontal edges at v are vv`

and vvr. So vw is vertical.
We claim that the embedding of G2 in T�P∞ actually

resides within π�P∞ for some path π, i.e., in a grid. This
is argued almost exactly as in Claim 13. Let π be the T -
projection of one outer path of G0; since the orientations
of the edges on the outer path is fixed π has length H.
For any vertex v of G2, we can find a walk σv from t to
b via v that uses exactly H non-horizontal edges (they
may now be diagonal). As before this implies that the
T -projection of v is also in π, so the embedding of G2 is
within π�P∞, i.e., the king’s graph. As before, we can
hence associate vertices of G2 with points in N×N, and
speak of rows and columns of this embedding.
Since the orientations of edges on the outer paths

are fixed, the drawing of the outer paths is fixed up to
symmetry and spans 12n + 3 columns (including the
space for the arrowheads). The rest of G2 must lie
inside the outer-paths, so in particular the row of clause
xn∨xn (which we call the spacer-row) has 12n+3 points
that could host vertices. But there are three paths of
the frame, 2n armature-paths and 2(n− 1) flags in this
row, meaning 4n + 1 original vertices use the spacer-
row. Since we tripled the width, all 12n + 3 possible
points in the spacer-row are used in the embedding of
G2. Furthermore, the vertices in the spacer-row come as
triplets connected by horizontal edges, with the middle
vertex the original vertex. Up to a translation therefore
all original vertices in the space-row have x-coordinate
divisible by 3. This forces any original vertex w to have
x-coordinate divisible by 3 as well, because we can get

86

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

from w to an original vertex v in the spacer-row using
only edges that must be vertical (due to an arrow-head)
or horizontal (due to a K2,5), and the horizontal parts
have length divisible by 3. In consequence, all edges
on the middle path of the frame must be vertical, even
those that do not have an arrowhead on them.1 With
this, the embedding of G implies an embedding of G1
in π�P∞ that is orientation-constrained, and we can
hence extract a solution to the NAE-3SAT instance as
Claim 13. This finishes the proof of Theorem 9.

C Row treedepth

Recall that S∞ (the infinite star) is the tree that consists
of one center that is adjacent to all other vertices (the
leaves), with no restriction on its number of leaves.

Theorem 15. It is NP-hard to test whether a tree is a
subgraph of S∞�P∞, even for a tree of pathwidth 2.

Proof. We use a reduction from 3-partition, where the
input is a multi-set A = {a1, . . . , a3n} of positive integers.
The goal is to split these 3n integers into n groups that all
sum to the same integer B = 1

n

∑3n
i=1 ai. This problem

is strongly NP-hard [12], i.e., it remains NP-hard even
if A is encoded in unary. We may assume that all
input-numbers are multiples of 8 (otherwise multiply all
of them by 8; this does not affect NP-hardness). We
describe the construction of our tree T and at the same
time also argue what any embedding Γ of T in S∞�P
must look like. In S∞�P∞, we call the P -extension of
the center c the center-row; as in Observation 6 we use
a degree-argument to force many vertices of T to be in
the center-row, and finding enough space to hold all of
them is the crucial idea for our reduction.

Tree T consists of a frame as well as a paddle for each
ai, i = 1, . . . , 3n, see also Fig. 7. The frame is a very
long path, with most vertices on the path having 6 leaves
attached. (These leaves are not shown in our picture.)
The vertices with attached leaves are called c-vertices
and are forced to be on the central row since all other
vertices of S∞�P have degree 5. All other vertices of
the frame are called `-vertices because they could be on
a leaf-row (the P -extension of a leaf of S∞). The specific
spacing along the path is as follows:

• Begin with n(B+8) c-vertices (the left blocker).
Since c-vertices must be on the central row, and no
two central-row vertices are adjacent unless they
are consecutive, this path (and similarly any path
of c-vertices used below) occupies a consecutive set
of vertices on the central row.

• Continue with B `-vertices, followed by 8 c-vertices.
The `-vertices could be on a leaf-row, hence keep

1This argument would be simplified if we added arrow-heads
everywhere, but then the graph would not be series-parallel.

up to B vertices of the central row unused. We call
this a group-gap.

• We create n consecutive group-gaps (we have n = 2
in Fig. 7).

• The last vertex Z of the last group-gap is called
the anchor; the paddles (defined below) will attach
at Z.

• Starting at Z, we alternate between three c-vertices
and one `-vertex that together define one fold-gap
(it permits to omit one center-row vertex). There
are 1

8n(B + 8) fold-gaps.
• Finally we finish with n(B+8) c-vertices (the right

blocker).
Note that the left and right blocker are so long that
no sub-path of `-vertices could extend beyond them; in
particular this forces all c-vertices that are not in the
blockers to be between them in the central row.
Now for each ai ∈ A, we define the ai-paddle. This

starts at anchor Z, continues with a path (the handle)
that has n(B+8)−1 `-vertices, and culminates at the
blade, which consists of ai c-vertices. The handle is
not long enough to extend beyond the blockers, so the
c-vertices of the blade must be at ai ≥ 2 consecutive
central-row vertices between the blockers. Since each
fold-gap leaves at most one central-row vertex free, the
blade must hence occupy central-row vertices left free
by a group-gap. There are at most nB such central-row
vertices in Γ, and they come in blocks of at most B
consecutive central-row vertices each. By

∑3n
i=1 ai = nB,

it follows that in any realization Γ the group-gaps leave
exactly n blocks of exactly B central-row vertices each,
and the blades exactly fill these gaps, hence giving the
desired partition of A.
We must still argue that if there is a solution to 3-

partition, then we can embed T in S∞�P , and for this,
need the fold-gaps and Θ(n) leaves at the star. Embed
first the frame as in Fig. 7, so all gaps leave the maximal
possible number of central-row vertices free. (We also use
6 leaf-rows, not shown here, to embed the leaves attached
at c-vertices.) We treat the center-row as if it were the
x-axis with Z at the origin; this defines an x-coordinate
x(·) for all embedded vertices with x(Z) = 0. Embed the
blades of a1, . . . , a3n in the group-gaps according to the
solution to 3-partition. For i = 1, . . . , 3n, let vi be the
rightmost central-row vertex of the blade of ai. To place
the handle, we use two further leaf-rows, say `′i and `′′i .
We go from vi diagonally rightward to `′i, then rightward
for |x(vi)| − 1 edges to reach x-coordinate −1. Hence we
could now go to the anchor diagonally, but the handle
is longer than this. Therefore we continue rightward for
another di := 1

2 (n(B+8)−|x(vi)|) edges along `′i. Recall
that each ai (and hence also B) is divisible by 8. Since
there are 8 c-vertices at each group-gap, and all group-
gaps are completely filled by paddles, x-coordinate x(vi)
is also divisible by 8. Thus di is divisible by 4, and the

87

35th Canadian Conference on Computational Geometry, 2023

B Bleft blocker
[. . .]

right blocker8 8
[. . .][. . .]

3 3 3 3
vi

`′i

`′′i
di

x(Z)=0

wi

w′
i

Figure 7: NP-hardness of embedding in S∞�P , figure is not to scale. Filled dots represent c-vertices (hence have 6
leaves attached). We only show two paddles, one green and one blue.

vertex w′i that we reach is one unit left of the central-row
vertex wi of some fold-gap. Go diagonally from w′i to wi,
and from there diagonally back to x(w′i) on the other
leaf-row `′′i . Then we go leftward along leaf-row `′′i to
x-coordinate 1 and then diagonally to Z. In total we
have used |x(vi)|−1+2di = n(B+8)−1 vertices, which
is exactly the length of the handle. Observe that vertex
wi cannot have been used by a different paddle (say
the aj-paddle) because vj 6= vi are distinct central-row
vertices, and their x-coordinates determine the fold-gap
to be used.
Thus a solution to 3-partition gives an embedding of

G in S∞�P and vice versa and the problem is NP-hard.
Clearly we constructed a tree T ; and if we removed the
path π that defined the frame then all components of
T \ π are either singleton-vertices (at c-vertices of the
frame) or caterpillars (at the paddles). Therefore T has
pathwidth 2.

The same result also holds for the problem of embed-
ding in S∞�P . We use exactly almost the same tree T ,
except at each gap of the frame the path of `-vertices is
longer by two vertices and the handles have four more
vertices. Details are left to the reader.

Our constructed trees have pathwidth 2. For a tree T
of pathwidth 1, the answer to ‘is T ⊂ S∞�P∞’ is trivial
because the answer is always ‘Yes’: Such a tree is a
subgraph of C∞, and C∞ can be embedded in S∞�P∞
by placing the spine on the center-row.

88

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

On the Deque and Rique Numbers of
Complete and Complete Bipartite Graphs

Michael A. Bekos∗ Michael Kaufmann† Maria Eleni Pavlidi‡ Xenia Rieger§

Abstract

Several types of linear layouts of graphs are obtained
by leveraging known data structures; the most notable
representatives are the stack and the queue layouts. In
this content, given a data structure, one seeks to specify
an order of the vertices of the graph and a partition of
its edges into pages, such that the endpoints of the edges
assigned to each page can be processed by the given data
structure in the underlying order.

In this paper, we study deque and rique layouts of
graphs obtained by leveraging the double-ended queue
and the restricted-input double-ended queue (or deque
and rique, for short), respectively. Hence, they gener-
alize both the stack and the queue layouts. We focus
on complete and complete bipartite graphs and present
bounds on their deque- and rique-numbers, that is, on
the minimum number of pages needed by any of these
two types of linear layouts.

1 Introduction

Stack and queue layouts form two of the most stud-
ied types of linear layouts of graphs; they date back to
70’s [9, 17] and over the years several remarkable results
have been proposed in the literature [11, 16, 18, 19, 23].
For an introduction, refer to Section 2. Both layouts
are defined by an underlying vertex order and an edge-
partition into a certain number of so-called pages (stacks
or queues, respectively), such that when restricting to a
single page the endpoints of the edges assigned to it can
be processed by the corresponding data structure in the
order that appears in the underlying vertex order.

Since given a graph the natural goal is to find a lay-
out of it that minimizes the number of used pages un-
der the restrictions mentioned above, stack and queue
layouts have naturally been leveraged to estimate the
power of the respective data structures as a mean for
representing graphs (for a wealth of other applications,

∗Department of Mathematics, University of Ioannina, Ioan-
nina, Greece, bekos@uoi.gr
†Institute for Computer Science, University of Tübingen,

Tübingen, Germany, michael.kaufmann@uni-tuebingen.de
‡Department of Mathematics, University of Ioannina, Ioan-

nina, Greece, marialenaregie3@gmail.com
§Institute for Computer Science, University of Tübingen,

Tübingen, Germany, xenia.rieger@student.uni-tuebingen.de

e.g., to VLSI design and Graph Drawing, refer to [12]).
The well-known stack-number (a.k.a. book-thickness or
page-number in the literature) of a graph corresponds
to the minimum number of stacks required by any of
the stack layouts of it; the queue-number of a graph
is defined symmetrically. In this context, it was re-
cently shown that the stack-number of a graph can-
not always be bounded by its corresponding queue-
number [10], resolving a long-standing open question by
Heath, Leighton and Rosenberg [16]; the other direction
is still unknown.

A data structure that generalizes both the stack and
the queue is the so-called double-ended queue or deque,
for short.1 As a matter of fact, the most common im-
plementations of stacks and queues are derived by re-
stricting corresponding implementations of deques. So,
in this aspect, one naturally expects that the corre-
sponding linear layouts that are obtained by employ-
ing the deque data structure for stipulating their edge-
partitions will require fewer pages (called deques in this
content) than those of stack or queue layouts, since, ob-
viously, the latter form a special case of the former.

However, in contrast to the literature for stack and
queue layouts, the corresponding literature for deque
layouts is significantly reduced. To the best of our
knowledge, there exists only one work introducing and
studying deque layouts by Auer et al. [3], who pro-
vide a complete characterization of the graphs admit-
ting 1-deque layouts (that is, deque layouts with a single
deque): a graph admits a 1-deque layout if and only if it
is a spanning subgraph of a planar graph with a Hamil-
tonian path; see also [2]. Even though the deque-number
of a graph (that is, the minimum number of deques re-
quired by any of the deque layouts of the graph) has
not been explicitly studied so far in the literature as a
graph parameter, from the characterization by Auer et
al. one can easily deduce the following.

Observation 1 (Auer et al. [3]) The deque-number
of a graph is at most half of its stack-number.

Note that the queue-number is also a trivial upper
bound on the deque-number of a graph. Observation 1,

1While in a stack insertions and removals only occur at its head
and in a queue insertions only occur at its head and removals only
at its tail, a deque supports insertions and removals both at its
head and its tail.

89

35th Canadian Conference on Computational Geometry, 2023

however, immediately implies improved upper bounds
on the deque-number of several graph classes, e.g., the
deque-number of the complete graph Kn is at most
dn4 e [9], the deque-number of the complete graph Kn,n

is at most d b2n/3c+1
2 e [13], while the deque-number of

treewidth-k graphs is at most dk+1
2 e [15]. Also, since

there exist maximal planar graphs that do not have a
Hamiltonian path (e.g., the n-vertex ones with an in-
dependent set of size greater than n

2 + 2), it follows by
a well-known result by Yannakakis [23] that the deque-
number of planar graphs is 2; see also [6, 24].

Another consequence of Observation 1 is that deque
layouts cannot be characterized by means of forbidden
patterns in the underlying linear order, as it is the case,
e.g., for stack and queue layouts [17, 21]; the former
do not allow two edges of the same page to cross (i.e.,
to have alternating endpoints), while in the latter no
two edges of the same page nest (i.e., have nested end-
points). The reason for the lack of such a characteriza-
tion for deque layouts is the fact that maximal planar
graphs with a Hamiltonian path are the maximal graphs
that admit 2-stack layouts and these layouts do not ad-
mit characterizations in terms of forbidden patterns in
the underlying linear order [22]. A characterization in
terms of forbidden patterns is possible, however, for a
special type of deque layouts, which were recently in-
troduced and are referred to as rique layouts [4], since
the underlying data structure is of restricted input (so-
called restricted-input double-ended queue or rique,2 for
short): a graph admits a 1-rique layout if and only if
it admits a vertex order ≺ avoiding three edges (a, a′),
(b, b′) and (c, c′) such that a ≺ b ≺ c ≺ b′ ≺ {a′, c′}.

Our contribution. In this work, we present bounds on
the deque- and rique-numbers of complete and com-
plete bipartite graphs. Especially, for deque layouts,
the main research question that triggered our work is
whether it is possible to obtain better bounds than the
obvious ones that one can deduce from Observation 1
(or in other words, whether the deque data structure is
more powerful for representing graphs than two stacks).
Surprisingly enough, we prove that for the case of com-
plete graphs, this is not the case (see Theorem 2), while
for the case of complete bipartite graphs our upper
bound shows that an improvement by a constant num-
ber is possible (to achieve this, however, we describe a
rather complicated edge-to-deques assignment; see The-
orem 5). For rique layouts, our contribution is twofold.
First, we improve the upper bound on the rique-number
of Kn from dn3 e [4] to bn−13 c (see Theorem 4), which we
prove to be tight up to n = 30 using an SAT-based ap-
proach (see Section 5). We complete our study with an

2Formally, in a rique insertions occur only at the head, and
removals occur both at the head and the tail. Thus, it is a special
case of a deque and a generalization of a stack or of a queue.

upper bound of bn−12 c−1 on the rique-number of Kn,n.

2 Preliminaries

A vertex order ≺ of a graph G is a total order of its
vertices, such that for any two vertices u and v of G,
u ≺ v if and only if u precedes v in the order. We write
[u1, . . . , uk] if and only if ui ≺ ui+1 for all 1 ≤ i ≤ k−1.
Let F be a set of k ≥ 2 pairwise independent edges
(ui, vi) of G, that is, F = {(ui, vi); i = 1, . . . , k}. If
the order is [u1, . . . , uk, vk, . . . , v1], then we say that
the edges of F form a k-rainbow, while if the order
is [u1, v1, . . . , uk, vk], then the edges of F form a k-
necklace. The edges of F form a k-twist, if the order
is [u1, . . . , uk, v1, . . . , vk]; see Fig. 1. Two independent
edges that form a 2-twist (2-rainbow, 2-necklace) are
commonly referred to as crossing (nested, disjoint, re-
spectively).

A stack is a set of pairwise non-crossing edges in ≺,
while a queue is a set of pairwise non-nested edges in ≺.
A rique is a set of edges in which no three edges (a, a′),
(b, b′) and (c, c′) with a ≺ b ≺ c ≺ b′ ≺ {a′, c′} exists
in ≺. A deque is more difficult to describe due to the
absence of a forbidden pattern. A relatively-simple way
is the following. Assume that the vertices of a graph are
arranged on a horizontal line ` from left to right accord-
ing to ≺ (say, w.l.o.g., equidistantly). Then, each edge
(vi, vj) with vi ≺ vj can be represented either (i) as a
semi-circle that is completely above or completely be-
low ` connecting ui and uj , or (ii) as two semi-circles
on opposite sides of `, one that starts at ui and ends at
a point pij of ` to the right of the last vertex of ≺ and
one that starts at point pij and ends at uj . With these
in mind, a deque is a set of edges each of which can be
represented with one of the two types (i) or (ii) that
avoids crossings (such a representation is called cylin-
dric in [3]); see Fig. 1d. A deque further allows classify-
ing the edges into four categories: head-head, tail-tail,
head-tail and tail-head; refer to the blue, light-blue, red
and light-red edges of Fig. 1d, respectively. A head-head
(tail-tail) edge is a type-(i) edge drawn above (below,
respectively) `. Symmetrically, a head-tail (tail-head)
edge is a type-(ii) edge whose first part is above (below)
`, while its second part is below (above, respectively)
`. Given a deque layout L and a set of edges E, we
write Ex to denote that all edges of E are of type-x in
L, where x ∈ {hh, tt, ht, th}.

In view of the above definitions, a rique can be equiv-
alently defined as a deque without tail-tail and tail-head
edges [4]. Also, it is not difficult to see that the subset
of the head-head or tail-tail edges of a deque induce a
stack in ≺, while the set of the head-tail or tail-head
edges of a deque induces a queue in ≺.

Since we focus on complete and complete bipartite
graphs, for representing their linear layouts we use a

90

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

u1 u2 u3 v3 v2 v1

(a)

u1 u2 u3 v1 v2 v3

(b)

u1 v1 u2 v2 u3 v3

(c) (d)

Figure 1: Illustration of: (a) a 3-rainbow, (b) a 3-twist, (c) a 3-necklace, and (d) a deque.

convenient way first introduced in [20] and subsequently
used in several works [13, 14, 1]. Let ≺ be an order of
the n vertices v1, . . . , vn of a graph G such that v1 ≺
· · · ≺ vn. Then, each edge (vi, vj) of G with i < j is
mapped to point (i, j) of the n×n grid H = [1, n]×[1, n].
A set of head-head or tail-tail edges of the same page
(deque or rique) corresponds to a set of points on H
whose union forms a monotonically decreasing curve on
H [20]. A set of head-tail or tail-head edges of the same
page (deque or rique) corresponds to a set of points on
H whose union forms a monotonically increasing path
on H [1]. If a deque contains head-tail and tail-head
edges, special care is needed to avoid configurations not
appearing in a cylindric layout.

3 Complete graphs

In this section, we study the deque- and rique-numbers
of the complete graph Kn. As already mentioned, Ob-
servation 1 implies that dn4 e is an easy-to-obtain upper
bound on the deque-number of Kn. In the following, we
prove that this bound is tight. To do so, we first give
an estimation on the maximum number of edges that a
graph admitting a k-deque layout can have.

Lemma 1 A graph with n vertices admitting a deque
layout with k pages has at most (2k+1)n−5k−1 edges.

Proof. Let G be a graph with n vertices admitting a
k-deque layout. Let also v1 ≺ · · · ≺ vn be the linear
order of the vertices of G. Since each deque induces a
planar graph, it has at most 3n−6 edges. However, the
n − 1 so-called spine edges (vi, vi+1), i = 1, . . . , n − 1
can be added as head-head edges to every deque of the
layout. So, every deque has at most 2n − 5 non-spine
edges. Hence, in total G has (2n−5)k+n−1 edges. �

We are now ready to prove that the deque-number of
the complete graph Kn is dn4 e.

Theorem 2 The deque-number of Kn is dn4 e.

Proof. The upper bound follows from Observation 1
and [9]. For the lower bound, let k be the number of

deques of Kn. Since Kn has n(n−1)
2 edges, by Lemma 1,

it follows that (2k+1)n−5k−1 ≥ n2−n
2 , which implies:

k ≥ n2 − 3n+ 2

4n− 10
for n ≥ 3

In [7], we show that dn2−3n+2
4n−10 e = dn4 e, which completes

the proof. �

For rique layouts, the analog of Lemma 1 is the fol-
lowing, which has been used to show a lower bound of

(1−
√
2
2)(n− 2) on the rique-number of Kn [4].

Lemma 3 (Bekos et al. [4]) A graph with n vertices
admitting a rique layout with k pages has at most (2n+
2)k − k2 + (n− 3) edges.

In the next theorem, we improve the best-known upper
bound on the rique-number of Kn from dn3 e [4] to bn−13 c.

Theorem 4 The rique-number of Kn is at most bn−13 c.

Proof. Assuming n mod 3 = 0, we prove that Kn ad-
mits a rique layout L with n

3 − 1 riques; the cases
n mod 3 ∈ {1, 2} are deferred to [7]. Our construc-
tion contains seven “special” pages, namely, the ones
in {1, 2, 3, 4, n3 − 3, n3 − 2, n3 − 1}; blue, red, green, dark-
purple, gray, light-purple and yellow in Fig. 2a. The
remaining pages of L are uniform.

Page 1 of L contains the following 2n edges:

- {(v1, vj), j = 2, . . . , n}ht,
- {(vi, vn), i = 2, . . . , n3 }ht,
- {(vn

3
, vj), j = n

3 + 1, . . . , 2n3 }hh,

- {(v 2n
3 +1, vj), j = 2n

3 + 2, . . . , n}hh,

- {(vn−1, vn)}hh.

Page 2 of L contains the following 2n− 7 edges:

- {(v2, vj), j = 3, . . . , n− 1}ht,
- {(vi, vn−1), i = 3, . . . , n3 + 1}ht,
- {(vn

3 +1, vn)}ht,
- {(vn

3 +1, vj), j = n
3 + 2, . . . , 2n3 }hh,

- {(v 2n
3
, vj), j = 2n

3 + 1, . . . , n}hh.

Page 3 of L contains the following 2n− 5 edges:

- {(v3, vj), j = 4, . . . , n− 2}ht,
- {(vi, vn−2), i = 4, . . . , n3 + 1}ht,
- {(v 2n

3 +2, vj), j = n− 2, . . . , n}ht,
- {(vn

3 +1, v 2n
3 +1)}hh,

91

35th Canadian Conference on Computational Geometry, 2023

- {(vn
3 +2, vj), j = 2n

3 − 1, 2n3 ,
2n
3 + 1}hh,

- {(vn
3 +3, vj), j = n

3 + 4, . . . , 2n3 − 1}hh,

- {(v 2n
3 +2, vj), j = 2n

3 + 3, . . . , n− 3}hh,

- {(vn−3, vj), j = n− 2, n− 1, n}hh.

For p = 4, . . . , n3 − 4, page p of L contains the following
n
3 − 2p+ 3 edges:

- {(vp, vj), j = p+ 1, . . . , n− p+ 1}ht,
- {(vi, vj), i = p+ 1, . . . n3 + 1, j = n− p+ 1}ht,
- {(vi, vj), i = n

3 + (p+ 1), j = n− p+ 1, . . . , n}ht,
- {(vi, vj), i = n

3 +(p+1), j = 2n
3 +(p−2), . . . , n−p}hh,

- {(vi, vj), i = n− p+ 1, j = n− p, . . . , n}hh,

- {(vi, vj), i = n
3 +(p+2), j = n

3 +(p+3), . . . , 2n3 +(p−
2)}hh.

Page n
3 − 3 of L contains the following 4n

3 + 6 edges:

- {(vn
3−3, vj), j = n

3 − 2, . . . , 2n3 + 4}ht,
- {(vi, v 2n

3 +4), i = n
3 − 2, . . . , n3 + 1}ht,

- {(vn
3 +3, vj), j = 2n

3 + 4, . . . , n− 1}ht,
- {(v 2n

3 +3, vj), j = n− 1, n}ht,
- {(vn

3 +3, vj), j = 2n
3 , . . . ,

2n
3 + 3}hh,

- {(vn
3 +4, vj), j = n

3 + 5, . . . , 2n3 }hh,

- {(v 2n
3 +3, vj), j = 2n

3 + 3, . . . , n− 2}hh,

- {(vn−2, vj), j = n− 1, n}hh.

Page n
3 − 2 of L contains the following 4n

3 + 3 edges:

- {(vn
3−2, vj), j = n

3 − 1, . . . , 2n3 + 3}ht,
- {(vi, v 2n

3 +3), i = n
3 − 1, . . . , n3 + 1}ht,

- {(vn
3 +2, vj), j = 2n

3 + 3, . . . , n}ht,
- {(vn

3 +3, vn)ht,

- {(vn
3 +4, vj), j = 2n

3 + 1, . . . , n}hh,

- {(vn
3 +5, vj), j = n

3 + 6, . . . , 2n3 + 1}hh.

Page n
3 − 1 of L contains the following n+ 9 edges:

- {(vn
3−1, vj), j = n

3 , . . . ,
2n
3 + 2}ht,

- {(vi, v 2n
3 +2), i = n

3 , . . . ,
n
3 + 2}ht,

- {(v 2n
3 −2, vj), j = n− 5, . . . , n}ht,

- {(vn
3 +2, vj), j = n

3 + 3, . . . , 2n3 − 2}hh,

- {(v 2n
3 −1, vj), j = 2n

3 , . . . , n}hh.

So, in total L has (2n− 1) + (2n− 6) + (2n− 4) + (5n
3 −

5)+
∑n

3−4
p=5 (5n

3 −p+1)+(n+14)+(4n
3 +3)+(4n

3 +3) =
n(n−1)

2 edges. Since no two edges have been assigned to
the same rique and all edges in the same rique form a
cylindric layout, it follows that the rique number of Kn

is at most bn−13 c when n mod 3 = 0. �

Remark 1 Using the SAT formulation that we present
in Section 5 we were able to show that the upper bound
of Theorem 4 is tight for all values of n ≤ 30. However,
we were not able to show a matching lower bound. In
view of these observations, we conjecture in Section 6
that the rique-number of Kn is exactly bn−13 c.

4 Complete bipartite graphs

In this section, we study the deque- and rique-numbers
of the complete bipartite graph Kn,n. Let the two parts
of Kn,n be A = {a1, . . . , an} and B = {b1, . . . , bn} with
|A| = |B| = n. W.l.o.g., we may assume that in the
computed layouts a1 ≺ · · · ≺ an and b1 ≺ · · · ≺ bn
holds.

Theorem 5 The deque-number of Kn,n is at most dn3 e.

Proof. Assume that n mod 3 = 0; the remaining cases
follow from this one. We describe a deque layout L of
Kn,n with n

3 deques, in which the underlying order is:
a1 ≺ · · · ≺ an/3 ≺ b1 · · · ≺ b2n/3 ≺ an/3+1 ≺ · · · ≺ an ≺
b2n/3+1 ≺ · · · ≺ bn.

Part 1: We start by describing how the edges be-
tween an/3+1, . . . , an and b1, . . . , b2n/3 are assigned to
the pages of L; see Fig. 2b.

Page n
3 of L contains the following 4n

3 − 1 edges:

- {(an
3 +1, bj), j = 1, 2, 3}ht,

- {(ai, b3), i = n
3 + 2, . . . , n}ht,

- {(an, bj), j = 3, . . . , 2n3 }ht.

Page n
3 − 1 of L contains the following n+ 2 edges:

- {(an−1, bj), j = 2n
3 − 2, . . . , 2n3 }ht,

- {(an−1, b1), (an−2, b1), (an−2, b2), (an−3, b2)}tt,
- {(ai, bj), (ai−1, bj), i = n−3, . . . , 2n3 +2, j = 4, . . . , n3−

2}tt,
- {(ai, bn

3−1, i = 2n
3 + 2, . . . , 2n3 }tt,

- {(a 2n
3
, bj), j = n

3 ,
n
3 + 1}tt,

- {(ai, bn
3 +2), i = n

3 + 1, . . . , 2n3 }tt.

Page n
3 − 2 of L contains the following 2n

3 + 9 edges:

- {(ai, b1), i = n
3 + 2, . . . , n3 + 5}hh,

- {(an
3 +2, b2), (an

3 +2, b4), (an
3 +1, b4)}hh,

- {(an−1, b 2n
3 −3)}tt,

- {(an−2, bj , j = 2n
3 − 3, . . . , 2n3 }tt,

- {(ai, b 2n
3

), i = n
3 + 1, . . . , n− 3}tt.

Page n
3 − 3 of L contains the following 2n

3 + 13 edges:

- {(ai, b1), i = n
3 + 6, n3 + 7}hh,

92

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

1 2 3 4 n− 1

n− 1
n

1
2
3
4

n
3
+ 1

2n
3

n
3

2n
3

(a)

b n
3

b8b1 b2 b3 b 2n
3

an

an−1

an−2

an−3

an
3

+1

b 2n
3

−2

a 2n
3

an
3

+8

(b)

Figure 2: The grid representation of (a) a rique layout of Kn with n mod 3 = 0 (grid points covered by a solid
(dashed) path correspond to head-head (head-tail, resp.) edges), (b) Part 1 of Theorem 5 (a grid point represented
by a triangle pointing up (down) corresponds to a head-? (tail-?, resp.) edge; grid points covered by a solid line are
head-head or tail-tail edges; the dashed covered ones are head-tail or tail-head).

- {(ai, b2), i = n
3 + 3, . . . , n3 + 6}hh,

- {(an
3 +3, b4)}hh,

- {(ai, b5), i = n
3 + 1, . . . , n3 + 3}hh,

- {(an−1, bj), j = 2n
3 − 5, 2n3 − 4}tt,

- {(ai, b 2n
3 −4), i = n− 2, n− 3}tt

- {(an−3, bj), j = 2n
3 − 3, 2n3 − 2}tt,

- {(ai, b 2n
3 −1), i = n

3 + 1, . . . , n− 3}tt.

Page 1 of L contains the following n+ 11 edges:

- {(an
3 +8, bj), j = 8, 9, 10}hh,

- {(ai, b10), i = n
3 + 1, . . . , n3 + 7}hh,

- {(an, b1), (an, b2), (an−1, b2)}tt,
- {(ai, bj), (ai−1, bj), i = n − 1, . . . , 2n3 + 3, j =

4, . . . , n3 }tt,
- {(ai, bn

3
), i = 2n

3 + 1, . . . , 2n3 + 3}tt,
- {(a 2n

3 +1, bj), j = n
3 + 1, . . . , n3 + 3}tt,

- {(ai, bn
3 +3), i = n

3 + 1, . . . , 2n3 }tt.

For p = n
3 −7, . . . , n3 −4, page p of L contains 2n−4p+1

edges:

- {(ai, bn
3−p+2), i = n

3 + 1, . . . , 2n3 − p}hh,

- {(a 2n
3 −p, bj), j = n

3 − p, n3 − p+ 1}hh,

- {(ai, bn
3−p), i = 2n

3 − p+ 1, . . . , 2n3 − p+ 3}hh,

- {(ai, b1), i = n− 2p+ 1, n− 2p}hh,

- {(ai, b2), i = n− 2p, n− 2p− 1}hh,

- {(ai, bj), (ai−1, bj), i = n− 2p− 1, . . . , n− 2p+ 3, j =
4, . . . , 6}hh,

- {(ai, bn
3 +p+2), i = n

3 + 1, . . . , 2n3 + p}tt,

- {(a 2n
3 +p, bj), j = n

3 + p− 1, . . . , n3 + p+ 1}tt,
- {(a 2n

3 +p+1, bn
3 +p−1)}tt,

- {(ai, bj), (ai, bj+1), i = n − 1, . . . , n − 5, j =, . . . , n3 +
p− 2}tt.

For p = 2, . . . , n3 − 8, page p of L contains 2n − 4p + 2
edges:

- {(ai, b1), i = n− 2p+ 1, n− 2p}hh,

- {(ai, b2), i = n− 2p, n− 2p− 1}hh,

- {(ai, bj), (ai−1, bj)i = n − 2p − 1, . . . , 2n3 + 4 − p, j =
4, . . . , n3 − p− 1}hh,

- {(ai, bn
3−p), i = 2n

3 − p+ 3, . . . , 2n3 − p+ 1}hh,

- {(a 2n
3 −p, bj), j = n

3 − p+ 1, n3 − p+ 2}hh,

- {(ai, bn
3−p+3), i = n

3 + 1, . . . , 2n3 − p+ 1}hh,

- {(ai, bj), (ai, bj+1), i = n − 1, . . . , 2n3 + p + 2, j =
5, . . . , n3 + p− 2}tt,

- {(ai, bn
3 +p−1), i = 2n

3 + p, 2n3 + p+ 1}tt,
- {(a 2n

3 +p, bj), i = n
3 + p, n3 + p+ 1}tt ,

- {(ai, bn
3 +p+2), i = n

3 + 1, . . . , 2n3 + p}tt.

Parts 2,3 and 4 (with 2n2

9 , n2

9 and 2n2

9 edges, resp.) and
the correctness proof are discussed in [7]. �

Due to space constraints the proof of the following the-
orem is completely deferred to [7].

Theorem 6 The rique-number of the complete bipar-
tite graph Kn,n is at most bn−12 c − 1.

93

35th Canadian Conference on Computational Geometry, 2023

5 SAT formulation

In this section, we present a SAT formulation for the
problem of testing whether a given graph with n ver-
tices and m edges admits a deque layout with p of
deques; an implementation has already been incorpo-
rated in [5], whose source code is available at https:

//github.com/linear-layouts/SAT. However, before
describing our formulation, we deem important to state
that, in [4], Bekos et al. have already presented a corre-
sponding SAT formulation, when the p pages are riques.
However, their approach heavily relies on the fact that
this specific type of linear layouts can be characterized
by means of a forbidden pattern in the underlying order
(similar to the corresponding ones for stack and queue
layouts [8]). Given that dequeue layouts cannot be char-
acterized by means of such forbidden patterns in the
underlying order, we need a slightly different approach.

Similar to [4], our approach is an extension of the
one in [8] for the stack layout problem, in which there
exist three different types of variables, denoted by σ, φ,
and χ, with the following meanings: (i) for a pair of
vertices u and v, variable σ(u, v) is true, if and only
if u is to the left of v along the spine, (ii) for an edge
e and a page i, variable φi(e) is true, if and only if
edge e is assigned to page i of the book, and (iii) for a
pair of edges e and e′, variable χ(e, e′) is true, if and
only if e and e′ are assigned to the same page. Hence,
there exist in total O(n2 +m2 + pm) variables, while a
set of O(n3) clauses ensures that the underlying order
is indeed linear; for details see [8]. To overcome the
issue that arises in the absence of forbidden pattern,
we introduce 4pm variables, such that variable τi(e, x)
with x ∈ {hh, ht, th, tt} is true, if and only if the type
of edge e at page i is x. We ensure that each edge
has at least one of the allowed types, by introducing
the following clause for each edge e:

∨p
i=1(τi(e, hh) ∨

τi(e, ht) ∨ τi(e, th) ∨ τi(e, tt)). With these variables, we
can express different configurations that cannot occur
in a deque layout as clauses in the SAT formula. These
clauses are obtained by avoiding crossings between all
edge types in the cylindric representation of the graph.
E.g., to express the different configurations that cannot
occur for a head-head edge e = (u, v) and a head-tail
edge e′ = (u′, v′), we introduce the following clause for
each page i of the layout3:

3Note that some parts of the clause appear only certain con-
ditions apply on the endpoints of e and e’. These conditions are
listed next to the corresponding parts, such that if a condition is
not fulfilled, then the corresponding part has to be omitted.

φi(e) ∧ φi(e′) ∧ τi(e, hh) ∧ τi(e′, ht)→
¬(σ(u, u′) ∧ σ(u′, v) ∧ σ(v, v′)) u 6= v 6= u′

∧ ¬(σ(v, u′) ∧ σ(u′, u) ∧ σ(u, v′)) u 6= v 6= u′

∧ ¬(σ(u, v′) ∧ σ(v′, v) ∧ σ(v, u′)) u 6= v 6= v′

∧ ¬(σ(v, v′) ∧ σ(v′, u) ∧ σ(u, u′)) u 6= v 6= v′

∧ ¬(σ(u, u′) ∧ σ(u′, v′) ∧ σ(v′, v)) u 6= u′

∧ ¬(σ(u, v′) ∧ σ(v′, u′) ∧ σ(u′, v)) u 6= v′

∧ ¬(σ(v, u′) ∧ σ(u′, v′) ∧ σ(v′, u)) v 6= u′

∧ ¬(σ(v, v′) ∧ σ(v′, u′) ∧ σ(u′, u)) v 6= v′

We introduce a clause similar to the one above for
each pair of types of edges, yielding in total O(pm2)
clauses. This completes the construction of the for-
mula. Note that the formulation can be easily adjusted
for rique layouts by introducing for each edge e and
each page i the following clause forbidding tail-head and
tail-tail edges: ¬τi(e, th) ∧ ¬τi(e, tt). Somehow unex-
pectedly, this simple adjustment was more efficient in
practice than the one by Bekos et al. [4], which is based
on implementing the forbidden pattern of rique layouts.

Findings. The implementation was extremely helpful,
in general, for developing all upper bounds of this paper.
It further shows that the upper bound of Theorem 4 is
tight for all values of n ≤ 30 (see Remark 1). Another
notable observation is that for Kn,n it is possible to ob-
tain a better upper bound than the one of Observation 1
(or in other words that k deques are strictly more pow-
erful than 2k stacks): Our implementation shows that
K3n,3n with n ∈ {2, 3, 4, 5} needs n + 1 stacks, while
the solver provided solutions with n deques for the cor-
responding values of n. Note that this result would be
implied (for any n) by Theorem 5, if the bound [13] on
the stack number of Kn,n was shown to be tight.

6 Open Problems

We conclude with some open problems: (i) We conjec-
ture that the bound of Theorem 4 is tight. (ii) As men-
tioned in the introduction, the deque-number of planar
graphs is 2. We conjecture that also their rique-number
is 2. (iii) Another natural direction to follow is to ex-
tend the study to other classes of graphs, as it is the
case with the corresponding stack- and queue-numbers.
(iv) Studying inclusion relationships is also of interest,
e.g., the class of graphs admitting 1-deques is not a sub-
class of the class of graphs admitting 1-rique, 1-stack
layouts, as a maximal planar graph with a Hamiltonian
path plus an edge belongs to the former but not to the
latter. What about the other direction? (v) Related
to our research is also the problem of closing the gap
between the lower bound of dn2 e and the upper bound
of b 2n3 c+ 1 [13] on the stack number of Kn,n.

94

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] J. M. Alam, M. A. Bekos, M. Gronemann, M. Kauf-
mann, and S. Pupyrev. The mixed page number of
graphs. Theor. Comput. Sci., 931:131–141, 2022.

[2] C. Auer. Planar graphs and their duals on cylinder
surfaces. PhD thesis, Universität Passau, 2014.

[3] C. Auer, C. Bachmaier, F. Brandenburg, W. Brunner,
and A. Gleißner. Plane drawings of queue and deque
graphs. In U. Brandes and S. Cornelsen, editors, Graph
Drawing, volume 6502 of LNCS, pages 68–79. Springer,
2010.

[4] M. A. Bekos, S. Felsner, P. Kindermann, S. G.
Kobourov, J. Kratochv́ıl, and I. Rutter. The rique-
number of graphs. In P. Angelini and R. von Hanxleden,
editors, Graph Drawing and Network Visualization, vol-
ume 13764 of LNCS, pages 371–386. Springer, 2022.

[5] M. A. Bekos, M. Haug, M. Kaufmann, and
J. Männecke. An online framework to interact and
efficiently compute linear layouts of graphs. CoRR,
abs/2003.09642, 2020.

[6] M. A. Bekos, M. Kaufmann, F. Klute, S. Pupyrev,
C. N. Raftopoulou, and T. Ueckerdt. Four pages are
indeed necessary for planar graphs. J. Comput. Geom.,
11(1):332–353, 2020.

[7] M. A. Bekos, M. Kaufmann, M. E. Pavlidi, and
X. Rieger. On the deque and rique numbers of complete
and complete bipartite graphs. CoRR, abs/2306.15395,
2023.

[8] M. A. Bekos, M. Kaufmann, and C. Zielke. The book
embedding problem from a sat-solving perspective. In
E. Di Giacomo and A. Lubiw, editors, Graph Draw-
ing and Network Visualization, volume 9411 of LNCS,
pages 125–138. Springer, 2015.

[9] F. Bernhart and P. C. Kainen. The book thickness of a
graph. J. Comb. Theory, Ser. B, 27(3):320–331, 1979.

[10] V. Dujmovic, D. Eppstein, R. Hickingbotham,
P. Morin, and D. R. Wood. Stack-number is not
bounded by queue-number. Comb., 42(2):151–164,
2022.

[11] V. Dujmovic, G. Joret, P. Micek, P. Morin, T. Ueckerdt,
and D. R. Wood. Planar graphs have bounded queue-
number. J. ACM, 67(4):22:1–22:38, 2020.

[12] V. Dujmović and D. R. Wood. On linear layouts of
graphs. Discrete Mathematics & Theoretical Computer
Science, 6(2):339–358, 2004.

[13] H. Enomoto, T. Nakamigawa, and K. Ota. On the pa-
genumber of complete bipartite graphs. J. Comb. The-
ory, Ser. B, 71(1):111–120, 1997.

[14] S. Felsner, L. Merker, T. Ueckerdt, and P. Valtr. Lin-
ear layouts of complete graphs. In H. C. Purchase
and I. Rutter, editors, Graph Drawing and Network
Visualization, volume 12868 of LNCS, pages 257–270.
Springer, 2021.

[15] J. L. Ganley and L. S. Heath. The pagenumber
of k-trees is O(k). Discrete Applied Mathematics,
109(3):215–221, 2001.

[16] L. S. Heath, F. T. Leighton, and A. L. Rosenberg. Com-
paring queues and stacks as mechanisms for laying out
graphs. SIAM J. Discrete Math., 5(3):398–412, 1992.

[17] L. S. Heath and A. L. Rosenberg. Laying out graphs
using queues. SIAM J. Comput., 21(5):927–958, 1992.

[18] M. Hoffmann and B. Klemz. Triconnected planar
graphs of maximum degree five are subhamiltonian. In
M. A. Bender, O. Svensson, and G. Herman, editors,
ESA, volume 144 of LIPIcs, pages 58:1–58:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[19] P. Jungeblut, L. Merker, and T. Ueckerdt. A sublinear
bound on the page number of upward planar graphs.
In J. S. Naor and N. Buchbinder, editors, ACM-SIAM
SODA, pages 963–978. SIAM, 2022.

[20] D. J. Muder, M. L. Weaver, and D. B. West. Pagenum-
ber of complete bipartite graphs. J. Graph Theory,
12(4):469–489, 1988.

[21] T. Ollmann. On the book thicknesses of various
graphs. In F. Hoffman, R. Levow, and R. Thomas,
editors, Southeastern Conference on Combinatorics,
Graph Theory and Computing, volume VIII of Congres-
sus Numerantium, page 459, 1973.

[22] A. Wigderson. The complexity of the Hamiltonian cir-
cuit problem for maximal planar graphs. Technical Re-
port TR-298, EECS Department, Princeton University,
1982.

[23] M. Yannakakis. Embedding planar graphs in four pages.
J. Comput. Syst. Sci., 38(1):36–67, 1989.

[24] M. Yannakakis. Planar graphs that need four pages. J.
Comb. Theory, Ser. B, 145:241–263, 2020.

95

96

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Dynamic Schnyder woods

Sujoy Bhore∗ Prosenjit Bose† Pilar Cano‡ Jean Cardinal§ John Iacono¶

Abstract

A Schnyder wood of a triangulation is a partition of
its interior edges into three oriented rooted trees (i.e.,
a three-colored and oriented triangulation). A flip in
a Schnyder wood is a local operation that transforms
one Schnyder wood into another, possibly of another
triangulation. Two types of flips in a Schnyder wood
have been introduced: colored flips, that change the un-
derlying triangulation, and cycle flips, that transform
a Schnyder wood into another Schnyder wood of the
same triangulation. A flip graph is defined for each of
these two types of flips. In this paper, we study the
relationship between these two types of flips and their
corresponding flip graphs. We show that a cycle flip can
be obtained from linearly many colored flips. We also
give an explicit upper bound of O(n2) on the diameter
of the colored flip graph. Moreover, a data structure
is given to dynamically maintain a Schnyder wood over
a sequence of colored flips which supports queries in
O(log n) time per flip or query.

1 Introduction

Schnyder in his seminal work proved that every pla-
nar graph with n ≥ 3 vertices has a plane straight-
line drawing in an (n − 2) × (n − 2) grid [29, 30]. This
result was achieved in two parts: First, it was shown
that every triangulation (a maximal planar graph) ad-
mits a decomposition of its interior edges into three
trees, called Schnyder wood ; Then, by using the Schny-
der wood, a straight line embedding can be achieved.
The Schnyder tree partitions are an important con-
cept in the area of graph drawing and order dimen-
sion theory; see [3, 16, 17, 19, 20]. Schnyder woods have
been widely used to obtain combinatorial and algorith-
mic results for a wide range of problems from various
domains, e.g., geometric spanners [5], optimal encod-
ing and uniform sampling of planar maps [26], com-
pact data structures [12], grid drawing [3, 22, 30], etc.
Moreover, the connection between Schnyder wood and
orthogonal surfaces has been explored over the years;
see [4, 18, 21, 22]. Recently, Castelli Aleardi [11] consid-

∗IIT Bombay, India, sujoy@cse.iitb.ac.in
†Carleton University, Canada, jit@scs.carleton.ca
‡mpilarcanovi@gmail.com
§ULB, Belgium, jean.cardinal@ulb.be
¶ULB, Belgium, jiacono@ulb.be

ered balanced Schnyder woods, in which the number of
incoming edges of each color at each vertex is balanced,
and provided linear time heuristics.

An edge flip in a triangulation T is a local operation
that transforms T into another triangulation T′ that dif-
fers by exactly one edge and two face triangles. This op-
eration leads to the definition of a flip graph where each
triangulation with n vertices represents a vertex and two
triangulations are adjacent if they differ by exactly one
flip. This graph has been widely studied [7,8,27,34]. In
particular, the diameter of the edge flip graph restricted
to triangulations embedded in the plane is Θ(n) [28,32].

A flip in a Schnyder wood is a local operation that
transforms one Schnyder wood into another. Two types
of flips in a Schnyder wood have been introduced: col-
ored flip and cycle flip (see Section 3). A correspond-
ing flip graph is defined for each of these two types of
flips, the vertex sets of which are the Schnyder woods,
and two Schnyder woods are adjacent if they can be
transformed into each other by one flip. Brehm [9] and
Bonichon [6] showed that the cycle flip graph and the
colored flip graph is connected, respectively. As for the
diameter, it is known that the cycle flip distance be-
tween two Schnyder woods is O(n2) [1, 9, 33]. Tetali et
al. [33] considered both cycle and colored flips in natu-
ral Markov chains for sampling uniformly from the set
of 3 orientations. In [33] it is also shown implicitly that
the colored flip graph has O(n3) diameter.

Dynamically maintaining a Schnyder wood of a pla-
nar graph is motivated by the existence of efficient al-
gorithms for testing the planarity of a fully-dynamic
graph [15,24]. Recently, Christiansen et al. [13] consid-
ered the dynamic edge orientation problem, where the
goal is to orient edges in a way that bounds the max-
imum out-degree as the graph is subject to insertions
and deletions of edges. Moreover, they noted that their
result on dynamic planar graphs implies that, it is not
possible to maintain a dynamic Schnyder Wood explic-
itly of a graph with sublinear amortized update time.

Our Contribution. We describe Schnyder woods
and related constructions in Section 2. In Section 3
we show that if an edge e admits a diagonal flip in a
triangulation T, then there exists a Schnyder wood R of
T where the oriented edge e admits a colored flip in R
(Section 3.1). Later, we show that a cycle flip can be
obtained from linearly many colored flips (Section 3.2).

97

35th Canadian Conference on Computational Geometry, 2023

(a) (b) (c)

r0

r1 r2

r0

r1 r2

T0

T1

T2 u

r0

r2
r1

R2(u) R1(u)

R0(u)

Figure 1: (a) Example of the counter-clockwise order of
the edges entering and leaving the vertex (left) and a
Schnyder wood (right). (b) A 3-orientation. (c) Each
colored region with its respectively colored path repre-
sents a region Ri(u).

Using these two results, we prove an upper bound of
O(n2) on the diameter of the flip graph of Schnyder
woods defined by colored flips. Finally, in Section 4
we present a data structure to dynamically maintain a
Schnyder wood implicitly under colored flips while sup-
porting queries to a corresponding straight line embed-
ding over a sequence of colored flips in O(log n) amor-
tized time per update or query. Omitted prrofs can be
found in the appendix and in [2].

2 Schnyder Woods

In this section, we define a Schnyder wood and two other
structures that are a bijection with Schnyder wood.

A triangulation is a maximal planar graph (all faces
are triangles) with a fixed outer face. A Schnyder wood
of a triangulation T is a partition of its interior edges
into three sets T0, T1 and T2 of directed edges such that
for each interior vertex u the following holds:

1. Vertex u has out-degree exactly one in each of
T0, T1 and T2 in counter-clockwise order.

2. All incoming edges of Ti adjacent to u occur be-
tween the outgoing edge of Tj and Tk for distinct
i, j, k mod 3. See Fig. 1(a).

Each tree Ti of a Schnyder wood has as root ri, one
of the vertices in its outer face, and each vertex in the
outer face is a sink in the directed graph defined by the
given Schnyder wood. Note that a Schnyder wood can
be represented as a 3 coloring of its interior edges. See
Fig. 1(a). Schnyder defined Schnyder wood of triangu-
lations in [29,30] and proved that any triangulation with
n ≥ 3 vertices has a Schnyder wood.

A 3-orientation of a triangulation T = (V ∪
{r0, r1, r2}, E) is an orientation of the edges of T such
that each vertex has out-degree 3 except three special
vertices r0, r1, r2 that are sinks and define the outer face
of T. See Fig. 1(b)

In [14] de Fraysseix and Ossona de Mendez showed
that any triangulation T admits a 3-orientation of its
interior edges and that the Schnyder woods of a trian-
gulation T form a bijection with 3-orientations of T.

A barycentric representation1 of a triangulation T is

1Note that this is called weak barycentric representation

f i
1

i

i

i + 1

Colored
flip

Flip graph -
Rn

i − 1

i

i − 1
f i
2

~e

~e is not
colored

flippable
Cycle
flip

Flip graph -
R(T) Face flip

Diagonal
flip

Flip graph -
Tn

e is not
flippable

e

(a) (b)

(c)

(d)

(e) (f)

u2

u1

u3

u4

u2

u1 u3

u4

0
1

2

i

i + 1

u2

u1

u4
u3

Figure 2: Illustration of different flips.

an injective function u ∈ V (T)→ (u0, u1, u2) ∈ R3 that
satisfies the conditions:

1. u0 + u1 + u3 = 1 for all vertices u ∈ V (T).
2. For each edge uv and each vertex w /∈ {u, v}, there

is some i mod 3 such that (ui, ui+1) ≺ (wi, wi+1)
and (vi, vi+1) ≺ (wi, wi+1), where ≺ represents the
lexicographic order.

For each interior vertex u of T we denote by Pi(u)
the path in Ti from u to its root ri with i mod 3.
For each interior vertex u its paths P0(u), P1(u) and
P2(u) divide the triangulation into three disjoint regions
R0(u), R1(u) and R2(u) where Ri(u) denotes the region
defined by the vertices in path Pi+1(u) \ {u} and the
interior vertices enclosed by paths Pi−1(u) and Pi+1(u).
See Fig. 1(c). The following lemma about these regions
was shown in [30].

Lemma 1 (Schnyder [30]) For every different pair
of interior vertices u and v of a triangulation it holds
that if v ∈ Ri(u) ∪ Pi−1(u), then Ri(v) ⊂ Ri(u).

Let |Ri(u)| and |Pi(u)| denote the number of vertices
in Ri(u) and Pi(u), respectively. Let n be the total
number of vertices. Let f : V (T) → R3 be the func-
tion defined as follows. For each interior vertex u in T,
f(u) = 1

n−1 (|R0(u)|, |R1(u)|, |R2(u)|), and for each root
ri ∈ Ti, f(ri) has its ith coordinate equal to n − 1, its
(i + 1)th coordinate equal to 1 and its (i + 2)th coor-
dinate equal to 0. Schnyder [30] showed that f defines
barycentric coordinates of the vertices of T. Thus, every
triangulation admits a barycentric representation that
is in correspondence with a Schnyder wood.

We say that a triangulation is a plane triangulation if
the triangulation is embedded in the plane such that no
two edges intersect in their interior. From now onwards,
we will refer to a triangulation as a plane triangulation.

3 Flips

In this section, we study the relationship between a diag-
onal flip in triangulations with n ≥ 4 vertices, a colored

in [30].

98

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

flip in a Schnyder wood, and a cycle flip of a Schnyder
wood of a triangulation. See Fig. 2.

A diagonal flip in a triangulation T is the operation
that exchanges the diagonal u1u3 of a convex quadrilat-
eral u1u2u3u4 in T by the diagonal u2u4. See Fig. 2(a).
The flip graph Tn of triangulations of n given vertices
in the plane is defined as the graph with vertex set de-
fined by all distinct triangulations on n vertices and two
vertices of Tn are adjacent if their corresponding trian-
gulations can be transformed into each other by exactly
one diagonal flip. We say that the diagonal u1u3 of a
quadrilateral u1u2u3u4 in T is flippable if the edge u2u4
is not in T. See Fig. 2(b).

Wagner [34] showed that the flip graph Tn is con-
nected: Any triangulation of n vertices can be trans-
formed into another by a finite sequence of diagonal
flips. Given that a Schnyder wood is an orientation of
the edges of a triangulation, it is natural to ask whether
these flips can be extended to Schnyder woods. In other
words, whether there exist local functions that trans-
form one Schnyder wood into another. Bonichon et
al. [6] defined flips in Schnyder woods that map to di-
agonal flips in the underlying triangulation.

We refer to edge −→uv of a Schnyder wood of a triangu-
lation T as the oriented edge uv of T. A colored flip in
a Schnyder wood of edge −→uv with respect to −→wu of the
quadrilateral uwvz is the operation that replaces the
edges −→uv and −→wv in tree Ti and Tj , by the edges −→uw and−→wz, respectively. There are two types of colored flips
denoted f i1 or f i2 given in Fig. 2(c).

Notice that a colored flip transforms a Schnyder wood
of a T into a Schnyder wood of another triangulation T′.
Also, note that there might be edges that are flippable
in T that are not colored flippable as shown in Fig. 2(d).
However, Bonichon et al. [6] showed that the colored flip
graph denoted Rn, is connected. Their proof relies on
the fact that the flip graph restricted to colored flips
of the type f i1 defines a bounded poset as does the one
restricted to their inverse f i2. However, the proof does
not imply a bound on the diameter of the graph.

For simplicity, we only refer to a directed cycle as a
cycle in a directed graph. Brehm [9] defines cycle flips
between 3-orientations of a given triangulation, with its
corresponding definition for Schnyder wood. A cycle
flip in a Schnyder wood R is the operation that reverses
the orientation of a cycle C such that if C is counter-
clockwise oriented (resp. clockwise oriented), then:

1. the color of each edge in C is exchanged by the color
succeeding (resp. preceding) its original color,

2. for each edge inside C the new color is set to be
the color preceding (resp. succeeding) its original
color, and

3. the color of all other edges are unchanged. See
Fig. 2(e).

A face flip of a Schnyder wood R is a cycle flip of a cycle

of length 3 defined by the edges of a face. See Fig. 2(f).
Note that a cycle flip transforms one Schnyder wood

of a triangulation T into another Schnyder wood of T,
whereas a colored flip transforms one Schnyder wood of
a triangulation T into another Schnyder wood of another
triangulation T′. This means that the flip graph of cycle
flips has as vertex set the set of all Schnyder woods of
a triangulation T. While the colored flip graph corre-
sponds to the vertex set of all possible Schnyder woods
of all triangulations of n vertices.

Brehm [9] showed that given a 4-connected triangu-
lation T, the flip graph of face flips R(T) of the Schny-
der woods of T is connected. The proof is obtained by
showing that the structure of flipping counter-clockwise
faces into clockwise defines a poset, similar to the proof
of colored flips.

In this section, we provide a new proof of the connec-
tivity of Rn using the relation between colored flips and
cycle flips. In addition, we prove an upper bound on the
diameter of Rn. In order to show that Rn is connected
we divide this section as follows. In Subsection 3.1 we
show that for any flippable edge uv in a triangulation
T there exists a Schnyder wood R of T with oriented
edge uv that admits a colored flip. In Subsection 3.2
we show that any cycle flip in a Schnyder wood R can
be obtained by a sequence of a linear number of colored
flips. We conclude, using the results from the previ-
ous results, that two Schnyder woods R and R′ can be
transformed into each other by O(n2) colored flips.

3.1 Diagonal flips and colored flips

In this subsection, we show that for each flippable edge
e in a triangulation T, there exists a Schnyder wood of
T where the oriented edge e is colored flippable.

Let P be a directed path, we denote by uPv as the
subpath in P that goes from u to v.

Lemma 2 Let T be a triangulation and R be a Schnyder
wood of T. Let uv be a flippable edge in T where uv
is the diagonal of the quadrilateral uwvz. If −→uv is not
colored flippable in R, then there exists a cycle C in R
that passes through either −→uw or −→uz in R but avoids −→uv.
Moreover, C can be found in O(n) time.

Proof. Note that if either the edge −→wu or −→zu is in R,
then −→uv is colored flippable in R and the result holds.
Thus, let us assume that −→uw and −→uz are in R. See
Fig. 3(a). Let i mod 3 be the label of −→uv in R, hence
the labels of −→uz and −→uw are i + 1 and i − 1 module 3,
respectively.

Since vertices in the outer face of a Schnyder wood are
sinks, u is an interior vertex. Since uv is flippable in T,
uwvz is convex. Thus, at least one of w or z is an interior
vertex of T. Assume without loss of generality that such
vertex is w. Consider the paths Pi+1(w) and Pi+1(u).

99

35th Canadian Conference on Computational Geometry, 2023

u v
z

w

C
u v

z

wC

u v

z

w
c

C
u

v
z

wc′C C

C

(a) (b)

(c) (d)

Figure 3: An illustration of Theorem 3: (a) Vertex z
is in Pi+1(w). (b) Vertex z is not in Pi+1(w). (c) The
heavier cycle C when (Pi+1(w) \ {w})∩C 6= ∅. (d) The
heavier cycle C when (Pi+1(w) \ {w}) ∩ C = ∅.

Note that both paths are of length at least 1 since both
u and w are interior vertices of T. Since w ∈ Pi−1(u), by
Lemma 1 the path Pi+1(w) lies in Ri(u). For the same
reason, if z is an interior vertex of T, then the path
Pi−1(z) lies in Ri(u) as well. See Figs. 3(a) and 3(b).
Let C be a closed region defined by the following bound-
ary: If z ∈ Pi+1(w)∩Pi+1(u), then ∂C = wPi+1(w)zuw.
See Fig. 3(a). Otherwise, let a = Pi+1(w) ∩ Pi−1(z).
Then, ∂C = wPi+1(w)aPi−1(z)−1zuw. See Fig. 3(b).

Note that by definition of Schnyder wood implies the
following three facts: (1) each vertex in ∂C \ {u,w, z}
has its outgoing edge of Ti inside C. (2) each vertex in
(Pi+1(w) ∩ ∂C) \ {w} and (Pi−1(z) ∩ ∂C) \ {z} has its
outgoing edge of Ti−1 and Ti+1 outside C, respectively.
See Fig. 3(b). (3) an incoming edge from Ti of an inte-
rior vertex x in T lies between its outgoing edges from
Ti+1 and Ti−1. Thus, if a vertex in ∂C \ {u} has an in-
coming edge from Ti, such edge is not in C. Therefore,
for each vertex x ∈ ∂C \ {u, z, w} its path Pi(x) passes
through u.

Since uv is flippable, wz is not in T. Hence, ∂C \
{u, z, w} 6= ∅. Let C be a cycle in R as follows: If
(Pi+1(w) \ {w}) ∩ ∂C 6= ∅, then let C = uwcPi(c)u,
which is a cycle in R with c the first vertex after w in
Pi+1(w). See Fig. 3(c). Otherwise, let C = uzc′Pi(c

′)u
be a cycle in R with c′ the first vertex after z in Pi−1(z).
See Fig. 3(d). �

Brehm [9] showed that applying a cycle flip to a
Schnyder wood R of a triangulation T transforms R into
another Schnyder wood R′ of T. Thus, Lemma 2 with
Brehm [9] result implies the following.

Theorem 3 Let e be a flippable edge in a triangulation
T. Then, there exists a Schnyder wood R of T where the
oriented edge −→e in R is colored flippable.

u1

u4

u2

u3

i
i i

f i
1 f i−1

1
u1

u4

u2

u3

u1

u4

u2

u3

u1
d

u2

u3

i

c f i
1

u1
d

u2

u3

i

c

(a)

(b)
u1

d

u3
i c ci

u1 u2

u3
f i−1
1

u2
d

i + 1i − 1 i + 1

i − 1

i + 1

i − 1

cycle flip

Figure 4: (a) Illustration of Lemma 4. (b) Illustration
of Lemma 7.

3.2 Cycle flips and colored flips

In the following, we show that any cycle flip of Schnyder
wood results from an O(n) sequence of colored flips, and
conclude with an upper bound in the diameter of the
colored flip graph.

We say that a triangle 4 (not necessarily a face) in T

is three-colored in R if each pair of edges have different
colors.

Observation 1 If a triangle 4 is a separating cycle in
R, then it is a three-colored 4.

Fig. 4 illustrates proof of Lemma 4.

Lemma 4 Let F be an oriented face in a Schnyder
wood R. Then, flipping F is equivalent to two colored
flips.

Brehm [9] showed the following lemma for 4-
connected triangulations, but the proof shows some-
thing stronger.

Lemma 5 [Brehm [9] Prop. 1.7.3] Let T be a trian-
gulation and let C be a counter-clockwise cycle (resp.
clockwise cycle) of length at least 4 in a Schnyder wood
R of T that contains no separating triangles in C. Then,
C can be cycle flipped by a sequence of face flips of its
interior faces where each face is flipped exactly once and
it is oriented counter-clockwise (resp. clockwise) before
it is flipped.

Using Lemmas 4 and 5 we obtain the next result.

Corollary 6 Let T be a triangulation and let C be a cy-
cle of length ≥ 4 in a Schnyder wood R of T with m
interior faces and it does not contain separating trian-
gles. Then, C can be cycle flipped by a sequence of 2m
colored flips.

Note that from Obs. 1 and the definition of a Schnyder
wood, it follows that the interior edges adjacent to the
vertices of a cycle that is a separating triangle in R are
incoming edges.

Observation 2 Let C = u1u2u3 be a counter-clockwise
(resp. clockwise) cycle that is a separating triangle in a
Schnyder wood R. Consider its interior face cujuj+1 for
any j mod 3. Then, R admits an f i1 (resp. f i2) colored
flip in the edges cuj and ujuj+1. See the first flip in
Fig. 4(b).

100

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Using induction on the number of separating triangles
we prove the following lemma.

Lemma 7 Let C be a cycle that is a separating triangle
in a Schnyder wood R with m interior faces and no in-
terior separating triangles. Then, C can be cycle flipped
by a sequence of 2m colored flips.

Proof. [sketch] First, from Obs. 2 we apply a colored
flip to an edge e in C. Then, we observe that there is
a cycle C′ oriented as C and it encloses m − 1 interior
faces of C. Using induction on the number of separat-
ing triangles and from Lemmas 4 and 5 we obtain that
after 2m − 2 colored flips we obtain a cycle flip of C′.
Finally, after applying a colored flip, we obtain a cycle
flip of C which resulted after 2m colored flips. Fig. 4(b)
illustrates the proof. �

Next, we can obtain the following.

Lemma 8 Let C be a cycle with m interior faces in a
Schnyder wood R. Then, C can be cycle flipped by a
sequence of 2m colored flips.

Komuro [25] proved that the diameter of Tn is O(n). 2

Komuro’s and previous results imply the desired theo-
rem.

Theorem 9 The diameter of Rn is O(n2).

Proof. Let R and R′ be two different Schnyder woods
in Rn and consider its underlying triangulations T and
T′, respectively. Let T′′ be the triangulation with ver-
tices r0 and r1 on its outerface adjacent to all the ver-
tices. T′′ has a unique Schnyder wood [9]. From Ko-
muro [25], T and T′ can be transformed into T′′ by O(n)
diagonal flips. Hence, from Theorem 3 it follows that
R and R′ can be transformed into each other by a se-
quence of O(n) colored flips and a cycle flip in between
such flips. Since there can be cycles with O(n) interior
faces, from Lemma 8 it follows that R and R′ can be
transformed into each other by O(n2) colored flips. �

4 Dynamic maintenance

In this section, we study the problem of maintaining a
Schnyder wood over a sequence of colored flips.

An Euler Tour tree(ETT) is a data structure (sim-
ilar to the Link/Cut tree [31]) proposed by Henzinger
and King [23] that maintains a forest of vertex-disjoint
rooted trees with costs in its vertices under two dynamic
operations: link and cut (see table below). The ETT
supports the operations 1–5 from the table below in
worst case O(log n) time. Consider a data structure
of a Schnyder wood R as a set of three ETT trees

2The best bound known is in [10] but their procedure might
change the outerface.

defined by each tree T0, T1, T2. In each vertex u we
store its parent parenti(u) in Ti for each i mod 3, its
initial barycentric coordinates in-coordinates(u) and
two costs: d-costi(u) and r-costi(u). Where d-costi

refers to the distance of u to the root ri of Ti and
the r-costi refers to the difference between the initial
(i−1)th coordinate with the current (i−1)th coordinate
of u. Precisely, r-costi(u) is the amount that has to be
added to the initial (i− 1)th coordinate and subtracted
to the initial (i+ 1)th coordinate. The initial r-cost is
0. We define extra functions for our data structure in
lines 7–11 from the table below.

link(u, v) Add edge uv.

parent(u) Return parent of vertex u.

cut(u) Delete edge uparent(u).

cost(u) Return current cost in u

t-updatecost(u, x) Add x to the cost of all vertices in subtree T (u).

label(u, v) Return label of edge uv.

orientation(u, v) Return orientation of edge uv.

in-coordinates(u) Return initial barycentric coordinates of vertex u.

coordinates(u) Return current barycentric coordinates of u.

flip(u, v, w, z) Apply colored flip to edge −→uv with respect to −→wu.

The r-cost of each vertex will allow it to maintain its
barycentric coordinates. First, consider the labels i and
j of −→uv and −→wu, respectively. We observe that the only
change made when applying a colored flip to −→uv are the
paths passing through edges −→uv and −→uw. These paths
are exactly the paths Pi(x) for all x ∈ Ti(u) and Pj(y)
for all y ∈ Tj(w). Thus, the only vertices changing their
regions are the ones in Ti(u) and Tj(w). Moreover, the i-
th region of any x ∈ Ti(u) and the j-th region of any y ∈
Tj(w) remain unchanged. Thus, the regions Ri−1(x)
and Ri+1(x) exchange elements for all x ∈ Ti(u). The
same applies to elements in Tj(w). We obtain Lemma 10
below. Before that, we need a few definitions.

Let Ti(u) denote the subtree of Ti rooted at an inte-
rior vertex u. Let R be a Schnyder wood and let R′ be
the resulting Schnyder wood when applying an f i1 (resp.
f i2) colored flip to −→uv with respect to edge −→wu in quadri-
lateral uwvz. Define c(u) = |Ri−1(w)| − |Ri−1(u)| + 1
(resp. c(u) = |Ri+1(u)| − |Ri+1(w)| + 1) and define
c(w) as follows: If −→uz ∈ R, then c(w) = −1 (resp.
c(w) = 0). Otherwise, c(w) = |Ri(u)| − |Ri(z)| (resp.
c(w) = |Ri(z)| − |Ri(u)| − 1).

Lemma 10 Let R and R′, −→uv and −→wu, c(u), and c(w)
defined as above. Then,

1. For all x in Ti(u), |R′i−1(x)|−|Ri−1(x)| = c(u) and
|R′i(x)| = |Ri(x)|.

2. For all y in Tj(w), |R′j−1(y)| − |Rj−1(y)| = c(w)
and |R′j(y)| = |Rj(y)|.

3. The regions of any vertex in V (R) \ (V (Ti(u) ∪
Tj(w))) remain the same.

Proof. Note that the only change made when applying
a colored flip to −→uv are the paths passing through edges

101

35th Canadian Conference on Computational Geometry, 2023

u
v

ri+1

riri−1

w

z

(a)

u v

ri+1

riri−1

w

z

(b)

Figure 5: (a) The filled area corresponds to R′i+1(u).
(b) The filled area corresponds to R′i(w).

−→uv and −→uw. These paths are exactly the paths Pi(x)
for all x ∈ Ti(u) and Pj(y) for all y ∈ Tj(w). Thus,
the regions of any vertex in V (R) \ (V (Ti(u) ∪ Tj(w)))
remain the same.

From Lemma 1 we note that each x ∈ Ti(u) is in
Ri(u). Since the paths in Ri(u) are unchanged in R′, it
follows that R′i(x) = Ri(x) for all x ∈ Ti(u). Similarly,
we show that R′j(y) = Rj(y) for all y ∈ Tj(w).

Now, we assume j = i − 1. Let us show that
|R′i−1(x)| = |Ri−1(x)| + c(u). Since u ∈ Pi(x) for
each x ∈ Ti(u) \ {u}, u ∈ Ri−1(x). In addition,
since x ∈ Ri(u), (Ri−1(x) \ Ri−1(u)) ⊂ Ri(u) which
remains unchanged. Hence, |R′i−1(x)| = |Ri−1(x)| −
|Ri−1(u)| + |R′i−1(u)|. On the other hand, note that
Pi−1(u) ⊂ Pi−1(w). Hence, Ri+1(u) ⊂ Ri+1(w). Note
that R′i+1(u) is given by the region between paths
Pi−1(u) and uw∪Pi(w), which is exactly Ri+1(w)∪{w}.
See Fig 5(a). Hence, |R′i+1(u)|−|Ri+1(u)| = |(Ri+1(w)∪
{w}) \ Ri+1(u)| = −c(u). Therefore, |R′i−1(x)| =
|Ri−1(x)|+ c(u) for all x ∈ Ti(u).

Finally, let us show that |R′i+1(y)| = |Ri+1(y)|+ c(w)
for all y ∈ Ti+1(w). Since w ∈ Pi−1(y) for each y ∈
Ti−1(w) \ {w}, Ri+1(w) ∈ Ri+1(y). In addition, since
y ∈ Ri−1(w), (Ri+1(y) ∩ Ri−1(w)) ⊂ Ri+1(y) which
remains unchanged. Hence, |R′i+1(y)| = |Ri+1(y)| −
|R′i+1(w)|+ |Ri+1(w)|.

On the other hand, if −→uz ∈ R: then Pi−1(w) =
(wvz) ∪ Pi−1(z). Since v is the only new vertex in the
interior of R′i+1(w) and |P ′i+1(w)| − |Pi+1(w)| = −1,
it follows that |R′i+1(w)| − |Ri+1(w)| = −1. Now,
consider the case −→zu ∈ R: then Pi+1(u) ⊂ Pi+1(z).
Hence, Ri(u) ⊆ Ri(z). In addition, since −→wu ∈ R,
we have that Pi−1(u) ⊂ Pi−1(w) and Ri(u) ⊆ Ri(w).
Thus, Ri(z) ∩ Ri(w) = Ri(u). Therefore, |R′i+1(w)| −
|Ri+1(w)| = −|Ri(z)\Ri(w)| = |Ri(u)|−|Ri(z)| = c(w).
See Fig 5(b). Therefore, |R′i+1(y)| = |Ri+1(y)| + c(w)
for every y ∈ Ti−1(w).

The case when j = i+ 1 is symmetric. �

Note that |R′i+1(x)| and |R′j+1(y)| are given implicitly
for each x ∈ Ti(u) and y ∈ Tj(w). Now, we obtain the
next theorem using the procedures below.

Theorem 11 A Schnyder wood of a triangulation can
be maintained in amortized O(log n) per flip. Further-
more, queries orientation, label, coordinates and
d-costi can be obtained in O(log n) amortized time.

Proof. Consider the procedures defined below.
From [23] parent and in-coordinates take O(1) time
and t-updatecosti takes O(log n) amortized time.
Since |Ri+1(u)| = n − 1 − |Ri(u)| − |Ri−1(u)|, it
follows that coordinates(u) is correct. Since in-
coordinates takes constant time and r-cost was
called exactly three times, it follows that coordinates
can be obtained in O(log n) time. Since the functions
orientation and label are calling parent at most 6
times, orientation and label can be obtained in O(1)
time. Since d-costi and r-costi behave as cost from
a link/cut tree, then both can be obtained in O(log n).
It remains to analyse flip procedure: Note that in line
18 the function removes edges −→uv and −→wu. In line 19 the
new edges −→uw and −→wz are added. Thus, flip does the
desired colored flip. Line 20 changes the r-cost and
d-cost for each vertex in the subtree Ti(u) by c(u) and
d(u), respectively. Similarly, in the subtree Tj(w) by
c(w) and d(w), respectively. From Lemma 10 updated
r-costi is correct. Therefore, flip is correct. Finally,
we call exactly 3 times the function coordinates, twice
each function cut, link and t-updatecost. Each of
these functions have amortized cost O(log n). Hence,
flip has amortized cost O(log n). �

1: procedure Label(u, v) . Returns the label of edge uv.
2: for Each i mod 3 do
3: if parenti(u) = v then
4: return i
5: else
6: if parenti(v) = u then
7: return i

1: procedure orientation(u, v) . Returns orientation of edge uv.
2: Let b = False
3: for each i mod 3 do
4: if parenti(u) = v then
5: let b = True
6: if b = True then
7: return −→uv
8: else
9: return −→vu

1: procedure Coordinates(u) . Returns a vector with the barycentric coordinates of u
in current Schnyder wood R.

2: let (u0, u1, u3) = in-coordinates(u).
3: for each i mod 3 do
4: let ci = r-costiu.

5: for each j mod 3 do u′j = uj +
cj+1−cj−1

n−1 .

6: return (u′0, u
′
1, u
′
2)

1: procedure Flip(u, v, w, z) . Creates a flip while updates the cost in the subtrees that
are changed.

2: Let i = label(u, v), j = label(u,w).
3: let d(u) = d-costi(w)− d-costi(u) + 1 and d(w) = d-costj(z)− d-costj(w) + 1
4: (v0, v1, v2) = coordinates(u),
5: (w0, w1, w2) = coordinates(w),
6: (z0, z1, z2) = coordinates(z).
7: if j = i− 1 mod 3 then
8: let c(u) = (n− 1)(wi−1 − ui−1).
9: if orientation(u, z) = −→uz then

10: let c(w) = 0
11: else
12: let c(w) = (n− 1)(zi − ui)
13: else
14: let c(u) = (n− 1)(ui−1 − wi−1) + 1
15: if orientation(u, z) = −→uz then
16: let c(w) = −1
17: else
18: let c(w) = (n− 1)(ui − zi)
19: cuti(u),cutj(w)
20: linki(u,w), linkj(w, z)
21: t-updatecosti(u, c(u), d(u)),t-updatecostj(w, c(w), d(w)).

102

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] F. Barrera-Cruz, P. Haxell, and A. Lubiw. Morphing
Schnyder drawings of planar triangulations. Discrete &
Computational Geometry, 61(1):161–184, 2019.

[2] S. Bhore, P. Bose, P. Cano, J. Cardinal, and J. Ia-
cono. Dynamic schnyder woods. arXiv preprint
arXiv:2106.14451, 2021.

[3] N. Bonichon, S. Felsner, and M. Mosbah. Convex
drawings of 3-connected plane graphs. Algorithmica,
47(4):399–420, 2007.

[4] N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas.
Connections between theta-graphs, Delaunay triangula-
tions, and orthogonal surfaces. In International Work-
shop on Graph-Theoretic Concepts in Computer Sci-
ence, pages 266–278. Springer, 2010.

[5] N. Bonichon, C. Gavoille, N. Hanusse, and L. Perković.
Plane spanners of maximum degree six. In Interna-
tional Colloquium on Automata, Languages, and Pro-
gramming, pages 19–30. Springer, 2010.

[6] N. Bonichon, B. Le Saëc, and M. Mosbah. Wagner’s
theorem on realizers. In International Colloquium on
Automata, Languages, and Programming, pages 1043–
1053. Springer, 2002.

[7] P. Bose and F. Hurtado. Flips in planar graphs. Com-
putational Geometry, 42(1):60–80, 2009.

[8] P. Bose and S. Verdonschot. A history of flips in com-
binatorial triangulations. In Spanish Meeting on Com-
putational Geometry, pages 29–44. Springer, 2011.

[9] E. Brehm. 3-orientations and Schnyder 3-tree-
decompositions. Master’s thesis, FB Mathematik und
Informatik, Freie Universität Berlin, 2000.

[10] J. Cardinal, M. Hoffmann, V. Kusters, C. D. Tóth,
and M. Wettstein. Arc diagrams, flip distances, and
Hamiltonian triangulations. Computational Geometry,
68:206–225, 2018.

[11] L. Castelli Aleardi. Balanced Schnyder woods for pla-
nar triangulations: an experimental study with appli-
cations to graph drawing and graph separators. In In-
ternational Symposium on Graph Drawing and Network
Visualization, pages 114–121. Springer, 2019.

[12] L. Castelli Aleardi and O. Devillers. Array-based com-
pact data structures for triangulations: Practical solu-
tions with theoretical guarantees. Journal of Computa-
tional Geometry, 9(1):247–289, 2018.

[13] A. Christiansen, J. Holm, E. Rotenberg, and
C. Thomassen. Explicit dynamic schnyder woods re-
quire linear (amortized) update time. In European
Workshop on Computational Geometry, 2022.

[14] H. De Fraysseix and P. O. de Mendez. On topological
aspects of orientations. Discrete Mathematics, 229(1-
3):57–72, 2001.

[15] D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer.
Separator based sparsification: I. Planarity testing and
minimum spanning trees. Journal of Computer and Sys-
tem Sciences, 52(1):3–27, 1996.

[16] S. Felsner. Lattice structures from planar graphs. Elec-
tronic Journal of Combinatorics, pages R15–R15, 2004.

[17] S. Felsner. The order dimension of planar maps
revisited. SIAM Journal on Discrete Mathematics,
28(3):1093–1101, 2014.

[18] S. Felsner and S. Kappes. Orthogonal surfaces and their
CP-orders. Order, 25(1):19–47, 2008.

[19] S. Felsner and J. Nilsson. On the order dimension of
outerplanar maps. Order, 28(3):415–435, 2011.

[20] S. Felsner and W. T. Trotter. Posets and planar graphs.
Journal of Graph Theory, 49(4):273–284, 2005.

[21] S. Felsner and F. Zickfeld. Schnyder woods and or-
thogonal surfaces. Discrete & Computational Geome-
try, 40(1):103–126, 2008.

[22] D. Gonçalves and B. Lévêque. Toroidal maps: Schnyder
woods, orthogonal surfaces and straight-line represen-
tations. Discrete & Computational Geometry, 51(1):67–
131, 2014.

[23] M. R. Henzinger and V. King. Randomized dynamic
graph algorithms with polylogarithmic time per opera-
tion. In Proceedings of the twenty-seventh annual ACM
Symposium on Theory of Computing, pages 519–527,
1995.

[24] J. Holm and E. Rotenberg. Fully-dynamic planarity
testing in polylogarithmic time. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 167–180, 2020.

[25] H. Komuro. The diagonal flips of triangulations on
the sphere. Yokohama mathematical journal, 44(2):115–
122, 1997.

[26] D. Poulalhon and G. Schaeffer. Optimal coding and
sampling of triangulations. Algorithmica, 46(3):505–
527, 2006.

[27] L. Pournin. The flip-graph of the 4-dimensional cube
is connected. Discrete & Computational Geometry,
49(3):511–530, 2013.

[28] L. Pournin. The diameter of associahedra. Advances in
Mathematics, 259:13–42, 2014.

[29] W. Schnyder. Planar graphs and poset dimension. Or-
der, 5(4):323–343, 1989.

[30] W. Schnyder. Embedding planar graphs on the grid. In
Proceedings of the first annual ACM-SIAM symposium
on Discrete algorithms, pages 138–148, 1990.

[31] D. D. Sleator and R. E. Tarjan. A data structure for dy-
namic trees. Journal of Computer and System Sciences,
26(3):362–391, 1983.

[32] D. D. Sleator, R. E. Tarjan, and W. P. Thurston. Ro-
tation distance, triangulations, and hyperbolic geom-
etry. Journal of the American Mathematical Society,
1(3):647–681, 1988.

[33] P. Tetali, A. P. Streib, D. Randall, and S. Miracle.
Mixing times of markov chains on 3-orientations of pla-
nar triangulations. Discrete Mathematics & Theoretical
Computer Science, 2012.

[34] K. Wagner. Bemerkungen zum vierfarbenprob-
lem. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 46:26–32, 1936.

103

35th Canadian Conference on Computational Geometry, 2023

Appendix

5 Omitted Proofs of Section 3

5.1 Proof of Theorem 3

Proof. Consider an arbitrary Schnyder wood R of T and
let −→e = −→uv be the orientation of e in R. Let uwvz be
the quadrilateral in T with diagonal uv given in counter-
clockwise order. If −→uv admits a colored flip in R, then the
statement holds. If −→uv is not colored flippable, then from
Lemma 2 there exists a cycle C that passes through either
−→uw or −→uz in R and does not pass through −→uv.

Let R′ be the oriented graph when flipping C. Hence,
either −→wu or −→zu is in R′. In addition, edge −→uv is in R′, since
it does not lie in the interior of C in R. By Brehm [9] the
directed graph R′ is a Schnyder wood of T different from R.
Therefore, −→uv is colored flippable in R′. �

5.2 Proof of Lemma 4

Proof. Consider the oriented face F = u1u2u3 in the Schny-
der wood R. Let R′ be the Schnyder wood obtained when
F is face flipped by F ′ = u3u2u1. Without loss of generality
assume that F is counter-clockwise oriented and that edge
u1u2 has label i mod 3 in R. Since F is a three-colored tri-
angle, all u1, u2, and u3 are interior vertices. Hence, u1u2 is
the diagonal of a quadrilateral u1u4u2u3, see Fig. 4(a). Note
that edge u1u2 is flippable in T: otherwise, either u2 or u1 is
a vertex of degree 3 in T but with less than three outgoing
edges. Which contradicts that R is a Schnyder wood. Since
F is counter-clockwise oriented, R admits a f i

1 colored flip in
the edge u1u2 with respect to u3u1. Let R2 be the resulting
Schnyder wood when applying such a flip. Thus, the orien-
tation of −−→u3u1 changes to −−→u1u3 and is re-labelled by i. In
addition, the edge −−→u1u2 by −−→v3v4 and with label i− 1. Now,
note that R2 admits an f i−1

1 colored flip in the edge −−→u3u4

with respect to −−→v2v3. Consider the resulting Schnyder wood
R3 when applying such colored flipped in R2. Then, the
edge −−→u2u3 changes its orientation to −−→u3u2 and label by i− 1.
In addition, the edge −−→u3u4 is exchanged by −−→u2u1 with label
i + 1. Note that the face u1u2u3 is now clockwise oriented
in R3 and the label of each edge of F in R is labelled by its
successor in R3. Even more, since no other edge has been
changed, it follows that F was face flipped in R3. Therefore,
R3 = R′.

The reverse follows from the fact that f2 colored flips are
the inverse of f1 colored flips. �

5.3 Proof of Lemma 7

Proof. Let C = u1u2u3 be a counter-clockwise (resp. clock-
wise) cycle and consider its interior face u1cu2 and −−→u1u2 with
label i mod 3. From Obs. 2 we can apply a colored flip to
u1u2 with respect to −→cu1 from a quadrilateral u1cu2d in T.
Let R′ be the resulting Schnyder wood when applying such
colored flip. See Fig. 4(b). Note that the edges −→u1c,

−→cu2,
−−→u2u3

and −−→u3u1 define a counter-clockwise cycle (resp. clockwise
cycle) in R′ with m− 1 interior faces. Let C′ be such cycle.
Let R′′ be the resulting Schnyder wood when applying a cy-
cle flip to C′. From Corollary 6 it follows that R′′ is obtained
from R′ by a sequence of 2(m− 1) colored flips.

Note that all interior edges of C′ and edge −→cu1 are labeled
in R′′ by its preceding label (resp. succeeding label) in R.
Also, edges u2u3, u3u1 and cu2 have opposite orientations in
R′′ and its label in R′′ is the succeeding (resp. preceding

label) from R. Finally, R′′ admits a colored flip in
−→
cd with

respect to edge −→u2c. Let R3 be the resulting Schnyder wood
when applying such colored flip. Note that −→cu2 had label i
in R as −−→u1u2 in R. See Fig. 4(b). Hence, R3 corresponds to
a cycle flip of C in R. Therefore, C can be cycle flipped by a
sequence of 2m− 2 + 2 = 2m colored flips. �

We say that a separating triangle in a cycle C is maximal
if it is not contained in another separating triangle contained
in C.

5.4 Proof of Lemma 8

Proof. Let us show that C can be cycle flipped by a se-
quence of 2m colored flips. We proceed by induction on the
number of separating cycles t in C.

[Base case] Assume t = 0. from Corollary 6 and Lemma 7
the statement holds.

[Inductive Hypothesis] C can be cycle flipped by a se-
quence of 2m colored flips if it contains t− 1 ≥ 0 separating
triangles.

[Inductive step] Assume C contains t separating triangles.
If C has length at least 4, we denote R′ = R and C′ = C a

cycle in R′ and m′ = m. If C = u1u2u3 is of length 3, i.e.,
is a separating triangle, we define R′, C′ and m′ as follows.
Consider its interior face cu1u2 and label i of −−→u1u2. From
Obs. 2 we can apply a colored flip to u1u2 from a quadri-
lateral u1cu2d in T such that −→cu1 is re-oriented to −→u1c with
label i and −−→u1u2 is exchanged by

−→
cd with same label as −→cu1

in R. Let R′ be the resulting Schnyder wood when applying
such colored flip to R. Note that the edges −→u1c,

−→cu2,
−−→u2u3

and −−→u3u1 define a cycle in R′ and is oriented as C. Let C′
be such a cycle. Note that C′ contains m′ = m − 1 interior
faces and at most t separating triangles. See Fig. 4(b) for
reference.

Let 41, . . . ,4k be the maximal separating triangles in
C′ with m1, . . . ,mk interior faces, respectively. Let C′′ be
the resulting cycle when removing the interior vertices of
each 41, . . . ,4k. Then, C′′ is a cycle of length at least
4 with no separating triangles. By Lemma 5, C′′ can be
cycle flipped by a sequence of m′ − (

∑k
j=1 mj) + k face

flips. Note that each face flip of a triangle 4j in C′′ cor-
responds to a cycle flip of 4j in C′. Since each 4j contains
at most t − 1 separating triangles, by inductive hypothesis,
we obtained that C′ can be cycle flipped by a sequence of
2(m′ −∑k

j=1 mj) + 2
∑k

j=1 mj = 2m′ colored flips.
If C is of length at least 4, the statement holds. Otherwise,

since C′ had the same orientation as C, then when applying
the cycle flip to C′ we obtained cu2u3u1 in the resulting
Schnyder wood R′′ and R′′ admits a colored flip in edges−→
cd and −→u2c. Let R3 be the resulting Schnyder wood when

applying the colored flip to
−→
cd. Note that R3 contains the

cycle u3u2u1 and edge −→cu2 with the desired labeling as for
a cycle flip. Thus, C can be cycle flip by a sequence of
2 + 2m′ = 2m colored flips.

�

104

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Geometric Algorithms for k-NN Poisoning

Diego Ihara Centurion∗ Karine Chubarian∗ Bohan Fan∗ Francesco Sgherzi∗

Thiruvenkadam S Radhakrishnan∗ Anastasios Sidiropoulos∗ Angelo Straight∗

Abstract

We propose a label poisoning attack on geometric data
sets against k-nearest neighbor classification. We pro-
vide an algorithm that can compute an εn-additive ap-

proximation of the optimal poisoning in n · 22O(d+k/ε)

time for a given data set X ∈ Rd, where |X| = n. Our
algorithm achieves its objectives through the applica-
tion of multi-scale random partitions.

1 Introduction

Recent developments in machine learning have spiked
the interest in robustness, leading to several results in
adversarial machine learning [1, 2, 11]. A central goal
in this area is the design of algorithms that are able to
impair the performance of traditional learning methods
by adversarially perturbing the input [3, 17, 19]. Ad-
versarial attacks can be exploratory, such as evasion at-
tacks, or causative, poisoning the training data to affect
the performance of a machine learning algorithm or at-
tack the algorithm itself. Backdoor poisoning is a type
of causative adversarial attack, in which the attacker
has access to the whole or a portion of the training data
that they can perturb. Clean-label poisoning attacks
are a type of backdoor poisoning attack that perturb
only the features of the training data leaving the labels
untouched, so as to make the poison less detectable. In
the other end of the spectrum are label poisoning at-
tacks that perturb or flip the training data labels.

Why compute provably nearly-optimal poison at-
tacks? A limitation with current poisoning methods is
that it is not possible to adversarially perturb an input
so that the performance of any algorithm is negatively
affected. Moreover, it is generally not clear how to prov-
ably compare different poisoning methods. We seek to
address these limitations of adversarial machine learn-
ing research using tools from computational geometry.

Specifically, we study the following optimization
problem: Given some data set, X, compute a small
perturbation of X, so that the performance of a spe-
cific classifier deteriorates as much as possible. An ef-
ficient solution to this optimal poisoning problem can

∗Department of Computer Science, University of Illinois
at Chicago, {dihara2, kchuba2, bfan4, fsgher2, tsivap2,

sidiropo, astrai3}@uic.edu

be used to compare the performance of different clas-
sification algorithms, as follows. Suppose we want to
compare the performance of a collection of classifica-
tion algorithms, A1, ..., At, on some fixed data set X,
in the presence of a poisoning attack that produces a
bounded perturbation, X ′, of X. Ideally, we would like
to have provable worst-case guarantees on the robust-
ness of A1, ..., At. However, such results are often hard
to prove rigorously, and thus many existing methods
lack such guarantees. Since the poisoned data set X ′ is
unknown, we cannot simply run A1, ..., At on X ′ and
compare the results. Instead, our method allows us to
compute from X some poisoned data set, X ′′, which
is provably a nearly-optimal poison against the specific
classification task.

1.1 Robustness of k-Nearest Neighbors

We instantiate the above general optimization problem
of computing nearly-optimal poison attacks to the spe-
cific task of k-nearest neighbor classification. Nearest-
neighbor based algorithms are naturally robust due to
the presence of an inherent majority voting mechanism.
In [12], they are used to provide individual and joint
certifications for test predictions in the presence of data
poisoning and backdoor attacks. In [16], a defense al-
gorithm is proposed using k-nearest neighbors against
label-flipping attacks. However, computing provably
nearly-optimal poisoning against such algorithms has
not been studied prior to our work. We provide an
approximation algorithm that computes an optimal la-
bel flipping poisoning attack against k-nearest neighbors
that achieve provable guarantees.

1.2 Our Results

We design and analyze poisoning algorithms against k-
nearest neighbor classification (k-NN) in the setting of
binary label classification. The k-NN classifier is ar-
guably one of the most popular and well-studied meth-
ods used in machine learning and geometric data anal-
ysis [8]. The classifier works as follows: Given a set of
labeled points, X ⊂ Rd, and some unlabeled p ∈ Rd, we
can compute a label for p by taking the most frequently
occurring label in the multiset of labels of the k nearest
neighbors of p in X.

We formulate the poisoning problem against k-NN as

105

35th Canadian Conference on Computational Geometry, 2023

follows. Given some set of points, X, with binary labels,
and some m ∈ N, the goal is to flip the labels of at most
m points, so that we maximize the number of points in
X for which their predicted label differs from their true
label. We refer to the set of points with flipped labels as
an m-poison and define the number of points for which
their predicted label differs from the original label as
the corruption. The following summarizes our results.

Theorem 1 On input X ⊂ Rd, with |X| = n, and
m ∈ N, Algorithm Poison-k-NN computes a m-poison
against k-NN, with expected corruption OPTm(X)− εn,
in time n · 22O(d+k/ε)

, where OPTm(X) denotes the max-
imum corruption of any m-poison.

While the above problem formulation only involves a
fully labeled set X, typical tasks involve a training set
Xtrain and a test set Xtest. In order to address this
case, we modify the algorithm in Theorem 1 so that
it computes a poison of the training set, so that the
prediction error on the test set deteriorates as much as
possible. This result is summarized in the following.

Theorem 2 On input Xtrain, Xtest ⊂ Rd, with
|Xtrain| = ntrain, |Xtest| = ntest, and m ∈ N,
Algorithm Poison-k-NN’ computes a m-poison against
k-NN, with expected corruption OPTm(Xtrain, Xtest) −
εntest, in time (ntrain + ntest) · 22

O(d+k/ε)

, where
OPTm(Xtrain, Xtest) denotes the maximum corruption
incurred on Xtest when all neighbors are chosen from
Xtrain, of any m-poison on Xtrain.

Algorithm Poison-k-NN’ is an adaptation of Poison-
k-NN, and has a similar analysis. Algorithm Poison-k-
NN uses as a subroutine a procedure for computing a
random partition of a metric space. The random parti-
tion has the property that the diameter of each cluster is
upper bounded by some given Lipschitz function, while
the probability of two points being separated is upper
bounded by a multiple of their distance divided by the
cluster diameter (see Section 2 for a formal definition).
This is inspired by the multi-scale random partitions
invented by Lee and Naor [13] in the context of the
Lipschitz extension problem. We believe that our for-
mulation could be of independent interest.

1.3 Related Work

To the best of our knowledge, no prior work tackles
the adversarial poisoning of geometric algorithms giv-
ing provable bounds. The most traditional poisoning
method is the fsgm [9], which consists in adding, to
each testing sample, noise with the same dimensional-
ity of the input and proportional to the gradient of the
cost function in that point. This approach is proven
to be the most damaging adversarial example against

linear models like logistic regression. However, it is less
effective on deep neural networks, as they are able to ap-
proximate arbitrary functions [10]. pgd [15] improves
upon fsgm by iteratively looking for better adversar-
ial examples for a given input toward the direction of
the increase of the cost function. However, although
producing better adversarial samples, it still encounters
the same drawbacks of fsgm.

There are a few existing algorithms that perform la-
bel flipping attacks. In [16] they use a greedy algorithm
to flip the examples that maximize the error on a val-
idation set, when the classifier is trained on the poi-
soned dataset, and use k-NN to reassign the label in
the training set as the defense against this type of la-
bel flipping attacks. [20] model the label attacks as a
bilevel optimization problem targeting linear classifiers
and also experiment with the transferability of these
attacks. Traditional poisoning methods, however, do
not offer provable guarantees on the reduction in per-
formance, thus yielding results that are not problem
dependent but rather implementation or model depen-
dent [5, 6, 7].

There have also been a few defenses proposed against
label flipping attacks. In [18] they propose a pointwise
certified defense against adversarially manipulated data
up to some “radius of perturbation” through random-
ized smoothing. Specifically, each prediction is certified
robust against a certain number of training label flips.

1.4 Notation

For any k ∈ N, let [k] = {1, . . . , k}. Let M = (X, ρ) be a
metric space. For anyX ′ ⊆ X, we denote by diamM (X ′)
the diameter of X ′, i.e. diamM (X ′) = supx,y∈X′ ρ(x, y);
we also write diam(X ′) when M is clear from the con-
text. For any x ∈ X, Y ⊆ X, we write δ(x, Y) =
infy∈Y ρ(x, y). For any metric space M = (X, ρ), any
finite Y ⊂ X, any i ∈ N, and any q ∈ X, let NNi(q, Y)
denote the i-th nearest neighbor of q in Y .

1.5 Organization

The rest of the paper is organized as follows. Section
2 presents our result on random partitions of metric
spaces. Section 3 presents our algorithm for poison-
ing against k-NN classifiers. We conclude and highlight
some open problems in Section 4.

2 Random partitions of metric spaces

In this Section, we introduce a random metric space
partitioning scheme. The main idea is to partition a
given metric space so that the radius of each cluster
is bounded by some Lipschitz function, while ensuring
that only a small fraction of pairs end up in different
clusters, in expectation. This partition is used by our

106

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

P0

P1

P2

P3

(a) (c)

(b)

γ = 4.3

PXi = blog(γ)c = 2

γ

Xi

Figure 1: Illustration of the application of the multi-scale random partition approach to a set of points. (a) We
begin with a random partition and refine to produce an additional level. (b) The selection of the level depends on
the distance to the k-th neighbor. (c) The resulting partition is the union of cells originating at different levels of
granularity.

algorithm for partitioning the problem into several sub-
problems for each cluster.

For any partition P of a ground set Y , and for any
y ∈ Y , we denote by P (y) the unique cluster in P that
contains y. Let M = (X, ρ) be some metric space. Let
P be a random partition of M . For any ∆ > 0, we
say that P is ∆-bounded if, with probability 1, for all
clusters C ∈ P , we have diam(C) ≤ ∆. For any β > 0,
we say that P is β-Lipschitz if for all x, y ∈ X,

Pr[P (x) 6= P (y)] ≤ β ρ(x, y)

∆
.

The infimum β > 0 such that for all ∆ > 0, M admits a
∆-bounded β-Lipschitz random partition, is referred to
as the modulus of decomposability of M , and is denoted
by βM .

Lemma 3 ([4]) For any d ∈ N, and for subset of d-
dimensional Euclidean space, M , we have that βM =
O(
√
d).

The following uses ideas from [13] and [14].

Lemma 4 (Multi-scale random partition) Let
C > 0. Let M = (X, ρ) be a metric space, and let
r : X → R≥0. Then there exists a random partition P
of M , satisfying the following conditions:

(1) The following statement holds with probability 1:
For any p ∈ X,

diam(P (p)) ≤ r(p)C2

(2) For any p, q ∈ X,

Pr
P

[P (p) 6= P (q)] ≤
(

2‖r‖Lip
logC

+ βM

)
ρ(p, q)

r(p)

Moreover, given M as input, the random partition, P
can be sampled in time polynomial in |X|.

Proof. Let B = ‖r‖Lip
For any i ∈ Z, let Pi be a Ci-bounded βM -Lipschitz

random partition of M . Thus, each point x ∈ X is
mapped to some cluster in each Pi. We construct P
by assigning each x ∈ X to a single one of these clus-
ters. We first sample α ∈ [0, 1], uniformly at ran-
dom. Then, for each x ∈ X, we assign x to the cluster
Pdα+logC(r(x))e(x). This concludes the construction of
P . It remains to show that the assertion is satisfied.

For any p ∈ X, we have that P (p) ⊆ Pi(p), where
i = dα + logC(r(x))e ≤ 2 + logC(r(x)). Since Pi is
Ci-bounded, it follows that

diam(P (p)) ≤ diam(Pi(p)) (P (p) ⊆ Pi(p))
≤ Ci (Pi is Ci-bounded)

≤ C2+logC(r(p))

= r(p)C2,

with probability 1, which establishes part (1) of the as-
sertion.

It remains to establish part (2). Let p, q ∈ X. We
may assume, without loss of generality, that 0 < r(p) ≤

107

35th Canadian Conference on Computational Geometry, 2023

r(q). Let E1 be the event that dα+ logC(r(p))e 6= dα+
logC(r(q))e. We have

Pr[E1] = Pr[dα+ logC(r(p))e 6= dα+ logC(r(q))e]
≤ | logC(r(p))− logC(r(q))|

= logC
r(q)

r(p)

=

(
log

r(q)

r(p)

)
/ (logC)

≤ (1/ logC) log
r(p) +B · ρ(p, q)

r(p)
(‖r‖Lip = B)

= (1/ logC) log

(
1 +

B · ρ(p, q)

r(p)

)

≤ (1/ logC)2B
ρ(p, q)

r(p)
. (1)

Conditioned on ¬E1, there exists t ∈ Z, such that
t = dα + logC(r(p))e = dα + logC(r(q))e; let E2 be the
event that Pt(p) 6= Pt(q). Since Pt is Ct-bounded βM -
Lipschitz, it follows that

Pr[E2] ≤ βM
ρ(p, q)

Ct
≤ βM

ρ(p, q)

C logC(r(p))
= βM

ρ(p, q)

r(p)
.

(2)

By (1) and (2) we obtain that

Pr[P (p) 6= P (q)] ≤ ((1/ logC)2B + βM)
ρ(p, q)

r(p)
,

which establishes part (2) of the assertion, and con-
cludes the proof. �

Figure 1 illustrates the partitioning process.

3 Poisoning k-NN

In this Section, we describe our poisoning algorithm,
which is our main result.

Let d ∈ N, and let X ⊂ Rd. Let label : X → {1, 2},
and let k ∈ N be odd, with k ≤ n. For any p ∈ Rd, for
any i ∈ [k], let Γi(p) be an i-th nearest neighbor of p,
breaking ties arbitrarily, and let

γi(p) = ‖p− Γi(p)‖2.

We write γ(p) = γk(p).

Lemma 5 The function γ : Rd → R is 1-Lipschitz.

Proof. WLOG, let γ(p) ≥ γ(q). It is sufficient to prove
that γ(p) ≤ ‖p− q‖+γ(q), which means Γk(p) is within
distance ‖p− q‖+γ(q) from p. Now consider two cases:

Case 1: Γk(p) falls in ball(q, γ(q)). By triangle inequal-
ity, γ(p) ≤ ‖p− q‖+ ‖Γk(p)− q‖ ≤ ‖p− q‖+ γ(q).

Case 2: Γk(p) falls outside of ball(q, γ(q)). If γ(p) >
‖p− q‖+γ(q), then all the k-nearest neighbour of q
are closer to p than Γk(p), which is a contradiction.

�

Lemma 6 (Euclidean multi-scale random partition)
Let ε > 0, there exists a random partition P of X,
satisfying the following conditions:

(1) The following statement holds with probability 1:
For any p ∈ X,

diam(P (p)) ≤ γ(p)28k/εO(
√
d)

(2) For any p, q ∈ X,

Pr[P (p) 6= P (q)] ≤ ε‖p− q‖2
kγ(p)

.

Moreover, P can be sampled in time polynomial in |X|.

Proof. Let M = (X, ρ) be the metric space obtained
by setting ρ to be the Euclidean metric. By Lemma 3
we have βM = O(

√
d). Let P be the random partition of

X obtained by applying Lemma 4, setting γ : X → R≥0
where r = Bγ, with B = 2kβM/ε, and C = 24k/ε. By
Lemma 5 we have that ‖γ‖Lip = 1, and thus ‖r‖Lip =
‖Bγ‖Lip = B‖γ‖Lip = B. The assertion now follows by
straightforward substitution on Lemma 4. �

Lemma 7 Let h > 0, and let A ⊂ Rd, such that for all
p ∈ A, we have diam(A) ≤ h · γ(p). Then, |X ∩ A| =
k · hd+O(1).

Proof. For any p ∈ Rd, we have that γ(p) is the dis-
tance between p and k-th nearest neighbor of p in X. It
follows that the interior of ball(p, γ(p)) contains at most
k points in X (it contains at most k − 1 points in X if
p /∈ X). In particular, the (closed) ball ball(p, γ(p)/2)
contains at most k points in X. Let

r∗ = inf
p∈A

γ(p).

It follows that for all p ∈ A,

|X ∩ ball(p, r∗/2)| ≤ k. (3)

We have by the assumption that diam(A) ≤ h · r∗,
and thus A ⊆ ball(p∗, R∗), for some p∗ ∈ A, and some
R∗ = 2h · r∗. For any 0 < α < β, we have that any ball
of radius β in Rd can be covered by at most O(β/α)d =
(β/α)d+O(1) balls of radius α. Therefore, A can be cov-
ered by a set of at most (R∗/r∗)d+O(1) = hd+O(1) balls
of radius r∗/2. Combining with (3) it follows that

|X ∩A| = k · hd+O(1),

which concludes the proof. �

108

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

3.1 The main poisoning algorithm

We are now ready to describe the main poisoning algo-
rithm against k-NN. For any finite Y ⊂ Rd, and for any
integer i ≥ 0, let OPTi(X) be the maximum corruption
that can be achieved for X with a poison set of size at
most i. Let corruption(X,Y) be the corruption of poi-
soning X by flipping labels of point set Y ⊂ X. Now
we describe our poisoning algorithm.
Algorithm Poison-k-NN for k-NN Poisoning:

The input consists of X ⊂ Rd, with |X| = n, and
label : X → {1, 2}.
Step 1. Sample the random partition P according to

the algorithm in Lemma 6.

Step 2. For any cluster C ⊂ X in P , by Lemma
7 we have that |C| = k · (

√
d28k/ε)d+O(1) = k ·

2(d+O(1))8k/ε. For any i ∈ {1, . . . ,m}, we com-
pute an optimal poisoning, SC,i ⊆ C, for C with
i poison points via brute-force enumeration. Each
solution can be uniquely determined by selecting
the i points for which we flip their label. Thus,
the number of possible solutions is at most 2|C| =

2k·2
(d+O(1))8k/ε

. The enumeration can thus be done
in time 2k·2

(d+O(1))8k/ε

, for each cluster in P . Since
there are at most n clusters, the total time is

n · 2k·2(d+O(1))8k/ε

= n · 22O(d+k/ε)

.

Step 3. We next combine the partial solutions com-
puted in the previous step to obtain a solution
for the whole pointset. This is done via dynamic
programming, as follows. We order the clusters
in P arbitrarily, as P = {C1, . . . , C|P |}. For any
i ∈ {0, . . . , |P |}, j ∈ {1, . . . ,m}, let

Ai,j = OPTj(C1 ∪ . . . ∪ Ci).

We can compute Ai,j via dynamic programming
using the formula

Ai,j =

{
max
t∈[j]

(
Ai−1,t + corruption(Ci, SCi,j−t)

)
if i > 0

0 otherwise

The size of the dynamic programming table is
O(|P | ·m) = O(nm). The same recursion can also
be used to compute an optimal k-poison, Y , for
C1 ∪ . . .∪C|P |. The algorithm terminates and out-
puts Y as the final poison for X.

Proof. [Correctness of Dynamic Programming] By def-
inition, Ai,j is the optimal(maximum) corruption with
j poison points on the first i clusters (C1 ∪ . . . ∪ Ci).
Ai,0 = 0 for all i. Suppose the solution Ai−1,j is cor-
rect, then Ai,j is the maximum of optimal corruption
for poisoning the first i − 1 clusters with t points, plus
the corruption using the remaining j − t points on i-th
cluster. �

Lemma 8 E[corruption(X,Y)] ≥ OPTm(X)− εn.
Proof. Let Z ⊆ X be an optimal k-poison for X. Re-
call that P is the random partition sampled in Step 1.

For any x ∈ X, i ∈ N, let Ex,i be the event that the
cluster of P containing x, does not contain the i-nearest
neighbors of x in X; i.e. NNi(x,X) /∈ P (x). Let also Ex
be the event that the cluster of P containing x, does
not contain all of the k-nearest neighbors of x in X; i.e.

Ex = Ex,1 ∨ . . . ∨ Ex,k.
Thus

Pr[Ex] = Pr[Ex,1 ∨ . . . ∨ Ex,k]

≤
k∑

i=1

Pr[Ex,i] (union bound)

=

k∑

i=1

Pr[P (x) 6= P (NNi(x)]

≤
k∑

i=1

ε‖x− NNi(x)‖2
kγ(p)

(Lemma 6)

≤ k ε‖x− NNk(x)‖2
kγ(p)

= ε (4)

Let

X ′ = {x ∈ X : {NN1(x), . . . ,NNk(x)} 6⊆ P (x)}.
By (4) and the linearity of expectation, it follows that

E[|X ′|] =
∑

x∈|X|
Pr[Ex] ≤ ε|X| = εn. (5)

Let Y be the poison that the algorithm returns. Note
that X \X ′ = C1 ∪ . . .∪C|P |. For any x ∈ X \X ′, if Y
corrupts x in X \X ′, then it must also corrupt x in X
(since, by the definition of X, all k-nearest neighbors of
x are in X \ X ′). Thus, OPTm(X) ≥ OPTm(X \ X ′) ≥
OPTm(X)− |X ′|, and moreover,

corruption(X,Y) ≥ corruption(X \X ′, Y)

= OPTm(X \X ′)
(by the dynamic program)

≥ OPTm(X)− |X ′|.
Combining with (5) and the linearity of expectation
we get E[corruption(X,Y)] ≥ OPTm(X) − E[|X ′|] ≥
OPTm(X)− εn, which concludes the proof. �

Proof. [Proof of Theorem 1] The bound on the corrup-
tion follows by Lemma 8. The running time is domi-

nated by Step 2, which takes time n · 22O(d+k/ε)

. �

The proof of Theorem 2 follows a similar argument
as the proof of Theorem 1, and will be provided in the
appendix.

109

35th Canadian Conference on Computational Geometry, 2023

4 Conclusion

We have introduced an approximation algorithm along
with provable guarantees for a label flipping poison-
ing attack against the geometric classification task of
k-nearest neighbors. Our poisoning framework, specifi-
cally the application of approximation algorithms using
random metric partitions could also be extended to pro-
pose similar defense algorithms.

References

[1] T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang. Recent
advances in adversarial training for adversarial robust-
ness. In Z. Zhou, editor, Proceedings of the Thirtieth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 4312–4321. ijcai.org, 2021.

[2] B. Biggio and F. Roli. Wild patterns: Ten years af-
ter the rise of adversarial machine learning. Pattern
Recognit., 84:317–331, 2018.

[3] N. Carlini. Poisoning the unlabeled dataset of semi-
supervised learning. In M. Bailey and R. Greenstadt,
editors, 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, pages 1577–1592.
USENIX Association, 2021.

[4] M. Charikar, C. Chekuri, A. Goel, S. Guha, and
S. Plotkin. Approximating a finite metric by a small
number of tree metrics. In Proceedings 39th Annual
Symposium on Foundations of Computer Science (Cat.
No. 98CB36280), pages 379–388. IEEE, 1998.

[5] A. Chhabra, A. Roy, and P. Mohapatra. Suspicion-
free adversarial attacks on clustering algorithms. In
The Thirty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2020, New York, February 7-12, 2020,
pages 3625–3632. AAAI Press, 2020.

[6] A. Chhabra, A. Singla, and P. Mohapatra. Fairness
degrading adversarial attacks against clustering algo-
rithms. CoRR, abs/2110.12020, 2021.

[7] A. E. Cinà, A. Torcinovich, and M. Pelillo. A black-
box adversarial attack for poisoning clustering. Pattern
Recognition, 122:108306, 2022.

[8] E. Fix and J. L. Hodges. Discriminatory analysis. non-
parametric discrimination: Consistency properties. In-
ternational Statistical Review/Revue Internationale de
Statistique, 57(3):238–247, 1989.

[9] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

[10] K. Hornik, M. Stinchcombe, and H. White. Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks, 2(5):359–366, 1989.

[11] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein,
and J. D. Tygar. Adversarial machine learning. In
Proceedings of the 4th ACM workshop on Security and
artificial intelligence, pages 43–58, 2011.

[12] J. Jia, X. Cao, and N. Z. Gong. Certified robustness
of nearest neighbors against data poisoning attacks.
CoRR, abs/2012.03765, 2020.

[13] J. R. Lee and A. Naor. Extending lipschitz functions via
random metric partitions. Inventiones mathematicae,
160(1):59–95, 2005.

[14] J. R. Lee and A. Sidiropoulos. On the geometry of
graphs with a forbidden minor. In Proceedings of the
forty-first annual ACM symposium on Theory of com-
puting, pages 245–254, 2009.

[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks, 2019.

[16] A. Paudice, L. Muñoz-González, and E. C. Lupu. La-
bel sanitization against label flipping poisoning attacks.
In Joint European conference on machine learning and
knowledge discovery in databases, pages 5–15. Springer,
2018.

[17] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anas-
tasiadis, and G. Loukas. A taxonomy and survey of
attacks against machine learning. Comput. Sci. Rev.,
34, 2019.

[18] E. Rosenfeld, E. Winston, P. Ravikumar, and Z. Kolter.
Certified robustness to label-flipping attacks via ran-
domized smoothing. In International Conference on
Machine Learning, pages 8230–8241. PMLR, 2020.

[19] K. Sadeghi, A. Banerjee, and S. K. S. Gupta. A system-
driven taxonomy of attacks and defenses in adversarial
machine learning. IEEE Trans. Emerg. Top. Comput.
Intell., 4(4):450–467, 2020.

[20] M. Zhao, B. An, W. Gao, and T. Zhang. Efficient label
contamination attacks against black-box learning mod-
els. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17,
pages 3945–3951, 2017.

110

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Appendix

4.1 Poisoning k-NN: with train and test datasets

In this section, we extend our poisoning algorithm to the case
with train and test datasets. We provide proof of Theorem
2 by extending the lemmas from the paper.

Theorem 2 On input Xtrain, Xtest ⊂ Rd, with |Xtrain| =
ntrain, |Xtest| = ntest, and m ∈ N, Algorithm Poison-k-
NN’ computes a m-poison against k-NN, with expected cor-
ruption OPTm(Xtrain, Xtest) − εn, in time (ntrain + ntest) ·
22O(d+k/ε)

, where OPTm(Xtrain, Xtest) denotes the maximum
corruption incurred on Xtest when all neighbors are chosen
from Xtrain, of any m-poison on Xtrain.

Lemmas 3 and 4 hold without any modifications.
We now define γi(p) as follows:
For any p ∈ Rd, for any i ∈ [k], let Γi(p) be the i-th nearest

neighbor of p in Xtrain, breaking ties arbitrarily, and let

γi(p) = ‖p− Γi(p)‖2.
We denote γk(p) as γ(p).

Lemma 9 (Euclidean multi-scale random partition)
Let ε > 0, there exists a random partition P of Xtrain,
satisfying the following conditions:

(1) The following statement holds with probability 1: For
any p ∈ Xtrain,

diam(P (p)) ≤ γ(p)28k/εO(
√
d)

(2) For any p, q ∈ Rd,

Pr[P (p) 6= P (q)] ≤ ε‖p− q‖2
kγ(p)

.

Lemma 10 Let h > 0, and let A ⊂ Rd, such that for all
p ∈ A, we have diam(A) ≤ h · γ(p). Then, |Xtrain ∩ A| =
k · hd+O(1).

Proof. For any p ∈ Rd, we have that γ(p) is the distance
between p and k-th nearest neighbor of p in Xtrain. It
follows that the interior of ball(p, γ(p)) contains at most k
points in Xtrain (it contains at most k − 1 points in Xtrain

if p /∈ Xtrain). In particular, the (closed) ball ball(p, γ(p)/2)
contains at most k points in Xtrain. Let

r∗ = inf
p∈A

γ(p).

It follows that for all p ∈ A,

|Xtrain ∩ ball(p, r∗/2)| ≤ k. (6)

We have by the assumption that diam(A) ≤ h·r∗, and thus
A ⊆ ball(p∗, R∗), for some p∗ ∈ A, and some R∗ = 2h · r∗.
For any 0 < α < β, we have that any ball of radius β in Rd

can be covered by at most O(β/α)d = (β/α)d+O(1) balls of
radius α. Therefore, A can be covered by a set of at most
(R∗/r∗)d+O(1) = hd+O(1) balls of radius r∗/2. Combining
with (6) it follows that

|Xtrain ∩A| = k · hd+O(1),

which concludes the proof. �

Proof. Let M = (X, ρ) be the metric space obtained by
setting ρ to be the Euclidean metric. By Lemma 3 we have
βM = O(

√
d). Let P be the random partition of Xtrain

obtained by applying Lemma 4, setting γ : X → R≥0 where
r = Bγ, with B = 2kβM/ε, and C = 24k/ε. By Lemma
5 we have that ‖γ‖Lip = 1, and thus ‖r‖Lip = ‖Bγ‖Lip =
B‖γ‖Lip = B. The assertion now follows by straightforward
substitution on Lemma 4. �

4.2 The poisoning algorithm with train and test
datasets

In this section, we describe the poisoning algorithm that
will be used to obtain an m-poison with the guarantees of
Theorem 2. This follows the algorithm 3.1 with three major
differences:

• The γi(p) function is only defined with respect to the
points within Xtrain

• The random partition in Step 1 is only on Xtrain

• The corruption in Step 2 is measured only on Xtest for
the test points that fall within the same cluster

For any finite Y ⊂ Rd, and any integer i ≥ 0, let
OPTi(Xtrain, Xtest) be the maximum corruption that can be
achieved for Xtrain, Xtest with a poison set size of at most i.
Let corruption(Xtrain, Xtest, Y) be the corruption of Xtest

by flipping the labels of Y ⊆ Xtrain.

Algorithm Poison-k-NN for k-NN Poisoning with
Train-Test: The input consists of Xtrain and Xtest ⊂ Rd,
with |Xtrain| = ntrain, |Xtest| = ntest and a map label : X →
{1, 2} that maps Xtrain and Xtest to their corresponding
labels.

Step 1. Sample the random partition of Xtrain - P ac-
cording to the algorithm in Lemma 9.

Step 2. For any cluster C ⊂ Xtrain in P , by Lemma 10 we
have that |C| = k · (

√
d28k/ε)d+O(1) = k · 2(d+O(1))8k/ε.

For any i ∈ {1, . . . ,m}, we compute an optimal poi-
soning, SC,i ⊆ C, for C with i poison points via brute-
force enumeration. Each solution can be uniquely de-
termined by selecting the i points for which we flip
their label. Thus, the number of possible solutions

is at most 2|C| = 2k·2(d+O(1))8k/ε

. The enumeration
can thus be done in time 2k·2(d+O(1))8k/ε

, for each clus-
ter in PX . For each possible solution, we also mea-
sure the corruption of the poisoning on the points in
test set that fall within the same cluster, which takes
O(ntest) time. Since there are at most ntrain clus-

ters, the total time is (ntrain + ntst) · 2k·2(d+O(1))8k/ε

=

(ntrain + ntest) · 22O(d+k/ε)

.

Step 3. We next combine the partial solutions com-
puted in the previous step to obtain a solution for the
whole pointset. This is done via dynamic program-
ming, as follows. We order the clusters in P arbitrar-
ily, as P = {C1, . . . , C|P |}. For any i ∈ {0, . . . , |P |},
j ∈ {1, . . . ,m}, let

Ai,j = OPTj(C1 ∪ . . . ∪ Ci).

111

35th Canadian Conference on Computational Geometry, 2023

We can compute Ai,j via dynamic programming using
the formula

Ai,j =

{
max
t∈[j]

(
Ai−1,t + corruption(Ci, SCi,j−t)

)
if i > 0

0 otherwise

The size of the dynamic programming table is O(|P | ·
m) = O(nm). The same recursion can also be used to
compute an optimal k-poison, Y , for C1 ∪ . . . ∪ C|P |.
The algorithm terminates and outputs Y as the final
poison for X.

Lemma 11 E[corruption(Xtrain, Xtest, Y)] ≥
OPTm(Xtrain, Xtest)− εntest.

Proof. Let Z ⊆ Xtrain be an optimal k-poison for Xtest.
Recall that P is the random partition sampled at Step 1.

For any x ∈ Xtest, i ∈ N, let Ex,i be the event that the
cluster of P containing x, does not contain the ith-nearest
neighbor of x in Xtrain; i.e. NNi(x) /∈ P (x). Let also Ex
be the event that the cluster of P containing x, does not
contain all of the k-nearest neighbors of x in Xtrain; i.e.

Ex = Ex,1 ∨ . . . ∨ Ex,k.
Thus

Pr[Ex] = Pr[Ex,1 ∨ . . . ∨ Ex,k]

≤
k∑

i=1

Pr[Ex,i] (union bound)

=

k∑

i=1

Pr[P (x) 6= P (NNi(x)]

≤
k∑

i=1

ε‖x− NNi(x)‖2
kγ(p)

(Lemma 9)

≤ k ε‖x− NNk(x)‖2
kγ(p)

= ε (7)

Let

X ′ = {x ∈ Xtest : {NN1(x), . . . ,NNk(x)} 6⊆ P (x)}.
By (7) and the linearity of expectation, it follows that

E[|X ′|] =
∑

x∈|Xtest|
Pr[Ex] ≤ ε|Xtest| = εntest. (8)

From (8), it follows that,

corruption(Xtrain, Xtest, Y) ≥ corruption(Xtrain, Xtest \X ′, Y)

= OPTm(Xtrain, Xtest \X ′)
(by the dynamic program)

≥ OPTm(Xtrain, Xtest)− |X ′|.
Combining with (8) and by linearity of expectation we

get E[corruption(X,Y)] ≥ OPTm(X)−E[|X ′|] ≥ OPTm(X)−
εntest, which concludes the proof. �

Proof. [Proof of Theorem 2] The bound on the corruption
on the test set follows Lemma 11. The running time is dom-
inated by Step 2 of 4.2 which takes time (ntrain + ntest) ·
22O(d+k/ε)

.
�

112

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Reducing Nearest Neighbor Training Sets Optimally and Exactly∗

Josiah Rohrer† Simon Weber‡

Abstract

In nearest-neighbor classification, a training set P of
points in Rd with given classification is used to classify
every point in Rd: Every point gets the same classifi-
cation as its nearest neighbor in P . Recently, Eppstein
[SOSA’22] developed an algorithm to detect the relevant
training points, those points p ∈ P such that P and
P \ {p} induce different classifications. We investigate
the problem of finding the minimum cardinality reduced
training set P ′ ⊆ P such that P and P ′ induce the same
classification. We show that if P is in general position,
the set of relevant points is such a minimum cardinality
reduced training set. Furthermore, we show that finding
a minimum cardinality reduced training set for possibly
degenerate P is in P for d = 1, and NP-complete for
d ≥ 2.

1 Introduction

While it is one of the oldest and simplest to de-
scribe classification techniques, nearest-neighbor classi-
fication [12] is still a widely-used method in supervised
learning. A training set P consisting of data points in
Rd labelled with their known classifications is used to
classify new points in Rd \ P . A point q gets the same
classification as its nearest neighbor in P (ties are either
broken by some fixed rule or the point gets multiple clas-
sifications).

There are many variations of nearest-neighbor classi-
fication, such as k-nearest neighbor [12], where a point
gets the majority classification among its k nearest
neighbors, and approximate versions of nearest neigh-
bor [27]. In this paper we only consider the basic version
described above.

Nearest neighbor classification and the need to im-
plement it efficiently has motivated many concepts in
computational geometry. Voronoi diagrams describe the
decomposition of Rd into cells with the same nearest
neighbor, and thus the same nearest neighbor classifi-
cation [4]. They have been extended to higher-order

∗The full version of this paper can be retrieved from
http://arxiv.org/abs/2302.02132

†Department of Mathematics, ETH Zurich,
rohrerj@student.ethz.ch

‡Department of Computer Science, ETH Zurich,
simon.weber@inf.ethz.ch

Simon Weber is supported by the Swiss National Science
Foundation under project no. 204320.

Voronoi diagrams [4], which analogously describe the
cells with the same k nearest neighbors. Much re-
search has gone into efficiently computing Voronoi dia-
grams [14, 20, 32] as well as point-location techniques to
locate the cell of a Voronoi diagram containing a given
query point [20, 28]. Any technique based on explicitly
storing or computing the Voronoi diagram of the train-
ing set is infeasible for higher-dimensional data, since
the complexity of the Voronoi diagram of n points in
dimension d can reach Θ(n⌈d/2⌉) [30]. For moderate
and high dimensions, various methods for approximate
nearest neighbor searching have been developed, such as
quadtree-based data structures [3, 2, 9, 16] and locality-
sensitive hashing [1, 13, 19, 24, 27]. These methods
avoid the exponential dependency on d, but are still
only marginally better than naively computing the near-
est neighbor of a query point by searching through the
complete training set.

Instead of improving nearest neighbor algorithms and
data structures, significant time and storage can be
saved by reducing the size of the training set. A com-
mon approach to reducing the training set in a loss-
less manner (without changing the classification of any
query point) is to remove all non-relevant points. A
relevant point (sometimes also called border point) is a
point whose individual omission changes the classifica-
tion [11]. One can show that removing all non-relevant
points at once yields a training set inducing the same
classification as the original training set. A series of al-
gorithms have been developed to efficiently compute the
set of relevant points. The current best algorithm due
to Flores-Velazco [17] finds the set of relevant points in
any fixed dimension in O(nk2), where k is the number
of relevant points. This algorithm is a slightly adjusted
version of the algorithm of Eppstein [15].

While no single point can be removed from the set of
relevant points without changing the classification, it is
possible that removing multiple relevant points at the
same time does not change the classification. Therefore,
the set of relevant points is not necessarily the smallest
subset of the training set inducing the same classifica-
tion. This is illustrated in Figure 1. In fact, it is not
even guaranteed that the set of relevant points contains
such a smallest subset. This is illustrated in Figure 2. In
the paper introducing his algorithm to find the relevant
points, Eppstein [15] conjectures that in high dimen-
sions, finding such a smallest subset inducing the same
classification is a much harder problem than finding the

113

35th Canadian Conference on Computational Geometry, 2023

Figure 1: A training set in which all points are relevant,
however, a single pair of vertically opposed points suf-
fices to generate the same decision boundary (black).

Figure 2: A training set for which the relevant points
(circles) do not contain the smallest possible subset in-
ducing the same classification (crosses). The decision
boundary is drawn in black, while the Voronoi diagram
of the training set is drawn in gray.

relevant points. In this paper, we show that high di-
mensions are not needed, and this problem is already
NP-hard for binary classification in dimensions d ≥ 2.

Note that lossless training set reduction is not the
only studied method. We discuss alternative methods
which are allowed to (slightly) change the induced clas-
sification later in Section 1.4.

1.1 Definitions

Definition 1 A labelled point set (m,P, c) is given by
an integerm, a set P ⊂ Rd of size n, and a classification
function c : P → [m]. We call c(p) the label of p.

We write nn(q, P) for the set of nearest neighbors of
q in P . We say a point set is in general position if it
contains no three collinear points and no four cocircular
points. Note that by this definition, no point set P ⊂ R1

of at least three points is in general position.

Definition 2 A labelled point set (m,P, c) induces the
nearest neighbor classification f : Rd → 2[m], where

f(q) = {c(p) | p ∈ nn(q, P)}.

Definition 3 A reduced training set of some la-
belled point set (m,P, c) is a set Q ⊆ P such

that (m,Q, c|Q) induces the same nearest neighbor clas-
sification as (m,P, c). A reduced training set of mini-
mum cardinality among all reduced training sets is called
a minimum cardinality reduced training set.

Definition 4 The decision problem d-MinNN is to de-
cide if there exists a reduced training set of a given la-
belled point set (m,P, c) of at most k points.

Definition 5 A point p ∈ P is a relevant point if
(m,P \{p}, c|P\{p}) and (m,P, c) induce different near-
est neighbor classifications. We write rel(P) for the set
of all relevant points.

1.2 Results

We are now ready to state our results. As our first
result, we show that in the case of training sets in gen-
eral position, d-MinNN can be solved easily, since the
relevant points already form a minimum cardinality re-
duced training set.

Theorem 1 For an instance of d-MinNN where P is in
general position, rel(P) is the unique minimum cardi-
nality reduced training set.

If this assumption of general position is not given, the
set of relevant points is not guaranteed to be a minimum
cardinality reduced training set. We show that gener-
ally, finding such a set is only feasible in dimension one,
and NP-complete otherwise.

Theorem 2 1-MinNN is in P.

Theorem 3 For any fixed dimension d ≥ 2, d-MinNN
is NP-complete, even when restricted to binary classifi-
cation, i.e., m = 2.

1.3 Discussion

When data points are independently sampled from a
probability distribution with (e.g., Gaussian) continu-
ous noise, the resulting data set is in general position
with probability 1. Theorem 1 thus implies that in
practice, when a classification model is trained from
high-precision data coming from a noisy source, com-
puting the relevant points using the algorithms of Epp-
stein [15] or Flores-Velazco [17] is an efficient way to
reduce the size of the training set to the optimum in a
lossless fashion. The only way to reduce the size of the
training set any further is to accept some small errors.
While our results do not imply hardness of approxima-
tive training set reduction, Theorem 3 shows that it
cannot be achieved efficiently by first “de-noising” the
training set, and then finding the minimum cardinality
reduced training set.

114

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

1.4 Related Work

Much of the work on nearest neighbor training set re-
duction has focused on detecting relevant points. Since
the number of relevant points k is expected to be very
small compared to the total number of points n, al-
gorithms to find relevant points are ideally output-
sensitive. The first such algorithm has been found by
Clarkson in 1994 [11]. Bremner et al. [6] improved on
Clarkson’s algorithm for two-dimensional data with two
labels. Recently, Eppstein [15] gave an algorithm for all
dimensions and any number of labels, which is based
on the simple geometric primitives of computing Eu-
clidean minimum spanning trees and extreme points of
point sets. Flores-Velazco [17] then showed that the
Euclidean minimum spanning tree step can be skipped,
yielding an O(nk2) algorithm for any constant dimen-
sion d.

Lossy reduction of nearest neighbor training sets, i.e.,
reduction in a way that slightly changes the classifica-
tion, is often called nearest neighbor condensation in
the literature. The most common concept in condensa-
tion is that of consistent subsets, introduced by Hart in
1968 [21]. A consistent subset is a subset of the train-
ing points that induces the same classification on the
original training set, but not necessarily on all points of
Rd. It is known that computing a minimum cardinal-
ity consistent subset is NP-complete, for any number of
labels m ≥ 2 [26, 33]. Selective subsets [29] are subsets
fulfilling a stronger condition than consistent subsets.
Here, the distance from every point p in the original
training set to a point with the same classification in
the subset must be smaller than the distance from p to
the nearest point of different classification in the original
training set. Minimum cardinality selective subsets are
also NP-complete to compute [34]. Flores-Velazco and
Mount [18] introduced the approximative notions of α-
consistency and α-selectivity and showed that it is NP-
hard not only to find minimum cardinality α-consistent
and α-selective subsets, but also to approximate their
size beyond certain approximation factors. Due to all of
these NP-hardness results, much of the recent research
has focused on heuristic methods providing some guar-
antee on the resulting subset size [25].

So far we have only discussed training set reduction by
taking a subset of the original data. Of course, another
option is to construct a completely new training set that
(approximately) induces the same classification as the
original data while containing fewer points. Heath and
Kasif [22] showed that an exact version of this approach
is hopeless, since they show that finding the minimum
number of points needed to create a Voronoi diagram
containing a given polygonal tesselation as a substruc-
ture is NP-hard. This is a partial explanation to why
this approach has not been studied much by the nearest
neighbor community.

x1 x2 x3 x4 x5

¬x1 ∨ x4

x1 ∨ ¬x2

¬x2 ∨ x3

x3 ∨ x4

x2 ∨ ¬x5

Figure 3: The type of embedding of the variable-clause
graph used in the proof of Theorem 3.

1.5 Proof Techniques

The proof of Theorem 1 is very straightforward, and can
be found in Appendix A. It makes use of the observa-
tion that for every reduced training set Q ⊆ P , every
Voronoi wall of P between two regions of different clas-
sifications must lie in the bisecting hyperplane of some
pair of points in Q. If P is in general position, no two
pairs of points have the same bisecting hyperplane.

To prove Theorem 2 we provide a reduction from
1-MinNN to the problem of finding a maximum weight
independent set on interval graphs, which is solvable in
polynomial time [23].

Our proof of NP-hardness for Theorem 3 is similar to
the proof of Heath and Kasif for the NP-hardness of the
problem of finding Voronoi covers [22], which works by
reduction from planar 3SAT. The proofs have two major
differences. On one hand, a solution to d-MinNN must
have the same classification on all of Rd. In contrast, in
the Voronoi cover problem, a fixed tesselation needs to
appear only as a substructure in the Voronoi diagram.
This means that we have to be more careful about in-
troducing additional Voronoi walls in our training set.
On the other hand, any solution to d-MinNN must be a
subset of the training set, while in the Voronoi cover
problem, arbitrary points are allowed. This gives us
more control about the structure of possible solutions,
and allows us to exclude unwanted solutions more easily.

Our proof works by reduction from the problem
V-cycle max2SAT, a variant of max2SAT in which the
bipartite variable-clause graph remains planar even af-
ter adding a Hamiltonian cycle through the vertices
x1, . . . , xn corresponding to the variables. The planarity
of this graph guarantees that we can efficiently find an
embedding of the graph as shown in Figure 3. Then, ev-
ery box corresponding to a variable xi is replaced by a
variable gadget. A variable gadget is a labelled point set
that possesses two minimum cardinality reduced train-

115

35th Canadian Conference on Computational Geometry, 2023

ing sets. The choice between these two subsets indicates
the value of the variable xi. This value is then passed
along the edges of the graph by channels. Finally, each
box corresponding to a clause Cj is replaced by a clause
gadget, a labelled point set for which the size of a min-
imum cardinality reduced training set is decreased by
one if and only if at least one of two other points is
already present. The size of a minimum cardinality re-
duced training set for the resulting labelled point set
thus allows us to determine the largest number of si-
multaneously fulfillable clauses in the V-cycle max2SAT
instance.

The main technical challenges in this reduction are

(i) avoiding unwanted interaction between gadgets,
since points with different labels can interact over
large distances in empty space, and

(ii) ensuring that the reduction yields a point set
of only a polynomial number of points, with
polynomial-sized coordinates.

2 The One-Dimensional Case

In this section, we provide a polynomial-time algorithm
to find a minimum cardinality reduced training set in
R1. In other words, we prove Theorem 2, 1-MinNN ∈ P.

The classification induced by the given training set
(m,P, c) decomposes R1 into a set C = {C1, . . . , Ct}
of open intervals of equal classification. We call the
set B = {b1, . . . , bt−1} of points between these open
intervals the decision boundary points. We begin with
some observations holding for any reduced training set
(m,Q, c|Q). First, for any i ∈ [t], Q ∩ Ci ̸= ∅. Sec-
ond, for any i ∈ [t − 1], bi is the midpoint between its
closest larger and smaller neighbor in Q. Finally, for
any minimum cardinality reduced training set, we must
have Q ∩ Ci ≤ 2.

Intuitively, towards a small reduced training set, we
have to find a subset of P which often contains only one
point per interval Ci, with this point being involved
in defining both bi−1 and bi. We formalize this in the
following notion of a chain, as illustrated in Figure 4.

Definition 6 A k-chain is a set Q := {q1, . . . , qk} ⊆ P ,
for which there exists an integer i such that:
(i) for any j ∈ {1, . . . , k}, qj ∈ Ci+j, and

(ii) for any j ∈ {1, . . . , k− 1}, qj+qj+1

2 = bi+j. We then
say that Q covers the boundary points bi+1, . . . , bi+k−1.

We say that two chains Q,Q′ are compatible, if the
intervals [min(Q),max(Q)] and [min(Q′),max(Q′)] are
disjoint. Compatible chains therefore cover disjoint sets
of boundary points.

We now see that any minimum cardinality reduced
training set must be the union of pairwise compati-
ble chains. Any set of pairwise compatible chains can

b1 b2C2C1 C3

Figure 4: A labelled point set in R1 and a 3-chain
(crosses) covering b1 and b2.

furthermore be completed to a reduced training set by
adding 2-chains (consisting of relevant points) to cover
the remaining uncovered boundary points.

If our reduced training set is a union of
k1−, . . . , kℓ−chains, the total number of points is
2(t − 1) −∑ℓ

i=1(ki − 2), since every ki-chain allows us
to save a point in the ki−2 intervals between their first
and last covered boundary points, compared to a naive
solution with 2(t−1) points consisting only of 2-chains.

We are now ready to state our complete algorithm.
First, we compute the set of boundary points and the
set of all chains. Note that we can easily compute the
set of all chains in O(n2), and that there are at most n2

of them. Then, we associate each chainQ with the inter-
val [min(Q),max(Q)]. Note now that a set of pairwise
compatible chains is an independent set in the interval
graph given by these intervals. We give each 2-chain
a tiny weight ϵ > 0, and each k-chain for k > 2 the
weight k − 2. Finally, we use the dynamic program-
ming approach of Hsiao, Tang and Chang [23] to find
the maximum weight independent set (MWIS) within
this graph. This algorithm is linear in the number of
vertices, thus takes O(n2) in our case.

The resulting independent set corresponds to an
inclusion-maximal independent set, with the maximum
weight among all such sets. Its corresponding chains
thus cover all boundary points, and their union is a
minimum cardinality reduced training set.

3 NP-Completeness

In this section, we prove Theorem 3. We run the proof
of NP-hardness for d = 2, since any instance of 2-MinNN
can be embedded in a 2-dimensional subspace of Rd

to yield an instance of d-MinNN. The proof works by
reduction from the following decision problem, which
has been proven NP-hard by Buchin et al. [7]1.

Definition 7 A conjunctive normal form formula ϕ =
C1 ∧ . . .∧Cb over the variables x0, . . . , xa−1 and an in-
teger k form an instance of the V-cycle max2SAT prob-
lem, if every clause Ci is the disjunction (“or”) of at
most two literals and the graph Gϕ = (V,E) is planar,
where

V = {Ci | i ∈ [b]} ∪ {xi | 0 ≤ i ≤ a− 1},
E = {(Ci, xj) | xj ∈ Ci} ∪ {(xi, xi+1 mod a) | i ∈ [a]}.
1A proof can be found in the appendix of the arXiv preprint [8].

116

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

The task is to decide whether there exists an assignment
of the variables x0, . . . , xa−1, such that at least k clauses
of ϕ are fulfilled.

Note that the graph G′
ϕ obtained by replacing ev-

ery clause vertex Ci (of degree 2) in Gϕ by an edge is
both planar and Hamiltonian, with the Hamiltonian cy-
cle (x0, . . . , xa−1, x0). Since every planar Hamiltonian
graph has book thickness at most 2 [5], we can thus
find an embedding of ϕ as in Figure 3 (for more details
see the full version). Note that this embedding can be
found in polynomial time. Given this embedding of ϕ,
we will now construct a labelled point set (2, Pϕ, cϕ) en-
coding ϕ. For readability, we call the two labels “red”
and “blue”. The goal is that there is some number of
points n′, such that there exists a reduced training set
with at most n′ − k points if and only if there exists
an assignment of the variables in ϕ fulfilling at least k
clauses.

To translate the embedding of ϕ into a training set,
we show how to encode variables using variable gadgets,
pass those variables along polylines using channels, and
how to encode clauses using clause gadgets. To ensure
that gadgets only interact with each other as intended,
each gadget is designed to classify all points outside of
some bounded area to be blue.

A variable gadget can be seen in Figure 5, where it
is marked in green. The variable gadget consists of an
upper and a lower half, separated by a contiguous hor-
izontal part of the decision boundary. Each half is fur-
ther split into columns of points. In both the upper and
the lower half of this gadget, there are only two strict
subsets which lead to the same classification: The outer
points encoding “true” (Figure 5b), and the inner points
encoding “false” (Figure 5c). Note that both of these
subsets have the same number of points. The 6 upper-
most and 6 lowermost blue points of the variable gadget
are shielding points only used to ensure that every point
outside of the gadget is classified blue.
Channels are infinitely extendable gadgets that can

carry truth values. They can be attached to the top
or bottom of a variable gadget to connect the variable
gadget to clause gadgets above or below. See Figure 5
for an illustration of two channels attached to the top
of the marked variable gadget. If a channel connects to
a clause gadget in which the variable occurs positively,
the channel is attached to a column without shielding
points (left in Figure 5). Otherwise, if the variable oc-
curs negatively, the channel is attached to a column with
shielding points (right in Figure 5). The truth value
carried by a channel can be read off by checking for the
presence of the point p at the end of a channel.

Channels are never attached to the outermost
columns, and channels on the same half of a variable
gadget leave at least two columns of space in between.
Note that a variable gadget can be extended horizon-

p

(a) The complete training set.
p

(b) The “true” subset (not in-
cluding p).

p

(c) The “false” subset (in-
cluding p).

Figure 5: A variable gadget (green) encoding x with two
channels attached on the top. The left channel leads
to a clause containing x, and the right channel to one
containing ¬x: p is only present when ¬x is true.

tally, allowing for an arbitrary number of channels.

The distances between points have been chosen very
carefully. We say the vertical distance between two
neighboring points in a variable gadget (and channel)
is 1. The horizontal distance between points in a vari-
able gadget is chosen to be 3.2. This is a very deliberate
choice, since on the one hand, a too small horizontal dis-
tance would make the point p obsolete in Figure 5c. On
the other hand, a too large horizontal distance would
make some of the pairs of red and blue points that are
used to generate the left and right vertical boundary of
the channel obsolete. A distance of 3.2 avoids both of
these issues simultaneously.

To allow us to connect all variable and clause gad-
gets, channels need some more flexibility. We can add
bends of some fixed small angle to channels (see the full
version of the paper). We can also stretch channels lon-
gitudinally (in the direction of their repeating pattern),
by simply increasing the distance between a row with
blue center point and a row with red center point. With
the capability of creating bends and stretching longitu-
dinally, we can make the point p of a channel lie at the
location needed to attach it to a clause gadget.

A clause gadget is shown in Figure 6. It contains
two special points, marked p1 and p2. These points are
the point p of the two channels carrying the values of

117

35th Canadian Conference on Computational Geometry, 2023

p2

p1

Figure 6: The complete training set of the clause gadget.

the involved variables to the clause gadget, respectively.
Note that to be able to fit these channels without dis-
turbing the function of the clause gadget, p1 and p2
need to have small vertical distance (say, 0.5) and large
horizontal distance (say, 5). The clause gadget can also
be drawn with these distances, but for legibility, the
horizontal and vertical distances have been equalized in
Figure 6. A figure showing the clause gadget with cor-
rect distances can be found in Appendix B.

If the value carried by the first (second) channel is
true, the point p1 (p2) is part of the reduced training
set, and otherwise it is not. The clause gadget is built
in such a way that it needs 5 points if neither of p1 and
p2 is present, and 4 points otherwise (see the full version
for an illustration). Thus, we can save one point in the
clause gadget if and only if the corresponding clause is
fulfilled by the variable assignment corresponding to the
points present in the channels.

We are now ready to prove Theorem 3.

Proof. For any fixed d, we can verify that a given sub-
set of points is a reduced training set by computing
the Voronoi diagrams of the training set and the subset
and comparing the classifications. As the Voronoi dia-
gram of n points in Rd can be computed in polynomial
time [10], this proves NP-containment.

Towards proving NP-hardness, we reduce from
V-cycle max2SAT, as in Definition 7. Given an instance
(ϕ, k) we find an embedding of the bipartite variable-
clause graph of ϕ as in Figure 3. Every box correspond-
ing to a variable is replaced by a variable gadget, every
box corresponding to a clause is replaced by a clause
gadget, and the edges are replaced by channels (possi-
bly with up to 2 bends and some number of stretchings).

This point set can be constructed in polynomial time.
Let n1 be the number of points in the reduced training

set of all variable gadgets and channels corresponding to
some fixed assignment of truth values to variables. Let
n2 be 5·b (recall that b is the number of clauses in ϕ). We
will now prove that there exists a minimum cardinality
reduced training set of size at most n1 + n2 − k if and
only if there exists an assignment of variables fulfilling
at least k clauses of ϕ.

The “if” direction is trivial: If such an assignment of
variables exists, it can clearly be translated into a re-
duced training set of the correct size, since each fulfilled
clause gadget only requires four points.

For the “only if” direction, we argue that any re-
duced training set can be turned into a reduced train-
ing set corresponding to a variable assignment, without
increasing the number of points. We first consider the
channels. If any channel (including its endpoint p) is us-
ing any reduced subset other than the “true” or “false”
subset (shown in Figure 5), for example if it is switching
its value along the way, then it must be using strictly
more points than if it was consistently encoding “true”
or “false”. We can then change the subset within the
channel to be the subset that matches the truth value
encoded within the half of the variable gadget the chan-
nel is attached to. Since this may remove the point p,
this could cost us one additional point in the clause gad-
get, but we will also save at least one point within the
channel. Next, we fix the variables. If any variable gad-
get is using any reduced subset other than the “true”
or “false” subset, it is using all points on at least one
of the two (upper and lower) halves, and in the other
half it must be using either (a) all points, or (b) only
the “false” subset. Let m be the number of columns
in the gadget. In case (a), we can switch the gadget
to using the “false” subset in both halves, and the at-
tached channels and clauses are switched accordingly.
This may require us to use one additional point per
connected clause gadget, but saves at least 2m points
in the variable gadget. Since not all columns of a vari-
able gadget can be occupied by channels in both halves,
this is a net improvement. In case (b), we switch the
gadget to using the “true” subset in both halves. This
again may require one additional point per clause gad-
get connected to the half that was previously false, but
saves at least m points in the variable gadget, which is
again a net improvement.

We can thus conclude that our training set has at least
one minimum cardinality reduced training set which
corresponds to a variable assignment, proving the cor-
rectness of our reduction. □

Acknowledgments. We thank David Eppstein for
his great talk at SOSA’22 that inspired this work,
Bernd Gärtner for his valuable advice, and the anonymous
reviewers for their detailed feedback.

118

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. Commun. ACM, 51(1):117–122, Jan 2008.

[2] S. Arya, T. Malamatos, and D. M. Mount. Space-time
tradeoffs for approximate nearest neighbor searching.
J. ACM, 57(1), Nov 2009.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. J. ACM,
45(6):891–923, Nov 1998.

[4] F. Aurenhammer, R. Klein, and D.-T. Lee. Voronoi
diagrams and Delaunay triangulations. World Scientific
Publishing Company, 2013.

[5] F. Bernhart and P. C. Kainen. The book thickness of
a graph. Journal of Combinatorial Theory, Series B,
27(3):320–331, 1979.

[6] D. Bremner, E. Demaine, J. Erickson, J. Iacono,
S. Langerman, P. Morin, and G. Toussaint. Output-
sensitive algorithms for computing nearest-neighbour
decision boundaries. Discrete & Computational Geom-
etry, 33(4):593–604, 2005.

[7] K. Buchin, V. Polishchuk, L. Sedov, V. Roman, et al.
Geometric secluded paths and planar satisfiability. In
36th International Symposium on Computational Ge-
ometry (SoCG 2020), June 22-26, 2020, volume 164,
pages 24–1, 2020.

[8] K. Buchin, V. Polishchuk, L. Sedov, and R. Voronov.
Geometric secluded paths and planar satisfiability.
arXiv preprint arXiv:1902.06471, 2019.

[9] T. M. Chan. Approximate nearest neighbor queries
revisited. Discrete & Computational Geometry,
20(3):359–373, Oct 1998.

[10] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete & Computational Geometry,
10(4):377–409, 1993.

[11] K. L. Clarkson. More output-sensitive geometric al-
gorithms. In Proceedings 35th Annual Symposium
on Foundations of Computer Science, pages 695–702.
IEEE, 1994.

[12] T. Cover and P. Hart. Nearest neighbor pattern clas-
sification. IEEE Transactions on Information Theory,
13(1):21–27, 1967.

[13] M. Datar, N. Immorlica, P. Indyk, and V. S. Mir-
rokni. Locality-sensitive hashing scheme based on p-
stable distributions. In Proceedings of the Twentieth
Annual Symposium on Computational Geometry, SCG
’04, page 253–262, New York, NY, USA, 2004. Associ-
ation for Computing Machinery.

[14] R. A. Dwyer. Higher-dimensional voronoi diagrams in
linear expected time. Discrete & Computational Geom-
etry, 6(3):343–367, Sep 1991.

[15] D. Eppstein. Finding relevant points for nearest-
neighbor classification. In Symposium on Simplicity in
Algorithms (SOSA), pages 68–78. SIAM, 2022.

[16] D. Eppstein, M. T. Goodrich, and J. Z. Sun. Skip
quadtrees: Dynamic data structures for multidimen-
sional point sets. International Journal of Compu-
tational Geometry & Applications, 18(01n02):131–160,
2008.

[17] A. Flores-Velazco. Improved Search of Relevant Points
for Nearest-Neighbor Classification. In S. Chechik,
G. Navarro, E. Rotenberg, and G. Herman, editors,
30th Annual European Symposium on Algorithms (ESA
2022), volume 244 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 54:1–54:10, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[18] A. Flores-Velazco and D. M. Mount. Coresets for the
nearest-neighbor rule. In F. Grandoni, G. Herman, and
P. Sanders, editors, 28th Annual European Symposium
on Algorithms, ESA 2020, September 7-9, 2020, Pisa,
Italy (Virtual Conference), volume 173 of LIPIcs, pages
47:1–47:19. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2020.

[19] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In 25th VLDB Confer-
ence, pages 518–529, 1999.

[20] L. J. Guibas, D. E. Knuth, and M. Sharir. Random-
ized incremental construction of delaunay and voronoi
diagrams. Algorithmica, 7(1):381–413, Jun 1992.

[21] P. Hart. The condensed nearest neighbor rule. IEEE
Transactions on Information Theory, 14(3):515–516,
1968.

[22] D. Heath and S. Kasif. The complexity of finding mini-
mal voronoi covers with applications to machine learn-
ing. Computational Geometry, 3(5):289–305, 1993.

[23] J. Y. Hsiao, C. Y. Tang, and R. S. Chang. An efficient
algorithm for finding a maximum weight 2-independent
set on interval graphs. Information Processing Letters,
43(5):229–235, 1992.

[24] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: Towards removing the curse of dimensionality. In
Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, page 604–613, New
York, NY, USA, 1998. Association for Computing Ma-
chinery.

[25] N. Jankowski and M. Grochowski. Comparison of in-
stances seletion algorithms i. algorithms survey. In
L. Rutkowski, J. H. Siekmann, R. Tadeusiewicz, and
L. A. Zadeh, editors, Artificial Intelligence and Soft
Computing - ICAISC 2004, pages 598–603, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[26] K. Khodamoradi, R. Krishnamurti, and B. Roy. Con-
sistent subset problem with two labels. In B. Panda
and P. P. Goswami, editors, Algorithms and Discrete
Applied Mathematics, pages 131–142, Cham, 2018.
Springer International Publishing.

[27] T. Liu, A. Moore, K. Yang, and A. Gray. An inves-
tigation of practical approximate nearest neighbor al-
gorithms. In L. Saul, Y. Weiss, and L. Bottou, edi-
tors, Advances in Neural Information Processing Sys-
tems, volume 17. MIT Press, 2004.

119

35th Canadian Conference on Computational Geometry, 2023

[28] F. P. Preparata and R. Tamassia. Efficient point loca-
tion in a convex spatial cell-complex. SIAM Journal on
Computing, 21(2):267–280, 1992.

[29] G. Ritter, H. Woodruff, S. Lowry, and T. Isenhour. An
algorithm for a selective nearest neighbor decision rule.
IEEE Transactions on Information Theory, 21(6):665–
669, 1975.

[30] R. Seidel. Exact upper bounds for the number of faces in
d-dimensional voronoi diagrams. In Applied Geometry
And Discrete Mathematics, 1990.

[31] Z. Usiskin. The classification of quadrilaterals: A study
in definition. Information Age Publishing, 2008.

[32] D. F. Watson. Computing the n-dimensional Delaunay
tessellation with application to Voronoi polytopes*. The
Computer Journal, 24(2):167–172, Jan 1981.

[33] G. Wilfong. Nearest neighbor problems. In Proceed-
ings of the Seventh Annual Symposium on Computa-
tional Geometry, SCG ’91, page 224–233, New York,
NY, USA, 1991. Association for Computing Machinery.

[34] A. V. Zukhba. NP-completeness of the problem of pro-
totype selection in the nearest neighbor method. Pat-
tern Recognit. Image Anal., 20(4):484–494, Dec 2010.

A Proof of Theorem 1

In this section we wish to prove Theorem 1. Since we already
know that for a labelled point set (m,P, c) the set rel(P)
of relevant points is a reduced training set, it suffices to
show that any reduced training set must include all relevant
points.

Let us first introduce a few definitions. A Voronoi wall is
a cell of the Voronoi diagram of dimension d− 1. These walls
separate two fully-dimensional Voronoi cells. A Voronoi wall
that separates two cells in which the nearest neighbor rule
induced by P gives a different classification is said to be part
of the decision boundary.

Observation 1 For any reduced training set given by Q ⊆
P , a Voronoi wall of P which is part of the decision boundary
must be (a subset of) some Voronoi wall of Q as well, since
Q must induce the same nearest neighbor classification as P .

Note that every Voronoi wall W is a subset of the bisect-
ing hyperplane of the two points belonging to the incident
Voronoi cells. Since W is (d − 1)-dimensional, it uniquely
determines this hyperplane. We next show that under the
general position assumption, every hyperplane can be the
bisecting hyperplane of at most one pair of points.

Lemma 4 For any point set P ⊂ Rd in general position,
no two distinct pairs of points in P have the same bisecting
hyperplane.

Proof. Towards a contradiction, assume a, b ∈ P and
c, d ∈ P have the same bisecting hyperplane. First note
that a, b, c, d must all be distinct, since a, b and a, d have
different bisecting hyperplanes if b ̸= d.

The points a, b, c, d cannot be collinear, since general po-
sition assumption requires that no three points are collinear.
Since a, b and c, d have the same bisecting hyperplane, the
lines ab and cd must be parallel. Thus, a, b, c, d must lie on a
common plane. Furthermore, they must be the corners of an
isoceles trapezoid, a cyclic quadrilateral [31]. Thus, a, b, c, d
are cocircular, forming a contradiction with the general po-
sition assumption. □

Every relevant point p ∈ rel(P) shares a Voronoi wall with
some point q with a label c(q) ̸= c(p), i.e., a wall that is part
of the decision boundary: Otherwise, removing p would not
change the classification, since removing a point p from a
Voronoi diagram distributes the interior of the Voronoi cell
of p to the Voronoi cells of the points q such that p and
q previously shared a Voronoi wall. By Observation 1 and
Lemma 4, we know that p, q must therefore be part of every
reduced training set. Since this holds for every relevant point
p, any reduced training set given by Q must contain the set
rel(P), and Theorem 1 follows.

120

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

B Clause Gadget

Below, in Figure 7, the clause gadget is shown to scale, with the distance between the two attachment point for channels
p1 and p2 having horizontal distance of 5 and vertical distance of 0.5. The vertical stretching of the gadget is necessary to
ensure that the classification remains correct in the case where both variables are true (Figure 7b). If the gadget would be
less stretched, a Voronoi wall between the red point and p2 would appear.

(a) The complete training set. (b) Both variables are true.

Figure 7: The clause gadget with the correct distances between the attachment points.

121

122

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Clustering with Neighborhoods is Hard for Squares∗

Georgiy Klimenko† Benjamin Raichel‡

Abstract

In the clustering with neighborhoods problem one is
given a set S of disjoint convex objects in the plane and
an integer parameter k ≥ 0, and the goal is to select a
set C of k center points in the plane so as to minimize
the maximum distance of an object in S to its nearest
center in C. Previously [HKR21] showed that this prob-
lem cannot be approximated within any factor when S
is a set of disjoint line segments, however, when S is a
set of disjoint disks there is a roughly 8.46 approxima-
tion algorithm and a roughly 6.99 approximation lower
bound. In this paper we investigate this significant dis-
crepancy in hardness between these shapes. Specifically,
we show that when S is a set of axis aligned squares of
the same size, the problem again is hard to approximate
within any factor. This surprising fact shows that the
discrepancy is not due to the fatness of the object class,
as one might otherwise naturally suspect.

1 Introduction

Given a set of n points P in a metric space and an inte-
ger parameter k ≥ 0, in the standard k-center clustering
problem the goal is to select a set C of k center points
from the metric space (or in the discrete variant C ⊆ P)
so as to minimize the maximum distance of a point in P
from its nearest center in C. This fundamental problem
and its variations have been well studied in the compu-
tational geometry community. For the standard prob-
lem there is a well known greedy 2-approximation algo-
rithm due to Gonzalez [Gon85], and an iterative scoop-
ing based 2-approximation algorithm due to Hochbaum
and Shmoys [HS85]. Conversely, for general metric
spaces it is NP-hard to approximate within any factor
less than 2, and even for points in the plane the problem
remains hard to approximate within a factor of roughly
1.82 [FG88].

∗A preliminary version of the main proof in this paper ap-
peared in Georgiy Klimenko’s thesis [Kli23]
†Department of Computer Science; University of Texas at Dal-

las; Richardson, TX 75080, USA; gik140030@utdallas.edu; Work
on this paper was partially supported by a NSF CAREER Award
1750780.
‡Department of Computer Science; University

of Texas at Dallas; Richardson, TX 75080, USA;
benjamin.raichel@utdallas.edu; http://utdallas.edu/

~benjamin.raichel. Work on this paper was partially supported
by a NSF CAREER Award 1750780.

While many variants of k-center clustering have been
considered, here we focus on the problem of k-center
clustering with neighborhoods introduced recently in
[HKR21]. In this problem the input is a set S of n
disjoint convex objects in the plane, and the goal is
again to select a set C of k points from the plane so
as to minimize the maximum distance of an object in
S from its nearest center in C. Note that the standard
k-center problem is a special case of k-center clustering
with neighborhoods where S = P is a discrete point set.

In [HKR21] it was shown that clustering with neigh-
borhoods is hard to approximate within any factor when
S is a set of disjoint segments. Conversely, it was also
shown that when S is a set of disjoint disks the problem

is
√
13−
√
3

2−
√
3
≈ 6.99 hard to approximate, and additionally

a near matching (5 + 2
√

3) ≈ 8.46 approximation algo-
rithm was given. In other words, for disks the problem
is APX-complete.

The clustering with neighborhoods problem can be
equivalently defined as finding k equal radius balls of
the smallest possible radius such that every object has
non-empty intersection with at least one of the balls.
Alternatively, one could require that each object is en-
tirely contained in one of the balls. This however, im-
plies that the optimal radius is at least the radius of the
largest object, whereas in our case the optimal radius
can be arbitrarily smaller. This significantly and prov-
ably changes the hardness of the two problems. Specifi-
cally, Xu and Xu [XX10] considered k-center clustering
on point sets where given points sets S1, . . . , Sn the goal
is to find k balls of minimum radius such that each Si

is entirely contained in one of the balls. For this prob-
lem they achieved a (1 +

√
3)-approximation, whereas

clustering with neighborhoods cannot in general be ap-
proximated within any factor in polynomial time unless
P = NP.

Motivation and Contribution. As discussed above,
clustering with neighborhoods is hard to approximate
within any factor when the objects are disjoint line seg-
ments, however, when the objects are disks there is a
constant factor approximation. This intriguingly large
hardness gap between segments and disks begs the ques-
tion, what geometric feature accounts for this gap? One
may naturally suspect (as the authors did), that the
difference is due to fatness, as segments are arbitrarily
skinny objects whereas disks are fat. It is well known

123

35th Canadian Conference on Computational Geometry, 2023

that this basic geometric property can often make a sig-
nificant difference in the difficulty of a problem (e.g.
[Cha03]). Surprisingly, however, in this paper we show
that when the objects are disjoint squares (one of the
simplest classes of fat objects), not only does the con-
stant factor approximation algorithm break down, but
in fact the problem is again hard to approximate within
any factor, as was the case for line segments. Moreover,
we show this is true even when the squares are axis
aligned and all of equal size. Indeed, this paper shows
the hardness gap is not due fatness, but rather roughly
speaking concerns more how pointed the objects are.
(More precisely, it concerns how closely one can place
three disjoint objects to a single point.)

2 Preliminaries

Given points x, y ∈ Rd, ||x−y|| denotes their Euclidean
distance. Given two closed sets X,Y ⊂ Rd, ||X − Y || =
minx∈X,y∈Y ||x− y|| denotes their distance. For a point
x and a value r ≥ 0, let B(x, r) denote the closed ball
centered at x and with radius r. [HKR21] considered
the following problem.

Problem 1 (Clustering with Neighborhoods)
Given a set S of n disjoint convex objects in the plane,
and an integer parameter k ≥ 0, find a set of k points C
(called centers) which minimize the maximum distance
to a convex object in S. That is,

C = arg min
C′⊂R2,|C′|=k

max
S∈S
||S − C ′||.

Let C be any set of k points, and let r = maxS∈S ||S−
C||. We refer to r as the radius of the solution C, since
r is the minimum radius such that the set of all balls
B(c, r) for c ∈ C, intersect all S ∈ S. If C is an op-
timal solution then we refer to its radius ropt as the
optimal radius. Let S, k be an instance of Problem 1
with optimal radius ropt. For a value α ≥ 1, we refer
to a polynomial time algorithm as an α-approximation
algorithm if it returns a solution C of size k such that
the radius is ≤ αropt.

3 Hardness for Squares

In this section we argue that it is hard to approximate
Problem 1 within any factor when S is a set of axis
aligned squares of the same size. Our hardness results
use a construction similar to the one from [FG88], where
they reduce from the problem of planar vertex cover
where the maximum degree of a vertex is three. This
problem is known to be NP-complete [GJ77], and we
denote this problem as P3VC. We remark that the high
level approach of reducing from P3VC used in [FG88]

has inspired many other hardness reduction for geomet-
ric problems, including the prior reductions for cluster-
ing with neighborhoods for the cases of segments and
disks [HKR21].

Let G, k be an instance of P3VC, and consider
a straight line embedding of G. In particular, in
O(n log n) time one can compute an straight line em-
bedding of G where the vertices are on a 2n− 4×n− 2
grid [FPP90]. We now scale this graph by a polynomial
factor large enough to ensure two properties. First, for
every edge of G there is a portion of that edge which
has length at least say 100 and the closest other edge or
vertex is distance at least 100. Call this the free zone
of the edge. Second, for each vertex of G, there is a
ball centered at that vertex, such that this ball only
intersects the at most 3 adjacent edges of that vertex,
does not intersect the free zones of those edges, and the
intersection points of the edges with the boundary of
the ball are at least distance 10 apart from one another.
Call this the free zone of the vertex. Note ensuring
these two properties only requires scaling by a polyno-
mial factor since the graph was initially embedded on a
roughly n× n grid.

We now describe how to replace each edge of G with
a sequence of unit squares. Roughly speaking this se-
quence of unit squares will be the unit grid cells that
the edge overlaps, i.e. the standard pixelized represen-
tation of the edge. However, there will be several key
differences, particularly inside the free zone of each edge
and vertex, which we describe below. Outside the free
zones we will simply include the unit squares of the grid
cells intersected by the edge, except when the edge in-
tersects 3 of the 4 grid cells adjacent to a grid point. In
this case will will only include the diagonally adjacent
squares. See Figure 3.1. Note in general there may be

Figure 3.1: Left: A portion of an edge. Middle: Grid
cells intersected. Right: When three cells adjacent to a
grid point are intersected, only the diagonally adjacent
pair is kept.

Figure 3.2: Left: Two cases with consecutive grid points
where 3 adjacent grid cells are intersected. Right: It-
eratively removing intersected grid cells so that no grid
point is adjacent to more than 2.

124

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 3.3: Left: The first two squares of each of the three edges adjacent to a vertex. Right: A routing of the square
sequence for each adjacent edge which leads to the intersection point of that edge with the ball.

multiple grid points in a row where 3 of the 4 adjacent
grid cell squares are intersected. Thus to be more pre-
cise, going from left to right, we iteratively remove the
third adjacent grid cell square (again the square that is
not in the diagonal pair), until all grid points are ad-
jacent to at most 2 remaining intersected squares. See
Figure 3.2.

Now we describe the construction within the free zone
of a given vertex v, with adjacent edges e1, e2, e3. (If v
has fewer adjacent edges the construction is only sim-
pler.) Within the free zone of v we cannot simply pix-
elize the edges as described above, since the angle of
the adjacent edges might be such that say e1 and e2
initially pass through the same neighboring grid cell of
v. Instead we enforce that the square sequence for each
edge start on a distinct square adjacent to v, and more-
over, the second square in the sequence for each edge
continue in this diagonal direction from v. (This con-
dition on the second square in the sequence of the edge
ensures that squares from different edges are only ad-
jacent at v itself.) See Figure 3.3. As described above
when defining the free zone of v there exists a ball cen-
tered at v such that the points of intersection of e1, e2, e3
with the boundary of this ball are at least distance 10
apart from one another. This ample spacing ensures
that we can route the sequences of squares we are con-
structing for each edge such that squares from different
edges stay at least distance 1 apart from each other (ex-
cept at v itself) and that the square sequence for each
edge ends up on its respective intersection point on the
ball boundary. See Figure 3.3.

Finally, the last part of the construction concerns the
free zone of each edge. So consider a given edge e. If e
consists of a sequence of an odd number of squares after
applying the above pixelization process to e along with
the above modifications in the vertex free zones of its
endpoints, then we leave the free zone of e untouched

(i.e. it is just pixelized like the rest of e). However, if e
consists of a sequence of an even number of squares then
in the free zone we make the following modification so
that the total number of squares is odd. We consider
two cases. First, if within the free zone the sequence of
squares has at least 6 consecutive squares which are hor-
izontally adjacent (or 6 which are vertically adjacent),
then we replace these 6 squares with the parity shifting
gadget show in Figure 3.4 (where if the 6 squares where
vertically adjacent we rotate the gadget 90 degrees).

Figure 3.4: Left: 6 horizontally adjacent squares. Right:
Parity gadget replacing the 6 squares with 7 squares.
The horizontal gaps between squares on the top and
bottom rows have length exactly 1/2.

s s

s′s′

Figure 3.5: Left: Pixelized edge. Right: Replacing the
portion of the pixelized edge between s and s′ with an
L shaped sequence of squares. Note the figure is not to
scale, as the portion replaced did not have at least 12
squares.

Otherwise, if there are not 6 horizontally adjacent
squares then we replace a portion of the square sequence
in the free zone with an L shaped sequence, see Fig-
ure 3.5. In particular, viewing the squares in the se-
quence as ordered from left to right, pick a square s
whose previous adjacent square is diagonally adjacent.
Next pick a square s′ which is at least 12 squares after

125

35th Canadian Conference on Computational Geometry, 2023

s in the sequence and such that the square after s′ is
diagonally adjacent. Now replace all squares between s
and s′ with an L shaped sequence consisting of single
run of horizontally adjacent squares followed by a run of
vertically adjacent squares (again see Figure 3.5). Now
if this new sequence of squares between s and s′ has
a different parity than the original sequence between s
and s′ then we are done. Otherwise, either the horizon-
tal or vertical portion of this L shaped sequence must
have at least 6 squares and thus we can insert the same
parity gadget described above into this portion of the L
shaped sequence.

Let 0 < ε � 1/4 be some value. For the final step
in our construction, we now shrink all of the above cre-
ated squares (about their respective centerpoints) such
that two squares diagonally adjacent to the same grid
point are distance 2ε apart from one another. (Note
this means horizontally or vertically adjacent squares
are 2ε/

√
2 apart.)

So given an instance G, k of P3VC, we construct an
instance S, κ of Problem 1 where S is determined from
G as described above and κ = k + (|S| − |E|)/2. We
first argue if G has a vertex cover of size k then for
our instance of Problem 1 there is a solution of radius
ε. First, for any vertex v in the vertex cover we cre-
ate a center, and place it at the location of v in the
embedding. By the way we shrunk the squares, B(v, ε)
will intersect the (at most) three adjacent initial squares
of v’s adjacent edge sequences. We now cover the re-
maining squares with (|S| − |E|)/2 centers. For any
edge e ∈ E let ne be the number of squares used for
e in the above construction. Observe that as we al-
ready placed centers at vertices corresponding to a ver-
tex cover of the edges, at least one square of each edge
is already covered, and so there are at most ne− 1 con-
secutive squares that need to be covered. (Note ne − 1
is even.) However, as consecutive squares are at most
2ε apart on each edge, these ne − 1 squares can be cov-
ered with (ne − 1)/2 balls of radius ε by covering the
squares in pairs. Thus the total number of centers used
is k +

∑
e∈E(ne − 1)/2 = k + (|S| − |E|)/2 = κ.

Now suppose the minimum vertex cover of G requires
> k vertices. In this case we argue that our instance
of Problem 1 requires more than κ centers if we limit
to balls with radius < 1/4. Call any two squares in
S neighboring if they are consecutive on an edge or if
they are squares on the v end of two edges adjacent to
a vertex v. By construction, neighboring squares have
distance ≤ 2ε from each other. For a pair of squares
which are not neighboring their distance is at least 1/2.
Specifically, within the free zone of a vertex we ensured
squares from different edges were at least unit distance
apart (except at the vertex). Also, squares from dif-
fering edges remain at least unit distance apart outside
of the free zones of vertices. For two squares from the

same edge, the pixelization process enforces at least unit
distance for non-adjacent squares. The same holds for
inserting L shaped sequences in the free zone of an edge.
Thus all that remains is the parity gadget, where the
closest two non-adjacent squares can be is exactly 1/2.

By the above, limiting to radius < 1/4 therefore im-
plies that, other than at the (up to) three neighboring
squares at a vertex, any ball either covers just a single
square, or a pair of neighboring squares. An edge e with
ne squares thus requires at least dne/2e = 1+(ne−1)/2
balls to cover it. Moreover, a ball can only cover both
a square of e and e′ if those squares are on the v end of
two edges adjacent to v. Let Ez be the subset of edges
with at least one square covered by such a ball (i.e. a
ball corresponding to a vertex), and let z be the number
of such balls. Then the total number of balls required
is

≥ z +
∑

e∈Ez

(ne − 1)/2 +
∑

e∈E\Ez

(1 + (ne − 1)/2)

= z + (|S| − |E|)/2 + |E \ Ez| = z + (κ− k) + |E \ Ez|,

which is more than κ when z + |E \ Ez| > k. Notice,
however, there is a vertex cover of G of size z + |E \
Ez|, consisting of the vertices that z counted, and one
vertex from either end of each edge in E \ Ez. Thus
as the minimum vertex cover has size > k, we have
z + |E \ Ez| > k as desired.

Therefore, if we could approximate the minimum ra-
dius of our Problem 1 instance within any factor less

than 1/4
ε = 1

4ε then we can determine whether the cor-
responding vertex cover instance had a solution with
≤ k vertices. However, we are free to make ε > 0 as
small we want, and thus 1

4ε as large as we want, so long
as this quantity (or more precisely a lower bound on it)
is computable in polynomial time. Thus we have the
following theorem.

Theorem 2 Problem 1 cannot be approximated within
any factor in polynomial time unless P = NP, even when
restricting to the set of instances in which S is a set of
axis aligned squares of the same size.

References

[Cha03] T. M. Chan. Polynomial-time approximation
schemes for packing and piercing fat objects.
J. Algorithms, 46(2):178–189, 2003.

[FG88] T. Feder and D. H. Greene. Optimal algo-
rithms for approximate clustering. In 20th
Annual ACM Symposium on Theory of Com-
puting (STOC), pages 434–444. ACM, 1988.

[FPP90] H. De Fraysseix, J. Pach, and R. Pollack. How
to draw a planar graph on a grid. Comb.,
10(1):41–51, 1990.

126

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[GJ77] M. R. Garey and D. S. Johnson. The rec-
tilinear steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics,
32(4):826–834, 1977.

[Gon85] T. F. Gonzalez. Clustering to minimize the
maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

[HKR21] H. Huang, G. Klimenko, and B. Raichel. Clus-
tering with neighborhoods. In 32nd Interna-
tional Symposium on Algorithms and Compu-
tation (ISAAC), volume 212 of LIPIcs, pages
6:1–6:17, 2021.

[HS85] D. S. Hochbaum and D. B. Shmoys. A
best possible heuristic for the k -center prob-
lem. Mathematics of Operations Research,
10(2):180–184, 1985.

[Kli23] G. Klimenko. Convex hull simplification and
geometric hardness. The University of Texas
at Dallas, 2023.

[XX10] G. Xu and J. Xu. Efficient approximation al-
gorithms for clustering point-sets. Computa-
tional Geometry, 43(1):59–66, 2010.

127

128

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

CCOSKEG Discs in Simple Polygons∗

Prosenjit Bose† Anthony D’Angelo‡ Stephane Durocher§

Abstract

We consider the problem of finding a geodesic disc D
of smallest radius containing at least k points among n
inside a simple polygon P . The centre of D must lie
on a chord in P . The polygon P has m vertices, r of
which are reflex. We present an exact algorithm using
parametric search that runs in O(n log2 n+m) time with
high probability and O(n log r +m) space.

1 Introduction

The smallest / minimum enclosing disc problem takes
as input a set S of n points in the plane and returns
the smallest Euclidean disc that contains S. This can
be solved in O(n) expected time [58] and O(n) worst-
case time [43]. The smallest k-enclosing disc problem
is a generalization that asks for a smallest disc that
contains at least k ≤ |S| points1 of S, for any given
k, and has been well studied [3, 24, 26, 27, 32, 39, 40].
It is conjectured that an exact algorithm that computes
the smallest k-enclosing disc in the plane requires Ω(nk)
time [31, §1.5].

Matoušek [39] presented an algorithm that first com-
putes a constant-factor approximation2 in O(n log n)
time and O(n) space (recently improved to O(n) ex-
pected time for a 2-approximation that uses O(n) ex-
pected space [32]), and then uses that approximation
to seed an algorithm for solving the problem exactly
in O(n log n + nk) expected time using O(nk) space or
O(n log n+nk log k) expected time using O(n) space (re-
cently improved to O(nk) expected time using O(n+k2)
expected space [24, 32]). Matoušek [40] also presented
an algorithm for computing the smallest disc that con-
tains all but at most q of n points in O(n log n+ q3nε)
time, where ε is “a positive constant that can be made
arbitrarily small by adjusting the parameters of the al-
gorithms; multiplicative constants in the O() notation

∗This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).
†Carleton University, Ottawa, Canada, jit@scs.carleton.ca
‡anthony.dangelo@carleton.ca
§University of Manitoba, Winnipeg, Canada,

stephane.durocher@umanitoba.ca
1In this paper, we use the notation |Z| to denote the number

of points in Z if Z is a point set, or the number of vertices of Z
if Z is a face or a polygon.

2An α-approximation means that the disc returned has a ra-
dius at most α times the radius of an optimal solution.

may depend on ε” [40].
In this paper we generalize the smallest k-enclosing

disc problem to simple polygons using the geodesic met-
ric, meaning that the distance dg(a, b) between two
points a and b is the length of the shortest path Π(a, b)
between a and b that lies completely inside the sim-
ple polygon P . A geodesic disc D(c, ρ) of radius ρ
centred at c ∈ P is the set of all points in P whose
geodesic distance to c is at most ρ. Our article fo-
cuses on the Chord-Constrained Smallest k-Enclosing
Geodesic (CCOSKEG) disc problem.

CCOSKEG Disc Problem
Consider a simple polygon Pin defined by a se-
quence of m vertices in R2, r > 0 of which are reflex
vertices, a set S of n points of R2 contained in Pin,3

an integer k ≤ n, and an input chord ` ⊂ Pin.4

Find a CCOSKEG disc, i.e., a geodesic disc of min-
imum radius ρ∗ in Pin centred on ` that contains
at least k points of S.

Without loss of generality, we consider ` to be the
x-axis. We make the general position assumptions that
no two points of S are equidistant to a vertex of Pin,
and no four points of S are geodesically co-circular. Un-
der these assumptions, a smallest k-enclosing geodesic
(SKEG) or CCOSKEG disc contains exactly k points.
Let D(c∗, ρ∗) be a CCOSKEG disc for the points of S in
Pin constrained to the input chord `. For convenience,
at times we will refer to this as simply D∗. A k-enclosing
geodesic disc (KEG disc) is a geodesic disc in Pin that
contains exactly k points of S. The main result of our
article is the following theorem.

Theorem 4 Given a chord ` ⊂ Pin we compute a
CCOSKEG disc D(c∗, ρ∗) in O(n log2 n+m) time with
high probability5 using O(n log r +m) space.

1.1 Related Work

Other than our work on SKEG discs [15], we are not
aware of other work tackling the subject of this pa-
per. In our previous work [15], we presented an algo-
rithm to compute a 2-approximation SKEG disc that

3When we refer to a point p being in a polygon P , we mean
that p is in the interior of P or on the boundary, ∂P .

4We use the terms chord and diagonal interchangeably.
5We say an event happens with high probability if the proba-

bility is at least 1− n−λ for some constant λ.

129

35th Canadian Conference on Computational Geometry, 2023

runs in expected time O(n log2 n log r + m) and ex-
pected space O(n + m) if k ∈ O(n/ log n); if k ∈
ω(n/ log n), it computes such a disc with high prob-
ability in O(n log2 n log r + m) deterministic time with
O(n+m) space. We compared it to the approach we pre-
sented in the same paper that uses higher-order geodesic
Voronoi diagrams to find the exact solution. Assuming
general position, a SKEG disc has either two or three
points of S on its boundary, allowing techniques involv-
ing Voronoi diagrams to be applied. Ignoring polyloga-
rithmic factors, the worst-case runtime for the Voronoi
diagram approach for k = n is O(n+m); for k = n− 1
and r/ log2 r ∈ Ω(k log k) is O(nr+m); for k = n−1 and
r/ log2 r ∈ o(k log k) is O(n2+nr+r2+m); for k < n−1
and for n log n ∈ o(r/ log r) is O(k2n + min(rk, r(n −
k)) + m); and O(k2n + k2r + min(kr, r(n − k)) + m)
otherwise. Higher-order Voronoi diagrams have been
considered to solve the smallest k-enclosing disc prob-
lem in the plane [3, 26].

There has been other work done with geodesic discs
in polygons. A region Q is geodesically convex relative
to a polygon P if for all points u, v ∈ Q, the geodesic
shortest path from u to v in P is in Q. The geodesic
convex hull CHg of a set of points S in a polygon P is
the intersection of all geodesically convex regions in P
that contain S. The geodesic convex hull of n points in
a simple m-gon can be computed in O(n log n+m) time
using O(n+m) space [29, 53].

The geodesic centre problem asks for a smallest
geodesic disc that lies in the polygon and encloses all
vertices of the polygon (stated another way, a point that
minimizes the geodesic distance to the farthest point).
This problem is well studied [4, 11, 16, 48, 53] and can
be solved in O(m) time and space [4]. The geodesic cen-
tre problem has been generalized to finding the geodesic
centre of a set of points S inside a simple polygon in
O(n log n + m) time [10]. Generalized versions of the
geodesic centre for polygons [12, 46, 47, 55, 56]; packing
and covering [49, 55]; and clustering [14] have all been
studied.

Dynamic k-nearest neighbour queries were stud-
ied by de Berg and Staals [25]. They presented
a static data structure for geodesic k-nearest neigh-
bour queries for n sites in a simple m-gon that is
built in O(n(log n log2m+log3m)) expected time using
O(n log n logm+m) expected space and answers queries
in O(log(n+m) logm+ k logm) expected time.

If Pin has no reflex vertices, it is a convex polygon and
the SKEG disc problem is solved by the algorithm for
planar instances which uses a grid-refinement strategy.
This works in the plane because R2 with the Euclidean
metric is a doubling metric space, meaning that for any
disc of radius ρ > 0 in R2 it can be covered by O(1)
discs of radius ρ/2 [33]. Geodesic discs do not have
this property; it may take Θ(r) smaller discs to cover

the larger one (refer to Fig. 1 in Appendix B). Another
difficulty of the geodesic metric is that for two points
u and v of S on opposite sides of a given chord, their
geodesic bisector (formed by concatenating their bisec-
tor and hyperbolic arcs) can cross the chord Θ(r) times.
See Figs. 2 to 4 in Appendix C.

Section 2 describes the preprocessing procedures and
data structures used by our algorithms. Section 3 dis-
cusses how we use a technique known as parametric
search to solve the CCOSKEG disc problem. Section 4
summarizes our result. Appendices A and B contain de-
tails omitted from the paper due to space constraints.
Appendix C contains figures illustrating some concepts
from the paper.

2 Preprocessing, Data Structures, and Definitions

We perform the following preprocessing in O(m) time
and space.

Polygon Simplification Convert Pin into a simplified
polygon P consisting of O(r) vertices using the
O(m) time and space algorithm of Aichholzer et al.
[5] that computes a polygon P such that: P ⊇ Pin;
|P | is O(r); the reflex vertices in Pin also appear
in P ; P preserves the visibility of points in Pin;
and the shortest path between two points in Pin
remains unchanged in P . As with Pin, we assume
the points of S are in general position with the ver-
tices of P , and no four points of S are geodesically
co-circular in P .

Shortest-Path Data Structure We use the O(r)
time and space algorithm of Guibas and Hersh-
berger [29, 34] on P to build a data structure that
gives the length of the shortest path between any
two query points in P in O(log r) time and space.
Querying the data structure with two points in P
returns a tree of O(log r) height whose in-order
traversal is the shortest path in P between the two
query points. The query also provides the length
of the path from the source to each node along the
path (which is stored at the respective node in the
tree). This data structure can provide the first or
last edge along the path between the two points in
O(log r) time by traversing the tree to a leaf. We
can also perform a search through this tree to find
the midpoint of the shortest path in O(log r) time
[57, Lemma 3]. The returned tree has O(r) nodes
and edges, but the query adds O(log r) nodes and
edges linking to pre-computed structures to pro-
duce the result.

Funnel [29, 37] The vertices of the geodesic shortest
path Π(a, b) are the vertices a, b, and a subset of
the vertices of the polygon P forming a polygo-
nal chain [20, 38]. Consider a diagonal ` of P , its

130

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

two endpoints `1 and `2, and a point p in P . The
union of the three paths Π(p, `1), Π(p, `2), and `
form what is called a funnel. This funnel repre-
sents the shortest paths from p to the points on `
in that their union is the funnel. Starting at p, the
paths Π(p, `1) and Π(p, `2) may overlap during a
subpath, but there is a unique vertex pa called the
apex (which is the farthest vertex on their common
subpath from p) where the two paths diverge. After
they diverge, the two paths never meet again. The
path from pa to an endpoint of ` forms an inward-
convex polygonal chain (i.e., a convex path through
vertices of P with the bend protruding into the in-
terior of P). In our paper we often make use of
the portion of the funnel between the apex and `,
which we shall refer to as a truncated funnel. Fig. 5
in Appendix C illustrates the notion of a funnel.

Definition 1 (Aronov 1989 [9, Definition 3.1])
For any two points u and v of P , the last vertex (or u
if there is none) before v on Π(u, v) is referred to as
the anchor of v (with respect to u).

Guibas and Hershberger [29] and Oh and Ahn [45]
point out that given the trees representing the shortest
paths between a fixed source and two distinct destina-
tion points on the same chord, the apex of their funnel
can be computed in O(log r) time.

Observation 1 The apex of a funnel from a source
point in P to the diagonal ` can be computed in O(log r)
time and O(r) space. The distance from the source point
to the apex can also be determined in O(log r) time and
O(r) space.

Distance Function of a Point u ∈ S: Let us review
the graph we get by plotting the distance from a
point u to a line ` where the position along ` is
parameterized by x. Abusing notation, we call the
x-monotone curve representing this graph the dis-
tance function, which we denote by distu(·). The
domain of this function is ` and it returns the
geodesic distance from u to x ∈ ` where x is the
input of the function. Without loss of generality,
we can assume that the x-axis is the line in ques-
tion. For a point u, ux is the x-coordinate of u
and uy is its y-coordinate. This distance function
is actually a branch of a right hyperbola6 whose
eccentricity is

√
2 and whose focus is therefore at√

2 · uy. In our polygon P , distu(·) is a contin-
uous piecewise hyperbolic function. If the funnel
from u to the endpoints `1 and `2 of ` is trivial
(i.e., a Euclidean triangle), then distu(·) has one

piece expressed as distu(x) =
√

(x− ux)2 + u2y. If

there are reflex vertices of P in u’s funnel, distu(·)
6Also called a rectangular or equilateral hyperbola.

has multiple pieces. The formula for each piece is

distu(x) =
√

(x− wx)2 + w2
y + dg(u,w), where w

is the anchor, and the domain of this hyperbolic
piece is the set of values of x for which w is the an-
chor. Refer to Fig. 6 in Appendix C for an example
of a multi-piece distance function.

Definition 2 (Aronov 1989 [9, Definition 3.7])
The shortest-path tree of P from a point s of P ,
T (P, s), is the union of the geodesic shortest paths from
s to vertices of P .

Definition 3 (Aronov 1989 [9, between 3.8 and 3.9])
Let e be an edge of T (P, s) and let its endpoint furthest

from s be v. Let
−→
h be the open half-line collinear with

e and extending from v in the direction of increasing

distance from s. If some initial section of
−→
h is con-

tained in the interior of P , we will refer to the maximal
such initial section as the extension segment of e.

Definition 4 (Aronov 1989 [9, Definition 3.9])
Let the collection of extension segments of edges of
T (P, s) be denoted by E(P, s) (also simplified to E
when the polygon and point are clear from the context).

Consider the subset E ⊆ E(P, u) whose elements de-
fine the domains of the pieces of distu(·) along `. We
refer to the intersection of an element of this set with ` as
a marker. Sometimes we will need to identify domains
that have specific properties so that an appropriate hy-
perbolic piece of distu(·) can be analyzed. Similar to
other papers that find intervals of interest along short-
est paths and chords [1, 2, 8, 45], we can use the funnel
between u and ` to perform a binary search among the
domain markers to find a domain of interest. Since do-
main markers are points along `, one way they can be
used is to provide distances away from u to compare
against. We have the following observation.

Observation 2 For an extension segment e ∈ E, if it
takes O(1) time and space to determine which side of
`∩ e contains a domain of interest along `, then we can
find a domain of interest along ` and its corresponding
hyperbolic piece of distu(·) in O(log r) time and O(r)
space.

3 CCOSKEG Disc: Parametric Search

Refer to Appendix A for missing details. Let ∂D(u, ρ)
denote the boundary of the geodesic disc centred at u
with radius ρ. We use parametric search to find a SKEG
disc centred on the chord `.

Parametric search is a technique introduced by
Megiddo [41, 42] for optimizing a numeric parameter
through deduction using two algorithms in tandem. The

131

35th Canadian Conference on Computational Geometry, 2023

first is a sequential decision algorithm. Given a candi-
date for the optimal value, the decision algorithm deter-
mines how this candidate relates to the optimal value
(i.e., it determines whether the candidate is less than,
equal to, or greater than the optimal value). Testing a
candidate using the decision algorithm is usually costly,
which is why the problem and the candidates need to
have the following monotonicity property: if the test re-
veals that the optimum is greater (less) than the candi-
date tested, then it is also greater (less) than everything
less (greater) than the tested candidate.

The second algorithm used is a parallel generic algo-
rithm. This parallel algorithm (which is usually con-
verted back into a sequential algorithm) typically solves
a problem using comparisons whose outcomes depend
on the parameter being optimized, or, in other words,
comparisons of objects that would result if the optimal
value were given. In a way, we work backwards by ex-
amining which properties/objects would exist if we had
the optimum as well as how these objects would relate
to each other. For example, our algorithm to solve the
CCOSKEG disc problem sorts, along `, ∂D(u, ρ∗) ∩ `
for all u ∈ S. Using sorting algorithms as the generic
algorithm has been done before [21, 28, 42, 52, 54]. See
Figs. 7 and 8 in Appendix C.

The comparisons in the generic sorting algorithm are
typically expressed as a polynomial equation featuring
the parameter to be optimized as a variable in the equa-
tion. Refer to Fig. 9 in Appendix C. The comparison
is resolved by computing the sign of the equation (i.e.,
positive, negative, or zero) given a value for the pa-
rameter. Each of these polynomial equations has roots
that together form the sortable set of candidates for the
optimal value. Parametric search uses the decision al-
gorithm to test the candidates. As more of the relations
of the candidates to the optimum are determined, more
comparisons in the generic algorithm can be resolved.
In this way we are able to eventually deduce the opti-
mal value.

Either ρ∗ will coincide with the closest distance of
` to some point in S; or at least two of the intersec-
tion points from distinct discs will coincide and hence
ρ∗ will be a root for some pair of equations. See Fig. 10
in Appendix C. When comparing two of these inter-
sections/equations, to get our candidate radii through
which we search for ρ∗ we set the equations equal to
each other and solve for the roots (which is where they
have coinciding intersection points along `). For the
pair of intersection points that created a given set of
roots, the roots create intervals in the parameter space
(see Fig. 11 in Appendix C). Given the equation for a
pair from which we extracted the roots, plugging in any
value for the radius that lies in one of these root-defined
intervals results in the equation having the same sign
(either positive or negative), and thus the intersection

points having the same order along `.
The sorting algorithm proceeds until it cannot con-

tinue without resolving any comparisons (i.e., until it
gets stuck). Being a parallel algorithm (or a sequential-
ized version of a parallel algorithm), the comparisons in
one parallel step are all independent and present us with
a set of candidate radii. The decision algorithm is run
on a judiciously-chosen candidate radius followed by a
cull of the remaining candidates that we infer are too
large or small. This is repeated until some comparison
can be resolved, at which point the algorithm proceeds
until it again becomes stuck. Eventually, the relation of
ρ∗ to all of the roots in the candidate set is known.

The (at most) two intersection points of a disc with
` tell us where the intersection of a disc with ` begins
and ends. We are interested in overlapping intervals of
at least k discs.

3.1 Preliminaries

3.1.1 Testing Closest Points

We precompute, for each point u ∈ S, the closest point
of ` to u, also known as the projection of u onto ` (see
Fig. 12 in Appendix C for an example of projections).
Let uc be the closest point of ` to u. Equivalently, uc
is the point along ` that minimizes distu(·). We showed
the following in our previous work [15].

Lemma 1 (Bose et al. 2023 [15]) We compute the
set of projections of the points of S onto ` in O(n log r)
time and O(n+ r) space.

We are looking for ρ∗, the smallest radius of a KEG
disc centred on `, and the centre of such a disc. If a
CCOSKEG disc has only one point u ∈ S on its bound-
ary, then a CCOSKEG disc is centred at the projec-
tion uc and ρ∗ = dg(u, uc). Each of the n closest dis-
tances defined by projections is a candidate radius. To
effectively perform a binary search among these candi-
dates, we repeatedly perform an O(n) time and space
median selection algorithm on these radii [6, 13, 22]. In
each iteration, we find the median, test it with the deci-
sion algorithm, then cull the remaining candidates now
known to not be the optimum. Since we halve the num-
ber of elements to consider in each round, we perform
O(log n) rounds and make O(log n) calls to the deci-
sion algorithm. The overall time spent over the O(log n)
rounds performing median selections and culling the list
is O(n). After the search has finished, either we have
found ρ∗, or we know that there will be at least two
points of S on the boundary of a CCOSKEG disc.

Corollary 2 With O(log n) calls to the decision algo-
rithm and additional O(n log r) time and O(n+r) space,
we either compute ρ∗ and a point c∗ along ` such that
D(c∗, ρ∗) is a CCOSKEG disc of the points of S along

132

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

`, or we conclude that there are at least two points of S
on the boundary of a CCOSKEG disc.

3.1.2 How to Compare Elements in the Sort

We will sort ∂D(u, ρ∗) ∩ ` for all u ∈ S. We need to
express these intersection points in terms of the variable
radius ρ of the discs centred at the points of S. Assume
that ∂D(u, ρ) intersects ` twice (the cases of one and
zero intersections are omitted). Assume that we know
that the point w = (wx, wy) is the last reflex vertex on
the path from u ∈ S to at least one of the intersection
points. Let ∆ = ρ − dg(u,w). The equation for the
circular arc defining ∂D(u, ρ) where it intersects ` is
given by the equation of a circle of radius ∆ centred at
w. Using the equation of a circle, we have the following.

x =
(
±
√

∆2 − w2
y

)
+ wx (1)

If x is defined, it is only valid in the domain of w.
If x is undefined, then after passing w, D(u, ρ) does
not intersect `. We will assume we know the last re-
flex vertex before every intersection point and thus the
O(n) equations to use for the intersection points of the
discs with `. We show in Section 3.4 that we can use a
parametric-search-like approach to find these O(n) re-
flex vertices using an idea similar to one of the steps of
the Goodrich and Pszona parametric search paper [28].

Now that we have our items to be sorted, we need
to know how to compare them. Consider two of these
intersection points, one for each of the points u and v,
{u, v} ∈ S. Let the reflex vertex of the intersection point
of u (resp. v) being considered be w (resp. z) and let the
intersection points considered be the ones computed by
taking the positive square roots in their equations (from
Eq. (1)). Let δ = dg(u,w) and ψ = dg(v, z). When we
sort the intersection points, we are asking if one x-value
is less than, greater than, or equal to another along `.
Therefore, we want to know the following at a variable
radius ρ.

√
(ρ− ψ)2 − z2y + zx S

√
(ρ− δ)2 − w2

y + wx (2)

We can expand and simplify Eq. (2) to get a cubic
function replacing constant expressions by constant Ci.

0 S C1ρ
3 + C2ρ

2 + C3ρ+ C4 (3)

The sign of the answer of Eq. (3) reveals which inter-
section point is to the left. Eq. (3) gives us a polynomial
in ρ which determines the comparisons of the parallel
sorting algorithm and whose roots are the candidates
with which to run the decision algorithm. The roots

are the values for which the two intersection points co-
incide. Once it is known to which side of each root the
optimal ρ∗ lies for this instance of Eq. (3), we know the
result of the comparison for ρ∗ for this instance.

3.2 Decision Problem

Lemma 3 Given a polygon P with O(r) vertices, a
chord `, a set S of n points, a radius ρ, and a constant
k ≤ n, having performed the preprocessing of Lemma 1,
we can decide if there is a KEG disc of radius ρ centred
on ` and return such a disc in O(n(log r + log n)) time
and O(n+ r) space, and report whether ρ < ρ∗, ρ > ρ∗,
or ρ = ρ∗.

Proof. [Sketch] In O(log r) time and O(r) space we can
build the two funnels of u between uc and the endpoints
of ` and then perform a binary search in each to locate
the domain in which a point at distance ρ lies. This
tells us which reflex vertex to use in Eq. (1). Thus, in
O(n log r) time and O(n+ r) space, we create O(n) la-
belled intervals: {D(u, ρ)∩ ` : u ∈ S}. We then sort the
interval endpoints in O(n log n) time and O(n) space,
and then walk along ` and count the maximum number
of discs we are concurrently in at any given point. If the
maximum is smaller than k, then ρ is too small. If the
maximum is larger than k, then ρ is too large. If the
maximum is k and there is a subinterval that is larger
than a single point in which there are k overlapping in-
tervals, then ρ is too large. Otherwise, ρ = ρ∗ and the
single point of k overlaps is the centre for a CCOSKEG
disc. �

3.3 Using Boxsort

Goodrich and Pszona [28] show that boxsort [50] can be
used as our sorting algorithm. It can be described as
quicksort with multiple pivots which produces a number
of recursive calls proportional to the number of pivots.
See Fig. 13 in Appendix C for an illustrated example
of a recursive call. This allows them to take advantage
of the optimization technique of Cole [21] to reduce the
running time.

Theorem 4 Given a chord ` ⊂ Pin we compute a
CCOSKEG disc D(c∗, ρ∗) in O(n log2 n+m) time with
high probability using O(n log r +m) space.

Proof. [Sketch] Preprocessing from Section 2 takes
O(m) time and space. It will be shown in Section 3.4
that with O(log n + log r) calls to the decision algo-
rithm and additional O(n log r) time and O(n log r +
r) space, we compute the last reflex vertices on the
paths from each point u ∈ S to ∂D(u, ρ∗) ∩ `, effec-
tively giving us O(n) items to sort. Given this result
and Corollary 2, the preprocessing from Section 3.1
makes O(log n + log r) calls to the decision algorithm

133

35th Canadian Conference on Computational Geometry, 2023

of Lemma 3, uses O(n log r + r) space, and takes time
O(n log n log r + n log2 n+ n log2 r).

As seen in Goodrich and Pszona [28], Motwani and
Raghavan [44], and Reischuk [50], with high prob-

ability (i.e., at least 1 − e− logb n for some constant
b > 0) boxsort chooses a “good” sequence of pivots
so that it only requires O(log n) calls to the decision
algorithm of Lemma 3; and with the same probabil-
ity, taking into account the number of recursive calls
and the time we spend in a recursive call to create
boxes and then sort the remaining comparisons into
their boxes, using boxsort for parametric search takes
O(n log n + log n · n(log r + log n))) time and O(n + r)
space.

Considering the O(m) time spent in preprocessing, we
can simplify the runtime to O(n log2 n + m) with high
probability by assuming some terms are dominant and
arriving at a contradiction. The overall space used is
O(n log r +m). �

3.4 Decreasing to a Linear Number of Items to Sort

In this section, our goal is to discover which O(n) reflex
vertices to use for Eq. (1) for the points of S. The pro-
cedure (and its analysis) is like one of the steps used in
the boxsort parametric search of Goodrich and Pszona
[28]. Similar to routing unsorted elements through the
binary tree of sorted pivots to find their “box” for the
next recursive call, we independently route through 2n
binary search trees of O(log r) height, where the out-
comes of the comparisons depend on the solution to the
parametric search. This allows us to find the reflex ver-
tices for each u ∈ S that anchor ∂D(u, ρ∗)∩`. However,
instead of inferring the optimum by sorting intersection
points described as equations from which candidates for
the optimum are extracted, here our comparisons are
directly in the parameter space: we are directly com-
paring distances against the optimum. We illustrate an
example in Fig. 14 in Appendix C.

Since domain markers for the funnel of a point in S
with ` are points along `, in addition to defining domains
for reflex vertices they also provide distances to use as
candidate radii. We have the following monotonicity
property: for any point u ∈ S, the distance to ` in-
creases monotonically as we move from its closest point
uc ∈ ` to the endpoints of ` [48]. Thus, if we can decide
how the radius produced by a given marker compares to
the optimal radius, we can perform two binary searches
(recall Observation 2) among these markers between uc
and the endpoints of ` to find the domains which contain
∂D(u, ρ∗) ∩ `, and hence discover which reflex vertices
to use in Eq. (1) for u in the main parametric search.

We sequentialize the running of 2n parallel searches
through binary trees of O(log r) height (one per funnel).
Routing an element through these search trees is simi-
lar to following a directed path of O(log r) height. For

each point u ∈ S we search through the domain mark-
ers implicitly contained in its two funnels looking for
the domains that contain ∂D(u, ρ∗) ∩ `, which are the
domains that contain a point that is distance ρ∗ away
from u.

For each tree through which we are routing, each step
produces a comparison to resolve. Since a call to the de-
cision algorithm is considered costly, we do not want to
call the decision algorithm to resolve each comparison
individually. Using the fact that the candidate radii
have the monotonicity property we need for parametric
search (i.e., given the relation between ρ∗ and a candi-
date radius, we know the relation between ρ∗ and either
everything bigger than or less than the candidate) and
the fact that the domain markers used in the compar-
isons of the searches also provide candidate radii, we
can route through the trees with a logarithmic number
of calls to the decision algorithm. Following Goodrich
and Pszona [28], we assign weights to the comparisons
in the searches. The routing can be considered as it-
erations involving three steps: in the first step, we use
a linear-time weighted-median-finding algorithm [51] to
choose the weighted median candidate radius; in the
next step, we input that radius into the decision al-
gorithm; when the decision algorithm returns, the last
step is to repeatedly resolve all active comparisons that
can be resolved until no more routing can be performed
without knowing the result of another call to the deci-
sion algorithm. At this point, the next iteration begins.

Lemma 5 (Cole 1987 [21], Goodrich and Pszona 2013 [28])
For j ≥ 5(i + (1/2) log(4n)), during the (j + 1)st it-
eration there are no active comparisons at depth
i.

Plugging our 2n routing trees of height O(log r) into
the analyses of Goodrich and Pszona [28] and Cole [21]
yields that there are O(log n+log r) calls to the decision
algorithm.

Corollary 6 With O(log n+ log r) calls to the decision
algorithm, with additional O(n log r) time and O(r +
n log r) space, we compute for each u ∈ S the anchors
of ∂D(u, ρ∗) ∩ `.

4 Conclusion

By using the result of Goodrich and Pszona [28], we were
able to use boxsort [50] to implement parametric search
to solve the CCOSKEG disc problem. Though a 2-
approximation to a SKEG disc contains Θ(min (n, kr))
points of S in general, we can use Theorem 4 together
with an exact smallest k-enclosing algorithm for planar
instances [32] to find a radius ρ at most twice the opti-
mal radius of a SKEG disc such that any disc with ra-
dius ρ contains at most 4k points of S (see Appendix B).

134

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] Pankaj K. Agarwal, Lars Arge, and Frank
Staals. Improved dynamic geodesic nearest neigh-
bor searching in a simple polygon. In Symposium
on Computational Geometry, volume 99 of LIPIcs,
pages 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[2] Pankaj K. Agarwal, Lars Arge, and Frank
Staals. Improved dynamic geodesic nearest neigh-
bor searching in a simple polygon. CoRR,
abs/1803.05765, 2018.

[3] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and
Subhash Suri. Finding k points with minimum
diameter and related problems. J. Algorithms,
12(1):38–56, 1991.

[4] Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-
Lou De Carufel, Matias Korman, and Eunjin Oh.
A linear-time algorithm for the geodesic center of
a simple polygon. Discrete & Computational Ge-
ometry, 56(4):836–859, 2016.

[5] Oswin Aichholzer, Thomas Hackl, Matias Korman,
Alexander Pilz, and Birgit Vogtenhuber. Geodesic-
preserving polygon simplification. International
Journal of Computational Geometry & Applica-
tions, 24(4):307–324, 2014.

[6] Andrei Alexandrescu. Fast deterministic selection.
In SEA, volume 75 of LIPIcs, pages 24:1–24:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

[7] Nancy M. Amato, Michael T. Goodrich, and
Edgar A. Ramos. Linear-time triangulation of
a simple polygon made easier via randomization.
In Symposium on Computational Geometry, pages
201–212. ACM, 2000.

[8] Lars Arge and Frank Staals. Dynamic geodesic
nearest neighbor searching in a simple polygon.
CoRR, abs/1707.02961, 2017.

[9] Boris Aronov. On the geodesic voronoi diagram
of point sites in a simple polygon. Algorithmica,
4(1):109–140, 1989.

[10] Boris Aronov, Steven Fortune, and Gordon T. Wil-
fong. The furthest-site geodesic voronoi diagram.
Discrete & Computational Geometry, 9:217–255,
1993.

[11] Tetsuo Asano and Godfried Toussaint. Computing
the geodesic center of a simple polygon. In Discrete
Algorithms and Complexity, pages 65–79. Elsevier,
1987.

[12] Sang Won Bae, Matias Korman, and Yoshio
Okamoto. Computing the geodesic centers of a
polygonal domain. Comput. Geom., 77:3–9, 2019.

[13] Manuel Blum, Robert W. Floyd, Vaughan R.
Pratt, Ronald L. Rivest, and Robert Endre Tar-
jan. Time bounds for selection. J. Comput. Syst.
Sci., 7(4):448–461, 1973.

[14] Magdalene G. Borgelt, Marc J. van Kreveld, and
Jun Luo. Geodesic disks and clustering in a sim-
ple polygon. Int. J. Comput. Geometry Appl.,
21(6):595–608, 2011.

[15] Prosenjit Bose, Anthony D’Angelo, and Stephane
Durocher. Approximating the smallest k-enclosing
geodesic disc in a simple polygon. In WADS, page
(to appear). LNCS, 2023.

[16] Prosenjit Bose and Godfried T. Toussaint. Com-
puting the constrained euclidean geodesic and link
center of a simple polygon with application. In
Computer Graphics International, pages 102–110.
IEEE Computer Society, 1996.

[17] Timothy M. Chan. Geometric applications of a ran-
domized optimization technique. Discret. Comput.
Geom., 22(4):547–567, 1999.

[18] Bernard Chazelle. Triangulating a simple polygon
in linear time. Discrete & Computational Geome-
try, 6:485–524, 1991.

[19] Bernard Chazelle, Herbert Edelsbrunner,
Michelangelo Grigni, Leonidas J. Guibas, John
Hershberger, Micha Sharir, and Jack Snoeyink.
Ray shooting in polygons using geodesic triangu-
lations. Algorithmica, 12(1):54–68, 1994.

[20] Orin Chein and Leon Steinberg. Routing past
unions of disjoint linear barriers. Networks,
13(3):389–398, 1983.

[21] Richard Cole. Slowing down sorting networks
to obtain faster sorting algorithms. J. ACM,
34(1):200–208, 1987.

[22] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

[23] Anthony D’Angelo. Constrained Geometric Opti-
mization Problems. PhD thesis, Carleton Univer-
sity, 2023. doi:10.22215/etd/2023-15445.

[24] Amitava Datta, Hans-Peter Lenhof, Christian
Schwarz, and Michiel H. M. Smid. Static and dy-
namic algorithms for k -point clustering problems.
J. Algorithms, 19(3):474–503, 1995.

135

35th Canadian Conference on Computational Geometry, 2023

[25] Sarita de Berg and Frank Staals. Dynamic data
structures for k-nearest neighbor queries. Compu-
tational Geometry, 111:101976, 2023.

[26] Alon Efrat, Micha Sharir, and Alon Ziv. Com-
puting the smallest k-enclosing circle and related
problems. Comput. Geom., 4:119–136, 1994.

[27] David Eppstein and Jeff Erickson. Iterated nearest
neighbors and finding minimal polytopes. Discrete
& Computational Geometry, 11:321–350, 1994.

[28] Michael T. Goodrich and Pawel Pszona. Cole’s
parametric search technique made practical. In
CCCG. Carleton University, Ottawa, Canada,
2013.

[29] Leonidas J. Guibas and John Hershberger. Optimal
shortest path queries in a simple polygon. Journal
of Computer and System Sciences, 39(2):126–152,
1989.

[30] Leonidas J. Guibas, John Hershberger, Daniel
Leven, Micha Sharir, and Robert Endre Tarjan.
Linear-time algorithms for visibility and shortest
path problems inside triangulated simple polygons.
Algorithmica, 2:209–233, 1987.

[31] Sariel Har-Peled. Geometric approximation algo-
rithms, volume 173. American Mathematical Soc.,
2011.

[32] Sariel Har-Peled and Soham Mazumdar. Fast algo-
rithms for computing the smallest k-enclosing cir-
cle. Algorithmica, 41(3):147–157, 2005.

[33] Juha Heinonen. Lectures on analysis on metric
spaces. Springer, New York, 2001.

[34] John Hershberger. A new data structure for short-
est path queries in a simple polygon. Information
Processing Letters, 38(5):231–235, 1991.

[35] John Hershberger and Subhash Suri. A pedestrian
approach to ray shooting: Shoot a ray, take a walk.
J. Algorithms, 18(3):403–431, 1995.

[36] David G. Kirkpatrick. Optimal search in planar
subdivisions. SIAM J. Comput., 12(1):28–35, 1983.

[37] Der-Tsai Lee and Franco P. Preparata. Euclidean
shortest paths in the presence of rectilinear barri-
ers. Networks, 14(3):393–410, 1984.

[38] Tomás Lozano-Pérez and Michael A. Wesley. An
algorithm for planning collision-free paths among
polyhedral obstacles. Commun. ACM, 22(10):560–
570, 1979.

[39] Jǐŕı Matoušek. On enclosing k points by a circle.
Inf. Process. Lett., 53(4):217–221, 1995.

[40] Jǐŕı Matoušek. On geometric optimization with
few violated constraints. Discrete & Computational
Geometry, 14(4):365–384, 1995.

[41] Nimrod Megiddo. Combinatorial optimization with
rational objective functions. Math. Oper. Res.,
4(4):414–424, 1979.

[42] Nimrod Megiddo. Applying parallel computation
algorithms in the design of serial algorithms. J.
ACM, 30(4):852–865, 1983.

[43] Nimrod Megiddo. Linear-time algorithms for linear

programming in R3 and related problems. SIAM
J. Comput., 12(4):759–776, 1983.

[44] Rajeev Motwani and Prabhakar Raghavan. Ran-
domized Algorithms. Cambridge University Press,
1995.

[45] Eunjin Oh and Hee-Kap Ahn. Voronoi diagrams
for a moderate-sized point-set in a simple polygon.
Discrete & Computational Geometry, 63(2):418–
454, 2020.

[46] Eunjin Oh, Sang Won Bae, and Hee-Kap Ahn.
Computing a geodesic two-center of points in a sim-
ple polygon. Comput. Geom., 82:45–59, 2019.

[47] Eunjin Oh, Jean-Lou De Carufel, and Hee-Kap
Ahn. The geodesic 2-center problem in a simple
polygon. Comput. Geom., 74:21–37, 2018.

[48] Richard Pollack, Micha Sharir, and Günter Rote.
Computing the geodesic center of a simple poly-
gon. Discrete & Computational Geometry, 4:611–
626, 1989.

[49] George Rabanca and Ivo Vigan. Covering the
boundary of a simple polygon with geodesic unit
disks. CoRR, abs/1407.0614, 2014.

[50] Rüdiger Reischuk. Probabilistic parallel algorithms
for sorting and selection. SIAM J. Comput.,
14(2):396–409, 1985.

[51] Angelika Reiser. A linear selection algorithm for
sets of elements with weights. Inf. Process. Lett.,
7(3):159–162, 1978.

[52] Sivan Toledo. Extremal polygon containment prob-
lems and other issues in parametric searching. PhD
thesis, Citeseer, 1991.

[53] G Toussaint. Computing geodesic properties inside
a simple polygon. Revue D’Intelligence Artificielle,
3(2):9–42, 1989.

[54] René van Oostrum and Remco C. Veltkamp. Para-
metric search made practical. Comput. Geom.,
28(2-3):75–88, 2004.

136

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[55] Ivo Vigan. Packing and covering a polygon with
geodesic disks. CoRR, abs/1311.6033, 2013.

[56] Haitao Wang. On the geodesic centers of polygonal
domains. JoCG, 9(1):131–190, 2018.

[57] Haitao Wang. An optimal deterministic algorithm
for geodesic farthest-point voronoi diagrams in sim-
ple polygons. In SoCG, volume 189 of LIPIcs, pages
59:1–59:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[58] Emo Welzl. Smallest enclosing disks (balls and el-
lipsoids). In New Results and New Trends in Com-
puter Science, volume 555 of Lecture Notes in Com-
puter Science, pages 359–370. Springer, 1991.

137

35th Canadian Conference on Computational Geometry, 2023

A Parametric Search

Let ∂D(u, ρ) denote the boundary of the geodesic disc
centred at u with radius ρ. We assume preprocessing
has already been performed. Note that the initial input
chord ` of Pin may no longer be a chord in our simplified
polygon P . We continue to use the initial chord since
(a) shortest paths between points in Pin don’t change
when Pin is simplified to P ; and (b) the endpoints of our
given chord would define an interval of solution validity
anyway if we chose to extend it into a chord for P (which
could be done in O(log r) time and O(1) space using
ray-shooting queries).

Ray-Shooting Queries In O(r) time and space we
preprocess P to allow us to perform O(log r)-time,
O(1)-space ray-shooting queries that take as input
a point in P and a direction and returns the point
on ∂P (i.e., the boundary of P) where the ray first
intersects ∂P [19, 35].

Remark 1 It is not clear whether it is possible to ap-
ply the simpler recursive random sampling technique
of Chan’s that rivals parametric search to solve the
CCOSKEG disc problem [17]. That approach requires
one to partition the points of S into a constant number
of fractional-sized subsets such that the overall solution
is the best of the solutions of each of the subsets. It is
not clear to us how to partition the points of S to take
advantage of this approach.

A.1 Testing Closest Points

Lemma 7 (Bose et al. 2023 [15]) We compute the
set of projections of the points of S onto ` in O(n log r)
time and O(n+ r) space.

Proof. Let ` be horizontal. For ease of presentation,
we consider ` as having subdivided P into two polygons.
We consider one of these polygons, let it keep the name
P , and assume the points of S are in P . The other
subpolygon can then be analyzed identically. Let the
downward direction be toward the side of ` containing
the exterior of the polygon P . Let the left endpoint
of ` be `1 and the right endpoint be `2. Consider a
point p ∈ ` and the last edge e of Π(u, p) (i.e., the
edge to which p is incident). Let the angle of e be the
smaller of the two angles formed by e and ` at p. The
range of this angle is [0, π/2]. We know from Pollack
et al. [48, Corollary 2] that distu(·) is minimized when
e is perpendicular to `. We also know from Pollack
et al. [48, Corollary 2] that given p′ ∈ ` and an edge e′

analogous to e, if the angle of e′ is closer to π/2 than that
of e, then distu(p′) < distu(p). Lastly, we know from
Pollack et al. [48, Lemma 1] that distu(·) is a convex
function which means it has a global minimum.

Using Observations 1 and 2 we can retrieve the trun-
cated funnel of u and ` in O(log r) time and O(r) space
and use the convex chains to perform a binary search
along ` using the markers defined by the elements of E
to find the domain in which uc lies. See Fig. 5 in Ap-
pendix C. This domain has the property that the angle
of the last edge on the shortest path from u to the points
in this domain is closest to π/2.

In the binary search, at each marker (as determined
by the node currently being visited in the tree repre-
senting the convex chain), in O(1) time and space we
compute the angle of ` with the extension segment defin-
ing the marker. Since distu(·) is a convex function, we
know that as we slide a point p ∈ ` from `1 to `2, the
angle of the edge incident to p on Π(u, p) will monoton-
ically increase until it reaches π/2, then monotonically
decrease. Thus, after computing the angle of the ex-
tension segment with `, we know to which side of its
marker to continue our search: the side that contains
the smaller angle (because moving in this direction will
increase the smaller angle). Thus by Observation 2 the
search takes O(log r) time and O(r) space.

At the end of our search we will have the reflex vertex
whose domain contains the edge that achieves the angle
closest to π/2. Then in O(1) time and space we can
build the corresponding piece of distu(·) and find the
value along ` that minimizes it.

The space bounds follow from the n projections that
are computed and the O(r) space used by the shortest-
path data structure queries. �

A.2 How to Compare Elements in the Sort

The trick when using a sorting algorithm as the generic
algorithm in the parametric search technique is deciding
what to sort. Once that has been determined, we use
parametric search to run the sorting algorithm as if the
things we are sorting were produced knowing ρ∗.

We will sort ∂D(u, ρ∗)∩` for all u ∈ S (i.e., the inter-
section points of ` with the boundaries of the geodesic
discs of radius ρ∗ centred at the points of S). We need
to express these intersection points in terms of the vari-
able radius ρ of the discs centred at the points of S.
Notice that the boundary of a geodesic disc of radius ρ
is constructed piecewise. Part of the disc’s boundary is
formed by the boundary of the polygon at distance less
than ρ away from the centre of the disc, and the rest is
circular arcs from the circle centred at the disc’s centre
or from circles centred on reflex vertices contained in
the disc’s interior.

Let us assume for the moment that ∂D(u, ρ) inter-
sects ` twice (the cases of one and zero intersections are
simple to figure out afterwards and are omitted). As-
sume that we know that the point w = (wx, wy) is the
last reflex vertex on the path from u ∈ S to at least
one of the intersection points. This intersection point is

138

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

where ` is intersected by a circular arc centred on w. Let
∆ = ρ− dg(u,w). If ∆ were negative, we would have a
contradiction (D(u, ρ) would not even contain w). The
equation for the circular arc defining ∂D(u, ρ) where it
intersects ` is given by the equation of a circle of radius
∆ centred at w. Once again, assume ` is the x-axis.
Using the equation of a circle, we have the following.

(x− wx)2 + (y − wy)2 = ∆2

(x− wx)2 + (0− wy)2 = ∆2

(x− wx)2 + w2
y = ∆2

(x− wx)2 = ∆2 − w2
y

x− wx = ±
√

∆2 − w2
y

x =
(
±
√

∆2 − w2
y

)
+ wx (4)

If x is defined, it is only valid in the domain of w
(i.e., the interval along ` in which w is the last reflex
vertex on the path from u). If x is undefined, then
after passing w, D(u, ρ) does not intersect `. If both
values computed by Eq. (4) fall outside of w’s domain,
then we contradict that w is the last vertex on the path
from u to the considered intersection point for the given
radius ρ (which means that w would not be used in
computing the boundary of D(u, ρ)). Otherwise, if an
x-value from Eq. (4) lies within the domain of w, then
this x-value would be one of at most two intersection
points of ∂D(u, ρ) and `. If only one x-value computed
by Eq. (4) falls in the domain of w, then the process
must be repeated with some other reflex vertex (which
is the case if the last reflex vertex from u is not the same
for both intersection points).

Though we want to sort intersection points of ` with
the boundaries of geodesic discs, our intersection points
are equations until the variable ρ has been provided.
Nonetheless, it is these intersection points we would like
to sort. Ideally, we would have only O(n) candidate
intersection points along ` to consider (up to two per u ∈
S). As we saw above though, the intersection points of a
geodesic disc centred on u ∈ S depend on the last reflex
vertex on the path from u to `, which in turn depends
on the optimal radius, which we do not know ahead of
time. Initially, it seems that for each u ∈ S we have to
consider the O(r) intersection points computed by using
each reflex vertex of its truncated funnel. However, we
do not want to spend Ω(nr) time. Luckily for us, as we
show in Appendix A.5, we can use a parametric-search-
like approach to whittle these O(nr) candidates back
down to O(n) using an idea similar to one of the steps of
the Goodrich and Pszona parametric search paper [28].
We will assume we know the last reflex vertex before
every intersection point and thus the O(n) equations to
use for the intersection points of the discs with `.

Now that we have our items to be sorted, we need
to know how to compare them. Consider two of these
intersection points, one for each of the points u and v,
{u, v} ∈ S. Let the reflex vertex of the intersection point
of u (resp. v) being considered be w (resp. z) and let the
intersection points considered be the ones computed by
taking the positive square roots in their equations (from
Eq. (4)). Let δ = dg(u,w) and ψ = dg(v, z). When we
sort the intersection points, we are asking if one x-value
is less than, greater than, or equal to another along `.
Therefore, we want to know the following at a variable
radius ρ. Let Ci be constant i.

√
(ρ− ψ)2 − z2y + zx S

√
(ρ− δ)2 − w2

y + wx

⇒ 0 S (ρ− δ)4 + (ρ− ψ)4

− 2(ρ− δ)2(ρ− ψ)2

+ C1(ρ− δ)2 + C2(ρ− ψ)2

+ C3 (5)

We can expand and simplify Eq. (5) to get a cubic
function, once again replacing constant expressions by
constant Ci.

0 S C4ρ
3 + C5ρ

2 + C6ρ+ C7 (6)

We end up with the cubic Eq. (6). After testing the
projections of S onto ` in Section 3.1.1/Appendix A.1,
we know and discard the points of S too far from `
to intersect ` with a disc of radius ρ∗. Thus, Eq. (4)
will be defined at radius ρ∗ for each point being con-
sidered, and the abscissa will be in the domain of the
associated reflex vertex. Thus, when the comparison of
Eq. (6) is resolved, a value for the radius is used that:
(a) produces the same sign as ρ∗; and (b) adheres to
the restriction that the results of using that radius with
the two instances of Eq. (4) that created the comparison
lie in the respective domains (along `) of the reflex ver-
tices associated with the instances of Eq. (4). The sign
of the answer reveals which intersection point is to the
left. When the comparison is resolved in the parametric
search, both intersection points are defined and valid.

Eq. (6) gives us the next piece of the parametric
search puzzle: a low-degree polynomial in ρ which de-
termines the comparisons of the parallel sorting algo-
rithm and whose roots are the candidates with which
to run the decision algorithm. The roots are the values
for which the two intersection points coincide. As men-
tioned above, if ρ∗ is not defined by the closest point of
` to some point in S, then at ρ∗ there will be at least one
pair of intersection points that coincide since the over-
lapping interval of the ≥ k discs along ` will collapse to
a single point. The constant number of roots for an in-
stance of Eq. (6), which can be computed in O(1) time

139

35th Canadian Conference on Computational Geometry, 2023

and space since it is a cubic function, split the possible
values of ρ for that instance into a constant number of
intervals in the parameter space. Each interval has the
property that evaluating the instance of Eq. (6) using
any value of ρ in the interval produces the same sign.
Therefore, once it is known to which side of each root
the optimal ρ∗ lies for this instance of Eq. (6), we know
the result of the comparison for ρ∗ for this instance.

A.3 Decision Problem

To use parametric search, we need a sequential decision
algorithm that, given a radius as a candidate for ρ∗,
can tell us if this candidate is less than, greater than,
or equal to ρ∗.

Lemma 8 Given a polygon P with O(r) vertices, a
chord `, a set S of n points, a radius ρ, and a constant
k ≤ n, having performed the preprocessing of Lemma 1,
we can decide if there is a KEG disc of radius ρ centred
on ` and return such a disc in O(n(log r + log n)) time
and O(n+ r) space, and report whether ρ < ρ∗, ρ > ρ∗,
or ρ = ρ∗.

Proof. Consider the geodesic disc of radius ρ, D(u, ρ).
Since the disc is geodesically convex, if the chord inter-
sects the disc in only one point, it will be at the projec-
tion uc. If it does not intersect the disc, then at uc the
distance from u to ` will be larger than ρ. Otherwise,
if the chord intersects the disc in two points, uc splits `
up into two intervals, each with one intersection point
(i.e., each one contains a point of ∂D(u, ρ)∩ `). If uc is
an endpoint of `, assuming ` has positive length, one of
these intervals may degenerate into a point, making uc
coincide with one of the intersection points.

These two intervals to either side of uc have the prop-
erty that on one side of the intersection point contained
within, the distance from u to ` is larger than ρ, and on
the other side, the distance is less than ρ. Therefore, if
∂D(u, ρ) does intersect ` in two points we can proceed
as in the proof of Lemma 1: in O(log r) time and O(r)
space we can build the two funnels of u between uc and
the endpoints of ` (truncated at the apices) and then
perform a binary search in each to locate the domain in
which a point at distance ρ lies. We find the subinterval
delimited by the domain markers of the reflex vertices
wherein the distance from u to ` changes from being
more (less) than ρ to being less (more) than ρ. The
final subinterval for a given intersection point tells us
which reflex vertex to use in Eq. (1). Once we find this
domain, we can compute ∂D(u, ρ)∩ ` in O(1) time and
space. Thus, in O(n log r) time and O(n + r) space,
we create O(n) labelled intervals along `, one for each
geodesic disc of radius ρ centred on each u ∈ S. In other
words, the set of these intervals is {D(u, ρ)∩ ` : u ∈ S}.
We then sort these interval endpoints in O(n log n) time

and O(n) space, associating each endpoint with the in-
terval it opens or closes.

When we walk along ` and enter the interval D(u, ρ)∩
` for some u ∈ S, we say we are in the disc of u. Our
next step, done in O(n) time and space, is to walk along
` and count the maximum number of discs we are con-
currently in at any given point. In other words, we are
counting the maximum number of overlapping intervals.
If the maximum is fewer than k, then ρ is too small. If
the maximum is larger than k, then since we assume no
four points are co-circular (and thus the CCOSKEG disc
contains exactly k points), ρ is too large. If the maxi-
mum is k, if there is a subinterval that is larger than a
single point in which there are k overlapping intervals,
then ρ is too large. Otherwise, ρ = ρ∗ and the sin-
gle point of k overlaps is the centre for the CCOSKEG
disc. �

A.4 Using Boxsort

Goodrich and Pszona [28] use boxsort [50] as their sort-
ing algorithm. It can be described as quicksort with
multiple pivots which produces a number of recursive
calls proportional to the number of pivots. This al-
lows them to take advantage of the optimization tech-
nique of Cole [21] to reduce the running time. Although
the pivots first need to be sorted and then the remain-
ing elements need to be sorted into the correct boxes
(i.e., placed between the correct pivots) before recur-
ring, we have multiple boxes once the recursive calls
start. Each box has an independent set of compar-
isons (i.e., the comparisons in a box are independent
of other boxes). This allows the recursion in the differ-
ent boxes to be at different levels. Rather than running
a median-finding algorithm on the value of the candi-
date radii, however, a weighting scheme for the candi-
date radii is applied based on the depth of their defin-
ing comparisons in the recursion. The next radius to
test with the decision algorithm is based on a linear-
time weighted-median-finding algorithm [51]. The sum
of the weights of the current candidates is called the
active weight. The weighted-median-finding algorithm
considers the couples of radius and weight and returns
the set of elements whose sum of weights is at most
half the active weight. Furthermore, all radii in this set
are less than the radius in the computed weighted me-
dian, and adding the weight of the computed weighted
median produces a weight larger than half the active
weight. The algorithm can easily be modified to return
the weighted median as well. As such, rather than each
call removing half of the number of candidate radii and
comparisons, each call removes at least a quarter7 of the

7Although the weighted median resolves the comparisons of a
weighted half of the candidates, the weighting scheme applied by
Goodrich and Pszona [28] equally assigns half of the weight of
a comparison to its children. Thus, half of the active weight is

140

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

active weight.
The candidate radii are not separated by recursive

subproblem; the weighted-median that gets resolved is
chosen from the complete set of untested radii that have
not already been culled. Within a recursive subprob-
lem of the Goodrich and Pszona approach [28], how-
ever, there are “synchronization points” in the algo-
rithm represented as “virtual comparisons” that are not
activated until the current batch of comparisons has
been resolved. These virtual comparisons do not rep-
resent real work, but they assist in the analysis of the
runtime. The analysis is done by creating a dependency
graph between the comparisons in the algorithm where
the height of the graph of one recursive subproblem (i.e.,
the longest path between the start of the recursive call
and the point when the next recursive calls start) is
O(log n), and then noting that this implies the height
for the entire simulation is also O(log n) with high prob-
ability.

Recall that the items we are sorting are the O(n)
intersection points of the boundaries of the candidate
geodesic discs with `. Call these points crossings. We
repeat the algorithm of Goodrich and Pszona [28] that
uses the following weighting rule for the comparisons
(virtual or not). The following algorithm description
(which does not mention the virtual comparisons as they
do not represent real work) assumes each comparison
produces one root. See Fig. 13 in Appendix C for an
illustrated example of a recursive call.

Weight Rule When comparison C of weight σ gets re-
solved and causes q comparisons C1, . . . ,Cq to be-
come active, each of these comparisons gets weight
σ/(2q).

1. Randomly mark
√
n crossings.

2. Sort the marked crossings by comparing every pair
in O(n) comparisons, each of weight σ. Order them
with insertion sort.

3. After all of the comparisons of the previous step
have been resolved, activate comparisons for rout-
ing the remaining crossings through the tree of
marked items (i.e., we do a binary search through
the marked items), where each comparison at the
root of this tree has weight σ/(2n2). In other
words, create comparisons and assign the appro-
priate weight to them to prepare the n − √n un-
marked crossings for a binary search through the
marked crossings to place the unmarked crossings
between the marked pivots.

4. Route the unmarked crossings through the tree
(i.e., do a binary search for each of them with the

removed, but if each comparison involved had children, then we
add back a quarter of the weight (i.e., half of half).

marked items) by repeatedly finding and testing
the weighted median and then resolving compar-
isons (following the weighting rule when compar-
isons get resolved).

5. Once we know in which box each unmarked element
lies (i.e., between which marked items it lies), insert
it into its appropriate box.

6. Assign weight σ/(4n4.5) to the initial comparisons
in the new subproblems.

7. Recur into subproblems simultaneously.

The Goodrich and Pszona analysis [28] omits a dis-
cussion about comparisons with multiple roots and how
the weights change in such cases. Below we alter their
analysis to use three roots.

After the marked crossings are sorted, we use the
sorted crossings to perform a binary search to position
each unsorted element between a pair of sorted marked
crossings. In the Goodrich and Pszona analysis [28],
this is presented as a binary search through a perfectly
balanced binary search tree for each unmarked element
independently. To keep the analysis simple, rather than
routing n − √n items, we route n items. Our compar-
isons have three roots, so the weight of the comparison
at the root of this binary search tree (which is the same
for each element being routed) must change accordingly.

We begin the analysis. To sort the marked cross-
ings by brute force, each comparison between a pair of
crossings actually produces three comparisons of roots
against the optimal radius. Each of these three compar-
isons started with weight σ. Thus, after these crossings
are sorted, following the Goodrich and Pszona analysis
[28] using an upside-down virtual binary tree of log(3n)
height in the dependence graph, the weight at the root
of the virtual tree is σ/(3n). This virtual root then acti-
vates (and equally shares half of its weight to) the com-
parison nodes that start routing the unmarked cross-
ings through the binary search tree of marked crossings.
Each comparison at the root of these binary search trees
that route the unmarked crossings through the search
tree of marked crossings, however, also creates three
root comparisons. Thus, each of these root comparisons
gets weight σ/(2 · (3n)(3n)) = σ/(2(3n)2) (i.e., weight
σ/(3n) divided among 3n comparisons).

As the routing progresses through the binary search
trees, the trees get whittled down to paths determining
where an element lies in relation to the sorted cross-
ings. When each comparison in the tree produces one
root comparison, the weight at the bottom of the tree is
the weight at the top divided by 2log

√
n = n0.5 because

each comparison along the way passes half its weight
to its one child, i.e., the next comparison on the path
through the tree. However in our scenario, although re-
solving a routing comparison in the tree activates at

141

35th Canadian Conference on Computational Geometry, 2023

most one new routing comparison, it has three chil-
dren, one for each root comparison of the next tree
node. To aid in the analysis, we replace each rout-
ing comparison with the three root comparisons, all of
which are the parents of a virtual comparison repre-
senting the routing comparison they resolve. Each of
the three root comparisons of a routing node depend
on (i.e., are children of) the virtual comparison of the
node above it. In this way, rather than dividing the
weight by half each step down the routing tree, we di-
vide it by 2 · (2 · 3): each of the three root compar-
isons passes half of its weight to their (virtual) child
(meaning it gets half the weight of any one of them),
and this virtual node passes half of its weight equally
shared amongst its three children, meaning each child
gets half of a third of its weight. Thus, the weight at the
bottom of our tree is the weight at the top divided by
(2 ·2 ·3)log

√
n = n ·3log

√
n. Although after the last rout-

ing comparison we do not create three new root compar-
isons, we create three virtual comparisons to make the
analysis cleaner. Therefore, the weight at the bottom
of the tree is σ/(18n2 · n · 3log

√
n) = σ/(18n3 · 3log

√
n).

The next part of the dependence graph is another
upside-down virtual binary tree like the one used af-
ter the sorting of the marked crossings. At the root
of this tree, the weight becomes σ/(18n3 · 3log

√
n ·

3n) = σ/(18n4 · 3log
√
n+1). All initial comparisons in

the subsequent recursive calls depend on the root of
this tree and its weight. Thus the weight of the ini-
tial root comparisons in subsequent recursive calls is
σ/(2 · (3n) · (18n4 · 3log

√
n+1)) = σ/(36n5 · 3log

√
n+2)

(i.e., weight σ/(18n4 ·3log
√
n+1) divided among 3n com-

parisons).
We can follow the approach of Goodrich and Pszona

[28] and use Cole’s analysis [21], which we repeat here
modified for this specific case of at most three roots per
comparison, to show that there are O(log n) calls to the
decision algorithm.

Lemma 9 (Cole 1987 [21]) At the start of the (j +
1)st iteration, the active weight is bounded above by
(3/4)j · (3n) for j ≥ 0.

Proof. We prove the result by induction on j. At the
start of the first iteration there are 3n active compar-
isons at depth 0, and all other comparisons are inactive.
So for j = 0, the result holds. To prove the inductive
step, it is sufficient to show that in each iteration the
active weight is reduced by at least one quarter. We
now show this.

Consider an active comparison C of weight σ that has
just been resolved. Then C ceases to be active, and up
to three new comparisons may become active, each an
equal share of half the weight of σ (e.g., if three new
comparisons are activated, they each have weight σ/(2 ·
3) = σ/6). So the resolution of C reduces the active

weight by at least σ/2. Let the active weight be W. In
one iteration, we are guaranteed that the comparisons
resolved have combined weight at least W/2. Thus, in
one iteration, the active weight is reduced from W to at
most 3W/4. �

Lemma 10 (Goodrich and Pszona 2013 [28])
Each comparison at depth i has weight ≥ (1/4)i.

Proof. We prove this by induction on the depth of
the boxsort recursion. Assume that the current recur-
sive call operates on a subproblem of size 3n, and that
comparisons at the beginning of the recursive call have
depth i and weight σ. By the inductive assumption,
σ ≥ (1/4)i.

Consider comparisons in the current recursive call.
Comparisons at depth j in the first tree of virtual
comparisons (global depth i + j) have weight σ/2j ≥
(1/4)i · (1/2)j ≥ (1/4)i+j . The last of them has (local)
depth log(3n) and weight σ/(3n). It then spreads half
of its weight to 3n comparisons at depth log(3n) + 1
(global depth i+ log(3n) + 1), setting their weight to

σ/(2(3n)2) ≥ σ/(4(3n)2) = σ/(4log(3n)+1) ≥ (1/4)i+log(3n)+1

The same reasoning follows for the case of the second
virtual tree and recursive split.

Routing through the tree of sorted marked items has
two levels of comparison nodes per node in the tree. For
each step down this routing tree, we have three compar-
isons followed by a virtual comparison which then splits
its weight among the three comparisons at the next level
down in the routing tree. Let σ′ = σ/(2(3n)2) be the
weight of each comparison node at the root of the rout-
ing tree. The next node in the analysis tree (at global
depth i+ log(3n) + 2) is the virtual node whose weight
is

σ′/2 = σ/(4(3n)2) = σ/(4log(3n)+1) ≥ (1/4)i+log(3n)+2

The children of this node in the tree (at global depth
i+ log(3n) + 3) each have weight

σ′/(2 · 2 · 3) =σ/(6 · 4(3n)2)

=σ/(6 · 4log(3n)+1)

≥σ/(42 · 4log(3n)+1)

=σ/(4log(3n)+3)

≥(1/4)i+log(3n)+3

We can map our analysis tree back on to the routing
tree if we divide the weight by 2 · 2 · 3 each level down
the routing tree. This means the analysis tree has one
more level beyond the last virtual comparison. This
last level has three virtual comparisons per tree. This
means that the number of levels in this routing tree is
2 log(

√
n)+1 and the weight at the bottom is the weight

142

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

at the top divided by (2·2·3)log(
√
n) (here we need to use

the number of levels in the routing tree). Thus we have
the weight of each node at the bottom of the routing
tree (at global depth i+ log(3n) + 2 log(

√
n) + 1) is

σ/(2(3n)2 · (2 · 2 · 3)log(
√
n)) ≥σ/(4(3n)2 · (4 · 3)log(

√
n))

≥σ/(4log(3n)+1 · (4 · 3)log(
√
n))

≥σ/(4log(3n)+1 · (4 · 4)log(
√
n))

≥σ/(4log(3n)+1 · (42)log(
√
n))

≥σ/(4log(3n)+1 · (4)2·log(
√
n))

=σ/(4log(3n)+2 log(
√
n)+1)

≥(1/4)i+log(3n)+2 log(
√
n)+1

To finish the proof, note that the base case is realized
in the very first call to the algorithm, since a comparison
at depth 0 has weight 1 = (1/4)0. �

Lemma 11 (Cole 1987 [21]) For j ≥ 5(i +
(1/2) log(6n)), during the (j + 1)st iteration there
are no active comparisons at depth i.

Proof. At the start of the (j + 1)st iteration the total
active weight W is bounded by (3/4)5(i+(1/2) log(6n)) ·
(3n) (by Lemma 9).

We note (3/4)5 < (1/4). So

W <(1/4)i+(1/2) log(6n) · (3n)

=(1/4)i · (1/4)(1/2) log(6n) · (3n)

=(1/4)i · (1/(6n)) · (3n)

=(1/4)i · (1/2)

But an active comparison at depth i has weight at least
(1/4)i. So there is no such comparison. �

Goodrich and Pszona [28] point out that the depen-
dency graph for one recursive call has O(log n) height,
and one recursive call of boxsort performs O(log n) par-
allel steps. They also cite Motwani and Raghavan [44]
stating that with high probability boxsort terminates in
O(log n) parallel steps, and thus the height of the whole
dependency graph of the parametric search boxsort also
has height O(log n) with high probability. Plugging this
height into Lemma 11 as the value for i, we get that we
require O(log n) calls to the decision algorithm.

Theorem 4 Given a chord ` ⊂ Pin we compute a
CCOSKEG disc D(c∗, ρ∗) in O(n log2 n+m) time with
high probability using O(n log r +m) space.

Proof. Preprocessing from Section 2 takes O(m) time
and space. It will be shown in Appendix A.5 that with
O(log n+log r) calls to the decision algorithm and addi-
tional O(n log r) time and O(n log r+ r) space, we com-
pute the last reflex vertices on the paths from each point

u ∈ S to ∂D(u, ρ∗) ∩ `, effectively giving us O(n) items
to sort. Given this result and Corollary 2, the prepro-
cessing from Section 3.1 makes O(log n+ log r) calls to
the decision algorithm of Lemma 3, uses O(n log r + r)
space, and takes time

O(n log r + log n · n(log r + log n) + log r · n(log r + log n))

=O(n log n log r + n log2 n+ n log2 r)

As seen in Goodrich and Pszona [28], Motwani and
Raghavan [44], and Reischuk [50], with high prob-

ability (i.e., at least 1 − e− logb n for some constant
b > 0) boxsort chooses a “good” sequence of pivots
so that it only requires O(log n) calls to the decision
algorithm of Lemma 3; and with the same probabil-
ity, taking into account the number of recursive calls
and the time we spend in a recursive call to create
boxes and then sort the remaining comparisons into
their boxes, using boxsort for parametric search takes
O(n log n + log n · n(log r + log n))) time and O(n + r)
space.

Together with the preprocessing, the time to run
our parametric search using boxsort is O(n log n log r+
n log2 n+n log2 r+m) with high probability and it uses
O(n log r + m) space. It produces the CCOSKEG disc
by the fact that the parametric search technique finds a
SKEG disc for S centred on ` (i.e., a disc with minimum
radius centred on ` containing at least k points of S).

Considering the O(m) time spent preprocessing the
polygon, we can simplify the runtime. Consider the
largest-order terms in the running time:

n log n log r︸ ︷︷ ︸
A

+n log2 n︸ ︷︷ ︸
B

+n log2 r︸ ︷︷ ︸
C

+ m︸︷︷︸
D

(7)

Either log r < log n or log n < log r, so A is always
dominated by B or C. Consequently, Expression (7) can
be simplified to

n log2 n︸ ︷︷ ︸
B

+n log2 r︸ ︷︷ ︸
C

+ m︸︷︷︸
D

(8)

Assume C dominates B and D. This implies:

143

35th Canadian Conference on Computational Geometry, 2023

n log2 r ∈ ω(m) (9)

n log2 r ∈ ω(n log2 n) (10)

log r ∈ ω(log n) by (10) (11)

⇒ r > n3

⇒ m > n3

⇒ m1/2 > n3/2

⇒ m1/2 ∈ Ω(n3/2)

⇒ m1/2 ∈ ω(n) (12)

m1/2 ∈ ω(log2m)

⇒ m1/2 ∈ ω(log2 r) (13)

m ∈ ω(n log2 r) by (12) and (13) (14)

Consequently, Expression (8) can be simplified to
n log2 n + m, meaning that the time to run our para-
metric search using boxsort is O(n log2 n+m) with high
probability. �

A.5 Decreasing to a Linear Number of Items to Sort

In this section, our goal is to discover, for each point of
S, which reflex vertices to use for Eq. (1) when we have
the optimal radius, giving us O(n) equations / intersec-
tion points to use in the parametric search. We do so
by using another parametric search. The procedure is
straightforward; it is like one of the steps used in the
boxsort parametric search of Goodrich and Pszona [28]
presented in Appendix A.4, except here each compari-
son has one root. Similar to routing unmarked elements
through the binary tree of sorted crossings, we indepen-
dently route through 2n binary search trees of O(log r)
height where the outcomes of the comparisons depend
on the solution to the parametric search. This allows
us to find the reflex vertices for each u ∈ S that anchor
∂D(u, ρ∗) ∩ `. However, instead of inferring the opti-
mum by sorting intersection points described as equa-
tions from which candidates for the optimum are ex-
tracted, here our comparisons are directly in the param-
eter space: we are directly comparing distances against
the optimum.

Since domain markers for the funnel of a point in S
with ` are points along `, in addition to defining domains
for reflex vertices they also provide distances to use as
candidate radii. We have the following monotonicity
property: for any point u ∈ S, the distance to ` in-
creases monotonically as we move from its closest point
uc ∈ ` to the endpoints of ` [48]. Thus, if we can decide
how the radius produced by a given marker compares to
the optimal radius, we can perform two binary searches
among these markers between uc and the endpoints of
` to find the domains which contain ∂D(u, ρ∗) ∩ `, and
hence discover which (at most two) reflex vertices to use

in Eq. (1) for u in the main parametric search. Recall
Observation 2 which uses the shortest-path data struc-
ture to extract the truncated funnel of u and ` and to
perform a binary search along ` using the edges of this
funnel.

We use this binary search to mimic the step of boxsort
that routes the unmarked elements through the binary
search tree of sorted crossings. The binary search can
be represented as routing an element through a binary
tree, discerning a particular path. Routing an element
through these search trees is similar to following a di-
rected path of O(log r) height. Each node on the path
corresponds to a comparison that must be resolved be-
fore the routing is able to continue on to the next node
in the path. As we route along these paths, the current
node in a path is the active comparison in the path.
When we have enough information (i.e., how ρ∗ relates
to the candidate at this comparison), we resolve the
comparison and it is no longer active. A dependence re-
lation arises wherein a node cannot be active until all its
ancestors have been resolved, at which point it may be
immediately resolved and inactivated if it is known how
ρ∗ relates to the candidate radius of the current com-
parison node; otherwise, the comparison remains active
until some call to the decision algorithm reveals the re-
lation of ρ∗ to the candidate.

Since we know uc and we have the monotonicity prop-
erty, once a comparison is resolved then we know for
an extension segment e in constant time and space to
which side of ` ∩ e a point along ` of distance ρ∗ to u
lies. Ignoring the calls to the decision algorithm, the
time spent over all of the points of S to discover which
reflex vertices to use for Eq. (1) in the main paramet-
ric search (i.e., the time to perform the binary searches
along `, or, equivalently, route through the binary trees)
is O(n log r). The space is O(r + n log r) due to the
fact that we will be holding on to all 2n shortest-path
query structures at once to sequentially simulate a par-
allel algorithm, and since careful reading of Guibas and
Hershberger [23, 29, 34] implies that a truncated funnel
takes up O(log r) extra space. Each point of S has up to
two independent binary trees of O(log r) height through
which it is routing to find the domain of interest.

First, for each u ∈ S and the endpoints `1 and `2 of `,
we compute the truncated funnel between u, `1 and uc;
and the truncated funnel between u, uc, and `2. This
is done in O(n log r) time and O(r + n log r) space via
Observation 1 and the space analysis in the previous
paragraph. Either of these funnels can replace the one
from Observation 2 to yield the same time and space for
the searches.

Then we sequentialize the running of 2n parallel
searches through binary trees of O(log r) height (one
per funnel). For each point u ∈ S we search through
the domain markers implicitly contained in its two fun-

144

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

nels looking for the domains that contain ∂D(u, ρ∗)∩ `,
which are the domains that contain a point that is dis-
tance ρ∗ away from u.

For each tree through which we are routing, each step
produces a comparison to resolve. Since a call to the de-
cision algorithm is considered costly, we do not want to
call the decision algorithm to resolve each comparison
individually. Using the fact that the candidate radii
have the monotonicity property we need for parametric
search (i.e., given the relation between ρ∗ and a candi-
date radius, we know the relation between ρ∗ and either
everything bigger than or less than the candidate) and
the fact that the domain markers used in the compar-
isons of the searches are also candidate radii, we can
route through the trees with a logarithmic number of
calls to the decision algorithm. Following Goodrich and
Pszona [28], we assign weights to the comparisons in
the searches. Initially, each gets a weight of 1; when
a comparison is resolved its child receives half of its
weight. The sum of the weights of the currently active
candidates is called the active weight. The routing can
be considered as iterations involving three steps: in the
first step, we use a linear-time weighted-median-finding
algorithm [51] to choose the weighted median candidate
radius (as described in Appendix A.4); in the next step,
we input that radius into the decision algorithm; when
the decision algorithm returns, the last step is to repeat-
edly resolve all active comparisons that can be resolved
until no more routing can be performed without know-
ing the result of another call to the decision algorithm.
At this point, the next iteration begins.

We can follow the approach of Goodrich and Pszona
[28] and use Cole’s analysis [21], which we repeat here
modified for this specific case, to show that there are
O(log n+ log r) calls to the decision algorithm.

Lemma 12 (Cole 1987 [21]) At the start of the (j +
1)st iteration, the active weight is bounded above by
(3/4)j · (2n) for j ≥ 0.

The proof of Lemma 12 is similar to that of Lemma 9
and is omitted.

Lemma 13 (Goodrich and Pszona 2013 [28])
Each comparison at depth i has weight ≥ (1/4)i.

Proof. The first comparison node in each of these
2n paths representing the search, i.e., depth 0, has
weight 1 ≥ (1/4)0. Each step down the path halves
the weight of its parent, so at depth i the weight is
(1/2)i ≥ (1/4)i. �

Lemma 14 (Cole 1987 [21], Goodrich and Pszona 2013 [28])
For j ≥ 5(i + (1/2) log(4n)), during the (j + 1)st it-
eration there are no active comparisons at depth
i.

Proof. At the start of the (j + 1)st iteration the total
active weight W is bounded by (3/4)5(i+(1/2) log(4n)) ·
(2n) (by Lemma 12).

We note (3/4)5 < (1/4). So W < (1/4)i+(1/2) log(4n) ·
(2n) = (1/4)i · (1/4)(1/2) log(4n) · (2n) = (1/4)i · (1/(4n)) ·
(2n) = (1/4)i ·(1/2). But an active comparison at depth
i has weight at least (1/4)i. So there is no such com-
parison. �

Plugging the height of the binary search trees into
Lemma 5 as i, we get the following.

Corollary 15 With O(log n+log r) calls to the decision
algorithm, with additional O(n log r) time and O(r +
n log r) space, we compute for each u ∈ S the anchors
of ∂D(u, ρ∗) ∩ `.

145

35th Canadian Conference on Computational Geometry, 2023

B Depth Bounds

Consider the following. Imagine we preprocess Pin by
simplifying it to P and then triangulating8 P . If it is
known that the points of S in a SKEG disc lie com-
pletely in one of those triangles, then we can solve the
SKEG problem as follows. First we build Kirkpatrick’s
[18, 36] O(log r) query-time point-location data struc-
ture on these triangles in O(r) time with O(r) space.
For each of the O(r) triangles we build a list of the
points of S contained within. So far we have used
O(n log r +m) time and O(n+m) space.

Now we iterate over the triangles and in each triangle
use an exact algorithm for the smallest k-enclosing disc
for planar instances [32]. If triangle i has ni points
of S in it, then we run the exact algorithm in O(nik)
expected time and O(ni+k2) expected space. We know
over all of the triangles, the ni sum to n, so we have the
following.

Theorem 16 Simplify Pin to P and triangulate P .
If the points of S in a SKEG disc are contained in
a triangle of P , we solve the SKEG disc problem in
O(n log r + nk + m) expected time and O(n + k2 + m)
expected space.

Below we show some bounds on the depth of a
geodesic disc whose radius is at most four times the op-
timal radius of a SKEG disc, ρ∗. The depth of a disc is
the number of points of S contained within. We assume
no four points are geodesically co-circular, thus there
are at most k points in any disc of the optimal radius
ρ∗. In this paper, the depth(ρ) is the maximum depth
over all points in the polygon P for a geodesic disc of
radius ρ. By definition, depth(ρ∗) = k. In this sub-
section, we assume that n > kr (otherwise the bounds
should be expressed as min (n, kr)).

Lemma 17 We have depth(2ρ∗) ∈ Ω(kr) under our
general position assumption.

Proof. Consider the optimal disc. It could jut into
Ω(r) spikes of the polygon (i.e., contain Ω(r) reflex ver-
tices, each of which obstructs visibility between points
in the disc; e.g., Fig. 1). In each spike, if we put a disc of
radius ρ∗ on the boundary of the optimal disc, it could
contain Ω(k) points. Then a disc of radius 2ρ∗ centred
on the optimal disc’s centre has Ω(kr) points in it. �

Lemma 18 For a constant c > 1, we have
depth(cρ∗) ∈ Θ(kr) under our general position assump-
tion.

8Note that building the shortest-path data structure of Guibas
and Hershberger [29, 34] triangulates P , as does Kirkpatrick’s
[18, 36] point-location data structure. They both run in linear
time since we have linear-time polygon triangulation algorithms
[7, 18].

Figure 1: A star-shaped simple polygon with a geodesic
disc of radius 1 and some attempts to cover multiple
spikes with geodesic discs of radius 0.5.

Proof. The lower bound from Lemma 17 can be di-
rectly extended to a radius of cρ∗.

We now show the upper bound. Consider the geodesic
disc of radius cρ∗ centred on u ∈ P , D(u, cρ∗). Let
T (P, u) be the shortest path tree of u and let E(P, u)
be the set of extension segments of T (P, u). Consider
the tree T (P, u) ∪ E(P, u). The tree T (P, u) ∪ E(P, u)
subdivides P into O(r) Euclidean triangles such that
every point q in the triangle has the same anchor on
Π(u, q) [9, Note 3.10][30]. Thus, D(u, cρ∗) may inter-
sect O(r) triangles. Within any given triangle ∆, any
portion of a geodesic disc appears Euclidean. As such,
D(u, cρ∗)∩∆ (which looks locally in ∆ like a Euclidean
disc of radius at most cρ∗) can be covered by a constant
number of discs of radius ρ∗ (due to the bounded dou-
bling dimension of the Euclidean metric), each with at
most k points of S in it. The bound follows. �

These bounds hold in general if nothing more is
known about the manner in which a 2-approximation
is produced. However, if we combine the CCOSKEG
disc algorithm from Section 3 with something similar to
Theorem 16 from the beginning of the section to pro-
duce a 2-approximation, then we can get a better upper
bound on the number of points of S in a disc with that
radius.

We assume the preprocessing of Section 2 and the
preprocessing for Theorem 16 (including building a list
of the points of S in each triangle) has been performed
in O(n log r +m) time and O(n+m) space. Either the
points of S of a SKEG disc lie completely in a triangle
of P , or the disc contains a point of S from each side of
some diagonal. If the points of the disc are contained

146

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

in a triangle, then running the expected linear-time 2-
approximation algorithm for planar instances [32] in
each triangle will give us a 2-approximation. Making
the appropriate change in Theorem 16, we have spent
O(n log r + m) expected time and O(n + m) expected
space. If a SKEG disc contains at least one point of S
from each side of some diagonal, then running the algo-
rithm of Theorem 4 from Section 3.3 on each diagonal
will give us a 2-approximation. Either a SKEG disc is
centred on a diagonal, in which case we find it; or a
SKEG disc intersects a diagonal, in which case when
processing that diagonal we either compute a KEG disc
centred on a point inside that SKEG disc, or a KEG
disc centred on a point outside of the SKEG disc that
gives us a KEG disc with a smaller radius than any
KEG disc centred on a point of the diagonal inside the
SKEG disc, either of which gives us a 2-approximation.
Running the CCOSKEG disc algorithm of Theorem 4
on each diagonal, we spend O(nr log2 n+nr log2 r+m)
expected time9 and use O(n log r +m) space.

Thus, in O(nr log2 n+nr log2 r+m) expected time we
have produced a 2-approximation using O(n log r + m)
expected space. Let the 2-approximation radius we have
found be ρ2. We now prove depth(ρ2) ≤ 10k. Either a
disc of radius ρ2 is centred on a diagonal, or in a triangle
of P . By definition, any disc of radius ρ2 centred on
a diagonal has at most k points in it. Now consider
a disc D2 of radius ρ2 centred in a triangle of P . The
boundary of this disc could intersect the three diagonals
of the triangle. Consider the closest point of one of
the diagonals to the centre of D2, and create a disc
D` of radius ρ2 centred there. The portion of D2 on
the other side of the diagonal is contained in D`, and
thus contains at most k points on the other side of the
diagonal since ρ2 is at most the radius of the CCOSKEG
disc on this diagonal. Thus, at most 3k points of S in
D2 come from outside the triangle. Inside the triangle,
locally it looks like the Euclidean plane. Thus, by the
bounded doubling dimension of the Euclidean plane, D2

contains at most 7k points of S contained in the triangle.
If instead of modifying Theorem 16 we use the exact
algorithm it specifies in each triangle, then the portion
of D2 inside the triangle captures at most k points of S,
in which case we get depth(ρ2) ≤ 4k.

Theorem 19 In O(nr log2 n + nr log2 r + m) expected
time we compute a radius ρ2 using O(n log r + m) ex-
pected space that is a 2-approximation to ρ∗ such that
depth(ρ2) ≤ 10k. If we use O(nr log2 n + nr log2 r +
nk+m) expected time and O(n log r+ k2 +m) expected
space, we can improve ρ2 such that depth(ρ2) ≤ 4k.

9The runtime stated in Theorem 4 hides a term dominated
by the preprocessing time. Since we do not run the preprocess-
ing for each diagonal, that simplification does not apply to this
expression.

147

35th Canadian Conference on Computational Geometry, 2023

C Figures

Figure 2: The bisector of points u and v on opposite
sides of the blue chord of the polygon can intersect the
chord Θ(r) times. The intersections are labelled with
”×”. The different arcs that form the bisector are drawn
with different ink styles (e.g., dashed vs dotted vs nor-
mal ink).

Figure 3: Zoomed-in view of the first two crossings of
Fig. 2.

Figure 4: Zoomed-in view of the third crossing of Fig. 2.
As one zooms in infinitesimally and the right side of the
polygon moves toward infinity, more reflex vertices can
be added to force the bisector to cross Θ(r) times.

Figure 5: The funnel from u to the endpoints of `, in-
cluding the apex ua and the projection uc of u onto `.
Also seen are the extensions of funnel edges (in blue)
and their intersection points with `. These intersection
points can be used to perform a binary search along `.

u

`

distu(x) =

√
(x− wx)2 + w2

y + dg(u,w), if x ≥ hx√
(x− ux)2 + u2

y, if fx ≤ x < hx√
(x− vx)2 + v2

y + dg(u, v), otherwise

∂P

Exterior of P

Interior of P

w
v

f h

Figure 6: Considering the chord ` of P to be the x-axis,
given a point u ∈ S we refer to the dashed graph of
the function distu(·) as the distance function of u to `.
The points f and h on ` mark where different pieces of
distu(·) begin.

Figure 7: The geodesic discs (arbitrarily red and blue) of
radius ρ∗ centred on points of S (blue points) intersect
`. The intersection points of red (blue) disc boundaries
with ` are marked by green (red) triangles.

148

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 8: We use parametric search to sort the intersec-
tion points of disc boundaries (i.e., the red and green
triangles) from Fig. 7 along `, without knowing ρ∗, and
are able to deduce ρ∗ in the process.

Figure 9: Parametric search lets us discover the relative
order of two endpoints (e.g., the green and red triangles
at positions x1 and x2 respectively) along `. A resolved
comparison in the generic algorithm reveals which of the
two intersection points is to the left of the other when
using ρ∗ as the disc radii. Before a comparison can be
resolved, the algorithm must solve for the roots of the
two intersection equations (at most three roots in our
case).

Figure 10: The CCOSKEG disc may be defined by one
point on its boundary (such as the black dashed disc
centred on the black hollow diamond representing uc),
in which case ρ∗ is the distance from some point u ∈ S to
its projection uc; or it is defined by at least two points,
e.g., u, v ∈ S, on its boundary (such as the red dashed
disc centred on the red ”×”), in which case ρ∗ is the
radius such that the intersection of the boundaries of
the green discs centred at u and v, i.e., ∂D(u, ρ∗) ∩
∂D(v, ρ∗), is the red ”×”.

Figure 11: A comparison of intersection points along `
produces at most three roots and defines at most four
intervals in the parameter space. Due to the monotonic-
ity property of the parameter we are trying to optimize
(i.e., radius of a CCOSKEG disc), once we determine
which interval contains ρ∗ we can resolve the compari-
son that produced the roots.

Figure 12: An example of points of S (blue diamonds)
and their projections onto ` (hollow black diamonds).

149

35th Canadian Conference on Computational Geometry, 2023

(a) We begin with a collection of equations (depicted as di-
amonds in a box) representing the intersection points of the
disc boundaries with `. Going forward we no longer distin-
guish between the equations and the points they represent.
Of the n points, we randomly select

√
n points to act as

pivots. The selected points are red, and the rest are blue.

Figure 13: An illustration of a recursive call for boxsort
when used as the sorting algorithm in parametric search.

(b) We then decide the relative order of the red pivots along
` (i.e., decide their relative ordering) by creating O(n) com-
parisons between them and using a logarithmic number of
calls to the decision algorithm to resolve them. In this figure,
the sorted red points are labelled a through f and carve ` up
into seven relatively sorted intervals / boxes into which we
must place the remaining blue points. This can be done by
performing a binary search on the red pivots. The red pivots
can be considered as creating a binary search tree (with c as
the root in this example).

(c) The routing of each blue point through the tree of red
pivots can be done independently of the other blue points,
allowing us to perform their routing in parallel. For a blue
point we are routing through the tree, each step in the tree
creates a comparison between the blue point and the red
pivot represented by the tree node. To route the elements
through the tree, we repeatedly select the weighted median
of the roots produced by the available comparisons and use
this median in a call to the decision algorithm. After the call
to the decision algorithm, we resolve whichever comparisons
it is possible to resolve (which moves a blue point down the
tree), and repeat until it is known into which intervals along
` each blue point belongs.

Figure 13: An illustration of a recursive call for boxsort
when used as the sorting algorithm in parametric search.

150

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

(d) Since the decision algorithm is called on the weighted me-
dian of the candidates and each instance of routing through
the trees is independent, at any point in this routing process
blue points may be at different levels in the binary search
trees of red pivots.

(e) Once it is known into which interval each blue point
belongs, we collect them together in each interval to begin
the next recursive calls.

Figure 13: An illustration of a recursive call for boxsort
when used as the sorting algorithm in parametric search.

(a) Shown is the funnel between ua for a point u ∈ S, its
projection uc, and an endpoint of `. The convex chain rep-
resenting the funnel edges is stored in a binary search tree
(which stores the edges). In this example, the funnel edges
from ua to the left endpoint of ` are x, y, and z, and their
extension segments (the blue dashed edges) intersect ` at
the markers xm, ym, and zm respectively. We can use the
distances between u and the markers as candidate radii in
the decision algorithm. Since the distance from u to the
points on ` increases monotonically as we move from uc to
the left endpoint of `, we can use these distances to find an
interval in the parameter space in which ρ∗ lies, and at the
same time the interval along ` between two markers where
the disc of radius ρ∗ centred at u intersects `. In this exam-
ple, the decision algorithm has determined that the optimal
radius is larger than dg(u, xm), so we continue down the bi-
nary search tree on the side that brings us closer to the left
endpoint of `.

Figure 14: An illustration of the method presented in
Section 3.4 for determining the reflex vertices to use in
Eq. (1).

151

35th Canadian Conference on Computational Geometry, 2023

(b) After the edge x we visited the edge z. The decision
algorithm has determined that the optimal radius is less than
dg(u, zm), so we continue down the binary search tree on the
side that brings us closer to xm.

(c) After the edge z we visited the edge y. The decision
algorithm has determined that the optimal radius is less than
dg(u, ym), so we conclude that D(u, ρ∗) intersects ` in the
green interval between ym and xm, and the reflex vertex to
use in Eq. (1) is the one marked by the red ×.

Figure 14: An illustration of the method presented in
Section 3.4 for determining the reflex vertices to use in
Eq. (1).

(d) Similar to boxsort (see Fig. 13), routing through the
funnels to find the required reflex vertices is done in paral-
lel, repeatedly testing the radius produced by the median
weighted comparison with the decision algorithm and then
resolving any number of comparisons. The routing process
for different funnels may be at different depths in the trees at
any given moment. In this example, the routing for u ∈ S
has finished, the routing for v ∈ S is halfway through its
binary search, and the routing for w ∈ S is still at the be-
ginning.

Figure 14: An illustration of the method presented in
Section 3.4 for determining the reflex vertices to use in
Eq. (1).

152

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Parallel Line Centers with Guaranteed Separation∗

Chaeyoon Chung† Taehoon Ahn∗ Sang Won Bae‡ Hee-Kap Ahn§

Abstract

Given a set P of n points in the plane and an integer
k ≥ 1, the k-line-center problem asks k slabs whose
union encloses P that minimizes the maximum width of
the k slabs. In this paper, we introduce a new variant
of the k-line-center problem for k ≥ 2, in which the
resulting k lines are parallel and a prescribed separation
between two line centers is guaranteed. More precisely,
we define a measure of separation, namely the gap-ratio
of k parallel slabs, to be the minimum distance between
any two slabs, divided by the width of the smallest slab
enclosing the k slabs. We present the first and efficient
algorithms for the following problems: (1) Given a real
0 < ρ ≤ 1, compute k parallel slabs of minimum width
that cover P with gap-ratio at least ρ. (2) Compute
k parallel slabs that covers P with maximum possible
gap-ratio. Our algorithms run in O(ρ−k · kn log n) and
O(ρ−k

max ·kn log n) time, respectively, where ρmax denotes
the maximum possible gap-ratio of any k parallel slabs
that cover P . Both algorithms use O(n) space.

1 Introduction

In many practical situations of geometric facility loca-
tion, one would like to locate two or more facilities of
a certain shape that serve a given set P of input cus-
tomers (e.g., points) in the plane, in such a way that
the interference between two facilities and/or between
two customers served by different facilities is minimized.
Hence, most preferred in this case are mutually disjoint
facilities with separation guaranteed or maximized be-
tween the covering regions of any two facilities. In this

∗C.Chung, T.Ahn, and H.-K.Ahn were supported by the In-
stitute of Information & communications Technology Planning &
Evaluation(IITP) grant funded by the Korea government(MSIT)
(No. 2017-0-00905, Software Star Lab (Optimal Data Structure
and Algorithmic Applications in Dynamic Geometric Environ-
ment)) and (No. 2019-0-01906, Artificial Intelligence Graduate
School Program(POSTECH)). S.W.Bae was supported by the Na-
tional Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (No. 2018R1D1A1B07042755 and No.
RS-2023-00251168).

†Department of Computer Science and Engineering, Pohang
University of Science and Technology, Pohang, Republic of Korea,
{chaeyoon17, sloth}@postech.ac.kr

‡Division of Artificial Intelligence and Computer Science, Ky-
onggi University, Suwon, Republic of Korea, swbae@kgu.ac.kr

§Department of Computer Science and Engineering, Graduate
School of Artificial Intelligence, Pohang University of Science and
Technology, Pohang, Republic of Korea, heekap@postech.ac.kr

σ1

σ2

σ3

γ1

γ2

b(S)

≥ ρ · b(S)

Figure 1: An example of a 3-slab cover S of 13 points
in P . Here, we have w(S) = w(σ1) = w(σ3) and g(S) =
w(γ1) ≥ ρ · b(S). Hence, the k-slab S is a minimum-
width k-slab cover of P whose gap-ratio is at least ρ.

paper, we consider such a variant of the k-line-center
problem in the plane for k ≥ 2 with separation guar-
anteed or maximized between any two line centers and
between their covering regions. By this goal regarding
separation, it is obvious that the resulting k line cen-
ters are parallel and mutually disjoint. A more precise
description of our problem is given below.

As an input point is assigned to its closest line center
under the Euclidean metric, the covering region of a line
center forms a slab. So the problem is equivalent to find-
ing k parallel and mutually disjoint slabs σ1, σ2, . . . , σk
such that their union encloses P and σi ∩ P ̸= ∅ for
each i = 1, . . . , k. We call a sequence S of such k paral-
lel slabs a k-slab cover of P , or just a k-slab regardless
of the relation to P . For each slab σ, its width w(σ)
is the orthogonal distance between its two bounding
lines. Consider a k-slab S = (σ1, . . . , σk). (See Fig-
ure 1.) The width of S, denoted by w(S), is defined
to be max{w(σ1), . . . , w(σk)}, and the breadth of S, de-
noted by b(S), is the orthogonal distance between the
two outermost bounding lines of S. The region between
two consecutive slabs σi and σi+1 in S is called a gap,
denoted by γi. Each gap γi also forms a slab, so w(γi)
denotes its width. The gap-width of S is defined to be
the minimum of w(γi) over i = 1, . . . , k − 1, denoted
by g(S). Our measure of separation in the problem is
then defined to be the ratio of the gap-width over the
breadth, namely, the gap-ratio of S is ρ(S) := g(S)/b(S).

The goal of the problem is thus to find an optimal k-
slab cover of P regarding two objective criteria: width
and gap-ratio. More precisely, we consider the following

153

35th Canadian Conference on Computational Geometry, 2023

problems for given k ≥ 2 and a set P of n points:

1. For a given real 0 < ρ ≤ 1, find a minimum-width
k-slab cover of P whose gap-ratio is at least ρ.

2. Find a maximum-gap-ratio k-slab cover of P .

Related work. The k-line-center problem is equiva-
lent to finding k slabs, being not necessarily parallel, of
min-max width whose union encloses the input points.
The 1-line-center problem can be solved in O(n log n)
time by computing the center line of a minimum-width
slab of the points [9, 11]. For the 2-line-center prob-
lem, Agarwal and Sharir [3] gave an O(n2 log5 n)-time
algorithm, and Jaromczyk and Kowaluk [12] improved
it to O(n2 log2 n) time. Agarwal et al. [1] gave an
(1 + ϵ)-approximation algorithm for the problem that
runs in O(n(log n+ ϵ−2 log(1/ϵ)) + ϵ−7/2 log(1/ϵ)) time.
When k is part of input, the k-line-center problem is
NP-complete because it is known to be NP-complete to
decide whether n points can be covered by k lines [13].
Agarwal et al. [2] gave an (1 + ϵ)-approximation algo-
rithm that runs in O(n log n) time with the constant
factor depending on k and ϵ.

If the line centers are constrained to be parallel in
the k-line center problem, the problem is equivalent to
finding a minimum-width k-slab cover in our sense. In
this case, Bae [5] presented an O(n2)-time algorithm for
the case of k = 2. No non-trivial algorithm is known for
each k > 3, to the best of our knowledge.

Our results and approach. We present efficient algo-
rithms for the above two problems. Our algorithms run
in O(ρ−k · kn log n) and O(ρ−k

max · kn log n) time, respec-
tively, where ρmax denotes the maximum possible gap-
ratio of any k parallel slabs that cover P . Both algo-
rithms use O(n) space.

We first consider Problem 1 of computing a minimum-
width k-slab cover of P whose gap-ratio is at least a
given parameter ρ ∈ (0, 1]. To tackle the problem, we
introduce a concept of a separator of a k-slab, defined to
be a sequence of k−1 points each of which lies in its dis-
tinct gap. We describe efficient algorithms to compute
an optimal k-slab cover that respects a fixed separator
in Section 3. Then, in Section 4, we show how to solve
Problem 1 by testing O(1/ρk) candidate separators. In
Section 5, we show that the algorithms in Sections 3 and
4 are helpful enough to achieve an efficient algorithm for
Problem 2.

2 Preliminaries

The line segment connecting two points p and q is denote
by pq and its length by |pq|. The orientation of a line
ℓ in the plane is the angle swept from a vertical line in
counterclockwise direction to ℓ. Hence, the orientation θ

of each line falls in the range θ ∈ [0, π). The orientation
of a linear object, including line segments, slabs, and
k-slabs, is that of a line parallel to it.

For any two points p, q and orientation θ ∈ [0, π),
define dθ(p, q) to be the orthogonal distance between
two lines in orientation θ through p and q. It can be
written dθ(p, q) = |pq| · | sin(θ − θpq)|, where θpq is the
orientation of pq. Thus, dθ(p, q) for fixed p and q is a
sinusoidal function in θ. A function is called sinusoidal
if it is of the form a sin(θ+b) for some constants a, b ∈ R.

Consider any non-vertical k-slab S = (σ1, . . . , σk)
such that σi lies above σi+1 and its i-th gap γi lies be-
tween σi and σi+1 for i = 1, . . . , k−1. We call S a (k, ρ)-
slab if its gap-ratio ρ(S) ≥ ρ for a constant 0 < ρ ≤ 1.
Let R = (r1, . . . , rk−1) be a sequence of k − 1 points on
a common line in the order along the line. If it holds
ri ∈ γi for each i = 1, . . . , k − 1, we call R a separator
of S and say that the k-slab S respects the separator R.

3 (k, ρ)-Slabs Respecting a Given Separator

In this section, we present two algorithms that compute
a minimum-width (k, ρ)-slab cover S∗ of P respecting a
given separator R. Since the k slabs in a k-slab cover
of P are mutually disjoint and each of them encloses
at least one point of P , we can assume that 0 < ρ ≤
1/(k−1). There is no k-slab cover of P for ρ > 1/(k−1).

Let R = (r1, . . . , rk−1) be a given separator. Without
loss of generality, we assume that the points r1, . . . , rk−1

in R lie on a common vertical line in this order along it
downwards. For each orientation θ ∈ [0, π), let ℓi(θ) be
the line in orientation θ through ri for i = 1, . . . , k − 1.
Then, these k−1 lines partition P into k disjoint subsets
P1(θ), . . . , Pk(θ) such that P1(θ) consists of all points in
P lying on or above ℓ1(θ), Pi(θ) for 1 < i ≤ k−1 consists
all points in P lying on or above ℓi(θ) and below ℓi−1(θ),
and Pk(θ) consists of the rest that lies below ℓk−1(θ).

For i = 1, . . . , k, let σi(θ) be the minimum-width
slab in orientation θ that encloses Pi(θ). Let S(θ) :=
(σ1(θ), . . . , σk(θ)) be the k-slab cover of P consisting
of these k parallel slabs. Let γ1(θ), . . . , γk−1(θ) be the
gaps of S(θ). Note that S(θ) respects the given separa-
tor R by definition. Thus, our goal is to find an optimal
orientation θ∗ ∈ (0, π) that minimizes the width of S(θ)
for all θ such that the gap-ratio of S(θ) is at least the
given threshold ρ.

By an abuse of notations, we let wi(θ) = w(σi(θ)) for
i = 1, . . . , k and gi(θ) = w(γi(θ)) for i = 1, . . . , k −
1. Also, we let w(θ) = w(S(θ)), g(θ) = g(S(θ)),
b(θ) = b(S(θ)), and ρ(θ) = ρ(S(θ)). By definition,
note that w(θ) = maxwi(θ), g(θ) = min gi(θ), and
ρ(θ) = g(θ)/b(θ).

For each θ ∈ (0, π) and 1 ≤ i ≤ k, we denote by q+i (θ)
and q−i (θ) the two points of Pi(θ) such that every point
of Pi(θ) lies in between the two lines ℓ+ and ℓ− in orien-

154

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

tation θ passing through q+i (θ) and q−i (θ), respectively,
and ℓ+ lies above ℓ−. We call q+i (θ) and q−i (θ) the ex-
treme points of Pi(θ). Observe that the i-th slab σi(θ)
is determined by the two lines in orientation θ through
q+i (θ) and q−i (θ), and the i-th gap γi(θ) by the two lines
in orientation θ through q−i (θ) and q+i+1(θ). This im-
plies that their widths wi(θ) and gi(θ) are sinusoidal
functions over a subdomain in which q+i (θ), q−i (θ), and
q+i+1(θ) remain the same [5].

Note that if Pi(θ) consists of a single point p, we have
q+i (θ) = q−i (θ) = p and wi(θ) = 0.

If Pi(θ) = ∅, q+i (θ) and q−i (θ) are not defined. Since
the i-th slab σi contains no point of P , the k-slab S(θ)
is not defined. Thus, in this case, we set wi(θ) = 0 and
gi−1(θ) = gi(θ) = 0 so that g(θ) = ρ(θ) = 0, and thus
our algorithms filter out such orientations θ ∈ [0, π) in
searching for an optimal (k, ρ)-slab cover of P .

3.1 First algorithm using O(kn) space

In the following lemma, we show that each of these
width functions is indeed piecewise sinusoidal and can
be specified in an efficient way. This can be done by ap-
plying a geometric dualization [8, Chapter 8], the Zone
Theorem [7] in the arrangement of lines, and efficient
algorithms to compute the zone of a line in the arrange-
ment [4, 15].

Lemma 1 Each of the functions w1, . . . , wk,
g1, . . . , gk−1, and b is piecewise sinusoidal with
O(n) breakpoints over the domain [0, π), and an explicit
description of each can be computed in O(n log n) time.

The proof of Lemma 1 can be found in the full version.
By Lemma 1, we can also specify the functions w and

g. Recall that w is the upper envelope of the wi’s and
g is the lower envelope of the gi’s. Hence, we observe
that w and g are piecewise sinusoidal with O(kn) break-
points, and can be computed explicitly in O(kn log k)
time by a merge-sort-like recursive merging on k (or
k − 1) functions of O(n) complexity. In conclusion we
have the following algorithm.

Lemma 2 Given P , k ≥ 2, 0 < ρ ≤ 1, and a separator
R as defined above, a minimum-width (k, ρ)-slab cover
of P respecting R can be computed in O(kn log n) time
and O(kn) space, if exists.

Proof. Here, we describe our algorithm. First, we
compute the full descriptions of functions w, g, and
b. For functions w and g, we apply Lemma 1 to ob-
tain the full descriptions of w1, . . . , wk and g1, . . . , gk−1

in O(kn log n) time. Then, we recursively compute
the upper envelope of two upper envelopes: one for
w1, . . . , w⌊k/2⌋ and the other for w⌊k/2⌋+1, . . . , wk. This
can be done in time linear to the complexity of the two
upper envelopes, which is O(kn) time, because any two

sinusoidal curves cross O(1) times in any subdomain of
(0, π). Since the recursion depth is bounded by O(log k),
we can compute the full description of w in O(kn log k)
time. Computing g can be done analogously. Note that
functions w and g are piecewise sinusoidal with O(kn)
breakpoints, and function b is piecewise sinusoidal with
O(n) breakpoints.

Next, we specify the intervals of ρ-valid orientations.
We call an orientation θ ∈ (0, π) ρ-valid if the gap-ratio
ρ(θ) of S(θ) is at least ρ. We can specify the intervals of
ρ-valid orientations by solving equation g(θ) = ρ · b(θ).
As both functions g and b are piecewise sinusoidal, we
can find all the zeros of the equation in O(kn) time, and
these zeros are endpoints of the ρ-valid intervals. Note
that the number of ρ-valid intervals is also bounded by
O(kn) since any two sinusoidal curves cross O(1) times
in any subdomain of (0, π). At this stage, if there is no
ρ-valid orientation, we report that there is no (k, ρ)-slab
cover of P respecting R.

Finally, for each ρ-valid interval I, we minimize the
width w(θ) of S(θ) over θ ∈ I. Since function w is
piecewise sinusoidal with O(kn) breakpoints and there
are O(kn) such intervals, we can find an optimal orien-
tation θ∗ that minimizes w over all ρ-valid orientations
in total O(kn) time.

Hence, the total running time is bounded by
O(kn log n). It is not difficult to see that the space spent
during the execution of the algorithm is O(kn). □

3.2 Reducing the space usage

In the following, we show how to reduce the space com-
plexity of Lemma 2 to O(n). This improved algorithm
runs in an angular sweeping fashion by handling events
and updating necessary invariants related to S(θ) as θ
increases from 0 to π.

Data structures, variables, and invariants. At any
moment θ ∈ [0, π) during the execution of our algo-
rithm, we maintain the following:

• A fully dynamic structure CHi for each i = 1, . . . , k.
CHi stores the convex hull of Pi(θ) and supports an
extreme point query in a given direction, a tan-
gent line query through a given point, a neigh-
bor query, and an insertion/deletion in amortized
O(log n) time using O(n) space. Such a data struc-
ture is known by Brodal and Jacob [6].

• 2k lists W1, . . . ,Wk, G1, . . . ,Gk−1, and B. The list
Wi stores sinusoidal functions with domain such
that its tail stores the current sinusoidal form of
function wi and its predecessors store some previ-
ous sinusoidal pieces of wi in the order. Similarly,
Gi stores sinusoidal pieces of gi, and B stores those
of b. These 2k lists will be maintained so that the
total number of elements does not exceed 5n.

155

35th Canadian Conference on Computational Geometry, 2023

r1

r2

r1

r2

r1

r2

ℓ1

ℓ2

ℓ1

ℓ2

ℓ1

ℓ2

(a) (b) (c)

p1

p2

p3

Figure 2: The convex hulls of P1(θ), P2(θ), and P3(θ),
respectively, are depicted by dashed lines, and the ex-
treme points for each are shown as black dots. (b) A
slab event occurs when a side p1p2 of the convex hull of
P2(θ) is parallel to the rotating lines. (c) A cross event
occurs when ℓ2 touches a point p3.

• The two extreme points q+i = q+i (θ) and q−i =
q−i (θ) of Pi(θ) for each i = 1, . . . , k. If Pi(θ) = ∅,
these two variables are set to nil.

Events. Our events correspond to changes of the ex-
treme points q+i and q−i for i = 1, . . . , k. We distinguish
two types of events:

• A slab event occurs when two or more points of
P are contained in a boundary line of slab σi(θ) of
S(θ) for some i. Each slab event is associated with a
tuple (ϕ, p+, p−, i), where ϕ is the orientation when
the event occurs and (p+, p−) is the new pair of
extreme points of Pi(θ) right after θ = ϕ.

• A cross event occurs when a point in P lies on ℓi(θ)
for some i. Each cross event is associated with a
tuple (ϕ, p, i), where ϕ is the orientation at which
the event occurs and the line ℓi(θ) hits p at θ = ϕ.

Initialization. For the initialization, our algorithm sets
θ = 0 and computes all the above data structures and
variables accordingly. Here, we extend the function
dθ(p, q) in such a way that dθ(p, q) = 0 when either
p or q is nil. Recall that the points r1, . . . , rk−1 in
the given separator R lie on a vertical line, so all the
lines ℓ1(0), . . . , ℓk−1(0) coincide with the same verti-
cal line. Hence, P1(0) consists of those in P lying on
the right side and Pk(0) the rest of those in P , while
P2(0) = · · · = Pk−1(0) = ∅. For each i = 1, . . . , k,
we insert the points in Pi(0) into CHi after initializing
CHi to be empty, and specify the pair of extreme points
(q+i , q

−
i) of Pi(0). We initialize the lists W1, . . . ,Wk,

G1, . . . ,Gk−1, and B as empty lists. For each i =
1, . . . , k, we append a node with (dθ(q+i , q

−
i), [0, π)) to

Wi. For each i = 1, . . . , k − 1, and append a node with

(dθ(q−i , q
+
i+1), [0, π)) to Gi. And, append a node with

(dθ(q+1 , q
−
k), [0, π)) to B.

Additionally, we need a priority queue Q, called the
event queue, which will store at most O(k) events which
will occur, prioritized by their occurring orientations.
Since only P1(0) and Pk(0) can be non-empty, we create
next slab events and cross events for P1(0) and Pk(0)
by tangent line queries and neighbor queries to CH1 and
CHk, and insert them into Q.

Main loop. In the main loop of our algorithm, un-
til the event queue Q becomes empty, we extract the
next event from Q after the current orientation θ, han-
dle the event, and evaluate partial width functions to
compute an optimal solution. The last evaluation task
is performed by procedure Evaluate, which will be de-
scribed later.

Let e be the event extracted from Q, and ϕ be the
orientation of e. We handle e according to its type:

• Suppose e is a slab event associated with
(ϕ, p+, p−, i). Then the pair of extreme points
(q+i , q

−
i) of Pi(θ) has to change to (p+, p−) after

ϕ. So we set q+i to p+ and q−i to p−.

Next, we update Wi. Let (f, [ϕ0, π)) be the tail of
Wi. We modify it to (f, [ϕ0, ϕ)) and append a new
node (dθ(p+, p−), [ϕ, π)) to the tail of Wi. Simi-
larly, we update Gi−1 and Gi if 1 < i < k: Modify
the right endpoint of the domain of the function at
the tail of Gi−1 (and also of Gi) to ϕ, and append a
new node (dθ(q−i−1, p

+), [ϕ, π)) to Gi−1 and another

(dθ(p−, q+i+1), [ϕ, π)) to Gi. If either i = 1 or i = k,
we also modify B. If i = 1, we update G1 as done
above, modify the right endpoint of the domain of
the function at the tail of B to ϕ, and append a new
node (dθ(p+, q−k), [ϕ, π)) to B. If i = k, we update
Gk as done above, modify the right endpoint of the
domain of the function at the tail of B to ϕ, and
append a new node (dθ(q+1 , p

−), [ϕ, π)) to B.

Finally, we create the next possible slab event e′

for Pi(θ) by finding the next extreme pair (q+, q−)
of Pi(θ) as θ increases from ϕ. This can be done
by two neighbor queries to the convex hull CHi. To
verify that this pair (q+, q−) indeed make the cor-
responding slab event occur at θ = ϕ′, we check
the orientations of the tangents from ri and ri−1 to
CHi by tangent line queries. Only if ϕ′ is not big-
ger than these orientations of the tangents, the slab
event for (q+, q−) occurs at ϕ′. In this case, we in-
sert the slab event at ϕ′ associated with (q+, q−, i).

• Suppose e is a cross event associated with (ϕ, p, i).
In this case, p is about to cross line ℓi(ϕ). We
first update CHi and CHi+1 by an insertion and a
deletion of p. We then update q−i and q+i+1 correctly
by extreme point queries to CHi and CHi+1.

156

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Next, we update the function lists Wi, Wi+1, and
Gi. For each of these list, if (f, [ϕ0, π)) is its
tail, we modify it to (f, [ϕ0, ϕ)). Also, we append
(dθ(q+i , q

−
i), [ϕ, π)) to Wi, (dθ(q+i+1, q

−
i+1), [ϕ, π)) to

Wi+1, and (dθ(q−i , q
+
i+1), [ϕ, π)) to Gi.

Finally, we create the next cross event for ℓi(θ) by
tangent line queries to CHi and CHi+1 and insert
them into Q. Also, we create next slab events for
Pi(θ) and for Pi+1(θ) with the updated extreme
points, and insert each into Q after verification as
described in handling a slab event.

After handling event e as above, we set θ to ϕ. If the
event queue Q becomes empty, we set θ to π. Finally in
the main loop, we call procedure Evaluate only if the
number of handled events is divisible by n or the event
queue Q becomes empty.

Procedure Evaluate. For each L ∈ {W1, . . . ,Wk,
G1, . . . ,Gk−1,B}, let (f, [ϕ0, π)) be the tail of L. If
ϕ0 < θ, we modify the tail to (f, [ϕ0, θ)) and append
a new node (f, [θ, π)) to the tail of L.

Observe that by construction the left endpoint of
the domain of the function stored at the head of L is
equal to some θ0 < θ for every list L, and the union
of the domains of all nodes except the tail is exactly
[θ0, θ). Therefore, for each i = 1, . . . , k, the partial func-
tions stored at the nodes of Wi, except its tail, form
the function wi restricted to domain [θ0, θ); for each
i = 1, . . . , k − 1, those of Gi, except its tail, form the
function gi restricted to [θ0, θ); those of B, except its
tail, form the function b restricted to [θ0, θ).

We compute the upper envelope w of wi’s restricted
in domain [θ0, θ) and also the lower envelope g of gi’s
restricted in domain [θ0, θ) as done in Lemma 2. Then,
we consider the ρ-valid intervals in [θ0, θ) and maximize
w in each ρ-valid interval. This way, we compute the
minimum possible width of (k, ρ)-slab covers of P in the
sub-domain [θ0, θ).

Finally, we delete all the nodes except the tail from
each of the lists W1, . . . ,Wk, G1, . . . ,Gk−1,B.

Analysis. The initialization step can be done in
O(n log n) time. The main loop, except the call
of procedure Evaluate takes O(log n) time per
event. The number of handled events is bounded
by O(kn) by Lemma 1 since each event corresponds
to one breakpoint of at most three of the functions
w1, . . . , wk, g1, . . . , gk−1, b. Thus, the total time for han-
dling events is bounded by O(kn log n). Since proce-
dure Evaluate is called every n events and at most
three nodes are appended to the lists of functions for
each event, the total number of nodes stored in the lists
does not exceed 2k+3n ≤ 5n at each call of Evaluate.
Hence, the time spent for a call of Evaluate is bounded

by O(n log k) and the total time spend for Evaluate is
O(kn log k) since the number of calls is O(k).

The structures CH1, . . . ,CHk use O(n) space in to-
tal [6]. The number of events stored in Q is bounded
by O(k) at any time. The total number of nodes stored
in the function lists W1, . . . ,Wk, G1, . . . ,Gk−1, and B
is bounded by 5n as analyzed above. Hence, the total
space complexity is bounded by O(n).

We finally conclude the following theorem.

Theorem 3 Given a set P of n points, an integer
k ≥ 2, a real number 0 < ρ ≤ 1, and a separator R, a
minimum-width (k, ρ)-slab cover of P respecting R can
be computed in O(kn log n) time and O(n) space, if ex-
ists. Otherwise, it is reported in the same time bound
that there is no (k, ρ)-slab cover of P that respects R.

4 Computing a Minimum-Width (k, ρ)-Slab Cover

In this section, we show how to compute a minimum-
width (k, ρ)-slab cover of P in Problem 1. Recall that
a real ρ is given, and it holds that 0 < ρ ≤ 1/(k −
1); otherwise, we just report that there is no (k, ρ)-slab
cover of P .

The directional width of P in orientation θ ∈ [0, π) is
the width of the smallest slab enclosing P in orientation
θ, denoted by dθ(P) := maxp,q∈P dθ(p, q). A subset
K ⊆ P is called an ϵ-coreset for the directional width
of P if dθ(K) ≥ (1− ϵ)dθ(P) for any orientation θ.

Our algorithm starts by computing a (ρ/2)-coreset
K ⊆ P for the directional width of P . Then, for each
antipodal pair (p, q) of the convex hull of K, we generate
candidate separators from the segment pq and apply the
algorithm described in Theorem 3. In the following,
we mainly focus on the correctness of our algorithm by
proving that any (k, ρ)-slab cover of P indeed respects
one of our generated separators.

4.1 Candidate separators from a coreset

Let K ⊆ P be a (ρ/2)-coreset K ⊆ P for the directional
width of P .

Lemma 4 For any (k, ρ)-slab cover S = (σ1, . . . , σk) of
P , it holds that K ∩ σ1 ̸= ∅ and K ∩ σk ̸= ∅.
Proof. Suppose for a contradiction that there exists a
(k, ρ)-slab cover S′ = (σ′

1, . . . , σ
′
k) with gaps γ′1, . . . , γ

′
k−1

such that K ∩ σ′
1 = ∅ or K ∩ σ′

k = ∅. Without loss of
generality, we assume that K ∩ σ′

1 = ∅. Let θ′ denote
the orientation of S′. We then have

dθ′(K) ≥ (1− ρ/2)b(S′)

on one hand, since K is a (ρ/2)-coreset of P and b(S′) =
dθ′(P). On the other hand, the assumption that K ∩
σ′
1 = ∅ implies that

dθ′(K) ≤ b(S′)− (w(σ′
1) + w(γ′1)).

157

35th Canadian Conference on Computational Geometry, 2023

Plugging these two inequalities, we have

g(S′) ≤ w(γ′1) ≤ ρ/2 · b(S′)− w(σ′
1) < ρ · b(S′),

and thus ρ(S′) = g(S′)/b(S′) < ρ, a contradiction. □

Furthermore, in Lemma 4, we can pick two points
p ∈ K ∩ σ1 and q ∈ K ∩ σk such that (p, q) forms an
antipodal pair of the convex hull of K.

Corollary 5 For any (k, ρ)-slab cover S = (σ1, . . . , σk)
of P , there is an antipodal pair (p, q) of K such that
p ∈ σ1 and q ∈ σk.

For any two points p, q in the plane, let Rpq be the
set of ⌈1/ρ⌉ points pj ∈ pq such that the distance from
p to pj is exactly j · |pq|/(⌈1/ρ⌉+ 1) for 1 ≤ j ≤ ⌈1/ρ⌉.

Lemma 6 For any (k, ρ)-slab cover S = (σ1, . . . , σk) of
P , let p and q be any two points such that p ∈ σ1 and q ∈
σk. Then, each gap of S contains at least one point in
Rpq. Therefore, there is a separator R = (r1, . . . , rk−1)
of S such that ri ∈ Rpq for all 1 ≤ i ≤ k − 1.

Proof. Let θ be the orientation of S and γ1, . . . , γk−1

be the gaps of S. Suppose for a contradiction that γi ∩
Rpq = ∅ for some i with 1 ≤ i ≤ k − 1. Then, its width
w(γi) is small in the sense that

w(γi) ≤
dθ(p, q)

⌈1/ρ⌉+ 1
< ρ · dθ(p, q).

Since p and q are contained in the k-slab cover S, we
also have dθ(p, q) ≤ b(S), which implies that

g(S) ≤ w(γi) < ρ · b(S),

a contradiction to the assumption that ρ(S) ≥ ρ. □

4.2 Algorithm

Now, we are ready to describe our algorithm. Our al-
gorithm first computes a (ρ/2)-coreset K ⊆ P of size
O(1/ρ) for the directional width of P in O(n) time [10,
Chapter 20]. Then, it computes all antipodal pairs
of the convex hull of K by using the rotating caliper
method [14] after computing the convex hull of K. Fi-
nally, for each of these antipodal pair (p, q), it generates
all possible (k − 1)-combinations from the set Rpq, as
candidate separators, and computes a minimum-width
(k, ρ)-slab cover of P by applying Theorem 3.

The correctness of our algorithm is guaranteed by the
above discussion through Lemmas 4 and 6. Since K is a
subset of P and |K| = O(1/ρ), the number of antipodal
pairs is also bounded by O(1/ρ). Hence, the number of
generated candidate separators is bounded by O(1/ρk).
The following theorem summarizes the result.

Theorem 7 Given a set P of n points in the plane,
an integer k ≥ 2, and a real 0 < ρ ≤ 1, a minimum-
width (k, ρ)-slab cover of P can be computed in O(ρ−k ·
kn log n) time and O(n) space, if exists. Otherwise, it is
reported in the same time bound that there is no (k, ρ)-
slab cover of P .

5 Computing a Maximum-Gap-Ratio k-Slab Cover

In this section, we present an algorithm computing a
maximum-gap-ratio k-slab cover of P in Problem 2. Let
ρmax be the maximum possible real number such that
there exists a (k, ρmax)-slab cover of P .

Observe that procedure Evaluate in the algorithm
of Theorem 3 can be easily modified for maximizing
the gap-ratio, instead of minimizing the width. This is
possible because procedure Evaluate indeed specifies
all necessary functions g(θ) and b(θ) explicitly. With
this modified version of procedure Evaluate, we have
the following corollary of Theorem 7.

Corollary 8 Given a set P of n points in the plane, an
integer k ≥ 2, and a real 0 < ρ ≤ 1, a k-slab cover of P
with maximum possible gap-ratio ρmax can be computed
in O(ρ−kkn log n) time and O(n) space, if ρ ≤ ρmax.
Otherwise, it is reported in the same time bound that
there is no (k, ρ)-slab cover of P .

Thus, what remains is to find a value ρ with 0 < ρ <
ρmax, which is big enough. For any integer i ≥ 0, let
ρi = 2−i/k. We then search for the integer t such that
ρt−1 > ρmax ≥ ρt. This can be done by running the
algorithm in Corollary 8 with ρ = ρi for i = 0, 1, . . .
in this order until it first outputs a k-slab cover of P .
Then, the resulting k-slab cover of P indeed the one
with maximum possible gap-ratio by Corollary 8.

In order to analyze the running time, observe that
the time spent by the t applications of Corollary 8 is
bounded by

∑

i=0,...,t

O(ρ−k
i · kn log n)

=
∑

i=0,...,t

O(2i · kn log n)

= O(2t · kn log n)

= O(ρ−k
t · kn log n),

since ρ−k
i = 2i. In addition, we have ρ−k

t < 2ρ−k
max

since ρt−1 > ρmax ≥ ρt. This implies that the time
complexity is bounded by O(ρ−k

max · kn log n).

Theorem 9 Given a set P of n points and an integer
k ≥ 2, a maximum-gap-ratio k-slab cover of P can be
computed in O(ρ−k

max · kn log n) time and O(n) space,
where ρmax is the maximum possible gap-ratio of a k-
slab cover of P .

158

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] P. K. Agarwal, C. M. Procopiuc, and K. R.
Varadarajan. A (1+ϵ)-approximation algorithm for
2-line-center. Computational Geometry, 26(2):119–
128, 2003.

[2] P. K. Agarwal, C. M. Procopiuc, and K. R.
Varadarajan. Approximation algorithms for a k-
line center. Algorithmica, 42:221–230, 2005.

[3] P. K. Agarwal and M. Sharir. Planar geometric
location problems. Algorithmica, 11:185–195, 1994.

[4] P. Alevizos, J.-D. Boissonnat, and F. Preparata.
An optimal algorithm for the boundary of a cell in
a union of rays. Algorithmica, 5:573–590, 1990.

[5] S. W. Bae. Minimum-width double-strip and par-
allelogram annulus. Theoretical Computer Science,
833:133–146, 2020.

[6] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In Symposium on Foundations of Computer
Science, pages 617–626. IEEE Computer Society,
2002.

[7] B. Chazelle, L. Guibas, and D.-T. Lee. The power
of geometric duality. BIT Numerical Mathematics,
25(1):76–90, 1989.

[8] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Alo-
gorithms and Applications. Springer-Verlag, 2nd
edition, 2000.

[9] R. L. Graham. An efficient algorithm for determin-
ing the convex hull of a finite planar set. Informa-
tion Processing Letters, 1(4):132–133, 1972.

[10] S. Har-Peled. Geometric Approximation Algo-
rithms. American Mathematical Society, USA,
2011.

[11] M. E. Houle and G. T. Toussaint. Computing the
width of a set. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10(5):761–765,
1988.

[12] J. W. Jaromczyk and M. Kowaluk. The two-line
center problem from a polar view: A new algorithm
and data structure. In Workshop on Algorithms
and Data Structures, pages 13–25. Springer, 1995.

[13] N. Megiddo and A. Tamir. On the complexity of
locating linear facilities in the plane. Operations
Research Letters, 1:194–197, 1982.

[14] G. Toussaint. Solving geometric problems with the
rotating calipers. In Proc. IEEE MELECON, 1983.

[15] H. Wang. A simple algorithm for computing the
zone of a line in an arrangement of lines. In SIAM
Symposium on Simplicity in Algorithms, pages 79–
86. SIAM, 2022.

159

160

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Improved Algorithms for Burning Planar Point Sets∗

Shahin Kamali† Mohammadmasoud Shabanijou‡

Abstract

Given a set P of points in the plane, the geometric burn-
ing problem asks for minimizing the number of rounds to
“burn” P. It is possible to burn P in k rounds if one can
cover all points in P with k disks of distinct radii from
{0, 1, . . . , k−1}. In the anywhere burning variant of the
problem, the disks can be located at any position in the
plane, while in the point burning variant, they must be
centred at points of P. Both variants are NP-hard, and
the best existing algorithms have approximation factors
of respectively 1.92188 + ε and 1.96296 + ε for anywhere
and point burning [Gokhale et al. WALCOM 2023]. In
this paper, we present techniques for improving these
algorithms. We first present a simple anywhere burn-
ing algorithm with an approximation factor of at most
1.865 + ε, and then improve this algorithm to achieve
an approximation factor of 11/6 + ε ≈ 1.833 + ε for ar-
bitrary small ε > 0. We also present a point-burning
algorithm with an improved approximation factor of at
most 1.944 + ε.

1 Introduction

Graph burning is a simple model for the spread of so-
cial influence in networks [3]. Given an undirected,
unweighted graph G, the objective is to measure how
quickly “fire”, representing gossip or a piece of fake
news, can be spread in G. The burning process occurs in
discrete rounds. All vertices of G are initially unburned.
At each round, a new fire starts at a selected vertex of
G, called a source, while the existing fires extend to their
adjacent vertices. The burning graph problem asks for
sources that minimize the number of rounds to burn all
vertices of G, also known as the burning number of G.

Kiel et al. [9] introduced a geometric variant of the
graph burning problem. The input is a set P of points
in the plane, and the goal is to burn all these points
in a minimum number of rounds. Initially, all points
are unburned. At each round, a new fire breaks out at
a new point in the plane, a source, while the existing
fires extend to all points within a unit distance from

∗This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).
†Department of Electrical Engineering and Computer Science,

York University, kamalis@yorku.ca
‡Department of Computer Science, University of Manitoba,

shabanim@myumanitoba.ca

the currently burned points. As before, the goal is to
minimize the number of rounds to burn all points in
P. In the anywhere burning variant of the problem, the
sources can be any point in the plane, while in the point
burning, the sources must belong to P.

Figure 1 illustrates anywhere and point burning mod-
els. Note that if a burning process completes in k
rounds, the fire started at the beginning of round i, for
any i ∈ {1, 2, . . . , k}, burns vertices within distance k−i
of the source selected at round i. Therefore, the burning
problem is equivalent to selecting a minimum number
of disks with distinct radii in the set {0, 1, . . . , k − 1}
that cover all nodes in the input set P. In anywhere
burning, these disks can be located at any position in
the plane, while in point burning, they must be centred
at vertices of P.

1.1 Previous Work and Contribution

The graph burning problem is NP-hard, even for sim-
ple graph families like trees and disjoint path forests [1].
The best existing algorithm for general graphs has an
approximation factor of 3 [1, 4], which can be slightly
improved to 3−1/b(G) [6], where b(G) denotes the burn-
ing number of the input graph. There are polynomial-
time approximation schemes (PTASs) for disjoint path
forests [4], trees, and, more generally, graphs of bounded
treewidth [11]. Improved algorithms exist for other
graph families, e.g., interval graphs [8]. We refer to [2]
for a survey of the results on the graph burning problem.

In the geometric setting, both anywhere pointing and
point burning are NP-hard [9]. Kiel et al. lever-
aged an existing polynomial-time approximation scheme
(PTAS) for the discrete unit disk cover (DUDC) prob-
lem [12] to achieve algorithms with approximation fac-
tors of 2 + ε for both anywhere burning and point burn-
ing problems. These approximation factors were later
improved by Gokhale et al. [7] to 1.92188 + ε for any-
where burning and 1.96296 + ε for point burning. In
the 1-dimensional setting, when all points are colinear,
both problem variants admit a PTAS [7].

This paper presents new algorithms with improved
approximation factors for anywhere and point burning.
For anywhere burning, we relate the problem to the disk
covering (DC) problem [10], which asks for covering a
disk of radius r > 1 with a minimum number of unit
disks. Leveraging the existing result for the disk cov-
ering problem, we introduce a simple anywhere burn-

161

35th Canadian Conference on Computational Geometry, 2023

×

×

×

×

×

c1

c2

c3

c4

c5

(a) An anywhere burning solution

c1

c2
c3

c4

c5

c6

(b) A point burning solution

Figure 1: An illustration of the burning protocols. Here,
ci indicate the i’th source. In anywhere pointing, the
sources can be located at any point in the plane, while in
point burning, they must belong to the input point set.
In this example, anywhere burning and point burning
take 5 and 6 rounds, respectively.

ing algorithm with an approximation factor of at most
1.865+ε (Theorem 1) for any arbitrary small ε > 0. We
improve this approximation factor to 11/6 + ε with a
slightly more complicated algorithm that is based on a
“mix-and-match” approach for covering a disk of radius
r with smaller disks of various radii < r (Theorem 2).
For the point burning problem, we build on the ideas
of [7] to present an algorithm with an improved approx-
imation factor of 1.944 + ε (Theorem 3). Throughout
the paper, we use [a, b) to denote the set of integers like
x such that a ≤ x < b.

1.2 Discrete Unit Disk Cover (DUDC) Problem

An instance (P, (C, r)) of the discrete unit disk cover
(DUDC) problem is defined by a set P of points in the
plane and a set (C, r) of disks of uniform radii r cen-
tred at the point set C. The objective is to cover all
points in P with a minimum number of disks from (C, r).
Mustafa and Ray provided a PTAS for the DUDC prob-
lem [12]. All our approximation algorithms for planar
burning use this result as a black box.

2 Anywhere Burning Problem

Before describing our algorithm for anywhere burning,
we review the framework of Kiel et al. [9], which we will
use in our algorithms. Given a set P of n points as an
instance of the anywhere burning problem, Kiel et al. [9]
show that there exists an optimal solution where each
burning source either coincides with a given point in P
or lies at the center of a circle determined by two or three
given points of P. Consider a point set C formed as the
union of P and the centers of all these circles. Therefore,
C has a polynomial number of points, namely at most
n+
(
n
2

)
+
(
n
3

)
points. One can define instances (P, (C, g))

of the DUDC problem that asks for covering points in P
with a minimum subset of disks in (C, g), that is, disks
centred at points of C and of uniform radius g. Here,
g is a guess that takes integer values in [1, n]. For a
fixed value g, one can use the result of [12] to solve the
instance (P, (C, g)) of the DUDC problem. There are
two possibilities to consider:

(1) Suppose the number of disks in the PTAS output
is larger than g. We can conclude that at least
bg/(1 + ε)c disks from the set (C, g) of disks are
necessary to cover all points in P. In other words,
no subset of size bg/(1+ ε)c−1 from disks of (C, g)
can cover all points in P. Therefore, no subset of
bg/(1 + ε)c − 1 disks of smaller distinct radii from
{0, 1, . . . , bg/(1 + ε)c− 2} can cover all points of P.
We may conclude that burning P is not possible
in bg/(1 + ε)c − 1 rounds and thus takes at least
bg/(1 + ε)c rounds.

(2) Suppose the number of disks in the PTAS output
is at most g. That is, we can cover points of P with
g disks (of radius g) from (C, g). Consequently, it
is possible to cover points of P with 2g disks of
distinct radii {0, 1, . . . , 2g − 1} by only using disks
of radius ≥ g. We can conclude that it is possible
to burn all points in P in 2g rounds.

Let g∗ denote the smallest guess value such that the
PTAS output for (P, (C, g∗)) is of size at most g∗. From
the above observations, at least b(g∗−1)/(1+ε)c rounds
are necessary to burn the instance P of the burning
problem; this is because the PTAS output for guess
g∗ − 1 has been of size larger than g∗ − 1. On the
other hand, 2g∗ rounds are sufficient to burn P. The
approximation factor of the resulting solution is thus
2g∗/b(g∗ − 1)/(1 + ε)c, which approaches 2(1 + ε) for
large values of g∗. Note that if g∗ is a constant, then
the burning number is also a constant. Therefore, one
can find an optimal solution in polynomial time via an
exhaustive approach by trying all subsets of C and all
possible placements of disks of radii {0, 1, . . . , g} on the
selected subset. The smallest value of g that covers all
points of P gives the optimal burning solution.

162

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

γ(3) =
√

3/2 γ(4) =
√

2/2 γ(5) / 0.6094 γ(6) / 0.5560

γ(8) / 0.4451 γ(9) / 0.4143 γ(10) / 0.3951

γ(7) = 0.5

γ(11) / 0.3801 γ(12) / 0.3612

Figure 2: [5] A summary of the optimal solutions for the disk covering (DC) problem for k ∈ [3, 12]

The above argument was used by Kiel et al. [9] to
prove an approximation factor of 2 + ε for the anywhere
burning problem. In our algorithms, we improve over
Step 2 of this algorithm to achieve better approximation
factors. This is achieved by using disks of radii smaller
than g∗ to cover some of the disks in the output by the
PTAS for the DUDC instances.

2.1 Disk-Cover-Burn (DCB) Algorithm

In this section, we present an algorithm with an ap-
proximation factor of 1.865 + ε, which is inspired by the
disk covering (DC) problem [10]. The DC problem asks
for the smallest real number γ(k) such that k disks of
radius γ(k) can be arranged in such a way as to cover
the unit disk. For example, we have γ(3) =

√
3/2 [5],

which indicates that it is possible to cover a unit disk
with three disks of radius

√
3/2 (and it is not possible

with smaller disks). The Disk Covering problem has a
long history (see, e.g., [13, 10, 16, 15] for some results
and [14] for a summary). Figure 2 shows the best cov-
erings for k ∈ [3, 12].

We use the existing results for the disk covering prob-
lem to improve the algorithm of [9] for burning a set P
of points. Let ε > 0 be an arbitrarily small value, and
define ε′ = ε/1.865. Given an input P of points in the
plane, form a point set C of n+

(
n
2

)
+
(
n
3

)
points as de-

scribed in Section 2. We repeatedly apply the PTAS for
the DUDC problem with parameter ε′ to find the small-
est value g∗ for which the PTAS on instance (P, (C, g∗))
returns a set U of at most g∗ disks (of uniform radius
g∗). If g∗ is a constant, we apply an exhaustive approach
to find an optimal burning scheme in polynomial time.
In what follows, we assume g∗ is arbitrarily large.

Let D be a set of b1.865g∗c disks with distinct radii
{0, 1, . . . , b1.865g∗c − 1}. We explain how to cover the
disks in U with disks in D. Recall that there are g∗

disks of uniform radius g∗ in U . We classify disks in D
based on their radii. Disks with radii at least g∗ belong
to Class 0. There are b0.865g∗c disks of Class 0, and
each can cover one disk from U . There is no disk of
Class 1 or 2. Disks with radii in

î
d
√

3g∗/2e, g∗
ä

belong

to Class 3, and each group of 3 of them can cover a disk
of U because these disks’ radii are at least d

√
3g∗/2e ≥

γ(3)g∗. Given that there are g∗ − d
√

3g∗/2e ≥ b(2 −√
3)g∗/2c such disks, they can cover b(2 −

√
3)g∗/6c

disks from U . Similarly, for any i ∈ [4, 12], disks of
D with radii in [dγ(i)g∗e, dγ(i− 1)g∗e) belong to class
i and each group of i of them can cover a disk of U .
Given that there are (dγ(i− 1)e − dγ(i)e)g∗ such disks,
they can cover b(γ(i − 1) − γ(i))g∗/ic disks from U .
The details for the number of disks in each class of D
and the number of disks from U that they cover are
provided in Table 1. The total number of disks that
can be collectively covered by all classes in D is at least
1.0009g∗ − 11, which is enough to cover all g∗ disks of
U , assuming large g∗. We can conclude the following
theorem.

Theorem 1 Disk-Cover-Burn has an approxima-
tion factor of at most 1.865 + ε, for an arbitrary small
ε > 0.

Proof. Since g∗ is the smallest value for which the
PTAS for the DUDC instance (P, (C, g)) with param-
eter ε′ = ε/1.865 returns an output with at most g∗

disks, the burning number of the input set P is at least
(g∗ − 1)/(1 + ε′). From the outcome for the PTAS, we
know that all points in P can be covered with the set

163

35th Canadian Conference on Computational Geometry, 2023

i radius range covered disks from U

0 ≥ g∗ b0.865g∗c
3 [

√
3g∗/2, g∗) b(2−

√
3)g∗/6c

4 [
√

2g∗/2,
√

3g∗/2) b(
√

3−
√

2)g∗/8c
5 [0.6094g∗,

√
2g∗/2) b(

√
2/2− 0.6094)g∗/5c

6 [0.5560g∗, 0.6094g∗) b0.0534g∗/6c
7 [0.5g∗, 0.5560g∗) b0.0560g∗/7c
8 [0.4451g∗, 0.5g∗) b0.0549g∗/8c
9 [0.4143g∗, 0.4451g∗) b0.0308g∗/9c
10 [0.3950, 0.4143) b0.0193g∗/10c
11 [0.3801, 0.3950) b0.0149g∗/11c
12 [0.3612, 0.3801) b0.0189g∗/12c

sum − > 1.0009g∗ − 11 > g∗

Table 1: A summary of disk classification by Disk-
Cover-Burn. The total number of covered disks from
U (sum of the numbers in the last column) is larger than
g∗ and hence disks in D can be used to cover all disks
of U .

U of g∗ disks of radius g∗. As discussed above, Disk-
Cover-Burn covers these disks using b1.865g∗c disks
of radii {0, 1, . . . , b1.865g∗c − 1}, which gives a burning
scheme that completes within b1.865g∗c rounds. There-
fore, the approximation factor of Disk-Cover-Burn is
at most 1.865g∗

(g∗−1)/(1+ε′) , which converges to 1.865(1+ε′) =

1.865 + ε for large values of g∗. �

2.2 Improved-Disk-Cover-Burn (IDCB) Algorithm

In this section, we modify Disk-Cover-Burn to im-
prove its approximation factor from 1.865 to 11/6 ≈
1.833. Note that Disk-Cover-Burn covers each disk
in the set U given by the PTAS for the DUDC problem
with disks that belong to the same class (disks with
almost equal radii). Our new algorithm, Improved-
Disk-Cover-Burn, uses a “mix-and-match” approach
to cover disks of U . In other words, each disk in U is
covered with disks of different radii, allowing for a more
efficient covering of U .

Given a fixed value ε > 0, Improved-Disk-Cover-
Burn starts with finding the smallest guess value h∗ for
which the PTAS output for the DUDC problem with
parameter ε′ = 6ε/11 is formed by a set U of at most
h∗ disks of radius h∗. If h∗ is a constant, we use an
exhaustive approach to find the optimal solution for the
burning problem in polynomial time. Thus, in what
follows, we assume h∗ is arbitrarily large and define g∗

as the smallest integer divisible by 60 greater than or
equal to h∗ (thus, g∗ ≤ h∗ + 59). We show that it is
possible to cover the disks in U with a set D of disks of
radii {0, 1, . . . , 11g∗/6− 1}.

Like Disk-Cover-Burn, we classify disks in D based
on their radii; but our classification differs. We parti-

tion D into eight classes. Disks of radius g∗ or larger
belong to Class 0. For i ∈ {1, 2, . . . , 6}, disks of D with
radius in (g∗(1−0.15i), g∗(1.15−0.15i)] belong to class i.
For example, disks with radius in [0.85g∗, g∗) belong to
Class 1, and disks with radius in [0.7g∗, 0.85g∗) belong
to Class 2. Disks of radius smaller than 0.1g∗ belong to
Class 7 and are not used in covering U . For i ∈ [1, 6],
we further partition disks of class i into subclasses (ia),
formed by the largest one-third of the disks in class i,
(ib), formed by the middle one-third, and (ic), formed
by the smallest one-third of disks in class i. For exam-
ple, disks of class (1a) have radius at least 0.95g∗, disks
of Class 1b have radius in [0.9g∗, 0.95g∗) and disks of
Class 1c have radius in [0.85g∗, 0.9g∗). See Figure 3 for
a summary of classes.

Based on this classification, we define groups of disks
from D as follows. A group of type 0 is formed by
one disk of Class 0 (with a radius of at least g∗; there
are 5g∗/6 such disks. A group of type 1 contains one
disk from each of the classes 1a, 3a, 4a, 5a, 6a, and 6b.
A group of type 2 has one disk from each of the classes
1b, 2c, 3b, 4c, and 5b. A group of type 3 contains one disk
from each of the classes 1c, 2b, 3c, 4b, and 5c. Given that
at most one item from each class appear in each group,
and there are 0.05g∗ disks of each subclass in D, we can
form 0.05g∗ disjoint groups of type t for t ∈ {1, 2, 3}. A
group of type 4 is formed by three disks of class 2a and 3
disks of class 6c; given that three members of each class
2a and 6c are present in one group, we can form 0.05g∗/3
groups of type 4. In total, there are (i) 5g∗/6 groups of
type 0, (ii) 3 · (0.05g∗) groups of type 1, 2, or 3, and (iii)
0.05g∗/3 groups of type 4. Therefore, D is partitioned
into 5g∗/6 + 0.15g∗ + 0.05g∗/3 = g∗ disjoint groups.
Moreover, disks of each group can each cover one disk
from U . Let S be any disk of U (of radius g∗). Groups
of type 0 include a disk of radius at least g∗, which can
cover S. For i ∈ {1, 2, 3, 4}, it suffices to position the
disks of each group in a way that a chord of S passes
through their centers. Figure 3 shows the positioning of
the smallest disks in each group that ensures covering
of U . We can conclude the following theorem:

Theorem 2 Improved-Disk-Cover-Burn has an
approximation factor of at most 11/6 + ε for any ar-
bitrary small ε > 0.

Proof. Recall that h∗ is the smallest value for which
the PTAS for the DUDC instance with parameter ε′ =
6ε/11 has an output with at most h∗ disks. Therefore,
the burning number of the input set P is at least (h∗ −
1)/(1+ε′). Given that h∗ ≥ g∗−59, burning P requires
at least (g∗ − 60)/(1 + ε′) rounds.

From the outcome for the PTAS, we know that all
points in P can be covered with the set U of h∗ disks of
radius h∗ and thus g∗ disks of radius g∗ (since g∗ ≥ h∗).
As discussed above, Disk-Cover-Burn covers all disks

164

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

1c

2b

3c

4b
5c

1b

2c

3b

4c
5b

1a

3a

4a

5a

6a 6b

2a

6c

2a

2a

6c

6c

Group 1 covering Group 2 covering Group 3 covering Group 4 covering

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

1a: [0.95g∗, g∗] 2a: [0.8g∗, 0.85g∗) 3a: [0.65g∗, 0.7g∗) 4a: [0.5g∗, 0.55g∗) 5a: [0.35g∗, 0.4g∗) 6a: [0.2g∗, 0.25g∗)
1b: [0.9g∗, 0.95g∗] 2b: [0.75g∗, 0.8g∗) 3b: [0.6g∗, 0.65g∗) 4b: [0.45g∗, 0.5g∗) 5b: [0.3g∗, 0.35g∗) 6b: [0.15g∗, 0.2g∗)
1c: [0.85g∗, 0.9g∗] 2c: [0.7g∗, 0.75g∗) 3c: [0.55g∗, 0.6g∗) 4c: [0.4g∗, 0.45g∗) 5c: [0.25g∗, 0.3g∗) 6c: [0.1g∗, 0.15g∗)

Figure 3: Disk classification by Improved-Disk-Cover-Burn and covering bins of U using disks of each group.
Each highlighted disk has radius g∗, and the radii of disks that cover them are the smallest radius from their respective
class.

in a set U formed by g∗ disks of radius g∗ with 11g∗/6
disks of radii {0, 1, . . . b11g∗/6c − 1}. This ensures a
burning scheme that completes within 11g∗/6 rounds.
The approximation factor of Improved-Disk-Cover-

Burn is thus at most b11g∗/6c
(g∗−60)/(1+ε′) , which converges to

11/6(1 + ε′) = 11/6 + ε for large values of g∗. �

3 Point Burning Problem

In this section, we present an algorithm for point-
ing burning with an approximation factor of at most
1.944 + ε, which is an improvement over 1.96296 + ε
of [7]. We borrow the main idea from [7], but our al-
gorithm classifies disks based on their radii, allowing
better use of smaller disks when covering the output set
of disks by the PTAS for the DUDC problem.

For a given ε > 0, we define ε′ = ε/1.944. Given
an instance of the point burning problem, specified by
a set P of n points, we form instances (P, (P, g)) of
the DUDC problem that asks for covering points in P
with a minimum subset of a set of disks centred at P.
Unlike the anywhere pointing, additional disks are not
added in the DUDC instance, given that all disks must
be centred at points of P. As before, we let the radii of
these disks take guess values g, and repeatedly apply the
PTAS for the DUDC problem with parameter ε′ to find
the smallest guess value h∗ for which the PTAS returns
a set U of at most h∗ disks. With a similar argument as
before, the optimal burning number is at least h∗. If h∗

is a constant, we exhaustively find an optimal burning
scheme in polynomial time. Therefore, we assume h∗ is
arbitrarily large and let g∗ be the smallest value that
is no smaller than h∗ and is divisible by 104; that is,
g∗ < h∗ + 104.

In what follows, we show that it is possible to cover

all points in P with a set D of 1.944g∗ disks of radii
{0, 1, . . . , 1.944g∗}. The main challenge is that, unlike
anywhere burning, the disks must be centred at points
of P. We classify disks in D by their radii. The largest
0.944g∗ disks from D, each with a radius ≥ g∗, belong
to Class 0, and each is used to cover a disk in U ; in
total, they cover 0.944g∗ disks of U . There is no class
1, . . . , 5. Disks of D with radius in [0.944g∗, g∗) belong
to Class 6. We center each disk of Class 6 in one of the
0.056g∗ disks of U that are not covered by disks of Class
0. At this point, all points in P are covered, except for
those located in the 0.056g∗ annuli defined by the rings
between disks of U (of radius g∗) and disks of Class 6
that partially cover them (of radius ≥ 0.944g∗).

Let k be any integer such that 7 ≤ k ≤ 16. Disks
of D with radii in [2g∗ sin(2π/k), 2g∗ sin(2π/(k − 1)))
belong to class k. Table 2 shows the exact integer
ranges for these classes. Consider the annulus defined
by the ring between two co-centred circles of radii g∗ and
0.944g∗. Define a block-arc of order k as the partition-
ing of the annulus into k equal parts via rays that pass
the shared center of the two circles. Every circle with
a center inside a block-arc of order k and with radius
≥ 2g∗ sin(π/k) covers that entire black-arc. This is be-
cause, in the convex hull of the block-arc, the maximum
distance between any two points is realized by the chord
of the larger circle, which is of length 2g∗ sin(π/n). Fig-
ure 4 provides an illustration for k = 7. Therefore, for
any k ∈ {7, 8, . . . , 16}, we can partition the annulus (of
a disk that is partially covered by disks of Class 6) into
k equal block-arcs and cover any “non-empty” block-arc
that contains points from P by a disk of class k centred
at any point from P in the block-arc. By the above
observation, all points in the block-arc are covered by

165

35th Canadian Conference on Computational Geometry, 2023

k radius range no. disks in the class partially covered disks from U

1 [g∗, 1.944g∗] 0.944g∗ 0.944g∗

6 [0.944g∗, g∗) 0.056g∗ 0.056g∗

7 [0.8678g∗, 0.944g∗) 0.0762g∗ b0.0762g∗/7c > 0.01g∗

8 [0.7654g∗, 0.8678g∗) 0.1024g∗ b0.1024g∗/8c = 0.0128g∗

9 [0.6841g∗, 0.7654g∗) 0.0813g∗ b0.0813g∗/9c > 0.009g∗

10 [0.6181g∗, 0.6841g∗) 0.066g∗ b0.066g∗/10c = 0.0066g∗

11 [0.5635g∗, 0.6181g∗) 0.0546g∗ b0.0546g∗/11c > 0.0049g∗

12 [0.5177g∗, 0.5635g∗) 0.0458g∗ b0.0458g∗/12c > 0.0038g∗

13 [0.4787g∗, 0.5177g∗) 0.039g∗ b0.039g∗c/13 = 0.003g∗

14 [0.4451g∗, 0.4787g∗) 0.0336g∗ b0.0336g∗/14c = 0.0024g∗

15 [0.4159g∗, 0.4451g∗) 0.0292g∗ b0.0292g∗/15c > 0.0019g∗

16 [0.3902g∗, 0.4159g∗) 0.0257g∗ b0.0257g∗/16c > 0.0016g∗

Table 2: A summary of classes used in our point burning algorithm. Disks of D in Class 0 cover 0.944g∗ disk from
U . Disks of Class 6 partially cover the remaining 0.56g∗ disks. The total number of partially covered disks classes
k ∈ {7, . . . , 16} is larger than g∗(0.01+0.0128+0.009+0.0066+0.0049+0.0038+0.003+0.0024+0.0019+0.0016) =
0.056g∗; that is, disks of classes k ∈ {7, . . . , 16} complete the covering of disks partially covered by Class 6 disks.

such a disk. That is, we can cover the annulus with k
disks of class k.

In summary, out of the g∗ disks of U , we fully cover
0.944g∗ disks using Class 0 disks and partially cover
the remaining disks with Class 6 disks. The uncovered
parts (blocks-arcs) of these disks will be covered by disks
of classes k ∈ {7, 16}. In doing that, each group of k
disks of class k will complete the covering of one disk of
U . Table 2 summarizes the number of disks of class k
and the number of disks from U that they cover (along
with disks of Class 6). We can conclude the following
theorem.

Theorem 3 There is an algorithm with an approxima-
tion factor of at most 1.944 + ε for the point burning

2π/7

2g
∗ sin(π/

7)

0.944g∗

g
∗

Figure 4: Any disk of radius 2 sin(π/k) centred at any
point in the block-arc covers all points in the block-arc.

problem for any arbitrary small ε > 0.

Proof. Recall that h∗ is the smallest value for which
the PTAS for the DUDC instance with parameter ε′ =
ε/1.944 has an output with at most h∗ disks; we can
conclude the burning number of the input set P is at
least (h∗ − 1)/(1 + ε′). Since h∗ > g∗ − 104, burning P
requires at least (g∗ − 104)/(1 + ε′) rounds.

All points in P can be covered with the set U of
h∗ disks of uniform radius h∗, and thus with g∗ disks
of uniform radius g∗. As discussed above, it is pos-
sible to cover all disks in U with 1.944g∗ disks of radii
{0, 1, . . . b1.944g∗−1c}, which ensures a burning scheme
that completes within 1.944g∗ rounds.

The approximation factor of the algorithm is thus at

most b1.944g∗c
(g∗−104)/(1+ε′) , which converges to 1.944(1 + ε′) =

1.944 + ε for large values of g∗. �

4 Concluding Remarks

In this paper, we built over the results of Kiel et al. [9]
and Gokhale et al. [7] to improve the approximation
factor of anywhere burning algorithms from 1.92188 + ε
to 1.865 + ε and that of point burning algorithms from
1.96296 + ε to 1.944 + ε. Our improvements come from
classifying disks of various radii to cover a set of larger
disks of uniform radii given by the PTAS for the Discrete
Unit Disc Cover (DUDC) problem. Refining the classi-
fication and better “mix-and-match” strategies may re-
sult in further gains in the approximation factor. How-
ever, it is necessary to go beyond algorithms that solve
DUDC instances to achieve notable improvements over
the results in this paper.

166

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] S. Bessy, A. Bonato, J. C. M. Janssen, D. Rauten-
bach, and E. Roshanbin. Burning a graph is hard.
Discret. Appl. Math., 232:73–87, 2017.

[2] A. Bonato. A survey of graph burning. Contribu-
tions Discret. Math., 16(1):185–197, 2021.

[3] A. Bonato, J. Janssen, and E. Roshanbin. Burning
a graph as a model of social contagion. In Proc.
WAW, pages 13–22. Springer, 2014.

[4] A. Bonato and S. Kamali. Approximation algo-
rithms for graph burning. In Proc. TAMC, pages
74–92, 2019.

[5] E. Friedman. Circles covering circles.
https://erich-friedman.github.io/packing/

circovcir/. Accessed: 2023-04-14.

[6] J. Garćıa-Dı́az, J. C. Pérez-Sansalvador, L. M. X.
Rodŕıguez-Henŕıquez, and J. A. Cornejo-Acosta.
Burning graphs through farthest-first traversal.
IEEE Access, 10:30395–30404, 2022.

[7] P. Gokhale, J. M. Keil, and D. Mondal. Improved
and generalized algorithms for burning a planar
point set. In Proc. WALCOM, pages 90–101, 2023.

[8] S. Kamali, A. Miller, and K. Zhang. Burning
two worlds. In Proc. SOFSEM, pages 113–124.
Springer, 2020.

[9] J. M. Keil, D. Mondal, and E. Moradi. Burning
number for the points in the plane. In Proc. CCCG,
pages 205–211, 2022.

[10] R. Kershner. The number of circles covering a set.
American Journal of Mathematics, 61(3):665–671,
1939.

[11] M. Lieskovskỳ and J. Sgall. Graph burning and
non-uniform k-centers for small treewidth. In Proc.
WAOA, pages 20–35. Springer, 2022.

[12] N. H. Mustafa and S. Ray. Improved results on
geometric hitting set problems. Discrete & Com-
putational Geometry, 44:883–895, 2010.

[13] E. H. Neville. On the solution of numerical func-
tional equations, illustrated by an account of a pop-
ular puzzle and of its solution. London Math. Soc.,
14:308–326, 1915.

[14] E. W. Weisstein. Disk covering prob-
lem (from MathWorld–a Wolfram Web Re-
source). https://mathworld.wolfram.com/

DiskCoveringProblem.html. Accessed: 2023-04-
14.

[15] E. W. Weisstein. Disk covering problem.
mathworld–a wolfram web resource. 15(1), 2018.

[16] C. T. Zahn. Black box maximization of circular
coverage. J. Res. Nat. Bur. Stand., pages 181–216,
1962.

167

168

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

On the Budgeted Hausdorff Distance Problem

Sariel Har-Peled∗ Benjamin Raichel†

Abstract

Given a set P of n points in the plane, and a parame-
ter k, we present an algorithm, whose running time is
O
(
n3/2
√
k log3/2 n + kn log2 n

)
, with high probability,

that computes a subset Q? ⊆ P of k points, that min-
imizes the Hausdorff distance between the convex-hulls
of Q? and P . This is the first subquadratic algorithm
for this problem if k is small.

1 Introduction

Given a set of points P in Rd, a natural goal is to find
a small subset of it that represents the point set well.
This problem has attracted a lot of interest over the
last two decades, and this subset of P is usually re-
ferred to as a coreset [3 , 2]. An alternative approxima-
tion is provided by the largest enclosed ellipsoid inside
C(P) (here C(P) denotes the convex-hull of P) or the
smallest area bounding box of P (not necessarily axis-
aligned). This provides a constant approximation to the
projection width of P in any direction v – that is, the
projection of P into the line spanned by v is contained
in the projection of the ellipsoid after appropriate con-
stant scaling. One can show that in two dimensions,
there is a subset Q ⊆ P (i.e., a coreset) of size O(1/

√
ε)

such that the projection width of P and Q is the same
up to scaling by 1+ε. See Agarwal et al. [3 , 2] for more
details.

The concept of a coreset is attractive as it provides
a notion of approximating that adapts to the shape of
the point set. However, an older and arguably simpler
approach is to require that C(Q) approximates C(P)
within a certain absolute error threshold. A natural
such measure is the Hausdorff distance between sets
X,Y ⊆ R2, which is

dH(X,Y) = max
(
d(X → Y), d(Y → X)

)
, (1)

∗Department of Computer Science; University of Illi-
nois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;
sariel@illinois.edu; http://sarielhp.org/ . Work on this pa-
per was partially supported by a NSF AF award CCF-1907400.
†Department of Computer Science; University

of Texas at Dallas; Richardson, TX 75080, USA;
benjamin.raichel@utdallas.edu; http://utdallas.edu/

~benjamin.raichel . Work on this paper was partially supported
by NSF CAREER Award 1750780.

where
d(X → Y) = max

x∈X
min
y∈Y
‖xy‖.

In our specific case, the two sets are C(P) and C(Q),
and let DH(Q,P) = dH

(
C(Q), C(P)

)
. The natural ques-

tions are

(I) MinCardin : Compute the smallest subset Q ⊆ P ,
such that DH(Q,P) ≤ τ , where τ is a prespecified
error threshold. Formally, let

F≤τ =
{
Q ⊆ P

∣∣ DH(Q,P) ≤ τ
}
,

and let k? = k?(P, τ) = minQ∈F≤τ |Q| denote the
minimum cardinality of such a set Q.

(II) MinDist : Compute the subset Q ⊆ P of size k, such
that DH(Q,P) is minimized, where k is a prespec-
ified subset size threshold. Let τ? = τ?(P, k) =
minQ⊆P :|Q|=k DH(Q,P) denote the optimal radius.

The two problems are “dual” to each other – solve one,
and you get a way to solve the other in polynomial time
via a search on the values of the other parameter. In
particular, solving both problems directly (in two di-
mensions) can be done via dynamic programming, but
even getting a subcubic running time is not immediate
in this case. Indeed, the problem seems to have a sur-
prisingly subtle and intricate structure that make this
problem more challenging than it seems at first.

Klimenko and Raichel [7] provided an O(n2.53) time
algorithm for MinCardin . Very recently, Agarwal and
Har-Peled [1] provided a near-linear time algorithm for
MinCardin that runs in near linear time if k? = k?(P, τ)
is small. Specifically, the running time of this algorithm
is O(k?n log n).

The purpose of this work is to come up with a sub-
quadratic algorithm for the “dual” problem MinDist . An
algorithm with running time O(n2 log n) follows readily
by computing all possible critical values, and performing
a binary search over these values, using the procedure
of [1] as a black box. The only subquadratic algorithm
known previously was for the special case when P is in
convex position, for which [7] gave an algorithm whose
running time is O(n log3 n) with high probability.

Our main result is an algorithm that, given P and k as
input, solves MinDist in O

(
n3/2
√
k log3/2 n+ kn log2 n

)

time, with high probability, see Theorem 7 for details.
We believe the algorithm itself is technically interest-
ing – it uses random sampling to reduce the range of

169

35th Canadian Conference on Computational Geometry, 2023

interest into an interval containing O(
√
n) critical val-

ues. It then use the decision procedure of [1] as a way
to compute the critical values in this interval, by “peel-
ing” them one by one in decreasing order. Using random
sampling for parametric search is an old idea, see [6] and
references there.

2 Preliminaries

Given a point set X in R2, let C(X) denote its con-
vex hull . For two compact sets X,Y ⊂ R2, let
d(X,Y) = minx∈X,y∈Y ‖xy‖ denote their distance. For
a single point x let d(x, Y) = d({x}, Y).

Consider two finite point sets Q ⊆ P ⊂ R2, and ob-
serve that

DH(Q,P) = dH
(
C(Q), C(P)

)
= max

p∈P
d
(
p, C(Q)

)
,

see Eq. (1) . The first equality above is by definition,
and the second is since Q ⊆ P and so we have that
C(Q) ⊆ C(P), and moreover the furthest point in C(P)
from C(Q) is always a point in P .

In this paper we consider the following two related
problems, where for simplicity, we assume that P is in
general position.

Problem 1 (MinCardin) Given a set P ⊂ R2 of n
points, and a value τ > 0, find the smallest cardinal-
ity subset Q ⊆ P such that DH(Q,P) ≤ τ .

Problem 2 (MinDist) Given a set P ⊂ R2 of n points,
and an integer k, find the subset Q ⊆ P that minimizes
DH(Q,P) subject to the constraint that |Q| ≤ k.

For either problem let Q? denote an optimal solu-
tion. For MinCardin let k? = k?(P, τ) = |Q?|, and for
MinDist let τ? = τ?(P, k) = DH(Q?, P). The algorithms
discussed in this paper will output the set Q?, though
when it eases the exposition, we occasionally refer to k?

as the solution to MinCardin and τ? as the solution to
MinDist .

Theorem 3 ([1]) Given as an input a point set P and
parameters k and τ , let k? = k?(P, τ). There is a pro-
cedure decider(P, τ, k), that in O(nk log n) time, either
returns that “k? > k”, or alternatively returns a set
Q? ⊆ P , such that |Q?| = k? ≤ k, and DH(Q?, P) ≤ τ .

The above theorem readily implies that the problem
MinCardin can be solved in O(nk? log n) time.

Given an input of size n, an algorithm runs in O(f(n))
time with high probability , if for any chosen constant
c > 0, there is a constant αc such that the running time
exceeds αcf(n) with probability < 1/nc.

3 Algorithm

3.1 The canonical set

Given an instance P, k of MinDist , let Q? denote an
optimal solution. Recall that

τ? = DH(Q?, P) = max
p∈P

d(p, C(Q?)).

Assume that τ? > 0, which can easily be determined by
checking if |V(C(P))| > k, where V(C(P)) denotes the
set of vertices of C(P). Let

p = arg max
p′∈P

d(p′, C(Q?)),

and let q be its projection onto C(Q?), i.e. τ? = ‖pq‖.
Observe that q either lies on a vertex of C(Q?) or in
the interior of a bounding edge. Since Q? ⊆ P , we can
conclude that τ? is either (i) the distance between two
points in P , or (ii) the distance from a point in P to
the line passing through two other points from P . Note
that, in case (ii), q must be the orthogonal projection of
p on to the line ` supporting the edge, and that p must
be the furthest point from ` out of the points that lie
in one of its two defining halfplanes. In particular, for
an ordered pair a, b ∈ P define `a,b as the line through
a and b, directed from a to b, and let Pa,b be the subset
of P lying in the halfspace bounded by and to the left
of `a,b. We thus define the following two sets.

V =
{
‖xy‖

∣∣ x, y ∈ P
}

and

L =
{

max
p∈Pa,b

d(p, `a,b)
∣∣ a, b ∈ P

}
. (2)

The set Ξ = V ∪ L is the canonical set of distance
values (i.e., the set of all critical values). By the above
discussion, we have τ? ∈ Ξ.

Observe that V and L (and hence Ξ) have quadratic
size. Thus we will not explicitly compute these sets. In-
stead we will search over V using the following “median”
selection procedure.

Theorem 4 ([4]) Given a set P ⊂ R2 of n points, and
an integer k > 0, with high probability, in O(n4/3) time,
one can compute the value of rank k in V.

For values in L, the algorithm samples values and
searches over them, using a procedure loosely inspired
by [6]. For that we have the following standard lemma,
whose proof we include for completeness.

Lemma 5 ([5]) Let P ⊂ R2 be a set of n points. Then
in O(n log n) time one can build a data structure such
that for any query vector −→u , in O(log n) time, it returns
the point of P extremal in the direction −→u , i.e. the point
maximizing the dot product with −→u . Let extremal(−→u)
denote this query procedure.

170

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Proof. Let V(C(P)) = {q1, . . . , qk} be labelled in clock-
wise order. Let U(qi) be the set of unit vectors −→u such
that when we translate P so that qi lies at the origin,
then −→u lies in the exterior angle between the normals
of qi−1qi and qiqi+1. Observe that extremal(−→u) = qi
precisely when u ∈ U(qi). Moreover, the U(qi) define
a partition of the set of all unit vectors into k sets.
Thus if we maintain these intervals in an array, sorted
in clockwise order, then in O(log k) = O(log n) time
we can binary search to find which interval −→u falls in.
It takes O(n log n) time to compute C(P) and thus the
data structure. �

In the next section, given a directed line `, we use the
above lemma to make extremal queries for the normal of
` lying in its left defining halfplane. This lets us evaluate
extreme points for lines supporting edges of the current
hull, as well as allows us to sample values from L, for
which we have the following.

Corollary 6 Given a set P ⊂ R2 of n points, af-
ter O(n log n) preprocessing time, one can return, in
O(log n) time, a value sampled uniformly at random
from L.

Proof. Sample uniformly at random a pair of points
from P , and then use Lemma 5 for the normal to the
line passing through this pair of points. �

3.2 The algorithm in stages

The input is a set P of n points, and a parameter k.
The task at hand is to compute the minimum distance
τ?, such that there is a subset Q ⊆ P of size k, such
that DH(Q,P) ≤ τ?.

Searching and testing for the optimal value. The al-
gorithm maintains an interval (r,R), such that the fol-
lowing invariants are maintained:

(I) k?(P, r) > k,

(II) k?(P,R) ≤ k, and

(III) τ?(P, k) ∈ (r,R).

(The first two conditions are actually implied by the
last condition, though for clarity we list all three.) In
the following, let δ > 0 denote an infinitesimal1 . Given
a value τ ∈ (r,R), one can decide if τ = τ?(P, k), by
running decider(P, τ, k) and decider(P, τ − δ, k), see
Theorem 3 . If decider(P, τ−δ, k) returns that k?(P, τ−
δ) > k and k?(P, τ) = k then clearly τ is the desired
optimal value. In this case, the algorithm returns this
value and stops.

1The algorithm can be described without using infinitesimals,
but this is somewhat cleaner.

Updating the current interval. After testing if τ =
τ?(P, k) for a value τ ∈ (r,R) as described above, if
τ 6= τ?(P, k) then the algorithm can update the cur-
rent interval. Indeed, if decider(P, τ, k) returns that
k?(P, τ) > k, then the algorithm sets the current inter-
val to (τ,R). Otherwise, decider(P, τ − δ, k) returned
that k?(P, τ − δ) ≤ k and so the algorithm sets the
current interval to (r, τ).

Stage I: Handling pairwise distances. The algorithm
sets the initial interval to (0,∞). (Recall as discussed
above that we can assume τ? > 0.) The algorithm then
binary searches over all pairwise distance from V =

(
P
2

)

by using the distance selection procedure of Theorem 4 ,
in the process repeatedly updating the current interval
as described above. If τ? ∈ V, then the algorithm will
terminate when the search considers this value. Oth-
erwise, this search reduces the current interval to two
consecutive pairwise distances from V, r < R, such that
τ? ∈ (r,R) and the current interval (r,R) contains no
pairwise distance of P in its interior.

Stage II: Sampling edge-vertex distances. The algo-
rithm samples a set Π of O(n3/2 log n) values from L,
see Eq. (2) , using Corollary 6 . Let U be the subset of
values of Π that lie inside the current interval. The algo-
rithm binary searches over U , repeatedly updating the
current interval as described above (by doing median se-
lection so that U ’s cardinality halves at each iteration).
If τ? ∈ U then the algorithm will terminate when the
search considers this value. Otherwise, the search fur-
ther reduces to the interval to I ′ = (r′, R′). (Which as
discussed below, with high probability, contains O(

√
n)

values from L.)

Stage III: Peeling the critical edge-vertex distances.
The algorithm now continues the search on the interval
I ′ = (r′, R′) and critical values in it, I ′ ∩Ξ = I ′ ∩L. In
particular, the solution computed by decider(P,R′, k)
is a set Q ⊆ P of size ≤ k such that DH(Q,P) ≤ R′.
For every edge on the boundary of C(Q) the algorithm
now computes the point from P furthest away from the
line supporting the edge (among the points in the half-
plane not containing C(Q)), using extremal queries from
Lemma 5 . Let α be the largest such computed value
over all the edges, and observe that α = DH(Q,P).2

If α < R′, then α ≥ τ?(P, k). The algorithm tests if
α = τ?(P, k), and if so it terminates. Otherwise, it must
be that the optimal value lies in the interval (r′, α). As
α ∈ (r′, R′) and α ∈ L, our new interval (r′, α) has at

2DH(Q,P) must be realized at a value from L as Stage I elim-
inated V values, and thus it sufficed to consider furthest distances
to the lines supporting edges rather than the edges themselves,
since at the maximum such value they must align.

171

35th Canadian Conference on Computational Geometry, 2023

least one less value from L. The algorithm now contin-
ues to the next iteration of Stage III.

The case when α = R′ (i.e., the higher end of the ac-
tive interval) is somewhat more subtle. The algorithm
calls decider(P, k, α − δ) to compute a set Q′ that re-
alizes k?(P, α− δ), where δ is an infinitesimal. Observe
that k?(P, α − δ) ≤ k, as otherwise α = R′ was the de-
sired optimal value. Let β = DH(Q′, P), which can be
computed in a similar fashion using Q′ as α was com-
puted using Q. The algorithm tests if β = τ?(P, k),
and if so it terminates. Otherwise, by the same reason-
ing used above for α, we can conclude our new interval
(r′, β) has at least one fewer value from L, and thus the
algorithm continues to the next iteration of Stage III on
the interval (r′, β).

3.3 Analysis

Correctness. The correctness of the algorithm is fairly
immediate given the discussion above. Namely, the al-
gorithm maintains an interval (r,R) with the invariant
that τ?(P, k) ∈ (r,R) (where initially this interval is
(0,∞)). In each step of each stage a value τ ∈ (r,R)
that is either from V (in Stage I) or from L (in Stages
II and III) is determined. For this value τ we then up-
date the current interval as described above. Namely,
we query decider(P, τ, k) and decider(P, τ − δ, k). If
these calls return that k?(P, τ) ≤ k and k?(P, τ−δ) > k
then τ = τ?(P, k) and the algorithm terminates. Oth-
erwise, if k?(P, τ) > k the algorithm proceeds on (τ,R),
and if k?(P, τ − δ) ≤ k then it proceeds on (r, τ). In
either case the interval contains at least one fewer value
from Ξ, and thus eventually the algorithm must termi-
nate with the value τ?(P, k).

Running time analysis. In Stage I the algorithm per-
forms a binary search over V =

(
P
2

)
. This is done using

the distance selection procedure of Theorem 4 , which
with high probability takes O(n4/3) time to determine
each next query value. Each query is answered using
the O(nk log n) time decider(P, ·, k) from Theorem 3 .
Thus in total Stage I takes O

(
(n4/3 + nk log n) log n

)

time with high probability. Here, by the union bound,
a polynomial number of high probability events (i.e.
the events that each call to selection occurs in O(n4/3)
time), all occur simultaneously with high probability.

In Stage II the algorithm samples O(n3/2 log n) val-
ues from L using the O(log n) time sampling pro-
cedure of Corollary 6 . Next, the algorithm binary
searches over these values (this time directly), again
using decider(P, ·, k). Thus in total Stage II takes
O(n3/2 log2 n+ nk log2 n) time.

Stage III begins with some interval (r′, R′). Let
X = |L ∩ (r′, R′)|. In each iteration of Stage III, for
some subset Q ⊆ P of size at most k, the algorithm com-
putes α = DH(Q,P). This is done using at most k calls

to the O(log n) query time Lemma 5 . (This same step
is potentially done a second time for β = DH(Q′, P)).
Each iteration of Stage III also performs a constant
number of calls to decider(P, ·, k), thus is total one
iteration takes O(k log n+nk log n) = O(nk log n) time.
As argued above each iteration of Stage III reduces the
number of values from L in the active interval by at
least 1, and thus runs for at most X iterations. Thus
the total time of Stage III is O(Xnk log n).

Observe that since Stage II sampled a set Π of
O(n3/2 log n) values from the O(n2) sized set L, the in-
terval between any two consecutive values of Π with
high probability has O(

√
n) values from L. As the in-

terval I ′ = (r′, R′) returned by Stage II is such an inter-
val, with high probability X = O(

√
n). As the running

time of Stage II dominates the running time of Stage
I (with high probability), we thus have that with high
probability the total time of all stages is

O(n3/2 log2 n+ (log n+X)nk log n)

= O(n3/2 log2 n+ n3/2k log n+ nk log2 n)

= O(n3/2(k + log n) log n).

Slightly improving the running time. Observe that
if the algorithm samples O(nt log n) values in stage II,
then with high probability the last two stages take

O

(
nt log2 n+

(
n2

nt
+ log n

)
kn log n

)

time. Solving for t, we have

nt log2 n = (n2/t)k log n =⇒ t2 = nk/ log n.

Thus, setting t =
√
nk/ log n, and including the running

time of stage I, we get the improved high probability
running time bound

O

(
n4/3 log n+ nt log2 n+

(
n2

nt
+ log n

)
kn log n

)

= O
(
n3/2
√
k log3/2 n+ kn log2 n

)
.

In summary, we get the following result.

Theorem 7 Given an instance of MinDist , consisting
of a set P ⊂ R2 of n points and an integer k, the above
algorithm computes a set Q? ⊆ P , of size k, that realizes
the minimum Hausdorff distance between the convex-
hulls of P and Q? among all such subsets – that is,
τ?(P, k) = DH(P,Q?). The running time of the algo-

rithm is O
(
n3/2
√
k log3/2 n+ kn log2 n

)
with high prob-

ability.

We remark that under the reasonable assumption
that k = O(n/ log n) the running time can be stated

more simply as O(n3/2
√
k log3/2 n).

172

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

4 Conclusions

The most interesting open problem left by our work is
whether one can get a near-linear running time if k is
small. Even beating O(n4/3) seems challenging. On the
other hand, if one is willing to use 2k points then a
near linear running time is achievable [7]. However, us-
ing less than 2k points without increasing the Hausdorff
distance in near linear time seems challenging.

References

[1] P. K. Agarwal and S. Har-Peled. Computing optimal ker-
nels in two dimensions. In Proc. 39th Int. Annu. Sympos.
Comput. Geom. (SoCG), LIPIcs, page to appear. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[2] P. K. Agarwal, S. Har-Peled, and K. Varadarajan. Ge-
ometric approximation via coresets. In J. E. Good-
man, J. Pach, and E. Welzl, editors, Combinatorial and
Computational Geometry, Math. Sci. Research Inst. Pub.
Cambridge, New York, NY, USA, 2005.

[3] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Ap-
proximating extent measures of points. J. Assoc. Com-
put. Mach., 51(4):606–635, 2004.

[4] T. M. Chan and D. W. Zheng. Hopcroft’s problem, log-
star shaving, 2d fractional cascading, and decision trees.
CoRR, abs/2111.03744, 2021.

[5] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of
polyhedral intersection. Theor. Comput. Sci., 27:241–
253, 1983.

[6] S. Har-Peled and B. Raichel. The Fréchet distance revis-
ited and extended. ACM Trans. Algorithms, 10(1):3:1–
3:22, 2014.

[7] G. Klimenko and B. Raichel. Fast and exact convex
hull simplification. In M. Bojanczyk and C. Chekuri,
editors, Proc. 41th Conf. Found. Soft. Tech. Theoret.
Comput. Sci. (FSTTCS), volume 213 of LIPIcs, pages
26:1–26:17, Wadern, Germany, 2021. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

173

174

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Approximating the Directed Hausdorff Distance

Oliver A. Chubet∗ Parth M. Parikh† Donald R. Sheehy‡ Siddharth S. Sheth§

Abstract

The Hausdorff distance is a metric commonly used to
compute the set similarity of geometric sets. For sets
containing a total of n points, the exact distance can
be computed naively in O(n2) time. In this paper, we
show how to preprocess point sets individually so that
the Hausdorff distance of any pair can then be approxi-
mated in linear time. We assume that the metric is dou-
bling. The preprocessing time for each set is O(n log ∆)
where ∆ is the ratio of the largest to smallest pairwise
distances of the input. In theory, this can be reduced
to O(n log n) time using a much more complicated algo-
rithm. We compute (1 + ε)-approximate Hausdorff dis-
tance in ε−O(d)n time in a metric space with doubling
dimension d. The k-partial Hausdorff distance ignores
k outliers to increase stability. Additionally, we give
a linear-time algorithm to compute directed k-partial
Hausdorff distance for all values of k at once with no
change to the preprocessing.

1 Introduction

The Hausdorff distance is a metric on compact sub-
sets of a metric space. Let (X,d) be a met-
ric space and let A and B compact subsets of X.
The distance from a point x ∈ X to the set B
is d(x,B) := minb∈B d(x, b). The directed Haus-
dorff distance is dh(A,B) := maxa∈A d(a,B), and
the (undirected) Hausdorff distance is dH(A,B) :=
max{dh(A,B),dh(B,A)}. This definition leads directly
to a quadratic time algorithm for finite sets.

We first preprocess the input sets A and B individ-
ually into linear-size metric trees, specifically, greedy
trees [4]. All the points of a set are stored as leaves in
the greedy tree and an internal node serves as an ap-
proximation of all the leaves in its subtree. A subset of
greedy tree nodes such that every point of the set is a
leaf of exactly one node forms an ε-net of the underlying
set. The greedy tree can be used to construct ε-nets of
the underlying set at different scales. Our algorithms

∗Department of Computer Science, North Carolina State Uni-
versity, oachubet@ncsu.edu
†Department of Computer Science, North Carolina State Uni-

versity, pmparikh@ncsu.edu
‡Department of Computer Science, North Carolina State Uni-

versity, don.r.sheehy@gmail.com
§Department of Computer Science, North Carolina State Uni-

versity, sheth.sid@gmail.com

use greedy trees to maintain such nets for either set and
track which nodes of B are close to nodes of A. This
approach batches the searches and results in fewer dis-
tance computations and so, the Hausdorff distance can
be computed quickly.

If the input contains a total of n points, then prepro-

cessing takes
(
1
ε

)O(d)
n log ∆ time. Here ∆ is the spread

of the input sets, and d is the doubling dimension of the
metric space. We present an algorithm that computes a
(1+ε)-approximation of the directed Hausdorff distance

from A to B in
(
1+ε
ε

)O(d)
n time after preprocessing.

The preprocessing is especially useful when the same
sets are involved in multiple distance computations.

One difficulty of working with the Hausdorff distance
is its sensitivity to outliers. There are several varia-
tions of the Hausdorff distance that reduce the sen-
sitivity to outliers. Among the simplest is a defini-
tion where one can ignore up to some number of out-
liers. The kth-partial directed Hausdorff distance is

d
(k)
h (A,B) := minS∈A(k) dh(S,B) where A(k) is the set

of all subsets of A with k points removed [9].
One might expect that this is a harder problem than

computing the directed Hausdorff distance. However,
we show that for approximations in low dimensions, this
is not the case; the worst-case running time matches
that of our algorithm for the standard case. We present
an algorithm that computes a (1 + ε)-approximation of
dkh(A,B) for all values of k in O(n + log ∆) time after
the same preprocessing as before. That is, the output
is a list of n + 1 approximate values of dkh(A,B) for
k ∈ {0, . . . , n} and this list is produced in linear time.

2 Related Work

We focus on general metrics with finite doubling dimen-
sion. In this more general setting, one may not expect
a subquadratic algorithm for computing the Hausdorff
distance, however, there are classes of metric spaces for
which the Hausdorff distance can be computed more
quickly. For example, given point sets in the plane, fast
nearest neighbor search data structures [1] are used to
give an O(n log n) time algorithm. If one allows for ap-
proximate answers, O(n log n) time algorithms are pos-
sible in low-dimensional Euclidean spaces [2].

It is not easy to get an asymptotic improvement on
the naive Hausdorff distance algorithm without using an
efficient data structure in higher dimensions. In prac-

175

35th Canadian Conference on Computational Geometry, 2023

tice, there exist many heuristics to speed up the naive
algorithm [3, 14, 18]. Another popular technique is to
use a geometric tree data structure. Zhang et al. [19]
use octrees to compute the exact Hausdorff distance be-
tween 3D point sets. Nutanong et al. [11] present an al-
gorithm to compute the exact Hausdorff distance using
R-trees.

Partial Hausdorff distance was first introduced by
Huttenlocher et al. [9]. Although there has been con-
siderable interest in this pseudometric, most results are
experimental and to the best of our knowledge, a the-
oretical running time bound does not exist. We give
an algorithm to compute approximate partial Hausdorff
distance that runs in linear time after preprocessing.

The algorithms presented in this paper maintain both
input sets as individual metric trees and traverse them
simultaneously. This approach is similar to that of Nu-
tanong et al. [11], but more generally it has been stud-
ied in the machine learning literature as dual-tree al-
gorithms [7]. Search problems such as the k-nearest-
neighbor search [5], range search [5], and the all-nearest-
neighbor search [13] have been explored using dual-tree
algorithms. Any all-nearest-neighbor search algorithm
where the query and reference sets are different can
also be used to compute the directed Hausdorff dis-
tance. Ram et al. [13] present an all-nearest-neighbor
algorithm that runs in linear time under some strict as-
sumptions about the underlying metrics. Their running
time of this algorithm depends on a constant called the
degree of bichromaticity. Moreover, this dependence is
exponential in the degree of bichromaticity, and high
values can result in a poor bound [6].

3 Background

3.1 Doubling Metrics

Let (X,d) be a metric space. A metric ball is a subset
of X, such that ball(c, r) := {x ∈ X | d(x, c) ≤ r}, with
center c ∈ X and radius r ≥ 0. The spread ∆ of A ⊆
X is the ratio of the diameter to the smallest pairwise
distance of points in A. The doubling dimension of X,
denoted dim(X), is the smallest real number d such that
any metric ball in X can be covered by at most 2d balls
of half the radius. If dim(X) is bounded then X is
a doubling metric. The set A is λ-packed if d(a, b) ≥
λ for any distinct a, b ∈ A. The following lemma by
Krauthgamer and Lee [10] is a geometric property for
packed and bounded sets.

Lemma 1 (Standard Packing Lemma) If X is a
metric space with dim(X) = d and Z ⊂ ball(x, r) for

some x ∈ X is λ-packed then |Z| ≤
(
4r
λ

)d
.

3.2 Greedy Permutations

Let P = (p0, ..., pn−1) be an ordering of n points.
The ith-prefix of P is the set Pi containing points
p0, . . . , pi−1. The sequence P is a greedy permutation
if d(pi, Pi) = dH(Pi, P) for all i > 0. If a sequence P
is such that dH(Pi, P) ≤ αd(pi, Pi) for all i > 0 where
α > 1 then P is an α-approximate greedy permuta-
tion. If d(pi, q) ≤ αd(pi, Pi), then q is an approximate
nearest predecessor. We denote the distance to the (ap-
proximate) nearest predecessor of pi by εpi . Then there
is a 1

αεpi -packing of the points in the prefix Pi.
There is a straightforward algorithm to compute such

approximate greedy permutations and the correspond-
ing predecessor mapping [15, 16]. A greedy permutation
can be computed in O(n log ∆) time for low-dimensional
data [8, 15].

3.3 Greedy Trees

A balltree [12] is defined by recursively partitioning
compact subsets of a metric space and representing the
partitions in a binary tree. For a ball tree on A, every
node a has a center a ∈ A, and a radius ra. Although
multiple nodes can be centered at the same point, all of
our algorithms only consider one such node at a time,
so the notation is unambiguous.

A greedy tree [4] is a ball tree that can be built on A
using the greedy permutation on A and a mapping from
points of A to their predecessors in the greedy permu-
tation.1 The root of the greedy tree is centered at the
first point of the greedy permutation. The rest of the
tree is constructed incrementally. At all times, there is
a unique leaf centered at each of the previously inserted
points. For every point p in the permutation, let q de-
note its predecessor. Create two nodes, one centered
at p and one centered at q. Attach these nodes as the
right and left children respectively of the leaf centered
at q (see Figure 1). The radius of a node is the distance
from the center to the farthest leaf in its subtree. Thus,
leaves have a radius of zero. The radii of all other nodes
can be computed by traversing the subtrees. The radius
of a child is never greater than the radius of its parent.
If the greedy permutation is α-approximate, then the
resulting greedy tree is said to have a parameter α.

The greedy permutation itself requires O(n log n)
time to compute [8]. Given a greedy permutation and
the approximate nearest predecessors, the algorithm
presented above computes the corresponding greedy
tree in O(n log ∆) time (O(n) time to build the tree
and O(n log ∆) time to compute radii). Proof of the
following theorem from Chubet et al. [4] and more de-
tails on constructing greedy trees are presented in the

1The (approximate) nearest predecessors need not be unique,
however for the sake of construction, we assume we have chosen
one.

176

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

appendix.

Theorem 2 Let G be a greedy tree with α > 1. Then
the following properties hold:

1. The radius of a node p is bounded, rp ≤ εp
α−1 .

2. Let X be a set of pairwise independent nodes from

G. The centers of X are (α−1)r
α -packed, where r is

the minimum radius of any parent of a node in X.

4 Approximating Hausdorff Distance

The main input to Hausdorff is a pair of greedy trees
GA and GB built on sets A and B as well as a list
of their nodes in non-increasing order of radius. The
input also includes a parameter ε > 0 that determines
the approximation factor. The output is the (1 + ε)-
approximate directed Hausdorff distance from A to B.

4.1 The Setup

The main data structure used is a bipartite graph N
on the nodes of GA and GB . This graph is called the
neighbor graph and it satisfies the following invariants:

• Covering Invariant: Every point of A ∪ B is a leaf
in some vertex of N .

• Neighbor Invariant: if d(a,B) = d(a, b) then there
is an edge between the nodes containing a and b.

In addition to the graph, we store a local lower bound
on d(a,B) for each point of a ∈ A that has been added
to N . That is, if a vertex a ∈ N is a node of GA, then
the local lower bound of a is defined as,

`(a) := min
b∈N(a)

{d(a, b)− rb},

where N(a) is the set of neighbors of a in N .

4.2 The Algorithm

Initialize N to contain the roots of GA and GB con-
nected by an edge and then iterate over the input list.
For every node p, replace it in N by its children and
connect them to the same vertices that were adjacent
to p.

We prevent N from becoming too large by pruning
edges that are too long. We use the triangle inequal-
ity to identify edges whose removal will not violate the
neighbor invariant. Let the vertex set of N be A′ t B′
at the start of some iteration. An edge between a and
b can be safely pruned if d(a, b′)+ra < d(a, b)−ra−rb
for some b′ ∈ B′, without violating the neighbor invari-
ant. In Hausdorff, if p ∈ GA, then prune long edges
adjacent to the newly added vertices and update their

lower bounds. Otherwise, p ∈ GB and so, prune edges
adjacent to a for all a ∈ N(p) and update `(a). A lower
bound update is shown in.

We stop once the unprocessed nodes have radii too
small to significantly affect the lower bounds. Haus-
dorff maintains L as the greatest local lower bound
as shown in Figure 5. depicts how L is updated when
local lower bounds change. If the radius r of the largest
node yet to process satisfies r ≤ ε

2L, then the algorithm
returns L as a (1 + ε)-approximation of dh(A,B). Now
we prove that L is a (1 + ε)-approximation of dh(A,B)
when r is sufficiently small in Hausdorff.

4.3 Correctness of the Hausdorff Algorithm

The following lemma proves that the pruning step main-
tains the Neighbor Invariant.

Lemma 3 Let the vertex set of the neighbor graph N be
A′tB′ at the start of an iteration of Hausdorff. For
any a ∈ A, if d(a,B) = d(a, b) then there exists an edge
(a′,b′) in N such that a ∈ Pts(a′) and b ∈ Pts(b′).

Proof. Given a ∈ A, let b ∈ B such that d(a, b) =
d(a,B). The neighbor graph maintains a partition of
A and B, so there exists a′ ∈ A′ and b′ ∈ B′ such
that a ∈ Pts(a′) and b ∈ Pts(b′). Then, d(a, b) ≤
d(a′, b′) − ra′ − rb′ by the triangle inequality. Suppose
in the current iteration we pruned the edge (a′,b′) in
N . Then (a′,b′) must satisfy the pruning condition,
d(a′, b′′) + ra′ < d(a′, b′)− ra′ − rb′ , for some b′′ ∈ B′.
It follows that d(a′, b′′) + ra′ < d(a, b). Yet, d(a, b) ≤
ra′ + d(a′, b′′), so this is a contradiction. Therefore,
we cannot prune an edge between nodes storing nearest
neighbors. �

Lemma 4 Let r be the radius of the node to be pro-
cessed in an iteration of Hausdorff and let L be the
global lower bound. Then, L ≤ dh(A,B) ≤ L + 2r.
Moreover, if r ≤ (ε2)L, then L is a (1+ε)-approximation
of dh(A,B).

Proof. Let the vertex set of the neighbor graph N be
A′ t B′. We first show that the distance from A′ to B
is at most L+ r. We know that dh(A′, B) ≤ dh(A′, B′)
because d(a,B) ≤ d(a,B′) for any a ∈ A′. We also
know that rp ≤ r for any vertex p ∈ N . So,

d(a,B′) ≤ min
b∈B′
{d(a, b)− rb + r} = `(a) + r.

It follows that d(A′, B) ≤ maxa∈A′{`(a) + r} = L + r.
Furthermore, d(a,B) ≤ d(a,A′) + dh(A′, B), and we
know that d(a,A′) ≤ r. So, d(a,B) ≤ L+2r. Therefore
L ≤ dh(A,B) ≤ L + 2r. It follows that if r ≤ ε

2L then
dh(A,B) ≤ (1 + ε)L. �

177

35th Canadian Conference on Computational Geometry, 2023

a b c d e f

a a

a b

a

a b

b c

a

a

a d

b

b c

a

a

a d

b

b c

c e

a

a

a d

b

b

b f

c

c e

Figure 1: In this figure, a ball tree is computed for a given permutation and predecessor pairing. The permutation
(a, b, c, d, e, f) is depicted with arrows representing a predecessor mapping. The tree is constructed incrementally.
Each new point creates two new nodes.

l(a)

b0

b1

b2

a

l(a)

b0

b1

b2

b3

a

Figure 2: This figure depicts an update of l(a) after
replacing a node b0 with its children.

4.4 Running time of the Hausdorff algorithm

At all times, the degree of every vertex in N is bounded
by a constant. We will show that this invariant is guar-
anteed by the pruning algorithm, the early stopping con-
dition, and a packing bound. It is the critical fact in the
following analysis of the Hausdorff running time.

Theorem 5 Given two greedy trees for sets A and B
of total cardinality n, Hausdorff computes a (1 + ε)-

b2

b3

b0

b1

b4

a

Figure 3: The the nodes b2 and b3 are too far away
to contain the nearest neighbor of any point in a, so
edges (a,b2) and (a,b3) can be pruned from the neigh-
bor graph. The pruning condition respects the neighbor
invariant and does not prune edge (a,b4).

approximation of dh(A,B) in
(
1+ε
ε

)O(d)
n time.

Proof. Let GA and GB be α-approximate greedy trees.
In order to bound the degrees of the neighbor graph N ,
we first establish that the points associated with the
neighbors of a vertex in N are packed. By construction,
any node p ∈ N is the center of the left- or right-child of
a greedy tree node with radius at least r. Then by The-

orem 2, N(p) is (α−1)r
α -packed. The pruning condition

implies that the distance from p to any of its neighbors

178

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

b′′ b

a′

a
b′

Figure 4: Let a′ ∈ A′. For any point a in a′, by the
triangle inequality, d(a,B) ≤ ra′ + d(a′, b′). If edge
(a,b′′) has been pruned, then no point b in b′′ can be
the nearest neighbor of a, because d(a, b′) ≤ d(a, b) for
any such b.

L

b0

b1

b2
a0

a1

a2

L

b0

b1

b2

b3

a0
a1

a2

Figure 5: This figure depicts an update of L after re-
placing the node b0 with its children. The directed
Hausdorff distance, dh(A,B) ≥ L.

is at most L+ 4r. Thus,

|N(p)| ≤
(2α(L+ 4r)

(α− 1)r

)d
≤
(16α(1 + ε)

(α− 1)ε

)d
,

for all r ≥ (ε2)L, by Lemma 1. Therefore, the number

of edges incident to any given node in N is
(
1+ε
ε

)O(d)
.

So we spend
(
1+ε
ε

)O(d)
time for each iteration of the

algorithm. This gives a running time of
(
1+ε
ε

)O(d)
n. �

5 Approximating Partial Hausdorff Distance

Let A and B be subsets of a metric space (X,d). Let
A(k) denote all subsets of A with k elements removed.
That is, A(k) := {S ⊆ A : |A\S| = k}. The kth-

partial directed Hausdorff distance is d
(k)
h (A,B) :=

minS∈A(k) dh(S,B). Equivalently, d
(k)
h (A,B) is the

(k + 1)st largest distance d(a,B) over all a ∈ A. In

particular, d
(0)
h = dh, as shown in Figure 6.

5.1 Algorithm

The algorithm k-Hausdorff approximates the partial
directed Hausdorff distance for all k ≤ |A| at once.
It returns a sequence (δ0, . . . , δn−1) of distances such

that δi ≤ d
(i)
h (A,B) ≤ (1 + ε)δi. k-Hausdorff builds

on Hausdorff by replacing the global lower bound L
with a max heap of all neighbor graph vertices ordered
by their local lower bounds. We call this the lower
bound heap. Each time the next largest (or approxi-
mate largest) distance is found, it is removed from the
heap and the algorithm continues as before.

Each time a local lower bound of a node is updated,
its priority is also updated. Let λ be the priority of the
vertex m on the top of the heap. When r ≤ ελ

4 , the
node m is removed from the lower bound heap and the
neighbor graph. All the leaves of m have a distance at
most (1 + ε)λ from B, so λ is appended to the output
sequence once for each leaf.

5.2 Lower Bound Heap

Using a standard heap would require O(log n) time for
basic operations. Allowing for a small approximation,
we can put the nodes in buckets, where the mth bucket
of this node heap contains nodes with radii in the in-
terval (βm, βm+1], where β = 1 + ε

2 . There are at
most O(log ∆) buckets. Using a standard heap on the
buckets would lead to O(log log ∆) time for basic opera-
tions. This can be improved still further using a bucket
queue [17], an array of the O(log ∆) buckets. Most op-
erations will take constant time except for remove max,
which can require iterating through the buckets. We
will show that the buckets are removed in non-increasing
order so the iteration visits each bucket at most once,
incurring a total cost of O(log ∆).

In k-Hausdorff, the running time of each iteration
is now determined by the cost of lower bound updates
The local lower bounds are not guaranteed to be non-
increasing, so we describe a procedure that allows us

to use the bucket queue. Let s =
⌈
logβ(4rβ

ε)
⌉
. Each

time the radius decreases we update s and traverse the
array until we reach the new bucket s. For any occupied
bucket j that we encounter before or coinciding with
bucket s, we return δi = βblogβ `(pi)c for every leaf in

179

35th Canadian Conference on Computational Geometry, 2023

Figure 6: Depicted above are the directed Hausdorff distance dh(A,B) (left), the first partial Hausdorff distance

d
(1)
h (A,B) (center), and the 4th-partial Hausdorff distance d

(4)
h (A,B) (right).

each pi in bucket j. In other words, we remove and
return a value all the points whose lower bounds are
greater than βs.

5.3 Correctness and Running Time

The analysis of the k-Hausdorff algorithm closely fol-
lows the analysis of the Hausdorff algorithm. As
points are removed, the Hausdorff distance decreases,
allowing the neighbor graph to maintain a constant de-
gree throughout as in Theorem 5. The main difference
in the running time analysis is that one must include
the cost of the heap operations.

Theorem 6 If β = (1 + ε
2), then k-Hausdorff com-

putes a (1 + ε)-approximation of all partial Hausdorff

distances in
(
1+ε
ε

)O(d)
n+O(log ∆) time.

Proof. First we show the correctness of the sequence
(δ0, . . . , δn−1) returned by k-Hausdorff, i.e., δi ≤
d
(i)
h (A,B) < (1 + ε)δi for all i. Let L be the global

lower bound when δi is returned. Then, L ≤ βδi and
so, L ≤ (1+ ε

2)δi. Furthermore, r ≤ ε
4δi by the stopping

condition described in Section 5.2.
For each j, let pj denote the jth removed point. Let

Si = A\{pj | j ≤ i}. It follows by the definition of

partial Hausdorff distance that, d
(i)
h (A,B) ≤ dh(Si, B).

Then,

d
(i)
h (A,B) ≤ dh(Si, B)

≤ L+ 2r

≤
(

1 +
ε

2

)
δi +

ε

2
δi

= (1 + ε)δi.

For the other direction, it is sufficient to show that

δi ≤ d
(i)
h (A,B). Suppose that d

(i)
h (A,B) < δi. Then,

there exists some set S ⊂ A such that |S| = |Si| and

dh(S,A) = d
(i)
h (A,B). For all a ∈ S, we have `(a) ≤

d(a,B) < δi. By our choice of s and β the δi must be

non-increasing. Therefore, none of the points in S could
have been removed. It follows that S = Si and this is a
contradiction. Therefore, δi ≤ d

(i)
h (A,B) ≤ (1 + ε)δi.

Now we analyze the running time of k-Hausdorff.
In every iteration k-Hausdorff performs some opera-
tions on the neighbor graph and some operations on the
lower bound heap. We show that the degrees of nodes
in N remain constant as in Theorem 5. By Theorem 2,

the neighbor graph is (α−1)r
α -packed. Let p ∈ N . Then

by Lemma 1 and the pruning condition,

|N(p)| ≤
(2α(L+ 4r)

(α− 1)r

)d
≤
(8α(1 + ε)

(α− 1)ε

)d
,

which is (1+ε
ε)O(d). Let the local lower bound of point

p change from `p to `′p in an iteration. We know that,

`′p ≤ `p + r ≤ βs +
βs−1ε

4
.

Therefore,

blogβ `
′
pc ≤

⌊
logβ

(
βs−1

(
β +

ε

4

))⌋
.

If β = (1 + ε
2), then blogβ `

′
pc ≤ s. So, all partial dis-

tances can be computed in a single traversal of the lower
bound heap. Therefore, traversing the lower bound
heap takes O(log ∆) time. Thus the total running time
is (1+ε

ε)O(d)n+O(log ∆). �

6 Conclusion

We presented an algorithm to compute the directed
Hausdorff distance that runs in O(n) time after com-
puting the greedy trees. The benefits of preprocessing
outweigh the costs if the same sets are involved in mul-
tiple distance computations. With some modifications,
the same algorithm can be used to compute all k-partial
Hausdorff distances in O(n+ log ∆) time.

180

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] H. Alt, B. Behrends, and J. Blömer. Approximate
matching of polygonal shapes. Annals of Mathematics
and Artificial Intelligence, 13(3-4):251–265, September
1995.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of
the ACM, 45(6):891–923, November 1998.

[3] Y. Chen, F. He, Y. Wu, and N. Hou. A local start
search algorithm to compute exact Hausdorff Distance
for arbitrary point sets. Pattern Recognition, 67:139–
148, July 2017.

[4] O. Chubet, P. Parikh, D. R. Sheehy, and S. Sheth. Prox-
imity search in the greedy tree. In 2023 Symposium on
Simplicity in Algorithms (SOSA), pages 332–342.

[5] R. Curtin, W. March, P. Ram, D. Anderson, A. Gray,
and C. Jr. Tree-independent dual-tree algorithms. 30th
International Conference on Machine Learning, ICML
2013, 04 2013.

[6] R. R. Curtin, D. Lee, W. B. March, and P. Ram. Plug-
and-play dual-tree algorithm runtime analysis. Jour-
nal of Machine Learning Research, 16(101):3269–3297,
2015.

[7] A. Gray and A. Moore. N-Body Problems in Statistical
Learning. In T. Leen, T. Dietterich, and V. Tresp, ed-
itors, Advances in Neural Information Processing Sys-
tems, volume 13. MIT Press, 2000.

[8] S. Har-Peled and M. Mendel. Fast construction of
nets in low dimensional metrics, and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[9] D. Huttenlocher, G. Klanderman, and W. Rucklidge.
Comparing images using the Hausdorff distance. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 15(9):850–863, September 1993.

[10] R. Krauthgamer and J. R. Lee. Navigating nets: Simple
algorithms for proximity search. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’04, pages 798–807, USA, 2004. So-
ciety for Industrial and Applied Mathematics.

[11] S. Nutanong, E. H. Jacox, and H. Samet. An incre-
mental Hausdorff distance calculation algorithm. Pro-
ceedings of the VLDB Endowment, 4(8):506–517, May
2011.

[12] S. M. Omohundro. Five balltree construction algo-
rithms. Technical Report 562, ICSI Berkeley, 1989.

[13] P. Ram, D. Lee, W. March, and A. Gray. Linear-time al-
gorithms for pairwise statistical problems. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Cu-
lotta, editors, Advances in Neural Information Process-
ing Systems, volume 22. Curran Associates, Inc., 2009.

[14] J. Ryu and S.-i. Kamata. An efficient computational al-
gorithm for Hausdorff distance based on points-ruling-
out and systematic random sampling. Pattern Recogni-
tion, 114:107857, June 2021.

[15] D. R. Sheehy. greedypermutations.
https://github.com/donsheehy/greedypermutation,
2020.

[16] D. R. Sheehy. One hop greedy permutations. In Pro-
ceedings of the 32nd Canadian Conference on Compu-
tational Geometry, 2020.

[17] S. S. Skiena. The Algorithm Design Manual. Springer-
Verlag London Ltd, 2008.

[18] A. A. Taha and A. Hanbury. An Efficient Algorithm for
Calculating the Exact Hausdorff Distance. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
37(11):2153–2163, November 2015.

[19] D. Zhang, F. He, S. Han, L. Zou, Y. Wu, and
Y. Chen. An efficient approach to directly compute
the exact Hausdorff distance for 3D point sets. In-
tegrated Computer-Aided Engineering, 24(3):261–277,
July 2017.

Appendix: Greedy Trees

Greedy Permutations

Let P = (p0, . . . , pn−1) be a finite sequence of points in a
metric space with distance d. The ith-prefix is the set Pi =
{p0, . . . , pi−1} containing the first i points of P .

The sequence P is a greedy permutation if for all i,

d(pi, Pi) = max
p∈P

d(p, Pi).

If a sequence P is such that,

d(pi, Pi) ≤ αmax
p∈P

d(p, Pi),

for all i > 0 where α > 1 then P is an α-approximate greedy
permutation. The point p0 ∈ P is the seed of the greedy
permutation. The predecessor mapping T : P \ {p0} → P
maps each point pi in P (other than the seed) to the (ap-
proximately) closest point in the prefix Pi. The insertion
distance of p is d(p, T (p)), denoted εp. For α-approximate
greedy permutations, we require that the predecessor map-
ping satisfies the condition that

εp ≤ 1

α
εT (p).

Constructing Greedy Trees

A ball tree [12] on A is a binary tree defined by recursively
partitioning A. Each node of the tree stores a center and a
radius that covers the points in its leaves. A ball tree node
x is centered at x ∈ A and has a radius rx. The set of
all points contained in the leaves of x is denoted by Pts(x).
Two nodes y and z are independent if Pts(y) ∩ Pts(z) = ∅.

We construct the greedy tree as a ball tree from a greedy
permutation. The construction applies more generally to
any permutation on a point set P with a predecessor map-
ping T . Given P and T , the descendants of a point p are
defined recursively so that q is a descendant of p if q = p or
T (q) is a descendant of p.

To build a ball tree, it suffices to describe how to partition
a set and pick the centers of the two parts. For a set S ⊆ P ,

181

35th Canadian Conference on Computational Geometry, 2023

let a and b be the first and second points of S with respect
to their ordering in P . These will be the centers of the two
sets. The set centered at b will contain the descendants of b
and the set centered at a will contain the rest of the points.
The convention is that the left child is centered at a and the
right child is centered at b.

The definition in terms of partitions is simple to state, but
there is an equivalent definition that is simpler to implement.
One can construct the ball tree G for P and T incrementally
as follows. Start with a root node centered at p0. Iterate
through the points b in the permutation (starting at p1). Let
a = T (b) and let x be the unique leaf of G centered at a.
Create new nodes centered at a and b and assign them to be
the left and right children of x. See Figure 1.

Once the tree is built, the radius of each node can be
computed as the distance to its farthest descendant. The
number of leaves in the subtree rooted at any node is also
stored in the node. This can be used for range counting and
k nearest neighbor search.

We say G has a parameter α when P is an α-approximate
greedy permutation. As noted previously, for all nodes pi
(other than the root), we construct the greedy permutation
so that εpi ≤ αd(pi, Pi) and εT (pi) ≥ αεpi .

Structure Theorem

Here we present some properties of the greedy tree that allow
us to bound the degree of a vertex in the neighbor graph at
any stage of Hausdorff.

Theorem 2 Let G be a greedy tree with α > 1. Then the
following properties hold:

1. The radius of a node p is bounded, rp ≤ εp
α−1

.

2. Let X be a set of pairwise independent nodes from G.
The centers of X are (α−1)r

α
-packed, where r is the min-

imum radius of any parent of a node in X.

Proof. 1. Let p be a node in G and q ∈ Pts(p) be such
that rp = d(p, q). Additionally, let x and y be nodes
containing q such that T (x) = p and T (y) = x. By the
triangle inequality,

rp ≤ d(p, x) + d(x, q) ≤ εx + rx.

Moreover, by construction, εx ≤ 1
α
εp, so rp ≤ 1

α
εp+rx,

so by induction on the height,

rp ≤
h∑

i=1

εp

(
1

α

)i
≤
∞∑

i=0

εp

(
1

α

)i+1

≤ εp
α− 1

.

2. Let X be a set of pairwise independent nodes from G,
and let x be an arbitrary node in X with a parent
p. Then, rp ≤ εx + rx ≤ εx + εx

α−1
. It follows that

εx ≥ α−1
α
r and therefore, H is (α−1)r

α
-packed, where r

is the minimum radius of any parent of a node in X.
�

182

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Convex Hulls and Triangulations of Planar Point Sets on the Congested
Clique

Jesper Jansson∗ Christos Levcopoulos† Andrzej Lingas‡

Abstract

We consider geometric problems on planar n2-point sets
in the congested clique model. Initially, each node in the
n-clique network holds a batch of n distinct points in the
Euclidean plane given by O(log n)-bit coordinates. In
each round, each node can send a distinct O(log n)-bit
message to each other node in the clique and perform
unlimited local computations. We show that the con-
vex hull of the input n2-point set can be constructed in
O(min{h, log n}) rounds, where h is the size of the hull,
on the congested clique. We also show that a triangu-
lation of the input n2-point set can be constructed in
O(log2 n) rounds on the congested clique.

1 Introduction

The communication/computation model of congested
clique focuses on the communication cost and ignores
that of local computation. It can be seen as a reac-
tion to the criticized model of Parallel Random Access
Machine (PRAM), studied in the 80s and 90s, which
focuses on the computation cost and ignores the com-
munication cost [1].

In recent decades, the complexity of dense graph
problems has been intensively studied in the congested
clique model. Typically, each node of the clique net-
work initially represents a distinct vertex of the input
graph and knows that vertex’s neighborhood in the in-
put graph. Then, in each round, each of the n nodes
can send a distinct message of O(log n) bits to each
other node and can perform unlimited local computa-
tion. Several dense graph problems, for example, the
minimum spanning tree problem, have been shown to
admit O(1)-round algorithms in the congested clique
model [10]. Note that when the input graph is of
bounded degree, each node can send its whole infor-
mation to a distinguished node in O(1) rounds. The
distinguished node can then solve the graph problem
locally. However, when the input graph is dense such a
trivial solution requires Ω(n) rounds.

∗Graduate School of Informatics, Kyoto University, Kyoto,
Japan, jj@i.kyoto-u.ac.jp
†Department of Computer Science, Lund University, 22100

Lund, Sweden, Christos.Levcopoulos@cs.lth.se
‡Department of Computer Science, Lund University, 22100

Lund, Sweden, Andrzej.Lingas@cs.lth.se

Researchers have also successfully studied problems
not falling in the category of graph problems, like ma-
trix multiplication [3] or sorting and routing [6], in the
congested clique model. In both cases, one assumes that
the basic items, i.e., matrix entries or keys, respectively,
have O(log n) bit representations and that each node
initially has a batch of n such items. As in the graph
case, each node can send a distinct O(log n)-bit message
to each other node and perform unlimited computation
in every round. Significantly, it has been shown that
matrix multiplication admits an O(n1−2/ω)-round algo-
rithm [3], where ω is the exponent of fast matrix mul-
tiplication, while sorting and routing admit O(1)-round
algorithms [6] under the aforementioned assumptions.

We extend this approach to include basic geometric
problems on planar point sets. These problems are gen-
erally known to admit polylogarithmic time solutions
on PRAMs with a polynomial number of processors [1].
Initially, each node of the n-clique network holds a batch
of n points belonging to the input set S of n2 points with
O(log n)-bit coordinates in the Euclidean plane. As in
the graph, matrix, sorting, and routing cases, in each
round, each node can send a distinct O(log n)-bit mes-
sage to each other node and perform unlimited local
computations. Analogously, trivial solutions consisting
in gathering the whole data in a distinguished node re-
quire Ω(n) rounds.

First, we provide a simple implementation of the
Quick Convex Hull algorithm [9], showing that the con-
vex hull of S can be constructed in O(h) rounds on the
congested clique, where h is the size of the hull. Then,
we present and analyze a more refined algorithm for
the convex hull of S on the congested clique running
in O(log n) rounds. Finally, we present a divide-and-
conquer method for constructing a triangulation of S in
O(log2 n) rounds on the congested clique.

2 Preliminaries

For a positive integer r, [r] stands for the set of positive
integers not exceeding r.

Let S = {p1, ..., pn} be a set of n distinct points in
the Euclidean plane such that the x-coordinate of each
point is not smaller than that of p1 and not greater
than that of pn. The upper hull of S (with respect to
(p1, pn)) is the part of the convex hull of S beginning in

183

35th Canadian Conference on Computational Geometry, 2023

S
1

S
2

Figure 1: An example of the bridge between the upper
hulls of S1 and S2.

p1 and ending in pn in clockwise order. Symmetrically,
the lower hull of S (with respect to (p1, pn)) is the part
of the convex hull of S beginning in pn and ending in
p1 in clockwise order. A supporting line for the convex
hull or upper hull or lower hull of a finite point set in
the Euclidean plane is a straight line that touches the
hull without crossing it properly.

Let S1, S2 be two finite sets of points in the Eu-
clidean plane separated by a vertical line. The bridge
between the upper (or lower) hull of S1 and the upper
(or, lower, respectively) hull of S2 is a straight line that
is a supporting line for the both upper (lower, respec-
tively) hulls. See Figure 1 for an illustration.

3 Quick Convex Hull Algorithm on Congested
Clique

The Quick Convex Hull Algorithm is well known in
the literature, see, e.g, [9]. Roughly, we shall imple-
ment it as follows in the congested clique model. First,
the set S of n2 input points with O(log n)-bit coor-
dinates is sorted by their x-coordinates [6]. As a re-
sult, each consecutive clique node gets a consecutive
n-point fragment of the sorted S. Next, each node in-
forms all other nodes about its two extreme points
along the x axis. By using this information, each node
can determine the same pair of extreme points pmin,
pmax in S along the x axis. Using this extreme pair,
each node can decompose its subsequence of S into the
upper-hull subsequence consisting of the points that lie
above or on the segment (pmin, pmax) and the lower-
hull subsequence consisting of points that lie below or
on (pmin, pmax). From now on, the upper hull of S and
the lower hull of S are computed separately by call-
ing the procedures QuickUpperHull(pmin, pmax) and
QuickLowerHull(pmin, pmax), respectively. The for-
mer procedure proceeds as follows. Each node sends
a point q of highest y-coordinate among those in its
upper-hull subsequence different from pmin and pmax

to all other nodes. Then, each node selects the same
point q of maximum y-coordinate among all points in
the whole upper-hull subsequence different from pmin

and pmax. Note that q must be a vertex of the upper
hull of S. Two recursive calls QuickUpperHull(pmin, q)

and QuickUpperHull(q, pmax) follow, etc. The pro-
cedure QuickLowerHull is defined symmetrically. As
each non-leaf call of these two procedures results in a
new vertex of the convex hull, and each step of these pro-
cedures but for the recursive calls takes O(1) rounds, the
total number of rounds necessary to implement the out-
lined variant of Quick Convex Hull algorithm, specified
in the procedure QuickConvexHull(S), is proportional
to the size of the convex hull of S.

procedure QuickConvexHull(S)
Input: A set of n2 points in the Euclidean plane with
O(log n) bit coordinates, each node holds a batch of n
input points.
Output: The vertices of the convex hull of S held in
clockwise order in consecutive nodes in batches of at
most n vertices.

1. Sort the points in S by their x-coordinates so each
node receives a subsequence consisting of n consec-
utive points in S, in the sorted order.

2. Each node sends the first point and the last point
in its subsequence to the other nodes.

3. Each node computes the same point pmax of the
maximum x-coordinate and the same point pmin of
the minimum x-coordinate in the whole input se-
quence S based on the gathered information. Next,
it decomposes its sorted subsequence into the up-
per hull subsequence consisting of points above or
on the segment connecting pmax and pmin and the
lower hull subsequence consisting of the points ly-
ing below or on this segment. In particular, the
points pmin and pmax are assigned to both upper
and lower hull subsequences of the subsequences
they belong to.

4. Each node sends its first and last point in its upper
hull subsequence as well as its first and last point
in its lower hull subsequence to all other nodes.

5. QuickUpperHull(pmin, pmax)

6. QuickLowerHull(pmin, pmax)

7. By the previous steps, each node keeps consecu-
tive pieces (if any) of the upper hull as well as the
lower hull. However, some nodes can keep empty
pieces. In order to obtain a more compact output
representation in batches of n consecutive vertices
of the hull (but for the last batch) assigned to con-
secutive nodes of the clique, the nodes can count
the number of vertices on the upper and lower hull
they hold and send the information to the other
nodes. Using the global information, they can de-
sign destination addresses for their vertices on both
hulls. Then, the routing protocol from [6] can be
applied.

184

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

procedure QuickUpperHull(p, r)
Input: The upper-hull subsequence of the input point
set S held in consecutive nodes in batches of at most
n points and two distinguished points p, r in the sub-
sequence , where the x-coordinate of p is smaller than
that of r.
Output: The vertices of the upper hull of S with x-
coordinates between those of p and r held in clockwise
order in consecutive nodes, between those holding p and
r respectively, in batches of at most n points.

1. Each node u determines the set Su of points in
its upper-hull subsequence that have x-coordinates
between those of p and r and lie above or on the
segment between p and r. If Su is not empty then
the node sends a point in Su having the largest y-
coordinate to the clique node holding p, from here
on referred to as the master node.

2. If the master node has not received any point sat-
isfying the requirements from the previous step
then it proclaims p and r to be vertices of the up-
per hull by sending this information to the nodes
holding p and/or q, respectively. (In fact one of
the vertices p and r has been marked as being on
the upper hull earlier.) Next, it pops a call of
QuickUpperHull from the top of a stack of re-
cursive calls held in a prefix of the clique nodes
numbered 1, 2, In case the stack is empty it ter-
minates QuickUpperHull(pmin, pmax).

3. If the master has received some points satisfying
the requirements from Step 1 than it determines
a point q of maximum y-coordinate among them.
Next, it puts the call of QuickUpperHull(q, r)
on the top of the stack and then activates
QuickUpperHull(p, q).

The procedure QuickLowerHull(p, r) is defined anal-
ogously.

Each step of the procedure QuickConvexHull(S),
but for the calls to QuickUpperHull(pmin, pmax) and
QuickLowerHull(pmin, pmax) can be done in O(1)
rounds on the congested clique on n nodes. In
particular, the sorting and the routing steps in
QuickConvexHull(S) can be done in O(1) rounds by
[6]. Similarly, each step of QuickUpperHull(p, r),
and symmetrically each step of QuickLowerHull(p, r),
but for recursive calls, can be done in O(1) rounds.
Since each non-leaf (in the recursion tree) call of
QuickUpperHull(p, r) and QuickLowerHull(p, r) re-
sults in a new vertex of the convex hull, their total num-
ber does not exceed h. Hence, we obtain the following
theorem.

Theorem 1 Consider a congested n-clique network,
where each node holds a batch of n points in the Eu-
clidean plane specified by O(log n)-bit coordinates. Let

h be the number of vertices on the convex hull of the set
S of the n2 points. The convex hull of S can be com-
puted by the procedure QuickConvexHull(S) in O(h)
rounds on the congested clique.

4 An O(log n)-round Algorithm for Convex Hull on
Congested Clique

Our refined algorithm for the convex hull of the input
point set S analogously as QuickConvexHull(S) starts
by sorting the points in S by their x-coordinates and
then splitting the sorted sequence of points in S into
an upper-hull subsequence and lower-hull subsequence.
Next, it computes the upper hull of S and the lower
hull of S by calling the procedures NewUpperHull(s)
and NewLowerHull(S), respectively. The procedure
NewUpperHull(S) lets each node ` construct the up-
per hull H` of its batch of at most n points in the
upper-hull subsequence locally. The crucial step of
NewUpperHull(S) is a parallel computation of bridges
between all pairs H`, Hm, ` 6= m, of the con-
structed upper hulls by parallel calls to the procedure
Bridge(H`, Hm). Based on the bridges between H`

and the other upper hulls Hm, each node ` can deter-
mine which of the vertices of H` belong to the upper
hull of S (see Lemma 1). The procedure Bridge has
recursion depth O(log n) and the parallel implemen-
tation of the crucial step of NewUpperHull(s) takes
O(log n) rounds. The procedure NewLowerHull(s) is
defined symmetrically. Consequently, the refined algo-
rithm for the convex hull of S specified by the procedure
NewConvexHull(S) can be implemented in O(log n)
rounds.

The procedure NewConvexHull(S) is defined in ex-
actly the same way as QuickConvexHull(S), except
that the calls to QuickUpperHull(pmin, pmax) and
QuickLowerHull(pmin, pmax) are replaced by calls to
NewUpperHull(S) and NewLowerHull(S), respec-
tively.

procedure NewUpperHull(S)
Input: The upper-hull subsequence of the input point
set S held in consecutive nodes in batches of at most n
points.
Output: The vertices of the upper hull of S held in clock-
wise order in consecutive nodes in batches of at most n
vertices.

1. Each node ` computes the upper hull H` of its
upper-hull subsequence locally.

2. In parallel, for each pair `, m of nodes, the pro-
cedure Bridge(H`, Hm) computing the bridge be-
tween H` and Hm is called. (The procedure uses
the two nodes in O(log n) rounds, exchanging at
most two messages between the nodes in each of
these rounds.)

185

35th Canadian Conference on Computational Geometry, 2023

3. Each node ` checks if it has a single point p not
marked as not qualifying for the upper hull of S
such that there are bridges between Hk and H` and
H` and Hm, where k < ` < m, p is an endpoint
of both bridges, and the angle formed by the two
bridges is smaller than 180 degrees. If so, p is also
marked as not qualifying for the upper hull of S.

4. Each node ` prunes the set of vertices of Hl, leaving
only those vertices that have not been marked in
the previous steps (including calls to the procedure
Bridge) as not qualifying for the upper hull of S.

The following lemmata enable the implementation of
the n2 calls to Bridge(H`, Hm) in the second step of
NewUpperHull(S) in O(log n) rounds on the congested
clique.

Lemma 2 For ` ∈ [n], let H` be the upper hull of the
upper-hull subsequence of S assigned to the node `. A
vertex v of H` is not a vertex of the upper hull of S if
and only if it lies below a bridge between H` and Hm,
where ` 6= m, or there are two bridges between H` and
Hs, Ht, respectively, where s < ` < t, such that they
touch v and form an angle of less than 180 degrees at v.

Proof. Clearly, if at least one of the two conditions
on the right side of “if and only if” is satisfied then v
cannot be a vertex of the upper hull of S. Suppose that
v is not a vertex of the upper hull of S. Then, since it
is a vertex of Hl, there must be an edge e of the upper
hull of S connecting Hk with Hm for some k ≤ ` ≤ m,
k 6= m, that lies above v. We may assume without loss of
generality that v does not lie below any bridge between
H` and Hq, ` 6= q. It follows that s < ` < t. Let bk
be the bridge between Hk and H`, and let bm be the
bridge between H` and hm. It also follows that both bk
and bm are placed below e and the endpoint of bk at H`

is v or a vertex of H` to the left of v while the endpoint
of bm at H` is v or a vertex to the right of v. Let C
be the convex chain that is a part of H` between the
endpoints of bk and bm on H`. Suppose that C includes
at least one edge. The bridge bk has to form an angle
not less than 180 degrees with the leftmost edge of C
and symmetrically the bridge bm has to form an angle
not less than 180 degrees with the rightmost edge of C.
However, this is impossible because the bridges bk and
bm are below the edge e of the upper hull of S with
endpoints on Hk and Hm so they form an angle less
than 180 degrees. We conclude that C consists solely of
v and consequently v is an endpoint of both bk and bm.
See Figure 2. �

The following folklore lemma follows easily by a stan-
dard case analysis (cf. [5, 7, 8]). It implies that the
recursive depth of the procedure Bridge is O(log n).

H

H

H

b
b

k

e

v

l

m

m
k

Figure 2: The final case in the proof of Lemma 2.

Lemma 3 Let S1, S2 be two n-point sets in the Eu-
clidean plane separated by a vertical line. Let H1, H2

be the upper hulls of S1, S2, respectively. Suppose that
each of H1 and H2 has at least three vertices. Next, let
m1, m2 be the median vertices of H1, H2, respectively.
Suppose that the segment connecting m1 with m2 is not
the bridge between H1 and H2. Then, the vertices on H1

either to the left or to the right of m1, or the vertices
on H2 either to the left or to the right of m2 cannot be
an endpoint of the bridge between H1 or H2.

procedure Bridge(H ′`, H
′
m)

Input: A continuous fragment H ′` of the upper hull H`

of the upper-hull subsequence assigned to a node ` and
a continuous fragment H ′m of the upper hull Hm of the
upper-hull subsequence assigned to the node m.
Output: The bridge between H ′` and H ′m. Moreover, all
points in the upper-hull subsequence held in the nodes
` and m placed under the bridge are marked as not
qualifying for the convex hull of S.

1. If H ′` or H ′m has at most two vertices then compute
the bridge between H ′` and H ′m by binary search.
Next, mark all the points in the upper-hull subse-
quence between the endpoints of the found bridge
that are assigned to the nodes ` or m as not quali-
fying for vertices of the upper hull of S and stop.

2. Find a median m1 of H ′` and a median m2 of H ′m.

3. If the straight line passing through m1 and m2 is a
supporting line for both H ′` and H ′m then mark all
the points in the upper-hull subsequence between
m1 and m2 that are assigned to the nodes ` or m
as not qualifying for vertices of the upper hull of S
and stop.

4. Otherwise, call Bridge(H ′′` , H
′′
m), where either

H ′` = H ′′` and H ′′m is obtained from H ′m by remov-
ing vertices on the appropriate side of the median
of H ′m or vice versa, according to Lemma 2.

186

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

The procedure NewLowerHull(H ′`, H
′
m) is defined

analogously.
As in case of the procedure QuickConvexHull(S),

each step of NewConvexHull(S), but for the calls
to NewUpperHull(S) and NewLowerHull(S), can be
done in O(1) rounds on the congested clique by [6]. Fur-
thermore, the first, next to the last, and last steps of
NewUpperHull(S) require O(1) rounds. By Lemma 2,
the recursion depth of the procedure Bridge is loga-
rithmic in n. The crucial observation is now that con-
sequently the nodes ` and m need to exchange O(log n)
messages in order to implement Bridge(H`, Hm). In
particular, they need to inform each other about the
current medians and in case H ′` or H ′m contains at most
two vertices, the node ` or m needs to inform about
the situation and the two vertices the other node. In
consequence, by Lemma 1, these two nodes can im-
plement Bridge(H`, Hm) by sending a single message
to each other in each round in a sequence of O(log n)
consecutive rounds. It follows that all the n2 calls
of Bridge(H`, Hm) can be implemented in parallel in
O(log n) rounds. Note that in each of the O(log n)
rounds, each clique node sends at most one message
to each other clique node, so in total, each node sends
at most n − 1 messages to the other nodes in each of
these rounds. It follows that NewUpperHull(S) and
symmetrically NewLowerHull(S) can be implemented
in O(log n) rounds on the congested clique. We con-
clude that NewConvexHull(S) can be done in O(log n)
rounds on the congested clique.

Theorem 4 Consider a congested n-clique network,
where each node holds a batch of n points in the Eu-
clidean plane specified by O(log n)-bit coordinates. The
convex hull of the set S of the n2 input points can
be computed by the procedure NewConvexHull(S) in
O(log n) rounds on the congested clique.

5 Point Set Triangulation in O(log2 n) Rounds on
Congested Clique

Our method of triangulating a set of n2 points in the
congested n-clique model initially resembles that of con-
structing the convex hull of the points. That is, first the
input point set is sorted by x-coordinates. Then, each
node triangulates its sorted batch of n points locally.
Next, the triangulations are pairwise merged and ex-
tended to triangulations of doubled point sets by using
the procedure Merge in parallel in O(log n) phases. In
the general case, the procedure Merge calls the proce-
dure Triangulate in order to triangulate the area be-
tween the sides of the convex hulls of the two input
triangulations, facing each other.

The main idea of the procedure Triangulate is to
pick a median vertex on the longer of the convex hulls
sides and send its coordinates and the coordinates of

its neighbors to the nodes holding the facing side of the
other hull. The latter nodes send back candidates (if
any) for a mate of the median vertex so that the segment
between the median vertex and the mate can be an edge
of a triangulation extending the input ones. The seg-
ment is used to split the area to triangulate into two that
are triangulated by two recursive calls of Triangulate
in parallel. Before the recursive calls the edges of the
two polygons surrounding the two areas are moved to
new node destinations so each of the polygons is held by
a sequence of consecutive clique nodes. This is done by
a global routing in O(1) rounds serving all parallel calls
of Triangulate on a given recursion level, for a given
phase of Merge (its first argument).

Since the recursion depth Triangulate is O(log n) and
Merge is run in O(log n) phases, the total number of
required rounds becomes O(log2 n).

To simplify the presentation, we shall assume that the
size n of the clique network is a power of 2.

procedure Triangulation(S)

1. Sort the points in S by their x-coordinates so each
node receives a subsequence consisting of n consec-
utive points in S, in the sorted order.

2. Each node sends the first point and the last point
in its subsequence to the other nodes.

3. Each node q constructs a triangulation Tq,q of the
points in its sorted subsequence locally.

4. For 1 ≤ p < q ≤ n, Tp,q will denote the already
computed triangulation of the points in the sorted
subsequence held in the nodes p through q. For
i = 0, log n − 1, in parallel, for j = 1, 1 + 2i+1, 1 +
22i+1, 1 + 32i+1, ... the union of the triangulations
Tj,j+2i−1 and Tj+2i,j+2i+1−1 is transformed to a
triangulation Tj,j+2i+1−1 of the sorted subsequence
held in the nodes j through j + 2i+1 − 1 by calling
the procedure Merge(i, j).

procedure Merge(i, j)
Input: A triangulation Tj,j+2i−1 of the subsequence held
in the nodes j through j + 2i − 1 and a triangulation
Tj+2i,j+2i+1−1 of the subsequence held in the nodes j+2i

through j + 2i+1 − 1,.
Output: A triangulation Tj,j+2j+1−1 of the subsequence
held in the nodes j through j + 2j+1 − 1.

1. Compute the bridges between the convex hulls of
Tj,j+2i−1 and Tj+2i,j+2i+1−1. Determine the poly-
gon P formed by the bridges between the convex
hulls of Tj,j+2i−1 and Tj+2i,j+2i+1−1, the right side
of the convex hull of Tj,j+2i−1, and the left side
of the convex hull of Tj+2i,j+2i+1−1 between the
bridges.

2. Triangulate(P, j, j + 2i+1 − 1)

187

35th Canadian Conference on Computational Geometry, 2023

procedure Triangulate(P, p, q)
Input: A simple polygon P composed of two convex
chains facing each other on opposite sides of a vertical
line and two edges crossing the line, held in nodes p
through q, with p < q.
Output: A triangulation of P held in nodes p through q.

1. If p = q then the p node triangulates P locally and
terminates the call of the procedure.

2. The nodes p through q determine the lengths of
the convex chains on the border of P and the node
holding the median vertex v of the longest chain (in
case of ties, the left chain) sends the coordinates of
v and the adjacent vertices on the chain to the other
nodes p through q.

3. The nodes holding vertices of the convex chain that
is opposite to the convex chain containing v deter-
mine if they hold vertices u that could be connected
by a segment with v within P. They verify if the seg-
ment (v, u) is within the intersection of the union
of the half-planes induced by the edges adjacent to
v on the side of P with the union of the half-planes
induced by the edges adjacent to u on the side of
P. If so, they send one such a candidate vertex u
to the node holding v.

4. The node holding v selects one of the received can-
didate vertices u as the mate and sends its coordi-
nates to the other nodes p through q.

5. The nodes p through q split the polygon P into two
subpolygons P1 and P2 by the edge (v, u) and by
exchanging messages in O(1) rounds compute the
new destinations for the edges of the polygons P1

and P2 so P1 can be held in nodes p through r1 and
P2 in the nodes r2 through q, where p ≤ r1 ≤ r2 ≤ q
and r1 = r2 or r2 = r1 + 1.

6. A synchronized global routing in O(1) rounds cor-
responding to the current phase of the calls to the
procedure Merge (given by its first argument) and
all parallel calls of the procedure Triangulate on
the same recursion level is implemented. In partic-
ular, the edges of P1 and P2 are moved to the new
consecutive destinations among nodes p through q.

7. In parallel, Triangulate(P1, p, r1) and
Triangulate(P2, r2, q) are performed.

At the beginning, we have outlined our triangulation
method, in particular the procedures forming it, in a
top-down fashion. We now complement this outline
with a bottom-up analysis. All steps of the procedure
Triangulate(P, p, q) but for the recursive calls in the
last step and the next to the last step can be imple-
mented in O(1) rounds, using only the nodes p through

q. The next to the last step is a part of the global rout-
ing. It serves all calls of the procedure Triangulate on
the same recursion level for a given phase of the parallel
calls of procedure Merge(i,), i.e., for given i. Since each
node is involved in at most two of the aforementioned
calls of Triangulate that cannot be handled locally, the
global routing, implementing the next to the last step
of Triangulate, requires O(1) rounds. Since the re-
cursion depth of Triangulate is O(log n), Triangulate
takes O(log n) rounds. The first step of the procedure
Merge(i, j), i.e., constructing the bridges between the
convex hulls, can be implemented in O(log n) rounds by
using the convex hull algorithm from Section 4 on nodes
i through i + 2i+1 − 1. The second step can easily be
implemented in O(1) rounds using the aforementioned
nodes. Finally, the call to Triangulate in the last step of
Merge requires O(log n) rounds by our analysis of this
procedure. Again, it can be done by nodes j through
j+2i+1−1 but for the last steps of calls to Triangulate
that are served by the discussed, synchronized global
routing in O(1) rounds. We conclude that Merge(i, j)
can be implemented in O(log n) rounds. Finally, all
steps in Triangulation(S) except the one involving par-
allel calls to Merge(i, j) in O(log n) phases can be done
in O(1) rounds. For a given phase, i.e., given i, each
node is involved in O(1) calls of Merge(i, j) but for the
next to the last steps in Triangulate that for a given re-
cursion level of Triangulate are implemented by the join
global routing in O(1) rounds. It follows from our analy-
sis of Merge(i, j) and i = O(log n) that Triangulate(S)
can be implemented in O(log2 n) rounds.

Theorem 5 Consider a congested n-clique network,
where each node holds a batch of n points in the
Euclidean plane specified by O(log n)-bit coordinates.
A triangulation of the set S of the n2 input points
can be computed by the procedure Triangulation(S) in
O(log2 n) rounds on the congested clique.

6 Remarks

The primary difficulty in the design of efficient parallel
algorithms for the Voronoi diagram of a planar point
set using a divide-and-conquer approach is the efficient
parallel merging of Voronoi diagrams [1, 11]. In the full
version of this paper [4], we show that when the n2 in-
put points with O(log n)-bit coordinates are drawn uni-
formly at random from a unit square then the expected
number of rounds required to build their Voronoi dia-
gram on the congested clique is O(1).

Acknowledgments

This research was partially supported by Swedish Re-
search Council grants 621-2017-03750 and 2018-04001,
and JSPS KAKENHI JP20H05964.

188

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing,
and C. Yap. Parallel Computational Geometry. Algo-
rithmica, 3: 293–327, 1988. Preliminary version in Pro-
ceedings of the 26th IEEE Symposium on Foundations
of Computer Science, FOCS 1985, pp. 468–477, 1985.

[2] S.G. Akl. Optimal parallel algorithms for computing
convex hulls and for sorting. Computing, 33(1): 1–11,
1984.

[3] K. Censor-Hillel, P. Kaski, J.H. Korhonen, C. Lenzen,
C., A. Paz, and J. Suomela. Algebraic Methods in the
Congested Clique. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing,
PODC 2015, pp. 143–152, 2015.

[4] J. Jansson, C. Levcopoulos, and A. Lingas. Convex
Hulls and Triangulations of Planar Point Sets on the
Congested Clique. arXiv:2305.09987, 2023.

[5] D.G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SIAM Journal on Computing,
15(1): 287–299, 1986.

[6] C. Lenzen. Optimal Deterministic Routing and Sorting
on the Congested Clique. In Proceedings of the 2013
ACM Symposium on Principles of Distributed Comput-
ing, PODC 2013, pp. 42–50, 2013.

[7] M.H. Overmars and J. Van Leeuwen. Maintenance of
Configurations in the Plane. Journal of Computer and
System Sciences, 23(2): 166–204, 1981.

[8] F. Preparata. An optimal real-time algorithm for planar
convex hulls. Communications of the ACM, 22(7): 402–
405, 1979.

[9] J. Ramesh and S. Suresha. Convex Hull - Parallel and
Distributed Algorithms. Technical Report, Stanford
University, U.S.A., 2016.

[10] P. Robinson. What Can We Compute in a Single Round
of the Congested Clique? arXiv:2210.02638, 2022.

[11] B. C. Vemuri, R. Varadarajan and N. Mayya. An Ef-
ficient Expected Time Parallel Algorithm for Voronoi
Construction. In Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures, SPAA 1992,
pp. 392–401, 1992.

189

190

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Lower Bounds for the Thickness and the Total
Number of Edge Crossings of Euclidean Minimum
Weight Laman Graphs and (2,2)-Tight Graphs

Yuki Kawakami∗ Shun Takahashi† Kazuhisa Seto‡ Takashi Horiyama§ Yuki Kobayashi¶

Yuya Higashikawa‖ Naoki Katoh∗∗

Abstract

We explore the maximum total number of edge crossings
and the geometric thickness of the Euclidean minimum-
weight (k, `)-tight graph on a planar point set P . In
this paper, we show that (10/7 − ε)|P | and (11/6 −
ε)|P | are lower bounds for the maximum total number
of edge crossings for any ε > 0 in cases (k, `) = (2, 3) and
(2, 2), respectively. We also show that the lower bound
for the geometric thickness is 3 for both cases. In the
proofs, we apply the method of arranging isomorphic
units regularly. While the method is developed for the
proof in case (k, `) = (2, 3), it also works for different
`.

1 Introduction

A bar-joint framework is one of the main frameworks
studied in combinatorial rigidity theory. It consists of
rigid straight-line bars and their joints, where joints
have flexibility on the angles of their incident bars. We
can discuss the bar-joint framework as a graph of com-
binatorial theory by a mapping each joint to a vertex
and each bar to a straight-line edge [3]. One of the
most fundamental results in combinatorial rigidity the-
ory asserts that a graph G realized on a generic point
set (i.e., the set of the coordinates is algebraically in-
dependent over the rational field) is rigid if and only
if G contains a spanning Laman subgraph [6]. A graph
G = (V,E) is a Laman graph if it satisfies |E| = 2|V |−3
and |E(H)| ≤ 2|V (H)|−3 for any subgraph H of G with

∗Graduate School of Information Science and Technology,
Hokkaido University, kawakami.yuki.k4@elms.hokudai.ac.jp
†Graduate School of Information Science and Technology,

Hokkaido University, shushun-bb14@eis.hokudai.ac.jp
‡Faculty of Information Science and Technology, Hokkaido

University, seto@ist.hokudai.ac.jp
§Faculty of Information Science and Technology, Hokkaido

University, horiyama@ist.hokudai.ac.jp
¶Department of Engineering, Osaka Metropolitan University,

kobayashi@osaka-cu.ac.jp
‖Graduate School of Information Science, University of Hyogo,

higashikawa@sis.u-hyogo.ac.jp
∗∗Graduate School of Information Science, University of Hyogo,

naoki.katoh@gmail.com

E(H) 6= ∅. Laman graphs appear in a wide range of ap-
plications, not only statics but also mechanical design
such as linkages, design of CAD systems, analysis of pro-
tein flexibility, and sensor network localization [9, 10].

The concept of the sparsity condition of a Laman
graph is generalized to a (k, `)-tight graph (see, e.g.,
[7]). The class of (k, `)-tight graphs includes impor-
tant graphs: a Laman graph is a (2, 3)-tight graph,
and a spanning tree being studied in various fields
is a (1, 1)-tight graph. Furthermore, the class of
(2, `)-tight graphs, including Laman graphs, plays an
important role in the 2-dimensional bar-joint frame-
work. For example, a (2, 2)-tight graph realized on a
generic point set, one of the graphs focused on in this
paper, is minimally rigid when the joints are constrained
to lie on the surface of a cylinder (since this surface al-
lows two independent rigid-body motions) [8].

In this paper, we focus on the edge crossing of Laman
graphs and (2, 2)-tight graphs. In order to realize a
graph as a bar-joint framework on the plane in the
real world, it is important to consider its edge-crossing.
Thus, one of our concerns is the graphs that maximize
the total number of edge crossings. Another concern is
the graphs that maximize the geometric thickness. The
geometric thickness of graph G is the smallest number
of layers necessary to partition the edge set of G into
layers so that no layers have edge crossing (see, e.g., [4]).

Thus, more specifically, we at first focus on the total
number of edge crossings and the geometric thickness
of the Euclidean minimum-weight Laman graphs. The
Euclidean minimum-weight Laman graph on point set
P , denoted by MLG(P), is the Laman graph with the
minimum total edge length among all Laman graphs
on P . Then, we also focus on those of the Eu-
clidean minimum-weight (2, 2)-tight graphs, where the
Euclidean minimum-weight (k, `)-tight graph on P , de-
noted by (k, `)-MTG(P), is defined similarly as a gen-
eralization of MLG(P). While the Euclidean minimum-
weight spanning tree on P is always planar (i.e., it has
no edge crossings), MLG(P) may have some edge cross-
ings (see e.g., Fig. 2).

Bereg et al. [1] showed many properties of MLG(P),
e.g., 6-planarity, non-crossing of three edges, and the

191

35th Canadian Conference on Computational Geometry, 2023

implication MLG(P) ⊆ 1-GG(P) on the edges of the
graphs, where 1-GG(P) is a 1-Gabriel graph. From
the 6-planarity of MLG(P), they showed that the upper
bound for the total number of edge crossings of MLG(P)
is 6|P | − 9. They also showed that the lower bound
for the total number of edge crossings of MLG(P) is
|P | − 3. Later, Kobayashi et al. [5] improved the upper
and lower bounds for the total number of edge cross-
ings of MLG(P) to 2.5|P | − 5 and (1.25− ε)|P | for any
ε > 0, respectively. Unfortunately, a gap between those
bounds still exists. As for the geometric thickness of
MLG(P), since the geometric thickness of 1-GG(P) is
at most 4 [2], MLG(P) ⊆ 1-GG(P) in [1] implies that
the upper bound for the geometric thickness of MLG(P)
is 4. On the other hand, its lower bound is 2 since
MLG(P) may have some edge crossings. Thus, we also
have a gap in the geometric thickness.

Furthermore, the total number of edge crossings and
the geometric thickness of (k, `)-MTG(P) for general
k and ` is in our interest. Bereg et al. [1] showed
that (k, `)-MTG(P) is (6k2 + 4k − 10)-planar. In
other words, each edge of (k, `)-MTG(P) cross at most
(6k2 + 4k− 10) other edges. According to this result, it
is easy to see that the total number of edge crossings of
(k, `)-MTG(P) is at most (6k2 + 4k − 10)(k|P | − `)/2.
As Bereg et al. told in [1], this upper bound is not tight,
as we can see the bound is 22|P | − 33 in case k = 2 and
` = 3. There are many open questions regarding the
total number of edge crossings and the geometric thick-
ness of the (k, `)-MTG(P). As a first step for general k
and `, we focus on (2, 3)-MTG(P) and (2, 2)-MTG(P).

Our contribution: At first, we improve the lower
bound for the total number of edge crossings of
MLG(P). Our idea for the proof is based on the method
by Kobayashi et al. [5]: arrange the same units on a
circumference, where each unit consists of carefully po-
sitioned five points. We extend this method by alter-
nately arranging two types of units on a circumference.
Each of both units consists of eight points, and their ar-
rangement is well determined so as to derive isomorphic
MLGs and not to interfere with each other. By alter-
nately arranging these two types of units, we derive the
lower bound (1.42− ε)|P | for any ε > 0.

Our extended method has the possibility to derive a
lower bound for general cases. To show the power of our
method, we apply it to different `. More precisely, We
derive a lower bound for the total number of edge cross-
ings of (2, 2)-MTG(P) by regularly arranging different
units made under the same design: Each unit differs in
only one parameter regarding width, while all other pa-
rameters are the same for all units. By regularly arrang-
ing these units, we derive the lower bound (1.83− ε)|P |
for any ε > 0, while no lower bounds were known. Our
results on (2, 3)-MTG(P) and (2, 2)-MTG(P) suggest
that the total number of edge crossings depends on pa-

rameter `. Recall that the upper bound by Bereg et
al. [1] was with parameter k. Thus, we can open the
door for the discussion with general k and `.

We also address the lower bounds for the geometric
thickness of MLG(P) and (2, 2)-MTG(P). We use the
edge-crossing graph (also called crossing dual graph) of
a graph G. Each vertex and edge of the edge-crossing
graph corresponds to an edge of G and the edge cross-
ing of two edges of G, respectively. Interestingly, the
chromatic number of the edge-crossing graph is equal
to the geometric thickness of the original graph G. We
show an instance of the edge-crossing graph of MLG(P)
that contains a cycle of odd length. Since this implies
its chromatic number is at least 3, we can improve the
lower bound to 3. In a similar way, we can also de-
rive the same lower bound for the geometric thickness
of (2, 2)-MTG(P).

2 Preliminaries

2.1 Minimum-weight (k,`)-tight graphs

A graph G = (V,E) is a (k, `)-sparse graph (0 ≤ ` ≤
2k − 1) if it satisfies |E(H)| ≤ k|V (H)| − ` for any
subgraph H of G with E(H) 6= ∅, where E(H) de-
notes the set of edges of H. A (k, `)-sparse graph is
called a (k, `)-tight graph if it has exactly k|V (G)| − `
edges. In particular, (1, 1)-tight graph, i.e., the graph
for the case k = ` = 1, is called a spanning tree, and
(2, 3)-tight graph is called a Laman graph.

A geometric graph G(P) = (P,Ep) is obtained by
embedding a graph G = (V,E) into a 2-dimensional
Euclidean plane by a bijection p : V → P . Each vertex
vi ∈ V of graph G is mapped to a point p(vi) = pi,
and each edge (vi, vj) ∈ E is mapped to a line segment
p(vi)p(vj) ∈ Ep. In this paper, we denote pipj as both
the line segment p(vi)p(vj) and the edge (vi, vj). The
weight of edge pipj is the Euclidean distance between
two points pi and pj , denoted by ‖pipj‖.

The (k, `)-tight graph with the minimum total edge
weight among all (k, `)-tight graphs on P is called the
Euclidean minimum-weight tight graph on P , and de-
noted by (k, `)-MTG(P). In case k = 2 and ` = 3,
(2,3)-MTG(P) is also called the Euclidean minimum-
weight Laman graph on P , and denoted by MLG(P).
Throughout the paper, we assume that no three points
in P are collinear and that all distances between two
points in P are distinct, called semi-generic.

The following lemma by Bereg et al. [1] is a good tool
for distinguishing whether an edge is in the MLG(P).

Lemma 1 ([1] Lemma2.2) Let P be a semi-generic
point set in the plane, Q ⊆ P , and a, b ∈ Q. Also
let E′ be the set of line segments {pq | p, q ∈ Q, p 6=
q, ‖pq‖ < ‖ab‖}. If there exists a subset of E′ that

192

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

induces a Laman graph on Q, then ab /∈ E(MLG(P))
holds.

As in the following lemma, we can extend the above
lemma to the general case, i.e., (k, `)-MTG for gen-
eral k and `. We use it to prove the lower bounds
for the total number of edge crossings of MLG(P) and
(2, 2)-MTG(P).

Lemma 2 Let P be a semi-generic point set in the
plane, Q ⊆ P , and a, b ∈ Q. Also let E′ be the set of line
segments {pq | p, q ∈ Q, p 6= q, ‖pq‖ < ‖ab‖}. If there
exists a subset of E′ that induces a (k, `)-tight graph on
Q, then ab /∈ E((k, `)-MTG(P)) holds.

Sketch of the proof. Lemma 1 is the special case for
Laman graphs (k = 2, ` = 3). Bereg et al. [1] proved the
lemma by utilizing the property of 2-dimensional rigid
matroids. For general k and ` (0 ≤ ` ≤ 2k − 1), we can
use (k, `)-sparsity matroids [7], i.e., a generalization of
2-dimensional rigid matroids. �

2.2 Geometric thickness of geometric graphs

Our focus is the crossings of the edges in a geomet-
ric graph G(P) = (P,E). Two edges e and e′ (∈ E)
are crossing if and only if they have a common point
other than their both ends. We denote the total number
of edge crossings in G(P) as σ(G(P)). The geometric
thickness of G(P) is defined as the minimum positive
integer t satisfying the following conditions:

• ∪ti=1Ei = E.

• For any integer i (1 ≤ i ≤ t), geometric graph
Gi(P) = (P,Ei) is non-crossing (i.e., Gi(P) is a
plane graph).

Suppose that we are given a geometric graph G(P) with
geometric thickness t, and that we partition E into t−1
edge sets E1, E2, . . . , Et−1. Then, at least one Gi(P) =
(P,Ei) has edge crossing.

We introduce edge-crossing graphs of geometric
graphs to understand the geometric thickness. Given
a geometric graph G(P) = (P,E), its edge-crossing
graph(W,F) is defined as follows: each vertex e ∈ W
corresponds to edge e ∈ E, and edge (e, e′) is in F if
and only if edges e and e′ cross each other in G(P).
The following relationship exists between the geomet-
ric thickness of a geometric graph and the chromatic
number of the edge-crossing graph.

Lemma 3 ([5]) The geometric thickness of a geomet-
ric graph G(P) and the chromatic number of the edge-
crossing graphof G(P) are equal.

𝑈! = 𝑈 "#"$

・
・
・

𝑈% = 𝑈 &''

𝑈(= 𝑈 "#"$

𝑈) = 𝑈 &''

𝐶*

𝑝!
(#) 𝑝%

(#)
𝑝&
(#) = 𝑝#

(!)

𝑝!
(!)

𝑝#
(#) 𝑝%

(!)
𝑝&
(!) = 𝑝#

(%)

Figure 1: Arranging alternately U (even) and U (odd)

3 Lower bounds

In this section, we show the lower bounds for the geo-
metric thickness and the total number of edge crossings
of MLG(P) and (k, `)-MTG(P). To improve the lower
bound for the total number of edge crossings, we use
units consisting of several points. For MLG(P), the
lower bound is derived by counting the total number
of edge crossings of MLG on a point set with alter-
nately arranged two types of units. For (2, 2)-MTG(P),
we consider a point set regularly arranging different
units made under the same design. We also improve
the lower bound for the geometric thickness by show-
ing that the geometric thickness of both MLG(P) and
(2, 2)-MTG(P) is 3. We focus on MLG(P) in section
3.1, and (2, 2)-MTG(P) in section 3.2.

3.1 MLG(P)

Kobayashi et al. [5] derived the lower bound by regu-
larly arranging one type of unit consisting of five points.
We improve the lower bound by extending the idea to
arrange two types of units U (even) and U (odd) alter-
nately, where each unit consists of eight points. The
alternate arrange of U (even) and U (odd) is illustrated in
Figure 1. Both of these two units U (even) and U (odd)

are positioned so as to derive the isomorphic MLGs
in all units. The alternation of two different types of
units instead of the same type will give two crossings
between the neighboring units. Let t denote the num-
ber of units we arrange, and P (t) denote the point set
when t units are arranged. Also, we denote the i-th unit
as Ui (0 ≤ i ≤ t−1) and the point px in unit Ui as point

p
(i)
x .
First, we describe the details of units U (even) and

U (odd), and show the MLG on the point set of a unit
U (even). Unit U (even) is obtained by translating and ro-
tating the eight points in Figure 2, where six parame-
ters d, δ, δ′, τ, τ ′ and he are positive real numbers. Unit
U (odd) is obtained by replacing the parameter he in
U (even) with ho = he + d + 2τ . We carefully deter-
mine the parameters so that the two MLGs on point

193

35th Canadian Conference on Computational Geometry, 2023

𝑝! = (−𝑑,−𝜏)

𝑝" = (−𝛿, 0)

𝑝# = (𝑑,−𝜏)

𝑝$ = (−𝛿%, −ℎ& + 𝜏%)

𝑝' = (−𝛿,−ℎ&) 𝑝(= (𝛿,−ℎ&)

𝑝) = (𝛿%, −ℎ& + 𝜏%)

𝑝* = (𝛿, 0)

Figure 2: MLG(U (even))

sets U (even) and U (odd) become isomorphic.

Lemma 4 Suppose that the parameters d, δ, δ′, τ, τ ′ and
he or ho satisfy the following conditions:

(A) δ′ > 3δ, δ + τ ′

(B) d > δ + τ, 2δ′

(C) d+ δ + 2τ + τ ′ < he, ho <
δ(δ′−3δ)

2τ ′ , (d−δ
′)2−(δ′−δ)2

2τ

Then, the MLG on a point set U (even) is the geometric
graph illustrated in Figure 2. The MLG on U (odd) is the
graph obtained by replacing he in Figure 2 with ho.

Sketch of the proof. We prove this lemma by show-
ing that the geometric graph illustrated in Figure 2 is a
Laman graph and that all edges not illustrated in Fig-
ure 2 are not included in MLG(U (even)). For discrimi-
nating whether an edge is in MLG(U (even)) or not, we
use Lemma 1. For example, let us focus edge p0p3. Sup-
pose that we have a point set Q = {p0, p1, p2, p3}. Then,
we can obtain the set Ep0p3 of line segments shorter
than ‖p0p3‖ as Ep0p3 = {p0p1, p0p2, p1p2, p1p3, p2p3}.
Since graph (Q,Ep0p3) is a Laman graph on Q, p0p3 6∈
MLG(U (even)) holds by Lemma 1. By a similar argu-
ment, we check all edges not illustrated in Figure 2 one
by one. As a result, we can prove the first statement on
U (even). From the argument for constructing U (odd), we
can say that same holds for MLG(U (odd)). �

Next, we consider the point set P (t) obtained by ar-
ranging t units. In case t = 1, P (1) is U (even) itself,
and thus the graph in Figure 2 is MLG(P (1)). In case
t > 1, we alternately arrange U (even) and U (odd) as in
Figure 1. More precisely, for integer i (0 ≤ i ≤ t−1), Ui
is U (even) if i is even and U (odd) if i is odd. We arrange t
units U0, U1, . . . , Ut−1 as P (t) so that every four points

p
(i)
0 , p

(i)
1 , p

(i)
2 , p

(i)
3 of unit Ui lie on the same circumfer-

ence C0. In addition, for all integer i (0 ≤ i ≤ t − 2)

two points p
(i)
3 of unit Ui and p

(i+1)
0 of unit Ui+1 are

adjusted to the same position and are regarded as the
same point. The following lemma tells which line seg-
ment is in the MLG on P (t).

Lemma 5 The set of edges in MLG(P (t)) is a union
of the set of edges in MLG(Ui) for 0 ≤ i ≤ t−1 and the

set of edges p
(i)
2 p

(i+1)
1 between two neighboring units Ui

and Ui+1 for 0 ≤ i ≤ t− 2.

Sketch of the proof. We can prove this lemma by the
similar argument in Lemma 4. All edges not included
in the edge set of the MLG on the point set arranged
one of each unit are excluded by the same argument.

For edges between different units, only edges p
(j)
2 p

(j+1)
1

are included in the E(MLG(P (t))) and no other edges
are included. For all integer j (0 ≤ j ≤ t − 1), the

weight of edge ‖p(j)2 p
(j+1)
1 ‖ can be approximated to 2d

by adjusting four parameters δ, δ′, τ, τ ′ very small while
satisfying the conditions. For all even x, the weights

of the edges p
(x)
7 p

(x+1)
4 and p

(x)
7 p

(x+1)
1 can be approx-

imated to
√

5d by making he a small value while sat-
isfying the condition (C)(and symmetrically for edges

p
(x)
4 p

(x−1)
7 and p

(x)
4 p

(x−1)
3). The weights of the other

edges between the different units are larger than those
of these edges. Note that all edges included in the
edges of the MLG on the point set arranged one of

each unit Ui are shorter than either edge p
(i)
7 p

(x+1)
4 or

p
(x)
7 p

(x+1)
1 . If we consider an edge set E that is shorter

than the weight min(‖p(x)7 p
(x+1)
4 ‖, ‖p(x)7 p

(x+1)
1 ‖), then it

contains a Laman graph on the point set P (t). There-
fore, the edges between the different units do not contain

in E(MLG(P (t))) anything other than edge p
(i)
2 p

(i+1)
1

from Lemma 1. �

Now let us count the number of edge crossings in
the MLG on P (t). For each unit Ui (0 ≤ i ≤ t − 1),
we have eight crossings in MLG(Ui). In addition,
for each neighboring units Ui and Ui+1 (0 ≤ i ≤
t − 2), we have two crossings (p

(i)
2 p

(i+1)
1 , p

(i)
1 p

(i)
3) and

(p
(i)
2 p

(i+1)
1 , p

(i+1)
0 p

(i+1)
2). Thus, the total number of edge

crossings of MLG(P (t)) is 8t+ 2(t− 1) = 10t− 2. And
since the number of points is 7t + 1 in this case, we
obtain the following equation:

σ(MLG(P (t)))

|P (t)| =
10t− 2

7t+ 1
=

10

7
− 24

49t+ 7
.

Here, we determin the radius R of circle C0 as

R =

√
((d− δ)2 + τ2)((d+ δ)2 + τ2)

2τ
.

By adjusting parameters d, δ, δ′, τ, τ ′, he and ho so that
they are satisfying conditions (A) to (C), ho = he+d+2τ
and 2πR� 2t(d+δ), the number of units t can be made
arbitrarily large. In other words, for any ε > 0, we can
obtain a point set P whose MLG has at least (10

7 −ε)|P |
crossings. Although the above point set P is not semi-
generic, we can obtain a set of semi-generic points by
moving each point in P infinitesimally.

194

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

𝑒!,#

𝑒$,% 𝑒!,&
𝑒%,#

𝑒%,'

𝑒(,' 𝑒#,) 𝑒',)
𝑒#,'
𝑒(,#

𝑒%,&
𝑒!,%
𝑒$,!

Figure 3: edge-crossing graphof MLG(U (even))

Theorem 6 For any ε > 0, there exists a set of semi-
generic points P such that the total number of edge
crossings of MLG(P) is greater than (10

7 − ε)|P |.

Now, we focus on the geometric thickness of MLG(P).
The graph shown in Figure 3 is the edge-crossing
graphof MLG(U (even)). Point pipj in Figure 3 cor-
responds to edge pipj in MLG(U (even)), and edge
(pi1pj1 , pi2pj2) corresponds to a crossing of edges pi1pj1
and pi2pj2 in MLG(U (even)). This graph contains a cy-
cle of length 5. Hence, this graph is not 2-colorable. In
other words, its chromatic number is 3 or more. Since
the geometric thickness of a geometric graph is equal
to the chromatic number of its edge-crossing graphfrom
Lemma 3, the geometric thickness of MLG of U (even) is
3 or more. Thus, we have the following theorem.

Theorem 7 There exists a set of semi-generic points P
such that the geometric thickness of MLG(P) is greater
than or equal to 3.

3.2 (2, 2)-MTG

In section 3.1, we alternately arranged two types of units
U (even) and U (odd). In this subsection, we derive the
lower bound for the total number of edge crossings of
(2, 2)-MTG by a new approach: While we arrange mu-
tually different t units, the position of the points in the
units is designed so that the (2, 2)-MTGs on all units are
isomorphic. As in section 3.1, we first describe each unit
Ui and the rules for arranging t units. Let P (t) denote
the point set with t units. Then we discuss discuss the
(2, 2)-MTG on the point set with t units, and finally the
total number of edge crossings of the (2, 2)-MTG(P).

For each i in 0 ≤ i ≤ t − 1, unit Ui consists of six
points. The relative position of the points in each unit
is illustrated in Figure 4, and is determined by three
parameters δ, ε and di. Two parameters δ, ε are com-
mon for all units, and parameter di is different in each

unit. In each Ui, three points p
(i)
0 , p

(i)
3 and p

(i)
4 (respec-

tively, p
(i)
1 , p

(i)
2 and p

(i)
5) have the same x-coordinate.

The height of Ui is always ε. On the other hand, as i
increases, the width of Ui also increases. As illustrated
in Figure 5, we vertically arrange t units so that two

points p
(i)
3 and p

(i+1)
1 (respectively, p

(i)
4 and p

(i+1)
2) in

each of the neighboring units Ui, Ui+1 have the same

y-coordinate. The lengths ‖p(i)3 p
(i+1)
1 ‖ and ‖p(i)4 p

(i+1)
2 ‖

𝛿

𝜖

𝑑!

𝛿

𝑑!

𝑑!𝑝"
!

𝑝#
! 𝑝$

!𝑝%
!

𝑝&
!𝑝'

!

Figure 4: (2, 2)-MTG(Ui)

is fixed to h for all i’s. Suppose that parameters di, δ, ε
and h satisfy the following conditions:

(i) δ < d0

(ii) di+1 > 2di + δ

(iii) ε < (d1−d0−δ)2
4h , (d1−2d0−δ)2h

(iv) h > 2dt + δ

Each unit Ui (1 ≤ i ≤ t − 2) has a point set

Q = {p(i)0 , p
(i)
1 , . . . , p

(i)
5 }. Let us focus on edge p

(i)
0 p

(i)
3 .

Then, we can obtain the set E of edges whose length

is shorter than ‖p(i)0 p
(i)
3 ‖ = 2di + δ. Actually speak-

ing, E is the edges illustrated in Figure 4, and we can
show that E is the set of edges of (2, 2)-MTG. There-

fore, we can conclude that edge p
(i)
0 p

(i)
3 is not included

in (2, 2)-MTG(Ui) from Lemma 2. By the similar argu-
ment, we can show that all edges longer than 2di + δ
are not included in (2, 2)-MTG(Ui).

By a similar argument with Lemma 5, the set of edges
in (2, 2)-MTG(P (t)) is a union of the set of edges in
(2, 2)-MTG(Ui) for ≤ i ≤ t − 1 and the set of edges

p
(i)
3 p

(i+1)
1 and p

(i)
4 p

(i+1)
2 between two neighboring units

Ui and Ui+1 for 0 ≤ i ≤ t− 2.
Since there are 5 crossings in each unit Ui(0 ≤ i ≤

t − 1) and 8 crossings for each neighboring Uj and
Uj+1 (0 ≤ j ≤ t−2), the total number of edge crossings
of (2, 2)-MTG is 5 · t+6(t−1) = 11t−6 when arranging
t units. Since the number of points is 6t in this case, we
obtain the following equation:

σ(MLG(P (t)))

|P (t)| =
11t− 6

6t
=

11

6
− 1

t
.

Thus, with a sufficiently large t, for any ε > 0, there
exists a point set P such that the total number of edge
crossings is at least (11

6 − ε)|P |. As in the previous
subsection, moving each point in P infinitesimally, we
can obtain a set of semi-generic points.

Theorem 8 For any ε > 0, there exists a set of semi-
generic points P such that the total number of edge
crossings of MLG(P) is greater than (11

6 − ε)|P |.

In the following, we discuss the thickness. Focus

on the 5 edges p
(0)
2 p

(0)
4 , p

(0)
3 p

(1)
1 , p

(0)
2 p

(0)
5 , p

(0)
4 p

(1)
2 , p

(0)
3 p

(0)
5

and their 5 edge crossings in (2, 2)-MTG(P (t)) shown

195

35th Canadian Conference on Computational Geometry, 2023

𝑈!

𝑈"

𝑈#$"

ℎ

Figure 5: (2, 2)-MTG on a point set arranging t units

in Figure 5. Then we consider the edge-crossing graph
for that part; there exists a cycle of length 5. There-
fore, for the same reason as MLG(P) and Lemma 3, the
geometric thickness of (2, 2)-MTG(P (t)) is at least 3.
Thus, we have the following theorem.

Theorem 9 There exists a set of semi-generic points
P such that the geometric thickness of (2, 2)-MTG(P)
is greater than or equal to 3.

4 Concluding remarks

As for the the total number of edge crossings, with the
idea of regularly arranging different units, we improved
the lower bound for MLG(P) and newly derived the
lower bound for (2, 2)-MTG(P). As for the geometric
thickness, we showed that the lower bounds for MLG(P)
and (2, 2)-MTG(P) are 3 since we have a cycle of length
5 in each of their edge-crossing graphs.

A gap, however, still exists between the upper and
lower bounds for the total number of edge crossings of
MLG(P). One of the challenges is to fill this gap. There
is also a large gap for (2, 2)-MTG(P). The reason for
this large gap is due to the difficulty that the technique
for the upper bound of MLG(P) cannot be directly ap-
plied to (2, 2)-MTG(P) since it may contain cliques of
size 4. New techniques are necessary to address the up-
per bound for (2, 2)-MTG(P) (and also for general k
and `). For the lower bound, we believe that our tech-
nique of arranging different units made under the same
design is promising for general k and `.

A gap also exists for the geometric thickness of
MLG(P). Kobayashi et al. [5] gave a suggestion for im-
proving the upper bound. A planar triangle-free graph
is 3-colorable, and the edge-crossing graph of MLG(P)
is triangle-free. Thus, if we prove the planarity of the
edge-crossing graph, the upper bound becomes 3 (i.e.,
we have the matching upper and lower bounds). As for
the geometric thickness for (2, 2)-MTG(P), the upper

bound is open. Moreover, it is not known whether the
edge-crossing graph of (2, 2)-MTG(P) is triangle-free or
not.

References

[1] S. Bereg, S.-H. Hong, N. Katoh, S.-H. Poon, and
S. Tanigawa. On the edge crossing properties of
euclidean minimum weight laman graphs. Comput.
Geom., 51:15–24, 2016.

[2] P. Bose, S. Collette, F. Hurtado, M. Korman, S. Langer-
man, V. Sacristán, and M. Saumell. Some properties
of k-delaunay and k-gabriel graphs. Comput. Geom.,
46(2):131–139, 2013.

[3] J. E. Graver, B. Servatius, and H. Servatius. Com-
binatorial rigidity, pages 12–65. Number 2. American
Mathematical Soc., 1993.

[4] P. C. Kainen. Thickness and coarseness of graphs. Ab-
handlungen aus dem Mathematischen Seminar der Uni-
versität Hamburg, 39(1):88–95, 09 1973.

[5] Y. Kobayashi, Y. Higashikawa, and N. Katoh. Im-
proving upper and lower bounds for the total number
of edge crossings of euclidean minimum weight laman
graphs. In Proc. COCOON, LNCS 13025, pages 244–
256. Springer, 2021.

[6] G. Laman. On graphs and rigidity of plane skele-
tal structures. Journal of Engineering Mathematics,
4(4):331–340, 1970.

[7] A. Lee and I. Streinu. Pebble game algorithms and
sparse graphs. Discrete Mathematics, 308(8):1425–
1437, 2008.

[8] A. Nixon, J. C. Owen, and S. C. Power. Rigidity of
frameworks supported on surfaces. SIAM Journal on
Discrete Mathematics, 26(4):1733–1757, 2012.

[9] B. Servatius. The geometry of frameworks: Rigidity,
mechanisms and cad. MAA Notes, pages 81–87, 2000.

[10] M. F. Thorpe and P. M. Duxbury. Rigidity theory and
applications. Springer Science & Business Media, 1999.

196

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Geometric Graphs with Unbounded Flip-Width∗

David Eppstein† Rose McCarty‡

Abstract

We consider the flip-width of geometric graphs, a notion
of graph width recently introduced by Toruńczyk. We
prove that many different types of geometric graphs have
unbounded flip-width. These include interval graphs,
permutation graphs, circle graphs, intersection graphs of
axis-aligned line segments or axis-aligned unit squares,
unit distance graphs, unit disk graphs, visibility graphs
of simple polygons, β-skeletons, 4-polytopes, rectangle
of influence graphs, and 3d Delaunay triangulations.

1 Introduction

Flip-width is a new and very general notion of width in
graphs, defined by Szymon Toruńczyk [28] using a cops-
and-robbers game on graphs, and intended to capture
graph structure in a way that allows for efficient param-
eterized algorithms. It is hoped that testing whether a
given graph models a first-order formula in the logic of
graphs can be solved efficiently when parameterized by
flip-width and formula size, although currently this is
known only for more limited classes of graphs [10].

Beyond potential algorithms, another purpose of flip-
width is to unify incompatible notions of graph width,
including bounded expansion and of twin-width. A graph
family has bounded expansion if all shallow minors of
its graphs are sparse [25]. It has bounded twin-width if
its graphs can be reduced to one vertex by contracting
pairs of vertices so that the subgraph of pairs of con-
tracted vertices with inconsistent adjacencies maintains
bounded degree throughout the contraction process [6].
The sparse graph families of bounded flip-width are
exactly the families of bounded expansion, and every
graph family of bounded twin-width has bounded flip-
width [28]. It is easy to construct graph families that
have bounded flip-width but neither bounded expan-
sion nor bounded twin-width, such as the family of the
graphs that are either subcubic or cographs. The sub-
cubic graphs have bounded expansion but unbounded
twin-width [3] while cographs reverse these inclusions.
∗Research initiated at the 10th Workshop on Geometry and

Graphs, Feb. 3–10, 2023, Bellairs Research Institute, Barbados.
We thank the workshop participants (especially Jit Bose) and
Szymon Toruńczyk for helpful conversations on this work.
†Department of Computer Science, University of California,

Irvine. Research supported in part by NSF grant CCF-2212129.
‡Department of Mathematics, Princeton University. Research

supported by the NSF under grant DMS-2202961.

This union is not very natural, though; subcubic graphs
and cographs have little in common. Can we find a
natural family of graphs with bounded flip-width, but
neither bounded twin-width nor bounded expansion?
Natural candidates include geometric graphs, whose

vertices come from points or other simple objects in a
geometric space, and whose edges are defined by simple
geometric relations between these objects. However,
planar graphs, and bounded-ply disk intersection graphs
in bounded dimensions have bounded expansion [12, 24],
as do sparse intersection graphs of connected subsets
of a surface [12, 21]. To find the examples we seek,
we need non-sparse graphs. Geometric graph theory
contains many examples of highly structured but non-
sparse graph families. Do any have bounded flip-width?
In this work we provide a negative answer for many

standard geometric graphs. We find a class of subgraphs
common to these graphs, which we call “interchanges”
and which provide a winning strategy for a robber in
the cops-and-robbers game used to define flip-width. A
graph family that includes arbitrarily large interchanges
has unbounded flip-width. Using this idea we show
that interval graphs, permutation graphs, circle graphs,
intersection graphs of simply-intersecting axis-aligned
line segments, intersection graphs of axis-aligned unit
squares, unit distance graphs, unit disk graphs, visibil-
ity graphs of simple polygons, β-skeletons, rectangle of
influence graphs, and the graphs of 4-polytopes all have
unbounded flip-width. We provide a different construc-
tion showing that the graphs of 3-dimensional Delaunay
triangulations have unbounded flip-width.
For many of these graphs we prove more strongly

that the radius-1 flip-width is unbounded and that these
graphs are monadically independent, a related concept
in the logic of graphs. A similar approach was used by
Hliněný, Pokrývka, and Roy [17] to prove hardness of
first-order model checking on graph classes with a specific
type of interchange, which they call the “consecutive
neighbourhood representation property”. Other hardness
results, as well as some efficient algorithms, have been
obtained for various geometric graphs in [2, 14, 16, 17].
The proofs of such hardness results typically imply that
the flip-width is unbounded, using the following key fact;
a transduction of a class of bounded flip-width also has
bounded flip-width [28]. Beyond extending these results
to more graph classes, our approach has the advantages
of only using first concepts, and of providing a concrete
robber strategy and a specific bound on the radius.

197

35th Canadian Conference on Computational Geometry, 2023

2 Cops and robbers

Like treewidth [27] and bounded expansion [28], flip-
width can be defined using a certain cops-and-robbers
game. The games for treewidth and expansion involve
“cops with helicopters”, chasing a robber on a graph.
The cops can occupy a limited number of graph vertices
(initially, none); the robber can choose any starting
vertex. In each time step, the cops announce where
they will move next, the robber moves to escape them
on a path through currently-unoccupied vertices, and
then the cops fly directly to their new locations. The
cops win by landing on the robber’s current vertex, and
the robber wins by evading the cops indefinitely. The
treewidth of a graph is the maximum number of cops
that a robber can evade, moving arbitrarily far on each
move [27]. A family of graphs has bounded expansion
if and only if, for some function f , a robber who moves
≤ r steps per move can be caught by f(r) cops [28].
The same game can be described differently. Instead

of occupying a vertex, the cops set up roadblocks on all
edges incident to it. On each move, the cops announce
which vertices will be blockaded next. Then, the robber
moves along un-blockaded edges. Finally, the cops re-
move their current blockades and put up new blockades
at the announced locations. The cops win by leaving the
robber at an isolated vertex, unable to move. Flip-width
is defined in the same way, but with more powerful cops.
Instead of blockading a single vertex, they may “flip” any
subset of vertices. This complements the subgraph in-
duced by that subset: pairs of adjacent vertices become
non-adjacent, and vice versa. Blockading a single vertex,
for instance, takes two flips: one flip of the vertex and
its neighbors, and one of just the neighbors. The first
flip disconnects the given vertex, and the second restores
its neighbors’ adjacencies. It doesn’t matter in which
order these two flips (or any set of flips) is performed.

In the flipping game used to define flip-width, at any
move, the cops may perform a limited number of flips,
initially none. The robber chooses an arbitrary starting
vertex. In each move, the cops announce their next set of
flips. The robber moves on a path in the current flipped
graph, to evade these flips. Then, the cops undo their
current flips and perform the flips that they announced.
The cops win by leaving the robber at an isolated vertex,
unable to move, and the robber wins by avoiding this fate
indefinitely. A family of graphs has bounded flip-width
if, for some function f , f(r) flips per move suffice to
catch a robber who moves ≤ r steps per move. Similarly,
the radius-r flip-width of a graph is the least number of
flips required to catch a robber who moves ≤ r steps.
Bounded flip-width implies bounded radius-r flip-width,
but not vice versa; for instance, subdivisions of complete
graphs have bounded radius-1 flip-width but unbounded
flip-width. Conversely, unbounded radius-r flip-width
implies unbounded flip-width, but not vice versa.

Figure 1: An interchange of order five, with lanes in blue
and ramps in red. The yellow edges are optional.

Because flipping can simulate blockading, graphs
of bounded treewidth also have bounded flip-width.
However, graphs of unbounded treewidth may have
bounded flip-width. For instance, all planar graphs
have bounded flip-width but the planar graphs have
unbounded treewidth.

3 Escaping through interchanges

In the treewidth game, escape strategies for the robber
are modeled graph-theoretically by havens, certain func-
tions from subsets of vertices to connected components
of the subgraph formed by their removal [27]. In the
same spirit, and using terminology following a road net-
work metaphor, we define interchanges, structures in a
graph which can be used to define an escape strategy
for the robber in the flipping game.

Definition 1. An interchange of order n consists of:

• A linear sequence of n designated vertices, which
we call lanes.
• More designated vertices, called ramps. Each ramp

is associated with two lanes, and each two lanes that
are ≤ n−3 steps apart in the sequence have a ramp.
(We do not require ramps for farther-apart lanes
because they would not be of use to the robber.)
• An edge between each ramp and its two lanes.
• Optional edges between any two lanes or between

any two ramps. These will be unused by the robber.
Making them optional, rather than specifying their
presence or absence, allows us to construct geomet-
ric realizations without worrying about whether the
construction includes these edges.
• For a ramp that connects lanes x and y, optional

edges to other lanes between x and y in the sequence.
Edges to lanes outside that range are not allowed.

Fig. 1 depicts an example.

Definition 2. Let F be a collection of flips that could
be made in the flipping game (a family of sets of vertices
of a given graph). We define two lanes of an interchange
to be equivalent under F if, for every flip F in F , either
both lanes belong to F or both are omitted from F .

198

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Lemma 3. Let a, b, c and d, e, f be two disjoint triples
of lanes such that, for a collection of flips F , all lanes in
{a, b, c} are equivalent under F , and all lanes in {d, e, f}
are equivalent under F . Then, after the flips in F are
made, the flipped interchange contains at least one two-
edge lane–ramp–lane path between {a, b, c} and {d, e, f}.

Proof. Assume (by swapping the triples if necessary)
that the lane b is before the lane e. Then these six lanes
contain the four-lane subsequence a, b, e, f . If ramp be is
flipped with respect to the equivalent lanes {a, b, c}, it
becomes adjacent to a; otherwise it remains adjacent to b.
If ramp be is flipped with respect to the equivalent lanes
{d, e, f} it becomes adjacent to f ; otherwise it remains
adjacent to e. In all cases this ramp connects at least
one lane in {a, b, c} to at least one lane in {d, e, f}.

Lemma 4. Suppose that distinct lanes a, b, and c, in an
interchange of order n, are equivalent under a collection
of flips F . Then, in the flipped interchange, at least
one of a, b, or c has paths of length two to at least
1
3

(
n− 2|F|+1 − 3

)
-many other lanes.

Proof. Under the flips in F , there are 2|F| equivalence
classes of lanes. By Lemma 3, each equivalence class
has at most two lanes (other than a, b, and c) that are
not connected by a two-edge path to at least one of a, b,
and c, because three disconnected but equivalent lanes
would contradict the lemma. The total number of these
disconnected vertices is at most 2|F|+1; the remaining
n− 2|F|+1 − 3 vertices have two-edge paths to at least
one of a, b, or c. Even if each were connected to exactly
one of a, b, or c, and even if these connections were
evenly distributed between a, b, and c, the statement of
the lemma would hold. Multiple connections or uneven
distribution of connections only increases the largest of
the three numbers of connections among a, b, and c.

Theorem 5. Suppose that cops and a robber play the
radius-2 flipping game with t flips per move on a graph
that includes an interchange of order n = 2t+3 +3. Then
the robber can win by moving at each step (including
the initial step) to a lane that maximizes the number of
lanes that will be reachable after the announced flips.

Proof. In an interchange of this size, by Lemma 4, every
three equivalent lanes include one connected to ≥ 2t+1

other lanes by two-edge paths; it can reach ≥ 2t+1 + 1
lanes including itself by paths of length ≤ 2. Among
every 2t+1 + 1 lanes, at least three are equivalent. By in-
duction, at each step, the robber has a choice of≥ 2t+1+1
lanes to move to, among which three are equivalent, and
therefore can move to a lane that will continue to reach
at least 2t+1 + 1 lanes after the announced flips.

Corollary 6. A class of graphs that contains arbitrarily
large interchanges does not have bounded flip-width.

Figure 2: Representing an interchange using the intervals
of an interval graph or interval containment graph.

In Appendix A we show, more strongly, that graph
classes with large interchanges are not monadically de-
pendent, a property that generalizes both classes of
bounded flip-width [28] and classes that are nowhere-
dense [1].

4 Geometric graphs

The geometric graphs known to have bounded flip-width
include the unit interval graphs (which more strongly
have bounded twin-width [4]) and the intersection graphs
of disks of bounded ply in any fixed dimension (which
more generally have bounded expansion [12, 24]). We
prove that many other classes of geometric graphs do not
have bounded flip-width, by finding large interchanges
in them and applying Corollary 6.

Theorem 7. The interval graphs, permutation graphs,
circle graphs, and intersection graphs of axis-aligned line
segments (no two collinear) have unbounded flip-width.

Proof. We construct intervals representing an arbitrar-
ily large interchange, with short disjoint intervals for
each lane and long intervals spanning multiple lanes for
each ramp (Fig. 2). The intersection graph of these
intervals is an interval graph forming the interchange,
with all optional lane–ramp edges included. The in-
terval containment graph, having a vertex per interval
and an edge whenever one interval contains another,
differs only in some optional ramp–ramp edges. Inter-
val containment graphs are the same as permutation
graphs, and are a subclass of circle graphs [7]. For
axis-aligned line segments, lift the ramp intervals to dis-
tinct y-coordinates, and replace the lane intervals by tall
vertical segments.

The graph classes in Theorem 7 are monadically inde-
pendent [2], from which unbounded flip-width follows,
but without a bound on the robber’s escape radius.

Theorem 8. The intersection graphs of axis-aligned
unit squares have unbounded flip-width.

Proof. Place the intervals of Theorem 7 on a diagonal
line, scaled to have length less than

√
2. Represent lanes

by squares below this line, intersecting the line in the
given interval, and represent ramps by squares above
this line (Fig. 3). The resulting unit square intersection
graph may have additional lane–lane and ramp–ramp
intersections, but these only create optional edges.

199

35th Canadian Conference on Computational Geometry, 2023

Figure 3: Representing an interchange using axis-aligned
unit squares.

Figure 4: Representing an interchange as a unit distance
graph or the center points of a unit disk graph.

Theorem 9. The unit distance graphs and unit disk
graphs have unbounded flip-width.

Proof. For unit distance graphs, place points represent-
ing the lanes equally spaced along a line segment of
length less than two in the plane, and place points repre-
senting ramps at the intersections of pairs of unit circles
centered at the lane points (Fig. 4). The resulting graph
may have ramp–ramp or lane–lane edges, but it will
have no optional lane–ramp edges. For unit disk graphs,
scale the same points by a factor of two so that unit
disks centered at them will be tangent when their points
are adjacent in the unit-distance graph. The resulting
unit disk graph includes all possible optional lane–ramp
edges, forming an interchange of the same order.

Theorem 10. The visibility graphs of simple polygons
do not have bounded flip-width.

Proof. Place points representing lanes on a horizontal
line, and place points representing the ramps between
two consecutive lanes in the same order on a parallel line
above them. Place points representing the remaining
ramps, between non-consecutive lanes, on a third parallel
line below the lanes. Draw a triangle between each ramp

Figure 5: Representing an interchange as the visibility
graph of a simple polygon.

vertex and the two lanes it should connect, and take the
union of the triangles. Fill any holes formed in taking
the union, keeping only the outer boundary, to form a
simple polygon (Fig. 5). In the resulting polygon, each
ramp still has parts of two triangle sides adjoining it,
blocking its visibility from any lanes that it should not
see. Within the triangle for each ramp, it can see its two
lanes and any other lane between them.

Theorem 10 also follows from the fact that simple poly-
gon visibility graphs are monadically independent [2],
which was shown using a similar construction. Fur-
thermore, simple polygon visibility graphs are cop-win
graphs ; a single cop wins a different cop-and-robber game
in which both players move along graph edges or stand
still [23]. But this has no implications for flip-width;
adding a universal vertex to any graph makes it cop-win
but does not change the boundedness of its flip-width.
The β-skeletons (for β ≤ 1) are defined from a set of

points by constructing for each pair of points a lune, the
intersection of two congruent disks that cross at these
points with angle π − sin−1 β. Two points are adjacent
if this lune contains no other given points [20].

Theorem 11. For any β < 1, the β-skeletons have
unbounded flip-width.

Proof. Place vertices representing lanes and ramps on
the lines y = 0 and y = 1 respectively, evenly spaced and
very close to the line x = 0, close enough to ensure that
each lane–ramp lune stays within the slab 0 ≤ y ≤ 1.
For each ramp r, place two blocking points on the line
y = 1− ε for suitably small ε, close enough to r to avoid
all lunes from other ramps. These blocking points should
be just outside the two lunes connecting r to its two
lanes, one to the left and one to the right, so that any
lune connecting r to a lane outside of its range of lanes
contains one of the blocking points and is non-empty.
The resulting β-skeleton forms an interchange with all
optional lane–ramp edges.

Observation 12. The graph of a d-dimensional hyper-
cube contains an interchange of order d.

Proof. This is the graph of subsets of a d-element set,
adjacent when they differ by one element. Let lanes be
singletons and ramps be two-element sets.

200

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 6: A 5-dimensional hypercube graph as an in-
duced subgraph of a rectangle of influence graph.

Rectangle of influence graphs connect pairs of points
in the plane when their bounding box contains no other
points [18,22]. Sources vary on how to treat points on
the boundary of this bounding box, but that can be
avoided using point sets with no equal coordinates.

Theorem 13. Rectangle of influence graphs induce high-
dimension hypercubes and have unbounded flip-width.

Proof. We recursively construct integer points with dis-
tinct coordinates whose rectangle of influence graphs con-
tain arbitrarily large induced hypercubes. As a base case,
the two points (0, 0) and (1, 1) give a one-dimensional
hypercube graph. If Xd−1 is defined in this way, with
subset Yd−1 inducing a (d− 1)-dimensional hypercube,
construct Xd by placing side to side the following three
sets: (1) a copy of Xd−1 scaled vertically by a factor of
three; (2) a copy of Yd−1 scaled by the same factor, offset
vertically by two units (and missing its topmost point),
and (3) another scaled copy of Xd−1, offset vertically
by one unit. Choose Yd to be the copies of Yd−1 within
the first and third of these three sets. Scaling does not
affect the hypercube graphs within these copies. The
middle copy of Yd−1 blocks all empty rectangles stretch-
ing from the first copy to the third copy, except those
between corresponding pairs of points, so Yd induces a
d-dimensional hypercube graph.

Fig. 6 illustrates five levels of the recursive construc-
tion of Theorem 13, with another (cosmetic) step that
compacts the coordinates to use consecutive integers.

Theorem 14. The graphs of four-dimensional convex
polytopes, and of three-dimensional Euclidean Delaunay
triangulations, have unbounded flip-width.

Proof. For 4-polytopes, consider the barycentric subdi-
visions of neighborly polytopes. The graph of a neigh-
borly polytope is complete, and barycentric subdivision

preserves realizability as a convex polytope [13]. The
barycentric subdivision replaces the edges of the com-
plete graph by disjoint two-edge paths. The original
vertices of the complete graph form the lanes, and the
subdivision points of these paths form the ramps, of an
interchange, whose order equals the number of vertices
in the neighborly polytope.
For Delaunay triangulations, we do not use inter-

changes; instead we rely on a result of Toruńczyk that
weakly sparse graphs (that is, graphs with no Kt,t sub-
graph for some t) have bounded flip-width if and only if
they have bounded expansion [28]. To construct a Delau-
nay triangulation that does not have bounded flip-width,
we begin with the convex hull of certain points in R4

(coordinatized by pairs of complex numbers), the union
of the following three sets of points on a unit sphere, for
a given even integer parameter n:

• The n points (e2πi/n, 0) for integer i, 0 ≤ i < n.

• The n points (0, e2πj/n) for integer j, 0 ≤ j < n.

• The n2 points (e2πi/n/
√

2, e2πj/n/
√

2) for i and j
in the same range.

The points with both coordinates nonzero form a square
grid on the flat torus {(x, y) | |x| = |y| = 1/

√
2}, and the

other two subsets of points form n-gons (not faces of the
convex hull) in the planes x = 0 and y = 0. Each edge of
an n-gon is parallel to the family of edges connecting a
ring of squares on the torus, and the facets of the convex
hull are warped triangular pyramids connecting an n-
gon edge to one of these parallel squares. The subgraph
induced in the graph of this polytope by the vertices
for which i and j are both even is the subdivision of a
complete bipartite graph Kn/2,n/2. This subdivision has
no K2,2 subgraph and does not have bounded expansion,
so it does not have bounded flip-width.
To transform this inscribed 4-polytope into a Delau-

nay triangulation, we apply a stereographic projection
whose pole is the center point of one of the squares
on the torus. On the unit sphere in R4, this pole be-
longs to only two of the circumspheres of the facets, for
the two facets meeting at this square. Stereographic
projection preserves spheres on the unit sphere, so the
empty spheres of all of the other facets project to empty
spheres for the corresponding set of six points in R3;
that is, these six points form a prism-shaped cell in the
Delaunay complex of the projected points. Each edge of
the 4-polytope is part of one of these Delaunay cells, so
the Delaunay graph of the projected points is the same
as that of the complex. Perturbing the points to form a
Delaunay triangulation, and keeping only the points for
which i and j are both even, again produces the subdi-
vision of a complete bipartite graph, as the subgraph of
a three-dimensional Delaunay triangulation.

201

35th Canadian Conference on Computational Geometry, 2023

5 Radius-1 flip-width

Our escape strategy for the robber through interchanges
involves the robber taking two steps per move. It is
natural to ask whether this can be strengthened to allow
escapes of only one edge per move for the same classes
of geometric graphs. That is, do these geometric graphs
have bounded or unbounded radius-1 flip-width?

In the treewidth game, radius-1 corresponds to degen-
eracy, where a graph has degeneracy ≤ d if and only
if its vertices can be ordered so that each vertex has
≤ d earlier neighbors. The radius-1 treewidth game can
be won by d+ 1 cops, who always play on the current
vertex of the robber and its earlier neighbors, forcing
the robber to move later in the ordering. On the other
hand, if the degeneracy is greater than d then the graph
has a (d+ 1)-core, an induced subgraph with minimum
degree d+ 1, within which the robber is safe: no matter
where the cops move next, there will be an unoccupied
vertex for the robber within one step [28].

For the radius-1 flip-width game, Toruńczyk identifies
a corresponding concept to a core, which we call a ∆-
diverse subgraph. This is an induced subgraph in which
the open neighborhoods of each two vertices differ by at
least ∆ vertices. As Toruńczyk proves, a family of graphs
whose graphs contain ∆-diverse subgraphs, for arbitrarily
large ∆, has unbounded radius-1 flip-width [28]. For
cops that make t flips per move, the robber can escape by
staying within a 2t+1-diverse subgraph and moving to a
vertex v in this subgraph such that, after the announced
flips, v will have at least 2t neighbors. These neighbors,
and v itself, form a set of 2t + 1 vertices within which
the robber can move, some two of which (say x and
y) will be equivalent after the cops’ flips. Each vertex
adjacent to exactly one of x and y will remain adjacent
to exactly one after the flips, so one of x and y will have
≥ 2t neighbors, enough to continue the same strategy.
Slightly more generally, define a (∆, χ)-diverse sub-

graph for a subset of vertices in a given graph and
an (improper) χ-coloring of those vertices, keeping all
properly colored edges and removing all improperly col-
ored ones, with diversity measured between vertices of
the same color. The robber escapes by staying in a
(2t+1(χ− 1) + 2, χ)-diverse subgraph and moving to a
vertex with at least 2t(χ − 1) + 1 differently-colored
neighbors. Some two neighbors will have the same color
and be treated equivalently by all flips, and one of these
two will have enough neighbors in the next move.

Lemma 15. An order-n interchange with all optional
lane–ramp edges has an (Ω(n1/3), 2)-diverse subgraph.

Proof. Number the lanes of the interchange from 0 to n−
1, and choose a parameter k ≈ n1/3. Form a two-colored
subgraph (colored by lanes and ramps) with all lanes and
a subset of ramps, the ramps for lanes x and y with x < y
that meet the following two conditions: (1) |y − x| ≥ k,

Figure 7: The integer points (x, y) with x ≡ ky mod
k2 + 1 (shown for k = 4) form a tilted grid in which all
pairs of points have L1 distance at least k + 1.

and (2) x ≡ ky mod k2 + 1. The second condition leaves
Θ(n1/3) ramps starting or ending at each lane, enough
so every two lanes have diverse neighborhoods.
Two ramps with disjoint ranges of lanes are distin-

guished by all their neighbors, of which there are Ω(n1/3)
by the first condition. Two ramps with overlapping
ranges of lanes [x, y] and [x′, y′] are distinguished by the
lanes between x and x′, and the lanes between y and y′;
there are |x − x′| + |y − y′| such lanes. The condition
that x ≡ ky mod k2 + 1 defines a subset of the integer
grid in the form of a tilted square grid in which all pairs
of points are at L1 distance at least k + 1 (Fig. 7), so
the number of lanes that are neighbors of only one of
the two ramps is also at least k + 1 = Ω(n1/3).

Corollary 16. Interval graphs, permutation graphs,
circle graphs, intersection graphs of axis-aligned unit
squares, unit disk graphs, visibility graphs of simple poly-
gons, and β-skeletons with β < 1 have unbounded radius-
1 flip-width.

Observation 17. The graph of a d-dimensional hyper-
cube is (2d− 2)-diverse.

Proof. It is d-regular, and the neighborhoods of any two
vertices can share at most two neighbors.

Corollary 18. Unit distance graphs, graphs of 4-
polytopes, and rectangle of influence graphs have un-
bounded radius-1 flip-width.

Proof. The d-dimensional hypercube graphs can be
drawn as unit distance graphs by linear projections that
map the basis vectors of Rd to generic unit vectors in
the plane [8]. They are the graphs of the 4-dimensional
neighborly cubical polytopes [19]. For rectangle of influ-
ence graphs, the result follows from Theorem 13

We do not know whether three-dimensional Delaunay
triangulations have bounded radius-1 flip-width; we leave
this as open for future research.

202

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] Hans Adler and Isolde Adler. Interpreting nowhere
dense graph classes as a classical notion of model
theory. Eur. J. Comb., 36:322–330, 2014. doi:
10.1016/j.ejc.2013.06.048.

[2] Édouard Bonnet, Dibyayan Chakraborty, Eun Jung
Kim, Noleen Köhler, Raul Lopes, and Stéphan
Thomassé. Twin-Width VIII: Delineation and win-
wins. In Holger Dell and Jesper Nederlof, editors,
17th International Symposium on Parameterized
and Exact Computation, IPEC 2022, September 7–
9, 2022, Potsdam, Germany, volume 249 of LIPIcs,
pages 9:1–9:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.
2022.9.

[3] Édouard Bonnet, Colin Geniet, Eun Jung Kim,
Stéphan Thomassé, and Rémi Watrigant. Twin-
width II: small classes. In Dániel Marx, editor,
Proceedings of the 2021 ACM–SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Confer-
ence, January 10–13, 2021, pages 1977–1996. SIAM,
2021. doi:10.1137/1.9781611976465.118.

[4] Édouard Bonnet, Colin Geniet, Eun Jung Kim,
Stéphan Thomassé, and Rémi Watrigant. Twin-
width III: max independent set, min dominating
set, and coloring. In Nikhil Bansal, Emanuela
Merelli, and James Worrell, editors, 48th Inter-
national Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12–16, 2021, Glas-
gow, Scotland (Virtual Conference), volume 198
of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.
4230/LIPIcs.ICALP.2021.35.

[5] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de
Mendez, Pierre Simon, Stéphan Thomassé, and Szy-
mon Toruńczyk. Twin-width IV: ordered graphs and
matrices. In Stefano Leonardi and Anupam Gupta,
editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy,
June 20–24, 2022, pages 924–937, New York, NY,
USA, 2022. Association for Computing Machinery.
doi:10.1145/3519935.3520037.

[6] Édouard Bonnet, Eun Jung Kim, Stéphan
Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):A3:1–
A3:46, 2022. doi:10.1145/3486655.

[7] Andreas Brandstädt, Van Bang Le, and Jeremy P.
Spinrad. Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications.
Society for Industrial and Applied Mathematics,
1999. doi:10.1137/1.9780898719796.

[8] Peter Brass. Erdős distance problems in normed
spaces. Comput. Geom. Theory & Appl., 6(4):195–
214, 1996. doi:10.1016/0925-7721(95)00019-4.

[9] Samuel Braunfeld and Michael C. Laskowski. Char-
acterizations of monadic NIP. Trans. Amer. Math.
Soc. Ser. B, 8:948–970, 2021. doi:10.1090/btran/
94.

[10] Jan Dreier, Nikolas Mählmann, and Sebastian
Siebertz. First-order model checking on struc-
turally sparse graph classes. Electronic preprint
arxiv:2302.03527, 2023.

[11] Zdeněk Dvořák, Mirna Džamonja, Agelos Geor-
gakopoulos, Jan Obdržálek, Patrice Ossona de
Mendez, Sylvain Schmitz, Szymon Toruńczyk,
and Jan Volec. Open problems. In Workshop on
Algorithms, Logic and Structure. University of
Warwick, December 12–14 2016. Online web site,
accessed March 19, 2023. URL: https://warwick.
ac.uk/fac/sci/maths/people/staff/daniel_
kral/alglogstr/openproblems.pdf.

[12] Zdeněk Dvořák and Sergey Norin. Strongly sublin-
ear separators and polynomial expansion. SIAM
J. Discrete Math., 30(2):1095–1101, 2016. doi:
10.1137/15M1017569.

[13] G. Ewald and G. C. Shephard. Stellar subdivisions
of boundary complexes of convex polytopes. Math.
Ann., 210:7–16, 1974. doi:10.1007/BF01344542.

[14] Jakub Gajarský, Petr Hliněný, Daniel Lokshtanov,
Jan Obdrzálek, Sebastian Ordyniak, M. S. Ra-
manujan, and Saket Saurabh. FO model check-
ing on posets of bounded width. In Venkatesan
Guruswami, editor, IEEE 56th Annual Sympo-
sium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17–20 October, 2015,
pages 963–974. IEEE Computer Society, 2015. doi:
10.1109/FOCS.2015.63.

[15] Jakub Gajarský, Petr Hliněný, Jan Obdržálek,
Daniel Lokshtanov, and M. S. Ramanujan. A new
perspective on FO model checking of dense graph
classes. ACM Trans. Comput. Log., 21(4):A28:1–
A28:23, 2020. doi:10.1145/3383206.

[16] Robert Ganian, Petr Hliněný, Daniel Král, Jan Ob-
držálek, Jarett Schwartz, and Jakub Teska. FO
model checking of interval graphs. Log. Meth-
ods Comput. Sci., 11(4):1–20, 2015. doi:10.2168/
LMCS-11(4:11)2015.

[17] Petr Hliněný, Filip Pokrývka, and Bodhayan Roy.
FO model checking on geometric graphs. Comput.
Geom. Theory & Appl., 78:1–19, 2019. doi:10.
1016/j.comgeo.2018.10.001.

203

35th Canadian Conference on Computational Geometry, 2023

[18] Manabu Ichino and Jack Sklansky. The relative
neighborhood graph for mixed feature variables.
Pattern Recognition, 18(2):161–167, 1985. doi:10.
1016/0031-3203(85)90040-8.

[19] M. Joswig and Günter M. Ziegler. Neighborly cu-
bical polytopes. Discrete Comput. Geom., 24(2-
3):325–344, 2000. doi:10.1007/s004540010039.

[20] David G. Kirkpatrick and John D. Radke. A frame-
work for computational morphology. In Computa-
tional Geometry, volume 2 of Machine Intelligence
and Pattern Recognition, pages 217–248. North-
Holland, Amsterdam, 1985.

[21] James R. Lee. Separators in region intersection
graphs. In Christos H. Papadimitriou, editor, 8th
Innovations in Theoretical Computer Science Con-
ference, ITCS 2017, January 9–11, 2017, Berke-
ley, CA, USA, volume 67 of LIPIcs, pages 1:1–1:8.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ITCS.2017.1.

[22] Giuseppe Liotta, Anna Lubiw, Henk Meijer, and
Sue H. Whitesides. The rectangle of influence drawa-
bility problem. Comput. Geom. Theory & Appl.,
10(1):1–22, 1998. doi:10.1016/S0925-7721(97)
00018-7.

[23] Anna Lubiw, Jack Snoeyink, and Hamideh Vosough-
pour. Visibility graphs, dismantlability, and the
cops and robbers game. Comput. Geom. Theory
& Appl., 66:14–27, 2017. doi:10.1016/j.comgeo.
2017.07.001.

[24] Gary L. Miller, Shang-Hua Teng, William Thurston,
and Stephen A. Vavasis. Separators for sphere-
packings and nearest neighbor graphs. J. ACM,
44(1):1–29, January 1997. doi:10.1145/256292.
256294.

[25] Jaroslav Nešetřil and Patrice Ossona de Mendez.
5.5 Classes with bounded expansion. In
Sparsity: Graphs, Structures, and Algorithms,
volume 28 of Algorithms and Combinatorics,
pages 104–107. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

[26] Jaroslav Nesetril, Patrice Ossona de Mendez, and
Sebastian Siebertz. Structural properties of the first-
order transduction quasiorder. In Florin Manea and
Alex Simpson, editors, 30th EACSL Annual Confer-
ence on Computer Science Logic, CSL 2022, Febru-
ary 14–19, 2022, Göttingen, Germany (Virtual Con-
ference), volume 216 of LIPIcs, pages 31:1–31:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.CSL.2022.31.

[27] Paul D. Seymour and Robin Thomas. Graph search-
ing and a min-max theorem for tree-width. J.
Combinatorial Theory, Ser. B, 58(1):22–33, 1993.
doi:10.1006/jctb.1993.1027.

[28] Szymon Toruńczyk. Flip-width: cops and robber on
dense graphs. Electronic preprint arxiv:2302.00352,
2023.

204

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

A Monadic dependence

In this appendix we show that graph classes that include
arbitrarily large interchanges are monadically indepen-
dent. This in particular implies that they do not have
bounded flip-width, but unlike Theorem 5 it does not
directly bound the radius r at which the robber can win.

Here, monadic dependence is a general notion for log-
ical relations of arbitrary arity based on the concept
of a transduction, a method of representing one logical
structure by a system of first-order formulas over a finite
system of monadic predicates, or equivalently over a
finite coloring, of a second structure [9]. When applied
to the first-order theory of graphs, a transduction is a
mapping from vertex-colored graphs to graphs, defined
by logical predicates that describe which pairs of vertices
are adjacent in the image graph, and which vertices of
the starting graph correspond to vertices in the image
graph [26]. A family of graphs F is monadically de-
pendent (also written as “monadically NIP”) if every
transduction on the graphs in F is incomplete: there is
some target graph that it does not produce, regardless
of which graph in F and which coloring of that graph
it is applied to. On the other hand, F is monadically
independent (“not monadically NIP”) if it is possible to
find a “universal” transduction, one that maps colorings
of graphs in F to all possible graphs.
It is conjectured that, among hereditary graph fam-

ilies, the monadically dependent families are exactly
the ones for which first-order model checking is fixed-
parameter tractable [11, 15]. For hereditary classes of
ordered graphs, and logical properties that can make use
of this ordering, being monadically dependent is equiv-
alent to having bounded twin-width [5]. Without the
assumption of an ordering, bounded flip-width implies
monadically dependence, and a weakening of bounded
flip-width, almost bounded flip-width, is conjectured to
be equivalent to monadic dependence [28].

In this section we use a slightly stronger definition of
interchanges that includes ramps between all pairs of
lanes, instead of omitting the outermost lanes. An inter-
change under this stronger definition satisfies the weaker
definition (where fewer ramps are required). In the other
direction, an interchange for the weaker definition can
be converted to one for the stronger definition, with two
fewer lanes, by omitting the two outermost lanes.

We first observe that every huge interchange contains,
as an induced subgraph, a large interchange in which
either all optional ramp-lane edges are present, or a
large interchange in which no optional ramp-lane edges
are present. Call those two types of interchanges dense
interchanges and sparse interchanges, respectively.

Lemma 19. If a class of graphs contains arbitrarily
large interchanges, it contains either arbitrarily large
dense interchanges or arbitrarily large sparse inter-

changes.

Proof. This follows from applying standard methods
of Ramsey theory to a 2-colored 3-uniform hypergraph
on triples of lanes, with each triple given color 1 if an
optional edge connects the middle of the three lanes to
the ramp between the two outer lanes, and color 0 if
the optional edge is not present. By Ramsey’s theorem,
we can extract a large subset of the lanes that induces
a monochromatic sub-hypergraph. The selected lanes,
together with the ramps associated with pairs of selected
lanes, then form a large regular interchange: if they all
have color 1, the result is a dense interchange, and if they
all have color 0, the result is a sparse interchange.

The following result is from Szymon Toruńczyk (per-
sonal communication):

Theorem 20. A graph class that contains arbitrarily
large interchanges as induced subgraphs is monadically
independent.

Proof. By Lemma 19, we can assume either that there
are arbitrarily large sparse interchanges, or that there
are arbitrarily large dense interchanges. We show that in
each of these cases, the class is monadically independent.
We first argue that any class containing arbitrarily

large sparse interchanges is monadically independent.
We can represent an arbitrary n-vertex graph G in a
colored sparse interchange with at least n lanes, by
identifying the vertices of G with a subset of the lanes,
and for each ramp associated with a pair uv of vertices of
G, marking this ramp with a special color if and only if u
and v are adjacent in G. Formally, describe this marking
by a monadic predicate A(z) that is true of these marked
ramps and false for all other vertices. Then adjacency in
the original graph G can be recovered from the obtained
colored interchange, by a first-order formula

φ(x, y) ≡ ∃z
(
x ∼ z ∧ y ∼ z ∧A(z)

)

(where adjacency in G is represented by the binary pred-
icate ∼), expressing that there is a vertex z that is
adjacent to x and y and has the special marking. The
formula φ does not depend on the selected graph G. It
follows that the formula φ can be used to define a trans-
duction that may produce an arbitrary graph G from
any sufficiently large sparse interchange, by first coloring
its vertices using a single special color, then applying the
formula φ(x, y) to define a new edge relation, and finally,
taking an induced subgraph to restrict only to the lanes
of the interchange that correspond to the vertices of G.
Thus, every class transduces the class of all graphs, and
is therefore monadically independent.
We now argue that every class containing arbitrarily

large dense interchanges is monadically independent, by
showing that such a class transduces a class of arbi-
trarily large sparse interchanges. Since transductions

205

35th Canadian Conference on Computational Geometry, 2023

can be composed, this implies that the former class is
monadically independent.
Given a dense interchange, color all the ramps using

a special color, denoted by the monadic predicate R(v),
and color the first lane (in the order on lanes) with
another color, denoted by the monadic predicate F (v).
We can recover the order on two lanes x and y using a
first-order formula

ψ(x, y) ≡
(
F (x) ∧ x 6= y

)
∨

∃w∃z
(
F (w) ∧R(z) ∧ w ∼ z ∧ x ∼ z ∧ ¬(y ∼ z)

)
.

Namely, a lane x is smaller than a lane y if and only
if either x is the first lane, or there a ramp z which is
adjacent to the first lane and to x but not to y. Since
ramps and the first lane are marked with a special color,
this can be expressed using a fixed first-order formula
(not depending on the interchange), that can use the
colors.
Now, we can identify the two lanes x, y to which a

ramp z is associated with, using a first-order formula.
Namely, in a sparse interchange, a ramp z should be
associated with exactly the smallest lane, and the largest
lane among its neighboring lanes. Therefore, z is associ-
ated with a lane x if and only if z is adjacent to x and
there do not exist lanes u and v, smaller and larger than
x, respectively, that are also adjacent to z. This can be
expressed by a first-order formula

γ(x, z) ≡ ¬R(x) ∧R(z) ∧ x ∼ z ∧

¬∃u∃v

¬R(u) ∧ ¬R(v) ∧
u ∼ z ∧ v ∼ z ∧
ψ(u, x) ∧ ψ(x, v)

 .

that uses the colors, and does not depend on the con-
sidered interchange. Thus, the formula γ(x, z) defines
the edges of a sparse interchange, of the same size as the
original dense interchange.

Hence, every class that contains arbitrarily large dense
interchanges as induced subgraphs transduces a class
that contains arbitrarily large sparse interchanges, and
is therefore monadically independent.

This applies, in particular, to all the classes of geo-
metric graphs for which we have constructed large in-
terchanges. Our proof that three-dimensional Delaunay
triangulations have unbounded flip-width is an exception,
as it does not use interchanges. However, in this case we
have constructed weakly sparse Delaunay triangulations
that are not nowhere-dense, so it follows from known
results that they are monadically independent.

206

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Graph Mover’s Distance: An Efficiently Computable Distance Measure for
Geometric Graphs

Sushovan Majhi∗

Abstract

Many applications in pattern recognition represent pat-
terns as a geometric graph. The geometric graph dis-
tance (GGD) has recently been studied in [13] as a
meaningful measure of similarity between two geometric
graphs. Since computing the GGD is known to be NP–
hard, the distance measure proves an impractical choice
for applications. As a computationally tractable alter-
native, we propose in this paper the Graph Mover’s Dis-
tance (GMD), which has been formulated as an instance
of the earth mover’s distance. The computation of the
GMD between two geometric graphs with at most n
vertices takes only O(n3)-time. Alongside studying the
metric properties of the GMD, we investigate the stabil-
ity of the GGD and GMD. The GMD also demonstrates
extremely promising empirical evidence at recognizing
letter drawings from the LETTER dataset [18].

1 Introduction

Graphs have been a widely accepted object for pro-
viding structural representation of patterns involving
relational properties. While hierarchical patterns are
commonly reduced to a string [7] or a tree represen-
tation [6], non-hierarchical patterns generally require a
graph representation. The problem of pattern recogni-
tion in such a representation then requires quantifying
(dis-)similarity between a query graph and a model or
prototype graph. Defining a relevant distance measure
for a class of graphs has been studied for almost five
decades now and has a myriad of applications including
chemical structure matching [21], fingerprint matching
[16], face identification [11], and symbol recognition [12].

Depending on the class of graphs of interest and the
area of application, several methods have been pro-
posed. Graph isomorphisms [5] or subgraph isomor-
phisms can be considered.

These, however, cannot cope with (sometimes minor)
local and structural deformations of the two graphs. To
address this issue, several alternative distance measures
have been studied. We particularly mention edit dis-
tance [20, 9] and inexact matching distance [3].

∗School of Information, University of California, Berkeley,
USA, smajhi@berkeley.edu

Although these distance measures have been battle-
proven for attributed graphs (i.e., combinatorial graphs
with finite label sets), the formulations seem inadequate
in providing meaningful similarity measures for geomet-
ric graphs.

A geometric graph belongs to a special class of at-
tributed graphs having an embedding into a Euclidean
space Rd, where the vertex labels are inferred from the
Euclidean locations of the vertices and the edge labels
are the Euclidean lengths of the edges.

In the last decade, there has been a gain in practical
applications involving comparison of geometric graphs,
such as road-network or map comparison [1], detection
of chemical structures using their spatial bonding ge-
ometry, etc. In addition, large datasets like [18] are be-
ing curated by pattern recognition and machine learning
communities.

1.1 Related Work and Our Contribution

We are inspired by the recently developed geometric
graph distance (GGD) in [4, 13]. Although the GGD
succeeds to be a relevant distance measure for geomet-
ric graphs, its computation, unfortunately, is known to
be NP-hard. Our motivation stems from applications
that demand an efficiently computable measure of sim-
ilarity for geometric graphs. The formulation of our
graph mover’s distance is based on the theoretical un-
derpinning of the GGD. The GMD provides a mean-
ingful yet computationally efficient similarity measure
between two geometric graphs.

In Section 2, we revisit the definition of the (GGD)
to investigate its stability under Hausdorff perturbation.
Section 3 is devoted to the study of the GMD. The GMD
has been shown to render a pseudo-metric on the class
of (ordered) geometric graphs. Finally, we apply the
GMD to classify letter drawings in Section 4. Our ex-
periment involves matching each of 2250 test drawings,
modeled as geometric graphs, to 15 prototype letters
from the English alphabet. For the drawings with LOW

distortion, the correct letter has been found among the
top 3 matches at a rate of 98.93%, where the benchmark
accuracy is 99.6% obtained using a k-nearest neighbor
classifier (k-NN) with the graph edit distance [3].

207

35th Canadian Conference on Computational Geometry, 2023

2 Geometric Graph Distance (GGD)

We first formally define a geometric graph. Throughout
the paper, the dimension of the ambient Euclidean space
is denoted by d ≥ 1. We also assume that the cost
coefficients CV and CE are positive constants.

Definition 2.1 (Geometric Graph) A geomet-
ric graph of Rd is a (finite) combinatorial graph
G = (V G, EG) with vertex set V G ⊂ Rd, and the
Euclidean straight-line segments {ab | (a, b) ∈ EG}
intersect (possibly) at their endpoints.

We denote the set of all geometric graphs of Rd by
G(Rd). Two geometric graphs G = (V G, EG) and
H = (V H , EH) are said to be equal, written G = H,
if and only if V G = V H and EG = EH . We make no
distinction between a geometric graph G = (V G, EG)
and its geometric realization as a subset of Rd; an edge
(u, v) ∈ EG can be identified as the line-segment uv in
Rd, and its length by the Euclidean length |uv|.

Following the style of [13], we first revisit the def-
inition of GGD. The definition uses the notion of an
inexact matching. In order to denote a deleted vertex
and a deleted edge, we introduce the dummy vertex εV
and the dummy edge εE , respectively.

Definition 2.2 (Inexact Matching) Let G,H ∈
G(Rd) be two geometric graphs. A relation π ⊆ (V G ∪
{εV }) × (V H ∪ {εV }) is called an (inexact) matching
if for any u ∈ V G (resp. v ∈ V H) there is exactly
one v ∈ V H ∪ {εV } (resp. u ∈ V G ∪ {εV }) such that
(u, v) ∈ π.

The set of all matchings between graphs G,H is de-
noted by Π(G,H). Intuitively, a matching π is a relation
that covers the vertex sets V G, V H exactly once. As a
result, when restricted to V G (resp. V H), a matching
π can be expressed as a map π : V G → V H ∪ {εV }
(resp. π−1 : V H → V G ∪ {εV }). In other words, when
(u, v) ∈ π and u 6= εV (resp. v 6= εV), it is justified to
write π(u) = v (resp. π−1(v) = u). It is evident from
the definition that the induced map

π : {u ∈ V G | π(u) 6= εV } → {v ∈ V H | π−1(v) 6= εV }

is a bijection. For edges e = (u1, u2) ∈ EG and
f = (v1, v2) ∈ EH , we introduce the short-hand π(e) :=
(π(u1), π(u2)) and π−1(f) := (π−1(v1), π−1(v2)).

Another perspective of π is to view it as a match-
ing between portions of G and H, (possibly) after ap-
plying some edits on the two graphs. For example,
π(u) = εV (resp. π−1(v) = εV) encodes deletion of the
vertex u from G (resp. v from H), whereas π(e) = εE
(resp. π−1(f) = εE) encodes deletion of the edge e from
G (resp. f from H). Once the above deletion opera-
tions have been performed on the graphs, the resulting
subgraphs of G and H become isomorphic, which are

finally matched by translating the remaining vertices u
to π(u). Now, the cost of the matching π is defined as
the total cost for all of these operations:

Definition 2.3 (Cost of a Matching) Let G,H ∈
G(Rd) be geometric graphs and π ∈ Π(G,H) an inex-
act matching. The cost of π, is Cost(π) =

∑

u∈V G

π(u)6=εV

CV |u− π(u)|

︸ ︷︷ ︸
vertex translations

+
∑

e∈EG

π(e) 6=εE

CE
∣∣|e| − |π(e)|

∣∣

︸ ︷︷ ︸
edge translations

+

∑

e∈EG

π(e)=εE

CE |e|

︸ ︷︷ ︸
edge deletions

+
∑

f∈EH

π−1(f)=εE

CE |f |

︸ ︷︷ ︸
edge deletions

.
(1)

Definition 2.4 (GGD) For geometric graphs G,H ∈
G(Rd), their geometric graph distance, GGD(G,H), is

GGD(G,H)
def
= min

π∈Π(G,H)
Cost(π) .

2.1 Stability of GGD

A distance measure is said to be stable if it does not
change much if the inputs are perturbed only slightly.
Usually, the change is expected to be bounded above
by the amount of perturbation inflicted on the inputs.
The perturbation is measured under a suitable choice of
metric. In the context of geometric graphs, it is natural
to wonder if the GGD is stable under the Hausdorff
distance between two graphs. To our disappointment,
we can easily see for the graphs shown in Fig. 1 that
the GGD is positive, whereas the Hausdorff distance
between their realizations is zero. So, the Hausdorff
distance between the graphs can not bound their GGD
from above.

v1 v2

u1 u2 u3

H

G

Figure 1: The graphs G (top) and H (bottom) are em-
bedded in the real line; the distance between consec-
utive ticks is 1 unit. The Hausdorff distance between
G and H is zero, however GGD(G,H) = CV + CE is
non-zero. The optimal matching is given by π(u1) = v1,
π(u2) = v2, and π(u3) = εV .

One might think that the GGD is stable when the
Hausdorff distance only between the vertices is consid-
ered. However, the graphs in Fig. 2 indicate otherwise.

Under strong requirements, however, it is not difficult
to prove the following result on the stability of GGD
under the Hausdorff distance.

208

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

0 1 2 3
0

1

2

3

u1

u3u2

0 1 2 3
0

1

2

3

v3

v1

v2

Figure 2: For the graphs G,H ∈ G(R2), the Haus-
dorff distance between the vertex sets is zero, however
GGD(G,H) = 4CE is non-zero. The optimal matching
is given by π(u1) = v1, π(u3) = v3, π(u2) = εV , and
π−1(v2) = εV .

Theorem 1 (Hausdorff Stability of GGD) Let
G,H ∈ G(Rd) be geometric graphs with a graph
isomorphism π : V G → V H . If δ > 0 is such that
|u− π(u)| ≤ δ for all u ∈ V G, then

GGD(G,H) ≤ CV |V G|δ.

Proof. The given graph isomorphism π is a bijective
mapping between the vertices of G and H. So, π ∈
Π(G,H), i.e., it defines an inexact matching. Since π is
a graph isomorphism, it does not delete any vertex or
edge. More formally, for all u ∈ V G and v ∈ V H , we
have π(u) 6= εV and π−1(v) 6= εV , respectively. Also,
for all e ∈ EG and f ∈ EH , we have π(e) 6= εE and
π−1(f) 6= εE , respectively. From (1), the cost

Cost(π) =
∑

u∈V G

CV |u− π(u)| ≤ CV |V G|δ.

So, GGD(G,H) ≤ Cost(π) ≤ CV |V G|δ. �

3 Graph Mover’s Distance (GMD)

We define the Graph Mover’s Distance for two ordered
geometric graphs. A geometric graph is called ordered if
its vertices are ordered or indexed. In that case, we de-
note the vertex set as a (finite) sequence V G = {ui}mi=1.
Let us denote by GO(Rd) the set of all ordered geomet-
ric graphs of Rd. The formulation of the GMD uses the
framework known as the earth mover’s distance (EMD).

3.1 Earth Mover’s Distance (EMD)

The EMD is a well-studied distance measure between
weighted point sets, with many successful applications
in a variety of domains; for example, see [8, 10, 17, 19].
The idea of the EMD was first conceived by Monge [14]
in 1781, in the context of transportation theory. The
name “earth mover’s distance” was coined only recently,
and is well-justified due to the following analogy. The
first weighted point set can be thought of as piles of
earth (dirt) lying on the point sites, with the weight

of a site indicating the amount of earth; whereas, the
other point set as pits of volumes given by the corre-
sponding weights. Given that the total amount of earth
in the piles equals the total volume of the pits, the EMD
computes the least (cumulative) cost needed to fill all
the pits with earth. Here, a unit of cost corresponds to
moving a unit of earth by a unit of “ground distance”
between the pile and the pit.

The EMD can be cast as a transportation problem
on a bipartite graph, which has several efficient imple-
mentations, e.g., the network simplex algorithm [2, 15].
Let the weighted point sets P = {(pi, wpi)}mi=1 and
Q = {(qj , wqj)}nj=1 be a set of suppliers and a set of
consumers, respectively. The weight wpi denotes the to-
tal supply of the supplier pi, and wqj the total demand
of the consumer qj . The matrix [di,j] is the matrix of
ground distances, where di,j denotes the cost of trans-
porting a unit of supply from pi to qj . We also assume
the feasibility condition that the total supply equals the
total demand:

m∑

i=1

wpi =

n∑

j=1

wqj . (2)

A flow of supply is given by a matrix [fi,j] with fi,j
denoting the units of supply transported from pi to qj .
We want to find a flow that minimizes the overall cost

m∑

i=1

n∑

j=1

fi,jdi,j

subject to:

fi,j ≥ 0 for any i = 1, . . . ,m and j = 1, . . . , n (3)
n∑

j=1

fi,j = wi for any i = 1, . . . ,m (4)

m∑

i=1

fi,j = wj for any j = 1, . . . , n, (5)

Constraint (3) ensures a flow of units from P to Q, and
not vice versa; constraint (4) dictates that a supplier
must send all its supply—not more or less; constraint
(5) guarantees that the demand of every consumer is
exactly fulfilled.

The earth mover’s distance (EMD) is then defined by
the cost of the optimal flow. A solution always exists,
provided condition (2) is satisfied. The weights and the
ground distances can be chosen to be any non-negative
numbers. However, we choose them appropriately in
order to solve our graph matching problem.

3.2 Defining the GMD

Let G,H ∈ GO(Rd) be two ordered geometric graphs
of Rd with V G = {ui}mi=1 and V H = {vj}nj=1. For

209

35th Canadian Conference on Computational Geometry, 2023

1

1

1

2

u1
1

u2
1

u3
1

u4
2

v1
1

v2
1

v3
3

Figure 3: The bipartite network used by the GMD is
shown for two ordered graphs G,H with vertex sets
V G = {u1, u2, u3} and V H = {v1, v2}, respectively. The
dummy nodes u4 for G and v3 for H, respectively, have
been shown in gray. Below each node, the corresponding
weights are shown. A particular flow has been depicted
here. The gray edges do not transport anything. A
red edge has a non-zero flow with the transported units
shown on them.

each i = 1, . . . ,m, let EGi denote the (row) m–vector
containing the lengths of (ordered) edges incident to the
vertex ui of G. More precisely, the

kth element of EGi =

{
|eGi,k|, if eGi,k := (ui, uk) ∈ EG
0, otherwise.

Similarly, for each j = 1, . . . , n, we define EHj to be the
(row) n–vector with the

kth element of EHj =

{
|eHj,k|, if eHj,k := (vj , vk) ∈ EH
0, otherwise.

In order to formulate the desired instance of the EMD,
we take the point sets to be P = {ui}m+1

i=1 and Q =
{vj}n+1

j=1 . Here, um+1 and vn+1 have been taken to be a
dummy supplier and dummy consumer, respectively, to
incorporate vertex deletion into our GMD framework.
The weights on the sites are defined as follows:

wui
= 1 for i = 1 . . . ,m and wum+1

= n .

And,

wvj = 1 for j = 1 . . . , n and wvm+1
= m .

We note that the feasibility condition (2) is satisfied:
m+n is the total weight for both P and Q. An instance
of the transportation problem is depicted in Fig. 3.

Finally, the ground distance from ui to vj is defined
by:

di,j =

CV |ui − vj |+ CE‖EGi Dm×p − EHj Dn×p‖1,
if 1 ≤ i ≤ m, 1 ≤ j ≤ n

CE‖EHj ‖1, if i = m+ 1 and 1 ≤ j ≤ n
CE‖EGi ‖1, if 1 ≤ i ≤ m and j = n+ 1

0, otherwise.

Here, p = min{m,n}, the 1–norm of a row vector is
denoted by ‖ ·‖1, and D denotes a diagonal matrix with
the all diagonal entries being 1.

0 1 2
0

1

2
u4 u1

u5

u2 u3

0 1 2
0

1

2
v3

v1

v5

v2

v4

G H

Figure 4: For the geometric graph G,H ∈ GO(R2), the
GMD is zero. The optimal flow is given by the matching
π(u1) = v2, π(u2) = v1, π(u3) = v4, π(u4) = v3, and
π(u5) = v5.

3.3 Metric Properties

We can see that the GMD induces a pseudo-metric on
the space of ordered geometric graphs GO(Rd). Non-
negativity, symmetry, and triangle inequality follow
from those of the cost matrix [di,j] defined in the GMD.

In addition, we note that G = H (as ordered graphs)
implies that di,j = 0 whenever i = j. The trivial flow,
where each ui sends its full supply to vi, has a zero cost.
So, GMD(G,H) = 0. The GMD does not, however,
satisfy the separability condition on GO(Rd).

For the graphs G,H shown in Fig. 4, we have
GMD(G,H) = 0. We note that G,H have the follow-
ing adjacency length matrices [EGi]i and [EHj]j , respec-
tively:

0 0 0 2
√

2

0 0 2 0
√

2
0 2 0 0 0
2 0 0 0 0√
2
√

2 0 0 0

and

0 0 2 0
√

2

0 0 0 2
√

2
2 0 0 0 0
0 2 0 0 0√
2
√

2 0 0 0

.

It can be easily checked that the flow that transports
a unit of supply from u1 7→ v2, u2 7→ v1, u3 7→ v4,
u4 7→ v3, u5 7→ v5, and five units from u6 7→ v6 has total
cost zero. So, GMD(G,H) = 0. However, the graphs G
and H are not the same geometric graph. The fact that
GGD(G,H) 6= 0 implies the GGD is not stable under
the GMD.

One can easily find even simpler configurations for
two distinct geometric graphs with a zero GMD—if the
graphs are allowed to have multiple connected compo-
nents.

We conclude this section by stating a stability result
for the GMD under the Hausdorff distance. We omit
the proof, since it uses a similar argument presented in
Theorem 1.

210

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Theorem 2 (Hausdorff Stability of GMD) Let
G,H ∈ GO(Rd) be ordered geometric graphs with a
bijection π : V G → V H such that eGi,j = eHπ(i),π(j) for

all i, j. If δ > 0 is such that |ui − π(ui)| ≤ δ for all
ui ∈ V G, then

GMD(G,H) ≤ CV |V G|δ.

3.4 Computing the GMD

As pointed out earlier, the GMD can be computed as an
instance of transportation problem—using, for example,
the network simplex algorithm. If the graphs have at
most n vertices, computing the ground cost matrix [di,j]
takes O(n3)-time. Since the bipartite network has O(n)
vertices and O(n2) edges, the simplex algorithm runs
with a time complexity of O(n3), with a pretty good
constant. Overall, the time complexity of the GMD is
O(n3).

4 Experimental Results

We have implemented the GMD in Python, using net-
work simplex algorithm from the networkx package. We
ran a pattern retrieval experiment on letter drawings
from the IAM Graph Database [18]. The repository pro-
vides an extensive collection of graphs, both geometric
and labeled.

In particular, we performed our experiment on the
LETTER database from the repository. The graphs in
the database represent distorted letter drawings. The
database considers only 15 uppercase letters from the
English alphabet: A, E, F, H, I, K, L, M, N, T, V, W, X, Y,
and Z. For each letter, a prototype line drawing has been
manually constructed. On the prototypes, distortions
are applied with three different level of strengths: LOW,
MED, and HIGH, in order to produce 2250 letter graphs
for each level. Each test letter drawing is a graph with
straight-line edges; each node is labeled with its two-
dimensional coordinates. Since some of the graphs in
the dataset were not embedded, we had to compute the
intersections of the intersecting edges and label them
as nodes. The preprocessing guaranteed that all the
considered graphs were geometric; a prototype and a
distorted graph are shown in Fig. 5.

We devised a classifier for these letter drawings us-
ing the GMD. For this application, we chose CV = 4.5
and CE = 1 heuristically for the best results. For a
test letter, we computed its GMD from the 15 proto-
types, then sorted the prototypes in an increasing order
of their distance to the test graph. We then check if the
letter generating the test graph is among the first k pro-
totypes. For each level of distortion and various values
of k, we present the rate at which the correct letter has
been found in the first k models. The summary of the
empirical results have been shown in Table 1. Although

0 1 2 3
0

1

2

3

u3

u4

u1

u2

u5

0 1 2 3
0

1

2

3

v1

v2

v3

v4
v5v6

v7

Figure 5: The prototype geometric graph of the letter
A is shown on the left. On the right, a (MED) distorted
letter A is shown.

correct letter in first k models (%)

Distortion k = 1 k = 3 k = 5

LOW 96.66% 98.93% 99.37%

MED 66.66% 85.37% 91.15%

HIGH 73.73% 90.48% 95.51%

Table 1: Empirical result on the LETTER dataset

the graph edit distance based k-NN classifier still out-
performs the GMD by a very small margin, our results
has been extremely satisfactory.

One possible reason why the GMD might fail to cor-
rectly classify some of the graphs is that lacks the sep-
arability property as a metric.

5 Discussions

We have successfully introduced an efficiently com-
putable and meaningful similarity measure for geomet-
ric graphs. However, the GMD lacks some of the de-
sirable properties, like separability and stability. The
currently presented stability results for the GGD and
GMD have a factor that depends on the size of the in-
put graphs. The question remains if the distance mea-
sures are in fact stable under much weaker conditions,
possibly with constant factors on the right side. It will
also be interesting to study the exact class of geometric
graphs for which the GMD is, in fact, a metric.

References

[1] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk.
Map Construction Algorithms. Springer International
Publishing, first edition, 2015.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows:
Theory, Algorithms, and Applications. Always learning.
Pearson, 2013.

[3] H. Bunke and G. Allermann. Inexact graph matching
for structural pattern recognition. Pattern Recognition
Letters, 1(4):245–253, May 1983.

[4] O. Cheong, J. Gudmundsson, H.-S. Kim, D. Schymura,
and F. Stehn. Measuring the Similarity of Geometric

211

35th Canadian Conference on Computational Geometry, 2023

Graphs. In J. Vahrenhold, editor, Experimental Algo-
rithms, volume 5526, pages 101–112. Springer, 2009.

[5] D. G. Corneil and C. C. Gotlieb. An efficient algorithm
for graph isomorphism. J. ACM, 17(1):51–64, 1970.

[6] K.-S. Fu and B. Bhargava. Tree systems for syntactic
pattern recognition. IEEE Transactions on Computers,
C-22(12):1087–1099, 1973.

[7] K.-S. Fu and P. Swain. On syntactic pattern recogni-
tion. In J. T. Tou, editor, Computer and Information
Sciences – 1969, volume 2 of SEN Report Series Soft-
ware Engineering, pages 155–182. Elsevier, 1971.

[8] C. J. Hargreaves, M. S. Dyer, M. W. Gaultois, V. A.
Kurlin, and M. J. Rosseinsky. The Earth Mover’s Dis-
tance as a Metric for the Space of Inorganic Compo-
sitions. Chemistry of Materials, 32(24):10610–10620,
Dec. 2020.

[9] D. Justice and A. Hero. A binary linear programming
formulation of the graph edit distance. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
28(8):1200–1214, Aug. 2006.

[10] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger.
From Word Embeddings To Document Distances. In
Proceedings of the 32nd International Conference on
Machine Learning, pages 957–966. PMLR, June 2015.
ISSN: 1938-7228.

[11] J. Liu and Y. T. Lee. Graph-based method for face iden-
tification from a single 2d line drawing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
23(10):1106–1119, 2001.

[12] J. Llados, E. Marti, and J. Villanueva. Symbol recog-
nition by error-tolerant subgraph matching between re-
gion adjacency graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(10):1137–1143,
2001.

[13] S. Majhi and C. Wenk. Distance measures for geometric
graphs. arXiv preprint arXiv:2209.12869, 2022.

[14] G. Monge. Mémoire sur la théorie des déblais et des
remblais. Imprimerie royale, 1781.

[15] O. Pele and M. Werman. A Linear Time Histogram
Metric for Improved SIFT Matching. In D. Forsyth,
P. Torr, and A. Zisserman, editors, Computer Vision –
ECCV 2008, Lecture Notes in Computer Science, pages
495–508, Berlin, Heidelberg, 2008. Springer.

[16] J. W. Raymond and P. Willett. Effectiveness
of graph-based and fingerprint-based similarity mea-
sures for virtual screening of 2D chemical structure
databases. Journal of Computer-Aided Molecular De-
sign, 16(1):59–71, 2002.

[17] Z. Ren, J. Yuan, and Z. Zhang. Robust hand gesture
recognition based on finger-earth mover’s distance with
a commodity depth camera. In Proceedings of the 19th
ACM international conference on Multimedia, MM ’11,
pages 1093–1096, New York, NY, USA, Nov. 2011. As-
sociation for Computing Machinery.

[18] K. Riesen and H. Bunke. IAM Graph Database Repos-
itory for Graph Based Pattern Recognition and Ma-
chine Learning. In Structural, Syntactic, and Statisti-
cal Pattern Recognition, volume 5342, pages 287–297.
Springer, 2008.

[19] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth
Mover’s Distance as a Metric for Image Retrieval. In-
ternational Journal of Computer Vision, 40(2):99–121,
Nov. 2000.

[20] A. Sanfeliu and K.-S. Fu. A distance measure be-
tween attributed relational graphs for pattern recog-
nition. IEEE Transactions on Systems, Man, and Cy-
bernetics, SMC-13(3):353–362, May 1983.

[21] P. Willett. Similarity Searching in Databases of Three-
Dimensional Chemical Structures. In H.-H. Bock,
W. Lenski, and M. M. Richter, editors, Information
Systems and Data Analysis, pages 280–293. Springer,
1994.

212

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Metric and Path-Connectedness Properties of the Fréchet Distance for
Paths and Graphs

Erin Chambers∗ Brittany Terese Fasy† Benjamin Holmgren ‡ Sushovan Majhi § Carola Wenk ¶

Abstract

The Fréchet distance is often used to measure distances
between paths, with applications in areas ranging from
map matching to GPS trajectory analysis to hand-
writing recognition. More recently, the Fréchet distance
has been generalized to a distance between two copies
of the same graph embedded or immersed in a metric
space; this more general setting opens up a wide range
of more complex applications in graph analysis. In this
paper, we initiate a study of some of the fundamental
topological properties of spaces of paths and of graphs
mapped to Rn under the Fréchet distance, in an effort to
lay the theoretical groundwork for understanding how
these distances can be used in practice. In particular,
we prove whether or not these spaces, and the metric
balls therein, are path-connected.

1 Introduction

One-dimensional data in a Euclidean ambient space is
heavily studied in the computational geometry litera-
ture, and is central to applications in GPS trajectory
and road network analysis [2,11,13,24]. One widely used
distance measure on one-dimensional data is the Fréchet
distance, which accounts for both geometric closeness
as well as the connectivity of the paths or graphs being
compared [1,4–8,10–14,16–18,20–22]. We build a theo-
retical foundation for these application areas by investi-
gating spaces of paths and graphs in Rn, including their
metric and topological properties, under the Fréchet dis-
tance. The motivation for this work is simple: as practi-
cal approaches to compute the Fréchet distance between
paths [6,14] and between graphs [10,18,20] grow in pop-
ularity, it is natural to inquire about the fundamental
properties of such distances, in an effort to better un-
derstand exactly what they are capturing.

∗Department of Computer Science, Saint Louis University,
erin.chambers@slu.edu
†School of Computing, Department of Mathematics, Montana

State University brittany.fasy@montana.edu
‡School of Computing, Montana State University

benjamin.holmgren1@student.montana.edu
§School of Information, University of California, Berkeley

smajhi@ischool.berkeley.edu
¶Department of Computer Science, Tulane University

cwenk@tulane.edu

We begin by defining the Fréchet distance between
paths and graphs. Using open balls under the Fréchet
distance to generate a topology, we study the metric and
topological properties of the induced spaces. In particu-
lar, we work with three classes of paths: the space ΠC of
all paths in Rn, the space ΠE of all paths in Rn that are
embeddings (i.e., maps that are homeomorphisms onto
the image), and the space ΠI of all paths in Rn that are
immersions (local embeddings). See Figure 1 for exam-
ples of paths in R2. In addition, we study the three anal-
ogous spaces of graphs: the sets GC , GI , and GE of con-
tinuous maps, immersions, and embeddings of graphs,
respectively. This paper establishes the core metric and
topological properties of the Fréchet distance on graphs
and paths in Euclidean space.

(a) Continuous (b) Embedding (c) Immersion

Figure 1: Example of paths continuously mapped, em-
bedded, and immersed in R2. The space of continuous
maps allows arbitrary self-intersection on a path includ-
ing backtracking (which occurs at the two red points);
embeddings must induce homeomorphisms onto their
image; and immersions are locally embeddings.

2 Background

In this section, we establish the definitions and nota-
tion from geometry and topology used throughout. We
assume basic knowledge of concepts in topology. For
common definitions central to this paper, we refer read-
ers to Appendix A, or for greater detail, to [9, 19].

Definition 1 (Types of Maps) Let X and Y be topo-
logical spaces. A map α : X→ Y is called continuous if
for each open set U ⊂ Y, α−1(U) is open in X. We
call α an embedding if α is injective. Equivalently, an
embedding is a continuous map that is homeomorphic
onto its image. If α is locally an embedding, then we
say that α is an immersion.

In particular, a continuous map γ : [0, 1] → Rn is
called a path in Rn. We call a path γ : [0, 1] → Rn

213

35th Canadian Conference on Computational Geometry, 2023

rectifiable if γ has finite length (see Definition 32 in Ap-
pendix A.3). Moreover, we call a graph G rectifiable if
there exists a finite cover of G such that every element
in the cover is a rectifiable path.

Paths in Rn Letting Π̃C denote the set of all rectifiable
paths in Rn, we now define the path Fréchet distance.

Definition 2 (The Path Fréchet Distance [4])

The Fréchet distance dFP : Π̃C × Π̃C → R̄≥0 be-

tween γ1, γ2 ∈ Π̃C is defined as:

dFP (γ1, γ2) := inf
r : [0,1]→[0,1]

max
t∈[0,1]

||γ1(t)− γ2(r(t))||2,

where r ranges over all homeomorphisms such
that r(0) = 0, and || · ||2 denotes the Euclidean norm.

Graphs Mapped to Rn We define a graph G = (V,E)
as a finite set of vertices V and a finite set of edges E.
Self-loops and multiple edges between a pair of vertices
are allowed.1 We topologize a graph by thinking of it
as a CW complex; see Appendix A.1. If φ : G → Rd
is a map, then we call (G,φ) a graph-map pair. We
extend the path Fréchet distance to the Fréchet distance
between graphs continuously mapped into Rn:

Definition 3 (Graph Fréchet Distance)
Let (G,φ), (H,ψ) be continuous, rectifiable graph-map
pairs. We define the Fréchet distance between (G,φ)
and (H,ψ) by minimizing over all homeomorphisms:2

dFG ((G,φ), (H,ψ)) :=

{
infh ||φ− ψ ◦ h||∞ G ∼= H.

∞ otherwise.

For simplicity of exposition, when G ∼= H, we write the
LHS of this equation as dFG(φ, ψ). Furthermore, defin-
ing the infimum over an emptyset to be ∞, the graph
Fréchet distance is given by the following equation:

dFG ((G,φ), (H,ψ)) := inf
h
||φ− ψ ◦ h||∞,

where the infimum is taken over all homeomor-
phisms h : G→ H.

Note that if G = H and φ is a reparameterization
of ψ, then dFG(φ, ψ) = 0.

Observation 1 (Paths as Graphs) If G = [0, 1]
and α, β : [0, 1] → Rn are paths, then the relationship
between path and graph Fréchet distances is as follows:

dFG (α, β) = min
{
dFP (α, β), dFP (α, β−1)

}
,

where β−1 : I → Rn is defined by β−1(t) = β(1− t).
1Some references would call this a multi-graph, but for sim-

plicity, we just use the term graph.
2Other generalizations of the Fréchet distance minimize over

all “orientation-preserving” homeomorphisms, which can be de-
fined in several ways for stratified spaces, and sometimes adding
an orientation is not natural. Thus, we drop this requirement in
our definition.

3 Metric Properties

We now address the question: Is this distance a metric?
If not, can it be metrized? A well-known known prop-
erty of the path Fréchet distance is that it is a pseudo-
metric [4, 21]. That is, it satisfies all metric properties
except for separability. We proof this property for dFG.

Theorem 4 (Metric Properties of dFG) dFG is an
extended pseudo-metric that does not satisfy separa-
bility. When restricted to a homeomorphism class of
graphs, dFG is a pseudo-metric.

Proof. We first prove that dFG is an extended pseudo-
metric (see Definition 27 in Appendix A.3).

Identity: Taking h to be the identity map in Defini-
tion 3, we find dFG((G,φ1), (G,φ1)) = 0.

Symmetry: Consider dFG(φ1, φ2). If G 6∼= H, then
no homeomorphism h : G → H exists. Likewise, no
homeomorphism h′ : H → G exists. And, so,

dFG((G,φ1), (H,φ2))) =∞ = dFG((H,φ2), (G,φ1))).

Otherwise, since h is a homeomorphism, it is invertible.
Thus, we can rewrite this as:

dFG(φ1, φ2) = inf
h−1
||φ1 ◦ h−1 − φ2||∞ = dFG(φ2, φ1).

Subadditivity (the triangle inequality): Con-
sider dFG((G1, φ1), (G2, φ2)) + dFG((G2, φ2), (G3, φ3)).
If G1 6∼= G2, then dFG((G1, φ1), (G2, φ2)) = ∞, and we
are done. A symmetric argument follows for G2 6∼= G3.
Thus, we assume G1

∼= G2
∼= G3. Using the definition of

Fréchet distance and the fact that the infimum is taken
over homeomorphisms, we obtain:

dFG(φ1, φ2) + dFG(φ2, φ3)

= inf
h′
||φ1 − φ2 ◦ h′||∞ + inf

h′′
||φ2 − φ3 ◦ h′′||∞.

≥ inf
h′
||φ1 − φ2 ◦ h′||∞ + inf

h,h′
||φ2 ◦ h′ − φ3 ◦ h||∞

= inf
h,h′
||φ1 + (φ2 ◦ h′ − φ2 ◦ h′)− φ3 ◦ h||∞

= inf
h
||φ1 − φ3 ◦ h||∞

= dFG(φ1, φ3).

And so, we conclude that dFG satisfies subadditivity.
Noting that if G 6∼= H that dFG ((G,φ), (H,ψ)) =∞,

we conclude that dFG is an extended pseudo-metric.
However, the graph Fréchet distance between homeo-
morphic graphs is at most the Hausdorff distance be-
tween the images of the two maps. Thus, when re-
stricted to a homeomorphism class of graphs, dFG is
a pseudo-metric. �

The only metric property not satisfied is separabil-
ity. In order to metrize this pseudo-metric, we de-
fine GC(G) to be the the set of equivalence classes of con-
tinuous, rectifiable maps G→ Rn, where two maps, φ1

214

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

and φ2, are equivalent if and only if dFG(φ1, φ2) =
0. We write [φi] to denote the equivalence class
of maps containing φi. We define two subspaces
of GC(G): those representing immersions and embed-
dings, denoted GI(G) and GE(G), respectively. Note
that GE(G) (GI(G) (GC(G). Let GC denote the
induced set of equivalence classes of all graph-map
pairs (G, [φ]) such that [φ] ∈ GC(G). Similiarly, we de-
fine GI and GE , and note GE (GI (GC . Hence,

Corollary 5 (Metric Extension for Graphs) For
every graph G, the graph Fréchet distance is a metric
on the quotient spaces GC(G), GI(G), and GE(G).
Moreover, the graph Fréchet distance is an extended
metric on GC, GI , and GE .

Similarly, we consider paths in Rn: in particu-
lar, ΠC is the set of equivalences classes of Π̃C up
to orientation-preserving reparameterization. Equiv-
alently, for γ1, γ2 ∈ Π̃C , γ1 is equivalent to γ2
iff dFP (γ1, γ2) = 0. Likewise, ΠE and ΠI are the sub-
spaces of embeddings and immersions. Note that ΠE (
ΠI (ΠC . We topologize these spaces using the open
ball topology (Appendix A.3). Again, by construction,
we obtain:

Corollary 6 (Metric Properties of dFP) The path
Fréchet distance is a metric on ΠC ,ΠI and ΠE .

4 Path-Connectedness Property

We now examine path-connectedness properties. See
Definition 30 and Definition 31 of Appendix A.4 for def-
initions of path-connectivity.

4.1 Continuous Mappings

We start with the most general spaces of paths and
graphs: the continuous, rectifiable maps into Rn. In
Euclidean spaces, linear interpolation is a useful tool be-
cause it defines the shortest paths between two points.
In function spaces, linear interpolation is also nice:

Definition 7 (Linear Interpolation) Let G be a
graph and φ0, φ1 : G → Rn be continuous, rectifi-
able maps. The linear interpolation from φ0 to φ1
is the map Γ: [0, 1] → GC(G) sending t ∈ [0, 1]
to (G,φt), where:

φt := (1− t)φ0 + t(φ1 ◦ h∗). (1)

For ease of notation, we sometimes write Γt := Γ(t).

Note that (1− t)φ0 + tφ1 is a linear combination of φ0
and φ1 (using c0 = 1 − t and c1 = t in Definition 34).
Thus, Γ is a continuous family of linear combinations
of the maps φ0 and φ1; we show Γ is continuous in

Lemma 35. in Appendix B.1. If G = [0, 1], the linear
interpolation between graphs is simply linear interpola-
tion between paths. For an example of linear interpola-
tion between graphs, see Figure 4 in Appendix B.1.

However, linear interpolation is not well-defined
in GC , as we could have φ1, φ2 ∈ [φ] ∈ GC(G). In
fact, Γ(t;φ1, φ2) = Γ(t;φ1, φ3) if and only if φ1 = φ2.

Definition 8 (Family of Interpolations) Let G be
a graph and [φ0], [φ1] ∈ GC(G). We define C([φ0], [φ1])
to be the set of all linear interpolations between elements
of [φ0] and of [φ1].

We now demonstrate the existence of a family of
interpolations between any two equivalence classes
within (GC(G), dFG), proving path-connectivity.

Theorem 9 (Continuous Maps of Graphs) For
every graph G, the extended metric space (GC(G), dFG)
is path-connected. Moreover, the connected components
of (GC , dFG) are in one-to-one correspondence with the
homeomorphism classes of graphs.

Proof. Let [φ0], [φ1] ∈ GC(G). Let Γ ∈ C([φ0], [φ1]).
By Lemma 35 in Appendix B.1, Γ is continuous, and
so (GC(G), dFG) is path-connected.

Moreover, suppose (G, [φ0]), (H, [φ1]) ∈ GC for
the graphs G,H which are not homeomorphic.
Then, dFG((G, [φ0]), (H, [φ1])) = ∞, and connected
components of the extended metric space GC are vac-
uously in one-to-one correspondence with homeomor-
phism classes of graphs. �

Setting G = [0, 1], an identical proof holds for paths.

Corollary 10 (Continuous Maps of Paths) The
space ΠC is path-connected.

We now demonstrate the stricter property of the
path-connectivity of open distance balls:

Lemma 11 (Metric Balls in (GC , dFP)) Metric
balls with finite radius in (GC , dFP) are path-connected.

Proof. Let δ ∈ R such that δ > 0. Let (G, [φ0]) ∈ GC .
Consider the metric ball B := BdFG

([φ0], δ) in GC .
Let [φ1], [φ2] ∈ B. We wish to find a path from [φ1]
to [φ2]. We first find a path in BdFG

([φ0], δ) from [φ0]
to [φ2], as follows. Set

ε = δ − dFG([φ0], [φ2]).

By Lemma 25, we know that there exists a homeomor-
phism h∗ : G → G such that the following inequality
holds: ||φ0 − φ2 ◦ h∗||∞ < dFG([φ0], [φ2]) + ε/2.

215

35th Canadian Conference on Computational Geometry, 2023

Let Γ ∈ C([φ0], [φ2]). Then, for all t ∈ (0, 1),

dFG(Γt, φ0)

= inf
h
||((1− t)φ0 + t(φ2 ◦ h∗))− φ0 ◦ h||∞

≤ ||((1− t)φ0 + t(φ2 ◦ h∗))− φ0 ◦ h∗||∞
< dFG([φ0], [φ2]) + ε/2

< δ.

Thus, Γt ∈ BdFG
([φ1], δ), which means there exists a

path from φ0 to φ2. Similarly, we find a path Γ′ from φ1
to φ0. Concatentating the two paths, Γ′#Γ we have a
path in BdFG

([φ0], δ) from [φ1] to [φ2]. Hence, metric
balls with finite radius in GC are path-connected. �

Setting G = [0, 1], we obtain:

Corollary 12 (Metric Balls in (ΠC , dFP)) Balls in
the extended metric space (ΠC , dFP) are path-connected.

4.2 Immersions

An immersion is a map that is locally injectivite. Thus,
self-intersections are allowed, but a map pausing or
backtracking is not. Next, we define these notions, and
give examples in Figure 2.

Definition 13 (Pausing) We say that a path γ pauses
in an interval I ⊂ [0, 1] if γ(x) = γ(y) for every x, y ∈ I.
In this case, [γ] 6∈ ΠI .

Another possible violation of local injectivity is back-
tracking on a path.

Definition 14 (Backtracking) We say that a path γ
is backtracking at a point x ∈ [0, 1] if there exists δ > 0
such that for every ε ∈ (0, δ), either γ|(x−ε,x) ⊂ γ(x,x+ε)
or γ|(x,x+ε) ⊂ γ|(x−ε,x).

To show the path-connectivity of spaces of immer-
sions, the proof in Theorem 9 for continuous mappings
is almost sufficient, but these added violations must be
addressed. Thus, we introduce additional maneuvers to
avoid pauses and backtracking.

Lemma 15 (Rerouting Pauses) Let γ0, γ1 ∈ Π̃I ,

and let Γ : [0, 1] → Π̃C be a path in Π̃C from γ0 to γ1.
Suppose there exists an interval [t1, t2] such that for
all t ∈ [0, 1] \ (t1, t2), Γt is an immersion. But, for
all t ∈ (0, 1), Γt has a single pause. Then, there exists
a different path Γ∗ : [0, 1]→ ΠI that avoids the pause.

Proof. Let t ∈ [t1, t2]. Let the pause in Γt be over the
interval (at, bt) ⊂ [0, 1]. Let εt := min(t2− t, t− t1). We
stretch the paused interval (at, bt) in Γt by defining a

map Γ∗t : [0, 1]→ Π̃I as follows:

• Γ∗t (−∞, at] is an oriented reparameterization
of Γt(−∞, at − εt].

(a) Forced Backtracking (b) Constant Map

Figure 2: Examples of paths in ΠC but not ΠI . Fig-
ure 2a demonstrates a path with necessary backtrack-
ing at the red point. Figure 2b demonstrates a constant
path which (vacuously) must pause. For a nontrivial
example of a path with pauses, consider any parameter-
ization of a path sending an open interval to a point.

• Γ∗t (at, bt) is an oriented reparameterization
of Γt(at − εt, at]#Γt[bt, bt + ε)

• Γ∗t [bt,∞) is an oriented reparameterization
of Γt[bt + εt,∞)].

By construction, Γ∗t has removed the pause between at
and bt; hence, Γs ∈ Π̃I . Putting these maps together,
we obtain a map Γ∗ : [0, 1]→ Π̃C , where

Γ(t) :=

{
Γt if t 6∈ (t1, t2)

Γ∗t if t ∈ (t1, t2).
(2)

Moreover, Γ is continuous in ΠI . �

Direct linear interpolation can also yield degeneracies
by creating a singleton in specific circumstances, or by
creating a backtracking point. Each are addressed in
the following theorem, and a path is constructed.

Theorem 16 (Path Immersions) The extended
metric space (ΠI , dFP) of paths immersed in Rn is
path-connected iff n > 1.

Proof. If n = 1, it is easy to see that ΠI is not path-
connected by examining intervals with reversed orien-
tation which trivially degenerate to a point when con-
structing a path, violating local injectivity.

Now, consider n > 1. Let [γ0], [γ1] ∈ ΠI . Using Def-
inition 7, let Γ : [0, 1] → ΠC be the linear interpolation
from γ0 to γ1. This interpolation is in ΠC , not ΠI ,
so we explain how to edit Γ so that it stays in ΠI .
If Γ(t) ∈ Π̃I for each t ∈ [0, 1], we are done. Other-
wise, let T ⊂ I be the set of times that introduce a non-
immersion (i.e., t ∈ T iff Γ(t) 6∈ Π̃I , but Γ(t − ε) ∈ Π̃I
for all ε small enough). There are two things that might
have happened at t: either an interval collapsed to a
point (a pause) or backtracking was introduced in Γ(t).

1. Suppose there exists t ∈ T where an interval pauses
as in Definition 13 and Figure 2b. Note that a
pausing event occurs either if an interval of Γt
becomes degenerate, or Γt collapses to a point.

216

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

If pausing occurs only on an open interval (a, b) ⊂
[0, 1] of γt ∈ Γt, it can be avoided using Lemma 15.
If pausing occurs on a closed interval [a, b] ⊂ [0, 1],
we convert it to the open set (a−ε, b+ε) for small ε,
and use Lemma 15. If either a = 0 or b = 1, we
simply redefine γt to start at b or to end at a, re-
spectively, using Lemma 37. The pausing event is
guaranteed to conclude at some t + δ for δ ≥ 0
since [γ1] ∈ ΠI , and Γ must attain γ1 ∈ [γ1].

If a pausing event stems from a full collapse to a
singleton (i.e. interpolation occurs between two co-
linear segments with reverse orientation, and con-
sequently degenerate to a point), the collapse can
be circumvented by rotating the path defining Γt,
which is done in Lemma 38.

2. Alternatively, suppose there exists t ∈ T which cor-
responds to backtracking at a point in a path Γt
according to Definition 14 and Figure 2a. Here, Γt
can remain in Π̃I by inflating a ball of radius ε
for sufficiently small ε > 0 about the backtrack-
ing point before it is created. This is included in
Lemma 39, and shown in Figure 6b.

For all t ∈ T , the described moves can be used to
subvert lapses in local injectivity along Γ. Hence, we
construct a path Γ by interpolating from γ0 to γ1, and
applying the required move at each t ∈ T to handle
pauses or backtracking. By the arbitrariness of Γ, we
have given a class of continuous paths from any ele-
ment γ0 ∈ [γ0] to any γ1 ∈ [γ1]. �

Theorem 17 (Metric Balls in (ΠI , dFP)) If n > 1,
then balls in the extended metric space (ΠI , dFP) are
path-connected.

Proof. Let [γ0], [γ1] ∈ ΠI , and let δ > 0. Let Γ ∈ ΠI be
the map Γ in the proof of Theorem 16. By Lemma 11,
linear interpolation does not increase the Fréchet dis-
tance. By design, avoiding singleton degeneracies by
way of Lemma 38 also does not increase the Fréchet
distance. Moreover, by construction, the map Γ∗ of
Lemma 15 preserves the Fréchet distance. The maneu-
ver in Lemma 39 could potentially increase dFP (Γt, γ1)
at some time t ∈ [0, 1], but in this case any critical
backtracking points can be perturbed slightly in order
to no longer define the dFP (Γt, γ1). Hence, these moves
need not result in dFP (Γt, γ1) > δ, meaning that Γt ∈
BdFP

(φ1, δ), and balls in ΠI are path-connected. �

We use the same maneuvers from Theorem 16 in the
context for graphs under dFG.

Theorem 18 (Graph Immersions) For every
graph G, the extended metric space (GI(G), dFG) is
path-connected. Connected components of the extended
metric space (GI , dFG) are in one-to-one correspon-
dence with the homeomorphism classes of graphs.

Proof. We construct Γ identically to Theorem 16, but
interpolation occurs among each edge of G in GI(G)
rather than between individual segments. As in Theo-
rem 16, local injectivity can only be violated by pauses
and backtracking on edges, which are handled using
Lemma 15, Lemma 38, and Lemma 39 on each edge.
If (G, [φ0]), (H, [φ1]) ∈ GI for G,H which are not home-
omorphic, then dFG((G, [φ0]), (H, [φ1])) =∞. �

Similarly, we can adopt Theorem 17 for each edge in
a graph to show path-connectivity of balls in GI .

Theorem 19 (Metric Balls in (GI(G), dFG)) For
every graph G, the balls in the extended metric
space (GI(G), dFG) are path-connected.

Proof. Let [φ] ∈ GI , and let δ > 0. Let B be the inter-
section BdFG

(φ, δ)∩GI(G). Let [φ0], [φ1] ∈ B. Construct
the path Γ : [0, 1]→ B from [φ0] to [φ1] in the same way
as Theorem 18. Just as in Theorem 17, linear inter-
polation and the moves in Lemma 38, Lemma 39, and
Lemma 15 mandate that Γ(t) ∈ B for every t ∈ (0, 1)
identically to the path Fréchet distance. �

4.3 Embeddings

Lastly, we examine the path-connectedness property of
the analogous spaces of embeddings.

Theorem 20 (Path Embeddings) The extended
metric space (ΠE , dFP) is path-connected in Rn if and
only if n > 1.

Proof. If n = 1, two paths with reverse orientations
are not path-connected.

Now, let n > 1, and let [γ0], [γ1] ∈ ΠE . By Alexan-
der’s trick,3 there exists s0 ∈ [0, 1] such that γ′0 :=
γ0|[s,1] and s1 ∈ [0, 1] such that γ′1 := γ1|[s1,1], where s0
and s1 are nearly straight. Let ∠ be the angle between
the segments γ′0 and γ′1. Let S : [14 ,

2
4]→ ΠE be the map

rotating γ′0 by ∠ to become parallel with γ′1. Finally,
let Γ be the interpolation from γ′0 ◦ S to γ′1.

Define P : [0, 1]→ ΠE as the resulting composition:

P (t) =

γ0 |[(1−t)s,1], t ∈ [0, 14]

S(t), t ∈ [14 ,
2
4]

Γ(t) t ∈ [24 ,
3
4]

γ1 |[(1−t)s,1], t ∈ [34 , 1].

The steps attaining γ′0 and γ′1, as nothing else than
a restriction of γ0 and γ1, are continuous. Moreover, S
is continuous as the rotation of γ′0, and Γ is continuous
by Lemma 35. By the arbitrariness of the constructed
path and γ0, γ1, there is a family of continuous paths for
any γ0 ∈ [γ0], γ1 ∈ [γ1], and ΠE is path-connected. �

217

35th Canadian Conference on Computational Geometry, 2023

Figure 3: Two embedded paths γ0, γ1 in R2 and R3 re-
spectively, for which constructing a path Γ : [0, 1] →
ΠE ,Γ(0) = γ0,Γ(1) = γ1 is not possible without hav-
ing Γ(t) 6∈ BdFP

(γ1, dFP (γ0, γ1)) for some t ∈ [0, 1].

Moreover, in high dimensions we can construct a path
in ΠE not increasing the Fréchet distance.

Theorem 21 (Metric Balls in (ΠE , dFP)) If n ≥ 4,
then balls with finite radius in the extended metric
space (ΠE , dFP) are path-connected in Rn.

Proof. If n ≥ 4, the same map Γ given in Theorem 16
is sufficient, except that self-crossings must be avoided.
At each s ∈ [0, 1] where a self-crossing would occur,
we perturb Γ by a sufficiently small amount in order
to avoid a self-crossing without increasing the Fréchet
distance using the maneuver in Lemma 41. �

A simple examination shows that metric balls are not
path-connected in low dimensions.

Theorem 22 (Metric Balls in (ΠE , dFP)) If n ∈
{1, 2, 3}, then balls with finite radius in the extended
metric space (ΠE , dFP) are not path-connected in Rn.

Proof. For n = 1, let [γ] ∈ ΠE . Let γ−1 := γ(1 − t),
and note that γ−1 ∈ ΠE . If n = 2, consider two paths
within a fixed Fréchet ball that are much wider than
their Fréchet distance. If n = 3, consider two paths
with small Fréchet distance that form a loop, with one
section passing under the other. If these loops have
reversed orientation between the two paths, the Fréchet
distance must increase. See Figure 3 for examples. �

In the setting for graphs, the path-connectedness
property reduces to a knot theory problem if n ≤ 3,
and is not maintained. For n ≥ 4, we use the existence
of a sequence of Reidemeister moves [25] from any tame
knot to another to construct paths in GE .

Theorem 23 (Path-Connectivity of (GE , dFG), n ≥ 4)
For all graphs G and n ≥ 4, the extended met-
ric space (GE(G), dFG) is path-connected. More-
over, connected components of the extended metric
space (GE , dFG) are in one-to-one correspondence with
homeomorphism classes of graphs.

3Two embeddings of the n-ball are isotopic, first proven by
Alexander [3]; see also [15, §4].

Proof. Let G be a graph, and φ0, φ1 ∈ GE(G). If n ≥ 4,
any tame knot can be unwound by a sequence of Reide-
meister moves into the unknot. Construct Γ : [0, 1] →
GE(G) by linear interpolating until some t ∈ (0, 1)
causes Γt to self-intersect. At t, there exists a Rei-
demeister move allowing the crossing event to occur.
Hence, any sequence of knots and free edges compris-
ing φ0 and φ1 can be unwound to a sequence of un-
knots and straight edges, and then interpolated accord-
ingly. Consequently, there exists a path from φ0 to φ1
in (GE(G), dFG). Note that we require φ0, φ1 are recti-
fiable in Section 2. �

In dimension 4 or higher, the path-connectivity of
balls in GE(G) is shown in the same way as for paths.

Theorem 24 (Metric Balls in (GE(G), dFG))
For all graphs G and n ≥ 4, metric balls in the
space (GE(G), dFG) are path-connected.

Proof. The proof is identical to that in Lemma 41, but
Reidemeister moves are used for each edge in a graph
rather than a single segment. �

5 Conclusion

In this paper, we studied some fundamental topolog-
ical properties of spaces of paths and graphs in Eu-
clidean space under the Fréchet distance. In partic-
ular, we investigated metric properties of the Fréchet
distance on paths and graphs, as well as studying the
path-connectedness of metric balls in the space of such
graphs. While this work is theoretical and mathemat-
ical in nature, we feel that establishing the underlying
properties of the topological spaces it can define pro-
vides an important theoretical backdrop, which is espe-
cially critical due to the widespread popularity of the
Fréchet distance in computational geometry, and the
growing popularity of its extension for graphs. Our
contribution begins a careful study of the Fréchet dis-
tance and its topological properties. Extensions to this
work abound, and include examining core topological
properties of other distance measures in computational
geometry, as well as other important properties of the
Fréchet distance.

Acknowledgements

We thank our coauthors from [9] for the initial con-
versations that inspired this paper. In addition, the
authors thank the National Science Foundation; specif-
ically, Erin Chambers is partially supported by NSF
awards 2106672 and 1907612, Brittany Terese Fasy and
Benjamin Holmgren are partially supported by award
1664858, Fasy is also supported by award 2046730, and
Carola Wenk is partially supported by award 2107434.

218

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] P. K. Agarwal, R. B. Avraham, H. Kaplan, and
M. Sharir. Computing the discrete Fréchet distance
in subquadratic time. SIAM Journal on Comput-
ing, 43(2):429–449, 2014.

[2] M. Ahmed and C. Wenk. Constructing street
networks from gps trajectories. In Algorithms –
ESA 2012, pages 60–71, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[3] J. W. Alexander. On the deformation of an n cell.
Proceedings of the National Academy of Sciences,
9(12):406–407, 1923.

[4] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. IJCGA, 5(1–
2):75–91, 1995.

[5] H. Alt, C. Knauer, and C. Wenk. Matching polyg-
onal curves with respect to the Fréchet distance. In
A. Ferreira and H. Reichel, editors, STACS 2001,
pages 63–74, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

[6] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and
C. Wenk. Fréchet distance for curves, revisited.
In Y. Azar and T. Erlebach, editors, Algorithms –
ESA 2006, pages 52–63, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[7] K. Buchin, M. Buchin, and A. Schulz. Fréchet
distance of surfaces: Some simple hard cases. In
European Symposium on Algorithms, pages 63–74.
Springer, 2010.

[8] K. Buchin, T. Ophelders, and B. Speckmann. Com-
puting the Fréchet distance between real-valued
surfaces. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 2443–2455. ACM, 2017.

[9] M. Buchin, E. Chambers, P. Fang, B. T. Fasy,
E. Gasparovic, E. Munch, and C. Wenk. Distances
between immersed graphs: Metric properties. La
Matematica, 2(1):197–222, 2023.

[10] M. Buchin, A. Krivosija, and A. Neuhaus. Com-
puting the Fréchet distance of trees and graphs of
bounded tree width. In Proceedings of the 36th
European Workshop on Computational Geometry,
2020.

[11] E. Chambers, B. T. Fasy, Y. Wang, and C. Wenk.
Map-matching using shortest paths. In ACM
Transactions on Spatial Algorithms and Systems,
pages 1–17. Association for Computing Machinery,
2020.

[12] E. W. Chambers, E. Colin de Verdière, J. Erickson,
S. Lazard, F. Lazarus, and S. Thite. Homotopic
Fréchet distance between curves or, walking your
dog in the woods in polynomial time. Computa-
tional Geometry, 43(3):295–311, 2010. Special Is-
sue on 24th Annual Symposium on Computational
Geometry (SoCG’08).

[13] D. Chen, A. Driemel, L. J. Guibas, A. Nguyen, and
C. Wenk. Approximate map matching with respect
to the frechet distance. pages 75–83, 2011.

[14] C. Colombe and K. Fox. Approximating the (con-
tinuous) Fréchet distance. In K. Buchin and
E. Colin de Verdiére, editors, 37th International
Symposium on Computational Geometry (SoCG,
2021), 2021.

[15] E. Denne and J. M. Sullivan. Convergence and iso-
topy type for graphs of finite total curvature. Dis-
crete differential geometry, pages 163–174, 2008.

[16] A. Driemel and S. Har-Peled. Jaywalking your
dog: Computing the Fréchet distance with short-
cuts. SIAM Journal on Computing, 42(5):1830–
1866, 2013.

[17] A. Driemel, S. Har-Peled, and C. Wenk. Approxi-
mating the Fréchet distance for realistic curves in
near linear time. Discrete and Computational Ge-
ometry, 48(1):94–127, Feb. 2012.

[18] A. Driemel, I. van der Hoog, and E. Rotenburg.
On the discrete fréchet distance in a graph. In
M. Kerber and X. Goaoc, editors, Proceedings of
the Symposium on Computational Geometry, 2022.

[19] H. Edelsbrunner and J. L. Harer. Computational
Topology: An Introduction. American Mathemati-
cal Society, 2010.

[20] P. Fang and C. Wenk. The Fréchet distance for
plane graphs. In Proceedings of the 37th European
Workshop on Computational Geometry, 2021.

[21] M. Fréchet. Sur quelques points du calcul fonc-
tionnel. Rendiconti del Circolo Mathematico di
Palermo, 22:1–74, 1906. Paragraphs 78–80.

[22] A. F. C. IV and C. Wenk. Geodesic Fréchet dis-
tance inside a simple polygon. ACM Trans. Algo-
rithms, 7(1), dec 2010.

[23] L. Jǐŕı. Basic Analysis: Introduction to Real Anal-
ysis, volume 5.6. 2022.

[24] M. Musleh, S. Abbar, R. Stanojevic, and M. Mok-
bel. Qarta: an ml-based system for accurate map
services. Proceedings of the VLDB Endowment,
14(11):2273––2282, July 2021.

219

35th Canadian Conference on Computational Geometry, 2023

[25] K. Reidemeister. Knoten und gruppen. In Abhand-
lungen aus dem Mathematischen Seminar der Uni-
versität Hamburg, volume 5, pages 7–23. Springer,
1927.

A Distances and Topology

Let R̄ denote the extended real line: R̄ = R ∪ ±∞. We
now provide the basic definitions relating to distances
and topology used throughout this paper.

A.1 Graphs

Graphs are a central object studied in this paper.
Throughout this paper, we use the term graph to

mean a multi-graph. A multi-graph G = (V,E) is a
finite set of vertices V and edges E. Self-loops and mul-
tiple edges between two vertices are allowed in this set-
ting. A graph is an example of a more general structure
called a CW complex, which we topologize as follows:
(1) the topology on G restricted to V is the discrete
topology; (2) for a edge e, the open sets restricted to
is closure ē are those induced by the subspace topology
on [0, 1] ⊂ R and a homeomorphism [0, 1] → ē; (3) we
take the quotient topology on (∪v∈V) ∪ (∪e∈E ē).

A.2 Fréchet Distance

We defined the path and graph Fréchet distances in Sec-
tion 2. The path Fréchet distance is well-studied [1, 4–
8, 10–14, 16–18, 20–22]. The graph Fréchet distance has
been less studied, but many results for paths transfer to
graphs.

The proof of the following lemma follows from the
definition of Fréchet distance and the definition of infi-
mum.

Lemma 25 (Approximator) For all graphs G,
if [φ0], [φ1] ∈ ΠC(G), then for every ε > 0, there exists
a homeomorphism h∗ : G→ G such that

||φ0 − φ1 ◦ h||∞ < dFG(φ0, φ1) + ε.

Proof. By Definition 3,

dFG([φ1], [φ2]) = inf
h
||φ1 − φ2 ◦ h||∞.

Then, by the definition of infimum, for every ε > 0,
there exists h∗ : G→ G such that

||φ1 − φ2 ◦ h∗||∞ < inf
h
||φ1 − φ2 ◦ h||∞ + ε/2

= dFG([φ1], [φ2]) + ε/2,

as was to be shown. �

A.3 Defining Spaces from Distances and Metrics

Given a set X and a d : X× X→ R̄≥0, we topologize X
as follows:

Definition 26 (The Open Ball Topology)
Let X be a set and d : X × X → R̄≥0 a dis-
tance function. For each r > 0 and x ∈ X,

220

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

let Bd(x, r) := {y ∈ X | d(x, y) < r}. The open
ball topology on X with respect to d is the topology
generated by {Bd(x, r) | x ∈ X, r > 0}. We call (X, d) a
distance space.

In words, Bd(x, r) denotes the open ball of radius r
centered at x with respect to d. We use these open balls
to generate a topology on X, allowing x to range over X
and r to range over all positive real numbers.

We are particularly interested in distance functions
that are either a pseudo-metric or a metric. These are
defined as follows.

Definition 27 (Pseudo-Metric) Let X be a set and
let d : X×X→ R̄≥0 be a distance function. We call d a
pseudo-metric on X if d satisfies the following:

• Finiteness: d(x, y) <∞ for all x, y ∈ X.

• Identity: d(x, x) = 0 for all x ∈ X.

• Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.

• Subadditivity (the triangle inequality): d(x, z) ≤
d(x, y) + d(y, z) for all x, y, z ∈ X

If d satisfies everything except finiteness, then we call d
an extended pseudo-metric.

In order to be a metric, d must fulfill stricter criteria:

Definition 28 (Metric) Let X be a set and let the
function d : X × X → R̄≥0 be a pseudo-metric. We say
that d is a metric if d also satisfies:

• Seperability: for any x, y ∈ X, if x 6= y,
then d(x, y) > 0.

Often, if (X, d) is a pseudo-metric space, a standard
procedure is to define an equivalence class for x, y ∈ X
where x ∼ y if d(x, y) = 0. Then, the quotient
space X /∼ is a metric space.

Common examples of metrics on function spaces are
those induced by Lp-norms. For example, let (Y, dY)
be distance space, let X be any topological space, and
let f, g : X→ Y. Then, the distance induced by the L∞-
norm between f and g is:

||f − g||∞ = max
x∈X

dY(f(x), f(y)).

A.4 Paths and Maps

With the basic definitions from topology in hand, we are
equipped to define a property of fundamental interest in
topology: path-connectedness.

Definition 29 (Path) A path in a topological space X
between two elements a, b ∈ X, is defined to be a contin-
uous map γ : [0, 1]→ X where γ(0) = a, and γ(1) = b.

Given two paths γ1, γ2 : [0, 1]→ X such that γ1(1) =
γ2(0), we combine them by taking both at double-speed.
This is called the concatenation of paths. In particular,
γ1#γ2 : [0, 1]→ Rn is defined by:

γ1#γ2(t) :=

{
γ1(2t) t ∈ [0, 0.5].

γ2(2t− 1) otherwise.

Given one path γ : [0, 1] → X and an interval [a, b] ⊆
[0, 1], the restriction of γ to [a, b] is also a path, given by:

γ|[a,b](t) := γ(a+ t(b− a)).

With the definition of paths, we define a primary
property of interest in this paper: path-connectivity.

Definition 30 (Path-Connectivity) A topological
space X is called path-connected if there exists a path
between any two elements in X.

We also define the path-connectedness property
specifically for distance balls:

Definition 31 (Path-Connectivity of Balls)
Let (X, d) be a topological space, let x ∈ X. We say that
the distance balls in (X, d) are path-connected if for
every x ∈ X and r ∈ R≥0, the distance ball Bd(y, r) is
path-connected.

And, the length of a path in a distance space is
given by:

Definition 32 (Length) Let (X, d) be a distance space
and let γ be a path in (X, d). Let P be the set of all finite
subsets P = {ti} of [0, 1] such that such that 0 = t0 <
t1 < . . . < tn = 1. The length Ld(γ) of γ is:

Ld(γ) := sup
P∈P

n∑

i=1

d(γ(ti), γ(xi−1)).

Additionally, it is often useful in our setting to repa-
rameterize paths, both to define the Fréchet distance
and to maintain properties such as injectivity in a map.

Definition 33 (Reparameterization) Let X,Y be a
topological spaces, φ : X→ Y, and h : X→ X is a home-
omorphism. Then, we call φ ◦ h a reparameterization
of φ. In the setting where X = [0, 1] and h(0) = 0, we
call φ ◦ h an orientation-preserving reparameterization.

B Omitted Details for Path-Connectivity

In this appendix, we provide additional context for the
proofs of path-connectivity in Section 4.

221

35th Canadian Conference on Computational Geometry, 2023

B.1 Additional Details on Interpolation

Given two continuous maps of the same graph into Rn,
we define the interpolation between them. First, we
need to define linear combinations of graphs (and
paths).

Definition 34 (Linear Combination of Graphs)
Let G be a graph, let φ1, φ2 : [0, 1]→ Rn be continuous,
rectifiable maps, and c1, c2 ∈ R. Then, the linear
combination φ = c1φ1 + c2φ2 is defined as follows: the
map φ : G→ Rn is defined by φ(x) := c2φ1(x)+c2φ2(x).
In this case, we may also say (G,φ) is a linear combi-
nation of graph-map pairs (G,φ1) and (G,φ2).

In this definition, we observe that φ is continuous
(since φ0 and φ1 are continuous), which means that lin-
ear combinations are well-defined in the set of all con-
tinuous, rectifiable maps. It is not well defined in the
space GC(G) overall.

Lemma 35 (Linear Interpolation is Continuous)
For all graphs G, linear interpolation between graphs
in GC(G) (and hence between homeomorphic graphs
in GC) is a continuous function.

Proof. Let [φ0], [φ1] ∈ GC(G). Let Γ: [0, 1] → GC(G)
be the linear interpolation from φ0 to φ1.

We prove that Γ satisfies the ε-δ definition of conti-
nuity. Let ε > 0. Set δ = ε

dFG([φ0],[φ1])
. Let s, t ∈ [0, 1]

such that |s− t| < δ. Then, we have

dFG ([Γt], [Γs])

= dFG([(1− t)φ0 + tφ1], [(1− s)φ0 + sφ1])

= inf
h
||((1− t)φ0 + tφ1)− ((1− s)φ0 + sφ1) ◦ h||∞,

where h ranges over all reparameterizations of [0, 1].
Continuing, we find:

dFG ([Γt], [Γs])

= inf
h
||(s− t)φ0 + (t− s)φ1 ◦ h||∞

= |t− s| inf
h
|| − φ0 + φ1 ◦ h||∞

< δ · inf
h
|| − φ0 + φ1 ◦ h||∞

= ε,

by definition of δ.
And so, we have shown that Γ satisfies the the ε-δ

definition of continuity. In extended metric spaces, the
ε-δ definition of continuity is equivalent to topological
continuity (e.g., see proof in [23, Lemma 7.5.7] for metric
spaces). Thus, we conclude that linear interpolation
between graphs in GCG is continuous. �

Setting G = [0, 1], an identical argument shows that
linear interpolation between paths in ΠC is also contin-
uous.

Figure 4: The interpolation between two embeddings of
a graph in Rn. For simplicity, we show the interpola-
tion between the vertices in the embeddings, and the
interpolation between edges is inferred accordingly.

Corollary 36 (Linear Interpolation between Paths)
For all [γ0], [γ1] ∈ ΠC, the linear interpolation from γ0
to γ1 is continuous.

B.2 Paths Between Immersions in Greater Detail

This subsection includes additional details to maintain
local injectivity for an arbitrary path Γ : [0, 1] → ΠI .
We begin by examining the case where pausing occurs
on the closed interval [a, b] ⊂ [0, 1] in the domain of
an immersed path γt ∈ Γt, and the interval includes
either 0 or 1. We subvert this by finding an alternate
(but ‘close’) path Γ∗.

Lemma 37 (Pausing at Endpoints) Let [γ0], [γ1] ∈
ΠI , and let Γ : [0, 1] → ΠC be a path in ΠC starting
at γ0 and ending at γ1. Suppose that there exists an
interval [t1, t2] ⊂ [0, 1] such that for t ∈ [0, 1]\(t1, t2), Γt
is an immersion and, for t ∈ (0, 1), Γt has a single pause
(and no other violations of local injectivity). Then, there
exists an alternate path Γ∗ in ΠC starting at γ0 and
ending at γ1 such that Γ∗ is a path in ΠI .

Proof. We use the same idea as in Lemma 15, but in-
stead stretch the unit interval into only one side of the
original domain of the path Γt. That is:

Γ∗t (x) :=

{
Γt(x · a) if b = 1

Γt((x− b) · (1− b) + b) if a = 0
(3)

If Γt pauses on [a, 1], we know that the we can focus
on the image of [0, a]. Likewise, if Γt pauses on [0, b],
we turn to the image of [b, 1]. Then, replace Γt that

222

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

pauses with the newly defined Γ∗t . And so, we define a
new map Γ∗ : [0, 1]→ ΠC as follows:

Γ∗(t) :=

{
Γt if t 6∈ (t− ε, t+ δ)

Γ∗t if t ∈ (t− ε, t+ δ)
(4)

Indeed, it is easy to verify that each Γ∗t preserves local
injectivity so Γ∗t ∈ ΠI . Moreover, Γ∗ is continuous. �

We now examine the case when linear interpolation
results in a singleton, which causes a degeneracy in
spaces of immersions. We give a maneuver to subvert
this for paths.

Lemma 38 (Dodging Singletons) Let [γ0], [γ1] ∈
ΠI , and let Γ : [0, 1] → ΠC be a linear interpolation
from γ0 to γ1. Let t ∈ [0, 1] such that Γ(t) is a con-
stant map, forcing Γ(t) 6∈ ΠI . We can avoid this total
degeneracy by rotating Γ(t).

Proof. Linear interpolation of γ0 to γ1 produces a sin-
gleton if the two equivalence classes of paths are colinear
with reversed orientation. Hence, if Γt degenerates to
a constant map, there exists sufficiently small ε > 0
to continuously rotate Γ(t − ε) by π without forcing
dFP (Γ(t), γ1) > dFP (γ0, γ1). Thereby reversing the ori-
entation of Γ(t+ ε), and avoiding the constant map for
any γt ∈ Γt. See Figure 5 for an example. �

We now consider the case of backtracking during lin-
ear interpolation, which violates local injectivity. We
introduce a maneuver to solve this potential degener-
acy in spaces of immersions.

Lemma 39 (The Q-Tip Maneuver) Let [γ0], [γ1] ∈
ΠI , and let Γ : [0, 1] → ΠC be a linear interpolation
from γ0 to γ1. Let t ∈ [0, 1] such that Γ(t) creates back-
tracking for some Γ(t). Inflating a ball about the critical
backtracking point corrects this violation of injectivity.

Proof. In the scenario of a backtracking event, local
injectivity is only violated at the exact critical point
Γt(x) for x ∈ [0, 1] where backtracking occurs. For suf-
ficiently small ε, δ > 0, continuously inflate a ball of
radius δ about Γt−ε(x) such that dFP ([Γt− ε], [γ1]) re-
mains fixed, creating the path Γ∗t with a ball replacing

the critical point, so that Γ∗t ∈ Π̃I . Then, replace any
backtracking Γt with the corresponding Γ∗t . For every
t ∈ [0, 1] it holds that Γt ∈ ΠI , and by the continuity of
the inflation, Γ remains continuous. For an example of
this maneuver, see Figure 6b. �

B.3 Balls of Path Embeddings in Greater Detail

In what follows, we elaborate on counterexamples for
the path-connectivity of balls in ΠE and GE . We begin
with a counterexample for path embeddings in R2.

We continue with a brief description of counterexam-
ples for the path-connectivity of embedded paths in R3.

(a) Paths with reversed orientation

(b) Interpolate

(c) Rotate when sufficiently close

Figure 5: For colinear paths with opposing orientation,
rotating by π avoids degenerating to the constant map,
keeping Γ in ΠI . Moreover, rotation with sufficiently
small Fréchet distance maintains the path-connectivity
of balls.

223

35th Canadian Conference on Computational Geometry, 2023

(a) Example path with backtracking

(b) Inflate the critical backtracking point

Figure 6: Reconcile forced backtracking along a path
by inflating a ball about the critical backtracking point,
thereby maintaining local injectivity.

Lemma 40 (3d Balls in ΠE) If n = 3, metric balls
in the space (ΠE , dFP) of embedded paths in Rn are not
path-connected.

Proof. Metric balls are not in general path-connected
in three dimensions. For a simple counterexample, sup-
pose γ0 comprises a loop in R3, where a segment crossed
on top of itself, avoiding self-intersection by some small
distance δ, with long tails at either end of the crossing
of length 2δ. Suppose also that γ1 comprises the mirror
image of γ0. Then, dFP = δ, but it is not possible to
construct a path from γ0 to γ1 without increasing the
Fréchet distance between the two, since γ0 must conduct
a self-crossing, which increases the Fréchet distance by
at least 2δ. Again, see Figure 3 �

We conclude with additional details demonstrating
the path-connectivity of balls for embedded paths in R4

or higher.

Lemma 41 (Balls in (ΠE , dFP), n ≥ 4) If n ≥ 4,
balls in the metric space of embedded paths (ΠE , dFP)
in Rn are path-connected.

Proof. Let [γ0], [γ1], [γ2] ∈ ΠE in the ambient space
Rn, for n ≥ 4. Let δ > 0, and B := BdFG

([γ0], δ) ⊂ ΠE .
Since all topological knots are represented equivalently
in only three dimensions, without loss of generality, we
consider the projections of every γ0 ∈ [γ0], γ1 ∈ [γ1], and
γ2 ∈ [γ2] in R3. Construct a continuous Γ : [0, 1]→ ΠE
by the linear interpolation from Γ(0) = γ1 to Γ(1) = γ2.
By the rectifiability of the embeddings γ1 and γ2, the
interpolation must reduce dFP (γ1, γ2) by some ε > 0
before a self-crossing is required in the image of Γt at
some t ∈ [0, 1].

At t, conduct a self-crossing by perturbing Γt in the
fourth dimension by no more than ε/2. This increases

dFP (Γt, γ2) by no more than ε/2. Hence, dFP (Γt, γ2) is
either strictly decreasing as t → 1, or necessarily sat-
isfies dFP (Γt, γ2) ≤ δ − ε/2 for ε > 0. This is to say,
for all t ∈ [0, 1], dFP (Γt, γ2) ≤ δ, and Γt ∈ B. Hence,
metric balls in the space are path-connected. �

224

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Optimal Polyline Simplification under the Local Fréchet Distance
in (Near-)Quadratic Time

Peter Schäfer∗ Sabine Storandt∗ Johannes Zink†

Abstract

Given a polyline on n vertices, the polyline simplifica-
tion problem asks for a minimum-size subsequence of
the vertices defining a new polyline whose distance to
the original polyline is bounded by a given threshold. As
distance measure, we employ the frequently used local
Fréchet distance. The well-known Imai–Iri algorithm
solves this problem to optimality in O(n3) time using
linear space. Recently, Buchin et al. [ESA’22] presented
the first subcubic algorithm with a running time and
space consumption in O(n5/2+ε) for any ε > 0. We
show that there is an algorithm with a running time in
O(n2 log n) using only linear space. Moreover, we con-
duct an extensive experimental evaluation on real-world
trajectories. We observe that our algorithm requires
only a running time in O(n2) on all of these instances.

1 Introduction

Polyline simplification owes its relevance to various ap-
plications, such as processing of vector graphics [29, 32],
robotics [25, 13], trajectory clustering [7], shape anal-
ysis [24], data compression [23], curve fitting [27], and
map visualization [2, 3, 16, 20, 30]. The task is to replace
an n-vertex polyline with a minimum-size subsequence
of its vertices while keeping the input and the output
polyline sufficiently similar. The similarity is governed
by a distance threshold δ. To determine the similarity,
the Hausdorff and the Fréchet distance are the most
commonly used measures. Throughout the paper, dis-
tance measures are applied locally, i.e., the distance be-
tween each line segment of the output and the part of
the input polyline it bridges (instead of the polylines as
a whole) must not exceed δ. Local measures allow for a
clearer mapping between input and output polyline and
they reflect the course of the original polyline better.

Related Work. For the local Hausdorff distance, the
Imai–Iri algorithm [19] guarantees a running time
in O(n3). Melkman and O’Rourke [22] improved this
to a running time in O(n2 log n), which was further re-
duced to O(n2) by Chan and Chin [11].

∗Universität Konstanz, Germany
†Universität Würzburg, Germany

A drawback of using the Hausdorff distance is that it
does not reflect the similarity of the courses of two poly-
lines. In contrast, the Fréchet distance measures the
maximum distance between two polylines while travers-
ing them in parallel and is therefore often regarded as
the better suited measure for polyline similarity. For the
local Fréchet distance, though, the cubic running time
of the Imai–Iri algorithm (shown by Godau [15] in 1991)
was a longstanding bound and has still been quoted as
the state of the art in recent publications [8, 29]. Agar-
wal et al. [1] posed the problem of whether there exists a
subcubic algorithm for polyline simplification under the
local Fréchet distance as an open question, which was
answered positively recently by Buchin et al. [10]. They
describe a data structure that outputs the Fréchet dis-
tance between any line segment and any subpolyline of a
preprocessed polyline in O(

√
n log2 n) time. Using this

data structure to test, for each pair of vertices, whether
they can be connected by a segment in the output poly-
line, a polyline simplified optimally can be computed in
O(n5/2+ε) time (and space) for any ε > 0. We remark
that this data structure is quite sophisticated and more
powerful than required for polyline simplification.

The most practically relevant setting for polyline sim-
plification is to consider two-dimensional curves in the
Euclidean plane (i.e., under the L2 norm). However, the
problem was also studied in higher dimensions d > 2 and
under different norms. The Imai–Iri algorithm works in
Rd≥2 with the running time only increasing polynomi-
ally in d. Bringmann and Chaudhury [8] have proven
conditional lower bounds for simplification in Rd un-
der the local Hausdorff/Fréchet distance. For Lp with
p ∈ [1,∞), p 6= 2, algorithms with a running time sub-
cubic in n and polynomial in d are ruled out unless the
∀∀∃-OV hypothesis fails. However, for small values of d
(which are of high practical relevance), faster algorithms
are possible, as evidenced by a O(d2dn2) time algorithm
for the local Hausdorff distance under the L1 norm [5].
For L2 and L∞, the best currently known conditional
lower bound was proven by Buchin et al. [9]. It rules
out algorithms with a subquadratic running time in n
and polynomial running time in d unless SETH fails.

For a faster runtime, alternative constraints on the
output polyline, heuristics, and approximation algo-
rithms have been investigated. For instance, Durocher
et al. [14] require the maximum number of intersections

225

35th Canadian Conference on Computational Geometry, 2023

between input and output polyline or Visvalingam and
Whyatt [31] refer to the triangular area a vertex adds.
The Ramer–Douglas–Peucker algorithm [27, 12], one of
the most simple and widely used heuristics, computes a
simplified polyline under the local Hausdorff distance in
O(n log n) time [18] and under the local Fréchet distance
in O(n2) time [29], but without any guarantee regard-
ing the solution size. Agarwal et al. [1] presented an ap-
proximation algorithm with a running time ofO(n log n)
that works for any Lp norm and generalizes to Rd. Un-
der the local Fréchet distance, the simplification size
does not exceed the optimal simplification size for δ/2.

The problem variant where the requirement is
dropped that all vertices of the simplification must be
vertices of the input polyline is called a weak simpli-
fication. Guibas et al. [17] showed that an optimal
weak simplification under the (non-local) Fréchet dis-
tance can be computed in O(n2 log2 n) time. Later
Agarwal et al. [1] gave an O(n log n)-time approxima-
tion algorithm violating the distance threshold δ by a
factor of at most 8 (see also Van de Kerkhof et al. [28]).

Our Contribution. We present an algorithm for poly-
line simplification under the local Fréchet distance
running in O(n2 log n) time and linear space. Our
algorithm builds upon the Melkman–O’Rourke algo-
rithm [22], which exploits the geometric properties of
the local Hausdorff distance using cone-shaped wedges
and a wavefront of circular arcs to determine all possible
segments of the output polyline. We adapt both of these
concepts to the local Fréchet distance. We study the
properties of the resulting wavefront and explain how
to maintain our wavefront data structure efficiently.

As our main result, we prove that the asymptotic run-
ning time does not increase with our modifications. This
is a large improvement compared to the cubic running
time of the Imai–Iri algorithm and also to the currently
stated best runtime bound of O(n5/2+ε) [10]. It is also
faster than the O(n2 log2 n)-time weak-simplification al-
gorithm by Guibas et al. [17, Theorem 14]. However,
we remark that parts of their algorithm (Theorem 7,
Lemma 8, Lemma 9) can be used to obtain similar re-
sults. Yet, their procedure is more complicated since it
maintains geometric information only needed for weak
simplifications. Our algorithm is tailored to polyline
simplification under the local Fréchet distance, and thus
cleaner, as well as easier to implement and analyze.

As one result of our in-depth analyis, we show that
under the L1 and L∞ norm, the wavefront has constant
complexity, improving the running time to O(n2).

Finally, we investigate real-world trajectories. Across
all instances, the wavefront always has very small size,
resulting in anO(n2) runtime. This matches the asymp-
totic running time for the local Hausdorff distance and
of the wide-spread Ramer–Douglas–Peucker heuristic.

2 Preliminaries

A polyline is a series of line segments defined by a se-
quence of points L = 〈p1, . . . , pn〉 in the plane called
vertices. By n, we denote the length of a polyline.
For 1 ≤ i ≤ j ≤ n, we let L[pi, pj] := 〈pi, . . . , pj〉,
i.e., the subpolyline of L starting pi, ending at pj , and
including all vertices in between in order. The con-
tinuous (but not smooth) curve induced by the ver-
tices of L is denoted as cL : [1, n] → R2 with cL : x 7→
(bxc+ 1− x)pbxc + (x− bxc)pdxe.

Input: A polyline L, a distance measure dX compar-
ing two polylines, and a distance threshold δ.

Output: Return a minimum-size subsequence S (sim-
plification) of L (original polyline) such that
p1, pn ∈ S and dX(L, S) ≤ δ.

Polyline Simplification

As distance measure dX , commonly the local Haus-
dorff or the local Fréchet distance is employed.

Input: Polylines L = 〈p1, . . . , pn〉, L′ = 〈q1, . . . , qm〉.
Output: dF(L,L′) := inf

α,β
max
t∈[0,1]

d(cL(α(t)), cL′(β(t))),

where α : [0, 1]→ [1, n] and β : [0, 1]→ [1,m]
are continuous non-decreasing functions s.t.
α(0) = β(0) = 1, α(1) = n, and β(1) = m.

Fréchet Distance of Two Polylines

We measure only the local Fréchet distance, i.e., the
maximum of the Fréchet distance between a line seg-
ment 〈pi, pj〉 of the simplification and its corresponding
subpolyline L[pi, pj] in the original polyline. When us-
ing a local distance measure, we can tell for each pair of
vertices 〈pi, pj〉 independently whether a simplification
may contain the shortcut 〈pi, pj〉 or not. If the distance
does not exceed the distance threshold δ, we also call
〈pi, pj〉 a valid shortcut. Note that 〈pi, pi+1〉 is always
a valid shortcut for any i ∈ {1, . . . , n− 1}.

In the definition of the Fréchet distance, we can
choose how the distance between two points is deter-
mined. Typically, a vector norm is used. For p ∈ [1,∞),
the Lp norm of a two-dimensional vector x ∈ R2 is de-
fined as ‖x‖p := (|x1|p+ |x2|p)1/p. For p = 1, it is called
the Manhattan norm, for p = 2, the Euclidean norm.
For p → ∞, it is called the maximum norm, which is
defined as max{x1, x2}. The unit circle in Lp is the set
of points within unit distance to the origin. While this
unit is conventionally set to 1, we use δ here instead as
this allows for easier argumentation when using distance
bound δ. For L1 and L∞, the unit circle actually forms
a square with side length

√
2δ and 2δ, respectively. For

L2, it is a (geometric) circle with radius δ. For p be-
tween 2 and∞, it forms a supercircle which for larger p
approaches a square. We refer to a contiguous subset of
the boundary of a unit circle in Lp as an arc.

226

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Imai–Iri Algorithm. The polyline simplification algo-
rithm by Imai and Iri [19] proceeds in two phases. In
the first phase, the shortcut graph is constructed. This
graph has a node for each vertex of L and it has an
edge between two nodes iff there is a valid shortcut
between the two corresponding vertices of L. For the
Hausdorff/Fréchet distance, we can check in O(n) time
if the distance between a line segment and an O(n)-
vertex polyline exceeds δ [4]. Thus, the total runtime of
the first phase amounts toO(n3). In the second phase, a
shortest path from p1 to pn is computed in the shortcut
graph, which can be accomplished in O(n2) time.

In a naive implementation, the space consumption is
in O(n2). However, it is not necessary to first construct
the full shortcut graph and to compute the shortest path
subsequently. Instead, the space consumption can be re-
duced to O(n) by interleaving the two phases as follows:
For pi, the shortest path distance di from pi to pn via
shortcuts can be computed in linear time by considering
all valid shortcuts 〈pi, pj〉 to vertices pj with j > i and
setting di = 1 + min〈pi,pj〉 dj . Hence, if we traverse the
vertices in reverse order, all we need to keep in memory
are the distance values for already processed vertices
and the shortcuts of the currently considered vertex.

Melkman–O’Rourke Algorithm. Since in the Imai–Iri
algorithm the construction of the shortcut graph dom-
inates the runtime, accelerating this phase leads to an
overall improvement. Melkman and O’Rourke [22] in-
troduced a faster technique to compute the shortcut
graph for the local Hausdorff distance. Starting once
at each vertex pi for i ∈ {1, . . . , n}, they traverse the
rest of the polyline vertex by vertex in O(n log n) time
to determine all valid shortcuts.

To this end, they maintain a cone-shaped region
called wedge in which all valid shortcuts lie. When
traversing the polyline, the wedge may become nar-
rower iteratively. Moreover, they maintain a wavefront,1

which is a sequence of circular arcs of unit circles. The
wavefront subdivides the wedge into two regions – a
valid shortcut 〈pi, pj〉 has the endpoint pj in the region
not containing pi. Thus, a valid shortcut needs to cross
the wavefront. The wavefront has size in O(n) and is
stored in a balanced search tree (they use an augmented
2-3-tree) such that querying and updating operations
can be performed in amortized O(log n) time.

Containment in the wedge can be checked in O(1)
time and the position of a vertex relative to the wave-
front can be determined in O(log n) time. The wedge
can be updated in O(1) time. Updating the wavefront
may involve adding an arc and removing several arcs. It

1Melkman and O’Rourke [22] use the term frontier instead
of wavefront. Within the cone, they only call the region on the
other side of the frontier wedge and they call the associated data
structure wedge data structure. Our notation to call the whole
cone wedge is in line with the algorithm by Chan and Chin [11].

is a crucial observation [22] that the order of arcs on the
wavefront is reverse to the order of the corresponding
unit circle centers with respect to the angle around pi.
This allows for binary search inO(log n) time to locate a
new arc within the wavefront. Although a linear number
of arcs may be removed from the wavefront in a single
step, over all steps any arc is removed at most once.
Amortized, this yields a running time of O(n log n) per
starting vertex pi and O(n2 log n) in total.

Algorithm by Guibas et al. Guibas et al. [17] study
weak polyline simplification. There, one is given an n-
vertex polyline L = 〈p1, . . . , pn〉 and a distance thresh-
old δ, and the objective is to compute any polyline
S = 〈q1, . . . , qm〉 of smallest possible length m that hits
all unit circles around the vertices in L in the given
order, which they call ordered stabbing. To addition-
ally have Fréchet distance at most δ between L and
S, each vertex qj of S needs to be in distance ≤ δ to
some point of cL. They describe an O(n2 log n)-time 2-
approximation algorithm and a dynamic program solv-
ing this problem exactly in O(n2 log2 n) time.

Both algorithms essentially rely on a subroutine to
decide whether there exists a line ` (a stabbing line)
that intersects a given set of n ordered unit circles
〈C1, . . . , Cn〉 such that ` hits some points 〈r1, . . . , rn〉
with ri ∈ Ci for i ∈ {1, . . . , n} in order [17, Def. 4].
This subroutine runs in O(n log n) time [17, Lemma 9].
It is based on an algorithm computing iteratively two
hulls and two limiting lines through the unit circles that
describe all stabbing lines [17, Algorithm 1]. They also
maintain the wavefront as described in the Melkman–
O’Rourke algorithm. However, they add an update step
to ensure that the stabbing line respects the order of the
unit circles. We use conceptually the same update step
and explain it in more detail in Secs. 3 and 4.

Definitions and Notation. The following definitions
are illustrated in Fig. 1. When starting at pi and en-
countering pj during the traversal, we denote by Di,j

the local wedge of pi and pj that is the area between
the two tangential rays of the unit circle around pj em-
anating at pi. The (global) wedge Wi,j is an angular
region having its origin at pi. We define Wi,i to be the
whole plane and each Wi,j for j > i is essentially the
intersection of all local wedges up to Di,j . We remark
that, we apply an extra update step described in Sec. 3
specific to the Fréchet distance, which may narrow the
wedge when obtaining Wi,j from Wi,j−1. Therefore,
Wi,j ⊆

⋂
k∈{i+1,i+2,...,j}Di,k holds. We give a precise

inductive definition of the wedge Wi,j when we describe
the algorithm in Sec. 3.

Let Cj be the unit circle around pj and let lj (rj) be
the left (right) tangential point of Cj and Di,j . Between
lj and rj , there are two arcs of Cj – the bottom arc and

227

35th Canadian Conference on Computational Geometry, 2023

p1

p2

p3

p4

p5 W1,2 = D1,2 W1,2

W1,3D1,3 W1,4

D1,4

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

(a) L1 norm: the unit circles are squares of side length
√

2δ.

p1

p2

p3

p4

p5 W1,2 = D1,2

W1,3D1,3

W1,2

W1,4

D1,4

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

(b) L2 norm: the unit circles are circles of radius δ.

p1

p2

p3

p4

p5 W1,2 = D1,2 W1,2

W1,4

D1,4

W1,3W1,3 = D1,3

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

(c) L∞ norm: the unit circles are squares of side length 2δ.

Figure 1: Iterative construction of the wedge: the local
wedges D1,2, D1,3, and D1,4 (pink) bound the wedges
W1,2, W1,3, and W1,4 (yellow). The wavefront consists
of unit circle arcs (blue). Above the wavefront is the
valid region (hatched green), where a subsequent ver-
tex pj of a valid shortcut 〈p1, pj〉 lies. Here, 〈p1, p5〉 is
a valid shortcut in L∞ while in L1 and L2 it is not.

the top arc2. Any ray emanating at pi intersects the
bottom and top arc at most once each. We call the
bottom arc of Cj between lj and rj the wave of Di,j .
We call the region within Di,j and above and on its wave
the local valid region of Di,j , and the region within Wi,j

and above and on the wavefront the valid region of Wi,j

(for Wi,i the whole plane). The wavefront is defined
inductively: the wavefront ofWi,j is the boundary of the
intersection of the valid region of Wi,j−1 and the local
valid region of Di,j within Wi,j excluding the boundary
of Wi,j . Intuitively, it is the wavefront of Wi,j−1 within
Wi,j where we cut out the bottom arc of Cj .

We provide proofs for claims with (?) in the appendix.

2W.l.o.g., we assume that pi is below pi+1 and therefore at
the bottom of a wedge. Moreover, we assume that pi+1 has a
distance of at least δ to pi as otherwise, we could ignore all vertices
following pi with distance ≤ δ to pi since they are in δ-distance to
any shortcut 〈pi, pj〉. Note, though, that a vertex pj with j > i+1
could have distance ≤ δ to pi. Then, we define Di,j as the whole
plane and the whole boundary of Cj as its top arc.

pi

pj

I

Wi,j

Wi,j−1

W ′i,j

Rl

Rr

Cj

(a) When we encounter pj , we
update the wedge in two steps
even if pj is outside the wedge.

pi

pj Wi,j

Wi,j−1

at+
1

a
′
t+

1

a ′
t

at

s

Cj

(b) Vertex pj contributes an
arc to the wavefront. Here,
〈pi, pj〉 is a valid shortcut.

Figure 2: Updating the wedge and its wavefront in L2.

3 A Fast Polyline Simplification Algorithm.

Next, we describe our algorithm for polyline simplifica-
tion under the local Fréchet distance running in near-
quadratic time by means of Melkman and O’Rourke [22]
and integrating ideas from Guibas et al. [17].

Outline. As all Imai–Iri based algorithms, we build the
shortcut graph by traversing the given polyline n times –
starting once from each vertex pi for i ∈ {1, . . . , n} and
determining all shortcuts starting at pi. For each pi, we
construct a wedge with a wavefront, whose properties
are analyzed in more detail in Sec. 4.

Next, we describe how to determine, for each ver-
tex pi, the set of subsequent vertices to which pi has
a valid shortcut. We traverse the polyline in order
pi+1, pi+2, . . . , pn. During this traversal, we maintain
the wedge and the wavefront. As in the algorithm by
Melkman and O’Rourke, our invariant is that for a valid
shortcut 〈pi, pj〉 with j > i, pj has to lie inside the valid
region of the wedge Wi,j−1. In this case, we add the
directed edge pipj to the shortcut graph.

Then, regardless of whether 〈pi, pj〉 is a valid shortcut
or not, we first update the wedge Wi,j−1 to an interme-
diate wedge W ′i,j by computing the intersection between
Wi,j−1 and the local wedge Di,j , and second, we update
W ′i,j to the wedge Wi,j and we update the wavefront.

This update step is illustrated for the L2 norm in
Fig. 2 and for multiple steps and multiple norms in
Fig. 1. For the L2 norm and for the L1 and L∞ norms,
we give more detail on this update step in Sec. 4. It
works as follows. A valid shortcut 〈pi, pk〉 with k > j
needs to go through the intersection region I between
the current valid region and the unit circle Cj around pj .
Otherwise, the vertices of the subpolyline from pi to pk
would be encountered in the wrong order contradicting

228

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

the definition of the Fréchet distance. Hence, we nar-
row the intermediate wedge W ′i,j such that the rays Rl
and Rr emanating at pi and enclosing I constitute the
wedge Wi,j ; see Fig. 2a. Such a narrowing step is
also applied by Guibas et al. but not by Melkman and
O’Rourke. For the Hausdorff distance, it is irrelevant
in which order the intermediate points of a shortcut are
encountered by the shortcut segment.

Thereafter, we update the wavefront as Melkman and
O’Rourke do. The part of the bottom arc of the unit
circle Cj around pj that is above the current wavefront
is included into the wavefront. Pictorially, the wavefront
is moving upwards. For an example see Fig. 2b. There,
we compute the intersection point s between Cj and
the wavefront and replace the arcs a′t and a′t+1 of the
wavefront by the arcs at (which is a part of a′t) and
at+1 (which is a part of Cj). There can be up to two
intersection points between Cj and the wavefront.

If the valid region becomes empty, we abort the search
for further shortcuts from pi.

Correctness. To show that the algorithm works cor-
rectly, we prove two things: that all shortcuts the algo-
rithm finds are valid (Lemma 2) and that the algorithm
finds all valid shortcuts (Lemma 3). However, we start
with an interesting insight specified in Lemma 1.

Lemma 1 (?) Consider the wavefront of Wi,k. For ev-
ery vertex pj (i < j ≤ k) whose unit circle Cj con-
tributes an arc of the wavefront of Wi,k, pk and the
complete wavefront of Wi,k lie inside Cj.

Lemma 2 (?) Any shortcut found by the algorithm is
valid under the local Fréchet distance and any Lp norm
with p ∈ [1,∞].

Proof Sketch. Consider a shortcut 〈pi, pk〉 found by
the algorithm. We can show that there is a mapping
of the vertices 〈pi+1, . . . , pk−1〉 onto subsequent points
on the line segment pipk such that their distance is at
most δ. This implies that the Fréchet distance between
pipk and L[pi, pk] is ≤ δ. For a vertex pj∈{i+1,...,k−1},
we choose as point on pipk, the intersection point of the
wavefront of Wi,j and pipk. Due to Lemma 1, the result-
ing pairs of points have pairwise distance≤ δ and we can
show that they appear monotonously along pipk. �

Lemma 3 (?) All valid shortcuts under the local
Fréchet distance and any Lp norm with p ∈ [1,∞] are
found by the algorithm.

Proof Sketch. For a valid shortcut 〈pi, pk〉 to not be
found, pk needs to lie outside the valid region of Wi,k−1.
Then, by construction, there was a pj∈{i+1,...,k−1} that
caused us narrowing the wedge or moving the wavefront
and by which we can show that the Fréchet distance
between pipk and L[pi, pk] is > δ. �

4 The Wavefront Data Structure.

At the heart of the algorithm lies the maintenance of
the wavefront. To show that the algorithm can be im-
plemented to run in O(n2 log n) time, we next analyze
the properties of the wavefront and discuss how to store
and update it using a suitable (simple) data structure.

Wavefront Maintenance in L2. The size of the wave-
front is in O(n). This insight relies on the next property.

Lemma 4 (?) Any unit circle of radius δ intersects the
wavefront at most twice.

From Lemma 4, it follows that in each step, the size
of the wavefront increases at most by 2.

Lemma 5 (?) The wavefront consists of at most O(n)
arcs under any Lp∈(1,∞) norm.

As there might be a linear number of arcs on the wave-
front, we cannot simply iterate over all arcs in each step
of the algorithm since this would require cubic time in
total. Similar to Melkman and O’Rourke, we use a bal-
anced search tree (e.g., a red-black tree) where we store
the circular arcs of the wavefront. The keys according
to which the circular arcs are arranged in the search tree
are the angles of their starting points with respect to pi.

In Appendix B.1, we show how we can update the
wavefront in amortized logarithmic time using a simple
case distinction. We compute the intersection area I
only implicitly. The rough idea is as follows. When we
encounter a vertex pj with unit circle Cj , we keep parts
of the wavefront inside Cj and parts of the bottom arc
of Cj because, by Lemma 1, the new wavefront needs
to lie inside Cj . We conclude our main theorem.

Theorem 6 (?) An n-vertex polyline can be simplified
optimally under the local Fréchet distance in the L2 (Eu-
clidean) norm in O(n2 log n) time and O(n) space.

For general Lp norms, we obtain the same, given that
we can compute intersection points between a unit circle
and a line, and between two unit circles in constant time.

Wavefront Maintenance in L1 and L∞. As the unit
circles are square-shaped, the wavefront is initially a
subset of the boundary of a rectangle. When we con-
sider the next unit circle, we update the wavefront by in-
tersecting an axis-aligned rectangle and an axis-aligned
square, which is again an axis-aligned rectangle.

Lemma 7 (?) In the L∞ (L1) norm, the wavefront
consists of either one or two orthogonal line segments,
which are horizontal or vertical (rotated by 45 degrees).

We hence obtain the following theorem.

Theorem 8 An n-vertex polyline can be simplified op-
timally under the local Fréchet distance in the L1 and
the L∞ norm in O(n2) time and O(n) space.

229

35th Canadian Conference on Computational Geometry, 2023

5 Experimental Evaluation

We implemented our algorithm for polyline simplifica-
tion under the local Fréchet distance in the L2 norm
in C++ 3. Experiments were conducted on an AMD
Ryzen processor at 4.2 GHz without parallelized code.
We used sample trajectories gathered from the osm
planet database [26], which holds about 800,000 files
containing geographical trajectories given as location se-
quences. We took three sets of files: (i) the 500 largest
files, ranging from 190,000 to 3 million points; (ii) a set
of 300 randomly selected files with a bias towards large
files; (iii) another set of 100 randomly selected files.

Wavefront Size. For the wavefront to actually grow to
linear size, vertices need to be arranged in degenerate
patterns, which we do not expect to occur naturally. For
the first two trajectory sets, we used as threshold δ =
100 m. For the third set we used several values of δ in the
range 1 m–10 km. The average wavefront size was ca. 4,
and the maximum rarely exceeded 60 across all sizes and
thresholds. For our results, see Figs. 3a and 3b. The
wavefront does not seem to grow with the input size at
all, confirming our hypothesis that the wavefront size
behaves benign on real-world inputs empirically.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2,000 10,000 20,000 3,000,000

#
 o

f
e
le

m
e
n
ts

 in
 w

a
ve

fr
o
n
t

of vertices

(a) Avg. (blue) and max. (red)
wavefront size (y-axis) relative to
the number of vertices (x-axis).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

o
c
cu

re
n

c
e
s

avg. wavefront size

(b) Frequency (y-axis)
of the average wavefront
size (x-axis).

Figure 3: Size of the wavefront in real-world instances.

Having consistently small wavefronts implies that the
practical running times are closer to O(n2) than to
O(n2 log n). Also, it allows us to use linear search, which
becomes competitive to, and often even faster than the
binary search approach in our case distinction. We con-
ducted more detailed experiments on both search strate-
gies and appropriate data structures; see Appendix C.1.

Comparative Performance. We compare the perfor-
mance of our algorithm to the Imai–Iri algorithm [19]
and the approximation algorithm by Agarwal et al. [1].

The cubic running time of the Imai–Iri algorithm does
not only occur on certain instances but on all instances,

3Source code is available at
https://gitlab.inf.uni-konstanz.de/ag-storandt/subwaves-public

which makes it infeasible to compute simplifications for
large input polylines. Hence, we restricted the number
of vertices to 11,000; see Fig. 4. The Imai–Iri algorithm
needed about 80 ms–252 s, while our algorithm was some
orders of magnitude faster (2.5 ms–1.5 s). The results
confirm that our algorithm is vastly superior already
for small instances. On very large instances with n ≥
800, 000, our algorithm took up to 13 minutes (4.3 min
with multi-core support), while Imai–Iri is infeasible.

 0.0001

 0.001

 0.01

 0.1

 1

4,000 5,000 6,000 7,000 8,000 9,000 11,000

re
la

tiv
e
 r

u
n
n
in

g
 t
im

e
of vertices

Figure 4: Running times of our algorithm (red dots)
relative to the running times of the Imai–Iri algorithm
(blue baseline at 1). Logarithmic scale on the y-axis.

Finally, we compare with the approximation algo-
rithm of Agarwal et al. [1]. They replace the shortest-
path search of the Imai–Iri algorithm by a greedy ap-
proach: at a “greedy” step it searches for the next valid
shortcut 〈pi, pk〉 such that 〈pi, pk+1〉 is no valid short-
cut. The running time of this algorithm is in O(n log n).
The simplification is guaranteed to be not larger than
the optimal size for δ/2. As expected, based on the the-
oretical runtime bounds, the approximation algorithm
is considerably faster than our algorithm but the sim-
plifications are about 20–40 % worse in size; see Fig. 5.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3,000 10,000 15,000 20,000 100,000

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

a
p
p
ro

x.
 r

u
n
n
in

g
 t
im

e
 /
 o

u
r

ru
n
n
in

g
 t
im

e

re
su

lt
 s

iz
e
 /

 o
p
tim

a
l r

e
su

lt
 s

iz
e

of vertices

Figure 5: Running time (blue) and result size (green)
of the approximation algorithm by Agarwal et al. [1],
relative to our algorithm (red baseline at 1).

230

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and
Y. Wang. Near-linear time approximation algorithms
for curve simplification. Algorithmica, 42(3-4):203–219,
2005. doi:10.1007/s00453-005-1165-y.

[2] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk.
Fréchet distance-based map construction algorithm. In
Map Construction Algorithms, pages 33–46. Springer,
2015. doi:10.1007/978-3-319-25166-0_3.

[3] M. Ahmed and C. Wenk. Constructing street networks
from GPS trajectories. In Proc. 20th Annual Euro-
pean Symposium on Algorithms (ESA’12), pages 60–71.
Springer, 2012. doi:10.1007/978-3-642-33090-2_7.

[4] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. International Journal
of Computational Geometry and Applications, 5:75–91,
1995. doi:10.1142/S0218195995000064.

[5] G. Barequet, D. Z. Chen, O. Daescu, M. T.
Goodrich, and J. Snoeyink. Efficiently approximat-
ing polygonal paths in three and higher dimensions.
Algorithmica, 33(2):150–167, 2002. doi:10.1007/

s00453-001-0096-5.

[6] L. Barth. Ygg binary search tree library, 2020. URL:
https://github.com/tinloaf/ygg.

[7] M. Brankovic, K. Buchin, K. Klaren, A. Nusser,
A. Popov, and S. Wong. (k, l)-medians clustering of
trajectories using continuous dynamic time warping. In
Proc. 28th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems,
pages 99–110, 2020. doi:10.1145/3397536.3422245.

[8] K. Bringmann and B. R. Chaudhury. Polyline sim-
plification has cubic complexity. Journal of Compu-
tational Geometry, 11(2):94–130, 2021. doi:10.20382/
jocg.v11i2a5.

[9] K. Buchin, M. Buchin, M. Konzack, W. Mulzer,
and A. Schulz. Fine-grained analysis of problems
on curves. In Proc. 32nd European Workshop on
Computational Geometry (EuroCG’16), 2016. URL:
https://www.eurocg2016.usi.ch/sites/default/

files/paper_68.pdf.

[10] M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf,
R. I. Silveira, and F. Staals. Efficient Fréchet dis-
tance queries for segments. In Proc. 30th Annual Euro-
pean Symposium on Algorithms (ESA’22), pages 29:1–
29:14. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 2022. doi:10.4230/LIPIcs.ESA.2022.29.

[11] W. S. Chan and F. Chin. Approximation of polyg-
onal curves with minimum number of line segments
or minimum error. International Journal of Compu-
tational Geometry and Applications, 6(1):59–77, 1996.
doi:10.1142/S0218195996000058.

[12] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to repre-
sent a digitized line or its caricature. Cartographica,
10(2):112–122, 1973. doi:10.1002/9780470669488.

ch2.

[13] R. O. Duda and P. E. Hart. Pattern classification and
scene analysis. A Wiley-Interscience publication. Wiley,
1973.

[14] S. Durocher, A. Leblanc, J. Morrison, and M. Skala.
Robust nonparametric simplication of polygonal chains.
International Journal of Computational Geometry &
Applications, 23(6):427–441, 2014. doi:10.1142/

s021819591360011x.

[15] M. Godau. A natural metric for curves – computing the
distance for polygonal chains and approximation algo-
rithms. In Proc. 8th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’91), pages 127–
136, 1991. doi:10.1007/BFb0020793.

[16] M. G. Gruppi, S. V. G. Magalhães, M. V. A. An-
drade, W. R. Franklin, and W. Li. An efficient and
topologically correct map generalization heuristic. In
Proc. 17th International Conference on Enterprise In-
formation Systems (ICEIS’15), pages 516–525, 2015.
doi:10.5220/0005398105160525.

[17] L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and
J. Snoeyink. Approximating polygons and subdivisions
with minimum link paths. International Journal of
Computational Geometry and Applications, 3(4):383–
415, 1993. doi:10.1142/S0218195993000257.

[18] J. Hershberger and J. Snoeyink. Speeding up the
Douglas-Peucker line-simplification algorithm. In Proc.
5th International Symposium on Spatial Data Handling
(SDH’92), pages 134–143, 1992.

[19] H. Imai and M. Iri. Polygonal approximations of a curve
– formulations and algorithms. In G. T. Toussaint, ed-
itor, Computational Morphology, pages 71–86. North-
Holland, 1988. doi:10.1016/B978-0-444-70467-2.

50011-4.

[20] T. Isenberg. Visual abstraction and stylisation of maps.
The Cartographic Journal, 50(1):8–18, 2013. doi:10.

1179/1743277412Y.0000000007.

[21] O. Krzikalla and I. Gaztanaga. Boost.Intrusive, part of
Boost C++ Libraries. URL: http://www.boost.org.

[22] A. Melkman and J. O’Rourke. On polygonal chain
approximation. In G. T. Toussaint, editor, Computa-
tional Morphology, pages 87–95. North-Holland, 1988.
doi:10.1016/B978-0-444-70467-2.50012-6.

[23] N. Meratnia and R. A. de By. Spatiotemporal com-
pression techniques for moving point objects. In Proc.
9th International Conference on Extending Database
Technology (EDBT’04), pages 765–782. Springer, 2004.
doi:10.1007/978-3-540-24741-8_44.

[24] Y. Min, C. Chen, X. Wang, J. He, and Y. Zhang. SGM:
Seed growing map-matching with trajectory fitting. In
Proc. 5th International Conference on Big Data Com-
puting and Communications (BIGCOM’19), pages 204–
212. IEEE, 2019. doi:10.1109/bigcom.2019.00036.

[25] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, and
R. Siegwart. A comparison of line extraction algorithms
using 2d range data for indoor mobile robotics. Au-
tonomous Robots, 23(2):97–111, 2007. doi:10.1007/

s10514-007-9034-y.

231

35th Canadian Conference on Computational Geometry, 2023

[26] OpenStreetMap contributors. Planet dump re-
trieved from https://planet.osm.org . https://www.

openstreetmap.org, 2017.

[27] U. Ramer. An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics and
Image Processing, 1(3):244–256, 1972. doi:10.1016/

S0146-664X(72)80017-0.

[28] M. van de Kerkhof, I. Kostitsyna, M. Löffler,
M. Mirzanezhad, and C. Wenk. Global curve simplifica-
tion. In Proc. 27th Annual European Symposium on Al-
gorithms (ESA’19), pages 67:1–67:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.ESA.2019.67.

[29] M. J. van Kreveld, M. Löffler, and L. Wiratma. On
optimal polyline simplification using the Hausdorff and
Fréchet distance. Journal of Computational Geometry,
11(1):1–25, 2020. doi:10.20382/jocg.v11i1a1.

[30] M. Visvalingam and J. D. Whyatt. The Douglas-
Peucker algorithm for line simplification: Re-evaluation
through visualization. Computer Graphics Forum,
9(3):213–228, 1990. doi:10.1111/j.1467-8659.1990.

tb00398.x.

[31] M. Visvalingam and J. D. Whyatt. Line generali-
sation by repeated elimination of points. The Car-
tographic Journal, 30(1):46–51, 1993. doi:10.1179/

000870493786962263.

[32] S. Wu and M. R. G. Márquez. A non-self-intersection
Douglas-Peucker algorithm. In Proc. 16th Brazilian
Symposium on Computer Graphics and Image Process-
ing (SIBGRAPI’03), pages 60–66. IEEE Computer So-
ciety, 2003. doi:10.1109/sibgra.2003.1240992.

232

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Appendix

For completeness, we provide proofs and additional but less
central content in this appendix.

A Omitted Content from Section 3

We start the appendix with a structural lemma, which we
employ for the proofs of Lemmas 1, 4, 10 and 14. It does
not yet use the wavefront.

p

s

lC′

rC

s′

C

C ′

Figure 6: Illustration of the situation described in the
proof of Lemma 9.

Lemma 9 Given two unit circles and a point p outside of
the unit circles. If the two bottom arcs (with respect to p)
intersect, then the second intersection point is between their
top arcs.

Proof. For an illustration of this proof see Fig. 6. Let C
and C′ be the two unit circles with the center of C being left
of the center of C′ w.r.t. p. Now the cone between the right
tangential from p on C and the left tangential from p on C′

contains all of the intersection area of C and C′, and hence
also both intersection points. We call the tangetial points
rC and lC′ , respectively. Note that rC = lC′ is excluded as
then C and C′ would only have a single intersection point.
For the intersection point s between the bottom arcs of C
and C′, we know that the line segment ps does not inter-
sect the inner part of any of the two circles by definition
of the bottom arc. Hence the ray elongating this line seg-
ment has to go through the intersection area of C and C′

above s. Therefore, the partial bottom arc of C from s to
rC and the partial bottom arc of C′ from s to lC′ are both
on the boundary of the intersection area. As the intersec-
tion area is convex, it means that the line segment lC′rC is
fully contained in the intersection area, and the intersection
points have to be on opposite sites of the line through lC′

and rC . Accordingly, the second intersection point s′ of C
and C′ then has to lie above lC′rC and is therefore on the
respective top arcs of C and C′. �

We continue with another structural lemma, which seems
rather special at first glance, but we employ it several times,

C

s2s1

(a) Intersection pattern of a unit circle C with the wavefront
(blue wavy line) that cannot occur.

C

s2s1

aj ak

Cj

s3

(b) The unit circle C in-
tersects the wavefront (blue
wavy line) twice with its
bottom arc.

ak

aj C

Cj

s2
s3

s1

Di,j

(c) The unit circle C in-
tersects the wavefront (blue
wavy line) with its top and
bottom arc.

Figure 7: Sketch for Lemma 10.

e.g., in Appendix B.1, where we analyze the cases for the
wavefront maintenance.

Lemma 10 If a unit circle C intersects the wavefront more
than once, then on the left side of the leftmost intersection
point s1 (relative to rays originating in pi) and on the right
side of the rightmost intersection point s2, C is below the
wavefront. In other words, the intersection pattern depicted
in Fig. 7a cannot occur.

Proof. Clearly, if at s1 the top arc of C intersects the wave-
front, then on the left side of s1, C is below the wavefront.
Symmetrically, the same holds for s2.

Now assume that at s1 and at s2, the bottom arc of C
intersects the arcs aj and ak of the wavefront, respectively.
We denote their unit circles by Cj and Ck. W.l.o.g. let C
on the left side of s1 be above the wavefront. By Lemma 1,
Cj contains the rest of the wavefront including all of ak.
This means, that C intersects Cj at s3 in between s1 and
s2 (potentially s2 = s3 if Cj = Ck); see Fig. 7b. Because
the intersection of C at s2 is with the bottom arc of C, the
intersection of C and Cj at s3 is also with the bottom arc of
C. This contradicts Lemma 9.

Finally, assume w.l.o.g. that at s1 the top arc of C inter-
sects the arc aj of the wavefront and at s2 the bottom arc
of C intersects the arc ak of the wavefront; see Fig. 7c. Again
by Lemma 1, the unit circle Cj of aj contains the wavefront
including the whole arc ak. Hence, there is an intersection
point s3 of C and Cj in between s1 and s2 (where s2 6= s3
and Cj 6= Ck as otherwise C and Cj would have an inter-
section between their bottom arcs and between a bottom

233

35th Canadian Conference on Computational Geometry, 2023

aj

Cj

Ck′

ak′

R

s1

s′2

s2

Di,j

Di,k′

Figure 8: Configuration used to prove Lemma 1. The
blue part is the wavefront including the arcs ak′ and aj .
The circles Cj and Ck′ are unit circles and the gray rays
indicate the local wedges.

and a top arc). At s3 there is the bottom arc of C (since
later at s2, there is also the bottom arc of C involved). If
Cj also would have its bottom arc at s3, it would contradict
Lemma 9. Therefore, at s3, there is the top arc of Cj . This
however means that s3 is outside Di,j – a contradiction. �

Lemma 1 (?) Consider the wavefront of Wi,k. For every
vertex pj (i < j ≤ k) whose unit circle Cj contributes an
arc of the wavefront of Wi,k, pk and the complete wavefront
of Wi,k lie inside Cj.

Proof. By construction, Ck contains the complete wave-
front of Wi,k and, hence, pk lies also within Cj . It remains
to prove that also the wavefront of Wi,k lies inside Cj .

We argue that, for all j ∈ {i+ 1, . . . , k}, the claim is true
by considering first all arcs that had been added before and
then all arcs that had been added after the arc of Cj had
been added to the wavefront.

All arcs aj′ on the wavefront belonging to a vertex pj′ with
j′ < j are inside Cj because when the wavefront of Wi,j has
been constructed, the wavefront of Wi,j consisted of arcs of
the wave of Di,j , i.e., arcs of Cj , and it consisted of arcs of
the wavefront of Wi,j−1 lying inside I, i.e., the intersection
between Cj and the valid region of Wi,j−1

4.
All arcs ak′ on the wavefront belonging to a vertex pk′

with j < k′ ≤ k are completely inside Cj because if they
were not, there would be an ak′ (which is part of the bottom
arc of the unit circle Ck′) that intersects Cj at s1; see Fig. 8.
The intersection at s1 is with the top arc of Cj as otherwise
ak′ would be (partially) outside the local valid region of Di,j .
Still for aj to be in the local valid region of Di,k′ , Cj and Ck′

4We remark that even without the extra narrowing step us-
ing I, if Cj contributed an arc of the wavefront of Wi,j , Cj con-
tained the whole wavefront of Wi,j .

intersect a second time. We consider two possible cases for
a second intersection and denote them by s2 and s′2. First,
assume that the intersection s2 is between the bottom arc
of Ck′ and the bottom arc of Cj . This however contradicts
Lemma 9 because in s1, there was already the bottom arc
of Ck′ involved. Hence, the second intersection point is s′2
which is an intersection between the bottom arc of Ck′ and
the top arc of Cj . Then, however, there is a ray R originating
in pi that lies in between s1 and s′2 and intersects the bottom
arc of Ck′ at least twice – a contradiction. �

Lemma 1 directly implies the following lemma.

Lemma 11 Let q be a point lying on the wavefront of the
wedge Wi,j. Then, d(pj , q) ≤ δ.

We show one more property before we prove that exactly
the valid shortcuts are found by our algorithm.

Lemma 12 Let R be a ray emanating at pi and lying inside
the wedges Wi,j and Wi,k for some i < j < k. Moreover,
let qj and qk be the intersection points between R and the
wavefronts of Wi,j and Wi,k, respectively. Then, d(pi, qj) ≤
d(pi, qk).

Proof. Assume for a contradiction that d(pi, qj) > d(pi, qk).
Then, qk is below the wavefront of Wi,j and, hence, qk does
not lie in the valid region of Wi,j but in the valid region
of Wi,k. However, the valid region of Wi,k is the intersection
of the local valid region of Di,k and all previous valid regions
including Wi,j and, thus, the valid region of Wi,k is a subset
of Wi,j . �

Putting Lemma 12 in other words, the wavefront may only
move away but never towards pi.

We are now ready to prove the correctness of our algo-
rithm by the following two lemmas.

Lemma 2 (?) Any shortcut found by the algorithm is valid
under the local Fréchet distance and any Lp norm with p ∈
[1,∞].

Proof. Let 〈pi, pk〉 be a shortcut found by the algo-
rithm. We show that there is a mapping of the vertices
〈pi+1, pi+2, . . . , pk−1〉 onto points 〈mi+1,mi+2, . . . ,mk−1〉,
such that mj ∈ pipk and d(pj ,mj) ≤ δ for every j ∈
{i + 1, . . . , k − 1}, and mj precedes or equals mj+1 for ev-
ery j ∈ {i + 1, . . . , k − 2} when traversing pipk from pi
to pk. Clearly, this implies that also the Fréchet distance
between each pair of line segments pjpj+1 and mjmj+1

is at most δ and, hence, 〈pi, pk〉 is a valid shortcut. In
the remainder of this proof, we describe how to obtain
mi+1,mi+2, . . . ,mk−1 ∈ pipk. To this end, we consider
the wedge Wi,j and the corresponding wavefront for each
j ∈ {i + 1, . . . , k − 1}, i.e., for each intermediate step when
executing the algorithm. By construction of the algorithm,
pipk lies inside the wedge Wi,j and pk lies above its wavefront
(since pk lies in the valid region of Wi,k−1 and, by Lemma 12,
the wavefront has never moved towards pi). Let mj be the
intersection point of pipk and the wavefront of Wi,j . By
Lemma 11, d(pj ,mj) ≤ δ. Moreover, by Lemma 12, mj pre-
cedes or equals mj+1 for any j ∈ {i + 1, . . . , k − 2} when
traversing pipk from pi to pk. �

234

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Lemma 3 (?) All valid shortcuts under the local Fréchet
distance and any Lp norm with p ∈ [1,∞] are found by the
algorithm.

Proof. Suppose for the sake of a contradiction that there is
a valid shortcut 〈pi, pk〉 that was not found by the algorithm.

If pk lay outside of
⋂

j∈{i+1,i+2,...,k−1}Di,j , then there

would be some pj′ with i < j′ < k such that d(pj′ , pipk) > δ.
So, as in the algorithm by Chan and Chin [11], already
the Hausdorff distance requirement would be violated and
〈pi, pk〉 would be no valid shortcut for the local Fréchet dis-
tance as well. Hence, pk lies inside

⋂
j∈{i+1,i+2,...,k−1}Di,j .

Suppose now that pk lies inside
⋂

j∈{i+1,i+2,...,k−1}Di,j

but outside Wi,k−1. W.l.o.g. pk lies to the left of the wedge
Wi,k−1. We know that there is some pj with i < j < k
for which the extra narrowing step from Sec. 3 has been
applied such that pk lies to the left of Wi,j . For constructing
Wi,j , we have considered the intersection area I between Cj

and the wavefront of Wi,j−1. The left endpoint of I lies on
the boundary of Wi,j and is the intersection point between
Cj and an arc of the wavefront of Wi,j−1 belonging to a
vertex pj′ with i < j′ < j. Now consider the ray R that
we obtain by extending pipk at pk. When traversing R, we
first enter and leave the interior of Cj before we enter the
interior of Cj′ . Hence, the Fréchet distance between pipk
and L[pi, pk] is greater than δ due to the order of pj′ and pj
within L[pi, pk]. Therefore, pk lies inside Wi,k−1.

Finally, suppose that pk lies inside Wi,k−1 but not in
the valid region, i.e., pk lies below the wavefront of Wi,k−1.
Since pk is below the wavefront, the line segment pipk does
not intersect the wavefront (otherwise, we would violate
Lemma 13; see below). Again, consider the ray R that we
obtain by extending pipk at pk. Let the intersection point of
R and the wavefront of Wi,k−1 be w. The point w lies on an
arc of the wavefront. This arc is part of the bottom arc of a
unit circle Cj belonging to some pj with i < j < k. Since it
is the bottom arc, pk lies outside Cj and d(pk, pj) > δ.

Therefore, pk lies in the valid region of Wi,k−1. However,
these are precisely the vertices for which the algorithm adds
a shortcut. �

B Omitted Content from Section 4

In this section, we investigate the geometric properties of
the wavefront.

Lemma 13 Any ray emanating at pi intersects the wave-
front at most once.

Proof. We prove this statement inductively. As Wi,i+1 =
Di,i+1, consider the wave of Di,i+1. Since the unit circle in
any Lp norm for p ∈ [1,∞] is convex, any ray emanating at
pi intersects a unit circle at most twice. The first intersection
is with the bottom arc of the unit circle Ci+1 and the second
intersection is with the top arc of Ci+1. As the wave ofDi,i+1

is defined as the bottom arc of Ci+1, any ray emanating at pi
intersects the wave of Di,i+1 at most once.

It remains to show the induction step for all j > i+1. By
the induction hypothesis, we know that any ray emanating
at pi intersects the wavefront of Wi,j−1 at most once. The

A2

a2q3 q4

q1 q2

C
s1 s2

A1

a1

A3

a3

(a) Case A.

A2

a2

q3

C

q1

s1 s2

A1

a1

A3

a3

(b) Case B.

Figure 9: Cases in the proof of Lemma 4.

wavefront of Wi,j is the boundary of the intersection of the
valid region of Wi,j−1 and the local valid region of Di,j .
Consider a ray R originating at pi. The ray R enters the
valid region of Wi,j−1 at most at one point q where it also
intersects the wavefront of Wi,j−1, and it enters the local
valid region of Di,j at most at one point q′ where it also
intersects the wave of Di,j . Hence, R enters the intersection
of the valid region of Wi,j−1 and the local valid region of Di,j

at most at one point – namely either at q or at q′ (or q = q′).
This is the only point of the wavefront of Wi,j that is shared
with R. �

We can make a similar statement for unit circles. The
number of intersections between a unit circle and the wave-
front is relevant for updating the wavefront.

Lemma 4 (?) Any unit circle of radius δ intersects the
wavefront at most twice.

Proof. We prove this statement inductively. Say pi is our
start vertex and we consider the wavefront ofWi,i+1, which is
the same as the wave of Di,i+1, which is part of the boundary
of a unit circle. Since each pair of unit circles in the Lp norm
for p ∈ [1,∞] intersects at most twice, we know that any unit
circle intersects the wavefront of Wi,i+1 at most twice.

It remains to show the induction step for all j > i + 1.
Assume for a contradiction that a unit circle C intersects
the wavefront of Wi,j more than twice. Observe that the
wavefront of Wi,j is a subset of the wavefront of Wi,j−1 and
the wave of Di,j . Say C intersects the wavefront of Wi,j−1

at q1 and q2 and C intersects the wave of Di,j at q3 and q4
(maybe one of these points does not exist.) Next, we argue
topologically that at most two points of {q1, q2, q3, q4} lie on
the wavefront of Wi,j , which is a contradiction.

By the induction hypothesis, the wavefront of Wi,j−1 and
the wave of Di,j intersect at most twice. Let these intersec-
tion points from left to right be s1 and s2; see Fig. 9. Let the
subdivisions of the wavefront of Wi,j−1 and the wave of Di,j

induced by s1 and s2 be A1, A2, A3 and a1, a2, a3, respec-
tively. Some of them may be empty. Clearly, the wavefront
of Wi,j is either A1–a2–A3 or a1–A2–a3. By Lemma 10, we
know that it cannot be a1–A2–a3, therefore, it is A1–a2–A3.

Next, we analyze the intersection points q3 and q4 (maybe
q4 does not exist). Either one or two of them lies on a2 as
otherwise there are no more than two intersection points of
C with the new wavefront.

Case A: The intersection points q3 and q4 lie on a2; see
Fig. 9a. As both intersection points are between the unit

235

35th Canadian Conference on Computational Geometry, 2023

circle C and the wave of Di,j , i.e., a bottom arc of another
unit circle, we know by Lemma 9 that q3 and q4 are contained
in the top arc of C. Thus, there is no ray R to the left of
q3 or to the right of q4 originating at pi and intersecting the
arc of C between q3 and q4 as otherwise R would intersect
the top arc of C twice. Therefore, the arc of C between q3
and q4 lies in the valid region (hatched orange in Fig. 9a)
without reaching A1 or A3. When C passes through q3 and
q4, it reaches the region between a2 and A2. If there are
intersections between Wi,j−1 and C, they both lie on A2.

Case B: Only one intersection point, let it be q3, lies on a2;
see Fig. 9b. If it is a touching point, then C lies in the region
between a2 and A2 before and after reaching q3 (because we
can assume that both unit circles are non-identical). If it
is an intersection point, then C passes through q3 into the
region between a2 and A2 (hatched orange in Fig. 9b). To
leave this region, q1 (or q2) lies on A2. Hence, there are at
most two points of {q1, q2, q3, q4} on the new wavefront. �

Lemma 5 (?) The wavefront consists of at most O(n) arcs
under any Lp∈(1,∞) norm.

Proof. According to the inductive definition, we start with
a wavefront consisting of one arc. Now in each step where we
extend the wavefront, we consider the intersection between
the current valid region and a local valid region – one is
defined by the current wavefront, the other is defined by a
single arc a. This is the intersection between the current
wavefront and the unit circle on which a lies. By Lemma 4,
we know that there are at most two intersection points. This
means, the number of arcs on the wavefront increases by
at most two. In the worst case, we start at vertex p1 and
adjust the wavefront n − 1 times until we have created the
wavefront of W1,n. Therefore, any wavefront consists of at
most 2n− 3 ∈ O(n) arcs5. �

Theorem 6 (?) An n-vertex polyline can be simplified opti-
mally under the local Fréchet distance in the L2 (Euclidean)
norm in O(n2 logn) time and O(n) space.

Proof. According to Lemmas 2 and 3, the algorithm we
describe in Sec. 3 finds all valid shortcuts. It remains to
analyze the runtime. We consider each of the n vertices as
potential shortcut starting point pi. When we encounter
a vertex pj with j > i, we determine in logarithmic time
whether it is in the valid region. We do this by computing
the ray emanating at pi and going through pj , and querying
the arc it intersects in the wavefront. Then, using the case
distinction of Lemma 14, we update the wavefront and the
wedge. This needs amortized logarithmic time and over all
steps O(n logn) time.

Consequently, we construct the shortcut graph in
O(n2 logn) time. In the resulting shortcut graph, we can

5One can further observe that, by Lemma 10, the number of
arcs on the wavefront increases actually by at most one per ver-
tex pj (j ∈ {2, . . . , n}). This means any wavefront consists of at
most n− 1 arcs.

find an optimal polyline simplification by finding a shortest
path in O(n2) time.

Regarding space consumption, we observe that the wave-
front maintenance only requires linear space at any time. As
we can compute the set of outgoing shortcuts of each vertex
pi individually, we can also easily apply the space reduction
approach described for the Imai–Iri algorithm in Sec. 2 to
get an overall space consumption in O(n). �

Lemma 7 (?) In the L∞ (L1) norm, the wavefront consists
of either one or two orthogonal line segments, which are hor-
izontal or vertical (rotated by 45 degrees).

Proof. We show this claim inductively. For Wi,i+1 = Di,i+1

it is just the bottom arc of a square (the unit circle in L1

or L∞). Clearly, this is either one or two orthogonal line
segments – horizontal or vertical line segments in the L∞
norm and line segments rotated by 45 degrees in the L1

norm.
When we compute the wavefront of Wi,j , we compute the

intersection of the valid region of Wi,j−1 (which is bounded
by one or two orthogonal line segments by the induction
hypothesis) and the local valid region of Di,j (which is
bounded by one or two line segments parallel to the ones
of Wi,j−1). Computing the boundary of this intersection in
the L∞ norm can be done by computing the intersection of
two axis-parallel rectangles. The intersection of two axis-
parallel rectangles is again an axis-parallel rectangle. In the
L1 norm, the situation is the same but rotated by 45 de-
grees. �

B.1 Procedure for Wavefront Maintenance in L2

Now consider our algorithm under the L2 norm, i.e., the Eu-
clidean norm. In this section, we describe a procedure based
on a case distinction to update the wavefront in amortized
logarithmic time. For an overview, see Fig. 10.

Lemma 14 Given a two-dimensional n-vertex polyline L
and a vertex p ∈ L, we can find all valid shortcuts under
the local Fréchet distance starting at p in O(n logn) time.

Proof. Say we are computing all valid shortcuts starting at
pi and we are currently processing a vertex pj , which is the
center of the unit circle Cj . We have already constructed the
intermediate wedge W ′i,j and clipped the wavefront of Wi,j−1

along the left and the right bounding rays Rl and Rr of W ′i,j .
For this clipping, we may have removed a linear number of
arcs, however, over all iterations we remove every arc at most
once. Now, both Rl and Rr intersect Cj twice or touch Cj .
Let q1 and q2 denote the intersection points between Rl and
Cj (where q1 is on the bottom arc of Cj). Similarly, let q3
and q4 denote the intersection points between Rr and Cj

(where q3 is on the bottom arc of Cj). Moreover, let l and r
denote the intersection point between the wavefront and Rl

and between the wavefront and Rr, respectively.
The relative positions of l, q1, and q2 on Rl and the rel-

ative positions of r, q3, and q4 on Rr determine where the
intersection points s1 and s2 (if they exist) between Cj and
the wavefront of Wi,j−1 can lie. (Recall that there are at

236

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Cj

r

l

s2

s1

RrRl

q1

q2

q3

q4

W ′
i,j

(a) (Case TB.)

Cj

l

r

s1

RrRl

q1

q2

q3

q4

W ′
i,j

(b) Case TM.

s2

Cj

rl s1

RrRl

q1

q2

q3

q4

W ′
i,j

(c) Case TT.

Cj

l

r

s1

RrRl

q1

q2

q3

q4

W ′
i,j

(d) Case MB.

Cj

l r

s1 s2

RrRl

q1

q2

q3

q4

W ′
i,j

(e) Case MM.

Cj

r

l

s1

RrRl

q1

q2

q3

q4

W ′
i,j

(f) Case MT.

Cj

rl
RrRl

q1

q2

q3

q4

W ′
i,j

(g) Case BB.

Cj

r

l

s1

RrRl

q1

q2

q3

q4

W ′
i,j

(h) Case BM.

Cj

l

s1

s2
r

RrRl

q1

q2

q3

q4

W ′
i,j

(i) (Case BT.)

Figure 10: Updating the wavefront (blue curve) when pj
is added. The red and orange parts are removed, while
the green and light blue parts are the new wavefront.

most two intersection points by Lemma 4.) In the following,
we write a ≺ b if a is below b along the ray Rl or Rr. If
q1 = l or q2 = l, then we proceed as if Rl was moved to
the right by a tiny bit (symmetrically as if Rr was moved
to the left). Thus, at such a point, the angle of the incident
arc of the wavefront and Cj matters for the order. For the
degenerate case q1 = l = q2, which includes a touching point
between Rl and Cj , we hence assume q1 ≺ l ≺ q2.

Next, we consider all orderings of l, r, q1, q2, q3, and
q4. This gives rise to the following nine cases. We remark
that two of them (Case TB and Case BT) cannot occur and
two pairs of the remaining cases are symmetric, which leaves
essentially five different cases.

(Case TB:) q1 ≺ q2 ≺ l and r ≺ q3 ≺ q4; see Fig. 10a.
This case cannot occur. Suppose for a contradiction that
we have this configuration. Then, there are precisely two
intersection points s1 and s2 between the wavefront and Cj .
The left intersection point s1 is between the top arc of Cj

and an arc ak of the wavefront, which is part of the bottom
arc of a unit circle Ck belonging to a vertex pk with i <
k < j. By Lemma 1, Ck contains the whole wavefront, thus
including s2, which means Ck and Cj intersect a second time
such that this intersection point is to the left of s2. Then,
however, Ck and Cj intersect once with both bottom arcs
and once with a bottom and a top arc – a contradiction
to Lemma 9. For more details on this argument, see in
Appendix A the proof of Lemma 1 and Fig. 8.

Case TM: q1 ≺ q2 ≺ l and q3 ≺ r ≺ q4; see Fig. 10b. There
is an intersection point s1 between Cj and the wavefront. We
traverse6 the arcs in the balanced search tree representing
the wavefront starting at the leftmost arc, which in turn
starts at point l, and remove all arcs that we encounter until
we find the intersection point s1 between Cj and an arc a
of the wavefront. We update a to start at s1 and the left
bounding ray of Wi,j to go through s1. There cannot be a
second intersection point because otherwise there would also
be a third intersection point between a unit circle and the
wavefront.

Case TT: q1 ≺ q2 ≺ l and q3 ≺ q4 ≺ r; see Fig. 10c.
In this case, we either have two or no intersection points
between the wavefront and Cj . We traverse the wavefront
starting at l and remove all arcs that we encounter and that
do not intersect Cj . If we do not find any intersection point
but reach r, then there cannot be any further valid shortcut
starting at vi and we abort. Otherwise, we have found s1
and proceed symmetrically at r to find s2.

Case MB: q1 ≺ l ≺ q2 and r ≺ q3 ≺ q4; see Fig. 10d. There
is precisely one intersection point s1 between the wavefront
and the bottom arc of Cj . We traverse the wavefront starting
at r and remove all arcs that we encounter and that do not
intersect Cj until we have found s1. We clip the arc of the
wavefront at s1 and append the bottom arc of Cj between
s1 and r to the wavefront.

Case MM: q1 ≺ l ≺ q2 and q3 ≺ r ≺ q4; see Fig. 10e. There
are either two or no intersection points between the wave-
front and Cj . If there are two intersection points, then they
are on the bottom arc of Cj as otherwise, it would contradict
Lemma 10. The order of the arcs on the wavefront around pi
is reverse to the order of the corresponding unit circle cen-
ters around pi [22]. By binary search, we determine the arcs
ak and ak+1 such that pj lies in between the corresponding
unit circle centers of ak and ak+1 with respect to the angle
around pi. If ak and ak+1 are completely contained inside
Cj , then there is no intersection point and the wavefront
remains unchanged.

Otherwise, we traverse the wavefront starting at ak to
the left until we have found an arc intersecting Cj , which
gives us s1. We remove all arcs along the way and split
the arc containing s1 at s1. Symmetrically, we traverse the
wavefront starting at ak+1 to the right to find s2. Finally,
at the resulting gap, we insert the arc of Cj between s1 and
s2 into the wavefront.

Case MT: q1 ≺ l ≺ q2 and q3 ≺ q4 ≺ r; see Fig. 10f. This
case is symmetric to Case TM.

6In the following we just say for short, “we traverse the wave-
front starting at l”.

237

35th Canadian Conference on Computational Geometry, 2023

Case BB: l ≺ q1 ≺ q2 and r ≺ q3 ≺ q4; see Fig. 10g.
There is no intersection point between the wavefront and
Cj . There cannot be a single intersection point and if there
were two intersection points, it would contradict Lemma 10.
We replace the whole wavefront by the arc of Cj from q1 to
q3.

Case BM: l ≺ q1 ≺ q2 and q3 ≺ r ≺ q4; see Fig. 10h. This
case is symmetric to Case MB.

(Case BT:) l ≺ q1 ≺ q2 and q3 ≺ q4 ≺ r; see Fig. 10i. Since
this configuration is symmetric to Case TB, this case also
cannot occur.

Note that we only do binary search in logarithmic time
or if we traverse multiple arcs, we remove them from the
wavefront. During the whole process, we add, for any vertex
pj with j > i, at most one arc to the wavefront. Therefore,
we conclude the correctness of the lemma. �

C Omitted Content from Section 5

C.1 Implementing the Wavefront Data Structure

In Section 4 we based our asymptotic running time analysis
on the assumption that the wavefront data structure is most
efficiently implemented by a balanced search tree (e. g., a
red-black tree). While this is reasonable for wavefronts in
the size of O(n), we learned in Section 5 that wavefronts are
consistently small on real-world input data (see also Fig. 3b).

This raises questions about the appropriate data struc-
tures, and the best search strategy (binary, linear), for small
wavefronts. We conducted experiments on several imple-
mentation variants, using the input data set from Section 5.
The red-black tree implementation is based on a library by
Lukas Barth [6]. Linked lists use a Boost library by Krzikalla
and Gaztanaga [21]. All other variants are made by our-
selves. Results are shown in Fig. 11.

We draw the following conclusions:

(1) Most notably, linear search (blue, pink) is superior to
binary search (red, green, purple) on small wavefronts. The
left-right decisions inherent to binary search do not come for
free. Linear search does not need these decisions, turning its
(asymptotic) disadvantage into an advantage.

(2) Arrays (red) are superior to trees (green). This may
come as a surprise, since the update costs of arrays are in
O(n). We note, however, that updates at the beginning and
end of the array can be done in O(1), using a double-ended
array structure. Updates to the center of the array still in-
volve moving O(n) elements (a contiguous block of pointers,
actually). Such copy operations are, fortunately, performed
in a tight loop that can be optimized very well on modern
hardware (e. g, using vectorized instructions). In contrast,
updates to a balanced tree, despite being in O(logn), require
branching conditions that are less well-suited for optimiza-
tion.

(3) For similar reasons, arrays (blue) are competitive to
linked lists (pink). Incidentally, there is very little difference
in performance between a singly-linked list and a doubly-
linked lists. This may be explained by the fact that a singly-
linked list needs to maintain an additional pointer to the

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.5 1 1.5 2 2.5 3 3.5

ru
n
n
in

g
 t
im

e
 r

e
la

tiv
e
 t
o
 a

rr
a
y

im
p
le

m
e
n
ta

tio
n

avg. size of wavefront

data structure search plot series
skip list binary purple
red-black tree binary green
array binary red baseline = 1
array linear blue
linked list linear pink

Figure 11: Comparison of running times between differ-
ent implementation variants.

end of the list (while the doubly-linked list uses a circular
structure).

(4) Skip lists (purple) lose to red-black trees (green), de-
spite having very similar asymptotic characteristics. We at-
tribute this to larger constant factors in the implementation.
Skip list maintenance is, we assume, more expensive and/or
less cache-friendly than balancing a tree.

238

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Partition, Reduction, and Conquer:
A Geometric Feature-Based Approach to Convex Hull Computation

Kyuseo Park ∗ Markus Schneider†

Abstract

This paper introduces the Partition, Reduction, and
Conquer Convex Hull (PRC-CH) algorithm, a novel ge-
ometric feature-based approach for computing planar
point set convex hulls. Inspired by the Akl-Toussaint
heuristic, the PRC-CH algorithm iteratively identifies
candidate points by leveraging their geometric prop-
erties and discarding non-convex hull points. With a
worst-case time complexity of O(n2), the PRC-CH al-
gorithm’s efficiency is assessed through comparison with
well-known convex hull algorithms in square-boundary,
disk-boundary, and circular boundary scenarios. The
PRC-CH algorithm proves competitive, outperforming
others in most cases except for extreme point distribu-
tions. It offers a fresh perspective on the convex hull
problem and holds potential for further improvement
by refining elimination strategies and addressing limita-
tions in handling extreme point distributions.

1 Introduction

The convex hull of a set of points is the smallest con-
vex set that encompasses the entire point set. Com-
puting the convex hull of a finite set of points in a
plane is considered one of the fundamental problems in
computational geometry. Convex hull algorithms find
applications in a wide array of fields, including Geo-
graphic Information Systems (GIS), computer graphics,
and robotics. For example, in the context of a conta-
gious disease outbreak like the recent COVID-19 pan-
demic, estimating the spatial extent of an epidemic can
be achieved by computing the convex hull. Further-
more, computing the convex hull is an essential pre-
liminary step in determining the diameter of a point
set. Consequently, numerous techniques have been de-
veloped to expedite computational results and enhance
the efficiency of the convex hull computation process.

The Akl-Toussaint heuristic is a technique that im-
proves the efficiency of convex hull algorithms by iden-
tifying the four extremal points that form the leftmost,
bottommost, rightmost, and topmost points of a point

∗Computer & Information Science & Engineering, University
of Florida, kyuseopark@ufl.edu
†Computer & Information Science & Engineering, University

of Florida, mschneid@cise.ufl.edu

set. This heuristic constructs a polygon using these four
points and eliminates all points inside the polygon, as
they are not part of the final convex hull. This approach
substantially reduces the number of points requiring
processing in subsequent computation steps. By elimi-
nating interior points using the four extremal points, the
Akl-Toussaint heuristic optimizes the convex hull algo-
rithm’s computation process, leading to more efficient
performance.

Moreover, the heuristic offers the advantage of iden-
tifying the four extremal points that belong to the final
convex hull in advance. These points can be leveraged
in later steps to help identify potential final convex hull
vertices. As a result, researchers [1, 3, 5, 8] have ex-
plored convex hull algorithms that incorporate the Akl-
Toussaint heuristic as a preprocessing step to take ad-
vantage of its benefits.

Although the Akl-Toussaint heuristic can provide ad-
ditional benefits, particularly in offering geometric fea-
tures and locality principles for points outside the poly-
gon, previous research has only superficially utilized
these advantages. The key distinction between the
PRC-CH algorithm and existing algorithms that em-
ploy the Akl-Toussaint heuristic lies in the way it iden-
tifies and processes candidate points for the convex hull.
By systematically evaluating the geometric properties
of points, the algorithm can eliminate non-candidate
points and subsequently compute the final convex hull
using the remaining candidate points. This approach
enhances the algorithm’s efficiency, making it competi-
tive with other well-established algorithms.

This paper is organized as follows. In Section 2, we
provide an overview of related work, focusing on con-
vex hull algorithms that incorporate the Akl-Toussaint
heuristic. Our novel convex hull algorithm, which
leverages geometric properties and locality principles of
points to compute the final convex hull, is described
in detail in Section 3. Section 4 offers an analysis of
our algorithm’s complexity. Experimental results and
comparisons with other algorithms are presented in Sec-
tion 5. Finally, we outline our conclusions and directions
for future research in Section 6.

239

35th Canadian Conference on Computational Geometry, 2023

2 Akl-Toussaint Heuristic and Its Application in
Convex Hull Algorithms

Akl and Toussaint introduced a convex hull algorithm
and proposed a new method as part of their research [1],
known as the Akl–Toussaint heuristic. This method
comprises two stages. The first stage involves identi-
fying the four extremal points among the initial point
set, which are identified by their minimum and max-
imum x- and y-coordinates, respectively, as shown in
Figure 1. These four points must belong to the final
convex hull. In the second stage, points that are inside
the polygon built by the four extremal points are dis-
carded, ensuring that none of the points belongs to the
convex hull. Although the Akl–Toussaint heuristic con-
sists of only two simple steps, it offers crucial benefits.
Firstly, by discarding a certain number of points, algo-
rithms that use this heuristic as a preprocessing step
can achieve performance improvements. Secondly, the
four extremal points, which are used to form the initial
polygon, serve as the foundation for convex hull algo-
rithms. As a result of its benefits, the Akl-Toussaint
heuristic has been widely adopted as a preprocessing
step in many convex hull algorithms.

Akl and Toussaint’s convex hull algorithm [1] The
algorithm initially identifies four extremal points and
subsequently eliminates all the points falling inside the
polygon, which is constructed by connecting these ex-
tremal points. Subsequently, the algorithm partitions
the remaining point set into four distinct regions, which
are created by the sides of the polygon and the corner of
the bounding box of the polygon. For each region, the
algorithm sorts the points based on their x-coordinates
and proceeds to determine the vertices of the convex
hull for that particular region. This is achieved by ex-
amining every three consecutive points, and identifying
whether they form a counterclockwise turn or not. In
case they form a counterclockwise turn, the algorithm
continues to analyze the next three consecutive points.
However, if they do not form a counterclockwise turn,
the algorithm skips the middle point and includes the
point that succeeds the last point of the three.

Several convex hull algorithms have utilized the Akl-
Toussaint heuristic, but they do not fully exploit its
potential.

Bhattacharya and Toussaint’s algorithm [3] is similar
to Akl and Toussaint’s method. It identifies four ex-
tremal points, eliminates points within the formed poly-
gon, sorts the remaining points, and then constructs a
monotone polygon to compute the convex hull.

Mei, Tripper, and Xu’s algorithm [8] involves identify-
ing extreme points, sorting the remaining points, recur-
sively creating e-Quads, assembling a simple polygon,
and computing the convex hull.

•

•

•

•

•

••

••

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•
••

•

•

•

pl

pr

pt

pb

SW SE

NENW

Figure 1: Illustration of the Akl-Toussaint heuristic.
The four extremal points pl, pr, pt, and pb are iden-
tified based on their minimum and maximum x- and
y-coordinates. The initial polygon built by these ex-
tremal points divides the plane into four zones: SW
(South West), SE (South East), NE (North East), and
NW (North West).

Fu and Lu’s algorithm [5] sorts points, discards points
inside a polygon formed by extreme points, divides the
remaining points into sub-regions, and deletes concave
points on the initial boundary to obtain the final convex
hull vertices.

All these algorithms that employ the Akl-Toussaint
heuristic have a time complexity of O(n log n), primar-
ily attributed to the sorting process they include. This
sorting step creates an inherent performance limitation,
constraining the potential for further optimization in
terms of computation time.

While these algorithms focus on utilizing heuristics to
decrease the number of points requiring further process-
ing and using extremal points to divide a given set of
points into subsets or as a basis for calculating the final
convex hull vertices, they do not fully exploit the ad-
vantages offered by the Akl-Toussaint heuristic. There
exist other significant benefits, such as obtaining local-
ity principles of points, which are overlooked by existing
algorithms. In this regard, there is potential for de-
veloping new approaches that more effectively harness
the power of the Akl-Toussaint heuristic to optimize the
convex hull computation process.

3 Partition, Reduction, and Conquer Convex Hull
Algorithm Description

The proposed algorithm aims to reduce the computa-
tional burden of various operations, including sorting
and convex hull vertex identification, by fully utilizing
the geometric features of the points. It comprises three
main steps: spatially partitioning the point set into sub-
sets, eliminating non-candidate points, and computing
local convex hulls from the remaining candidate points
and combining them to form the global convex hull.
Each step is detailed in the following subsections.

240

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

3.1 Spatial Partitioning and Locality Principles of
Points

The algorithm first identifies the leftmost, rightmost,
topmost, and bottommost extremal points and elimi-
nates non-candidate points within the polygon formed
by the four extremal points. The algorithm then iden-
tifies distinct, non-overlapping sub-regions, referred to
as zones in our proposed algorithm: SW (South West),
SE (South East), NE (North East), and NW (North
West), based on the four extremal points, as shown in
Figure 1. Each remaining point is allocated to a spe-
cific zone based on its spatial location relative to the
extremal points. As a result, points in each zone possess
similar spatial characteristics that lead to unique local-
ity properties specific to the zone. Let PSW (PSE , PNE ,
PNW) denote the set of points located in the SW (SE,
NE, NW) zone, and let pl, pb, pr, and pt represent the
leftmost, bottommost, rightmost, and topmost points,
respectively. Points in each zone can be described by a
set of locality principles as follows:

PSW ={p(x, y) | pl.x < x < pb.x ∧ pb.y < y < pl.y,

and p lies to the right of the vector −−→plpb}

PSE ={p(x, y) | pb.x < x < pr.x ∧ pb.y < y < pr.y,

and p lies to the right of the vector −−→pbpr}

PNE ={p(x, y) | pt.x < x < pr.x ∧ pr.y < y < pt.y,

and p lies to the right of the vector −−→prpt}

PNW ={p(x, y) | pl.x < x < pt.x ∧ pl.y < y < pt.y,

and p lies to the right of the vector −−→ptpl}
The locality principles for each zone are determined

by the position of points relative to the directed segment
formed by the two extremal points that define the zone.
For instance, in the SW zone, points are located within
the bounding box formed by the segment −−→plpb and are
required to lie to the right of the segment.

Lemma 1 Points in each zone are candidates for the
convex hull. 1

Furthermore, the spatial partitioning method and the
locality principles for points within each zone guaran-
tee that each point belongs to a single subset. This
avoids overlapping subsets and allows the algorithm to
efficiently handle point subsets based on their respective
zones, without iterating over the entire point set.

While our focus is on computing the local convex hull
in the SW zone, the convex hulls in the other three zones
follow the same symmetric logic. Cases with fewer than
four zones can be handled during implementation and
are not discussed here.

1Proof of this lemma is provided in Appendix A.

3.2 Reduction Process in each Zone

Lemma 1 establishes that all points in each zone are po-
tential candidates for inclusion in the final convex hull.
However, not all these points will necessarily be part
of the final convex hull. Therefore, after applying the
Akl-Toussaint heuristic, various algorithms utilize spe-
cific methods to identify the vertices of the convex hull.
One common approach is to sort points as a prepro-
cessing step, as discussed in Section 2. After sorting
points, those that are unlikely to be the final convex
hull vertices are eliminated during the computation of
the convex hull. Our proposed algorithm offers an alter-
native approach for computing the convex hull vertices,
without the need for a general sorting process.

Points that fail to satisfy their zone’s locality princi-
ples are considered non-candidates for the final convex
hull and should be discarded. The proposed algorithm
aims to identify new extremal points within each zone,
enabling the redefinition of locality principles and elim-
inating as many non-candidate points as possible. Once
these new extremal points are found, locality principles
are redefined accordingly, and points that do not satisfy
the updated principles can be discarded.

In the case of the SW zone, the algorithm identifies
two points that have equivalent characteristics to the
extremal points pl and pb, designating them as pl1 and
pb1, respectively. pl1 is the point with the smallest x-
coordinate, while pb1 is the point with the smallest y-
coordinate among points in the SW zone. By replac-
ing the original extremal points with these two new ex-
tremal points, the algorithm redefines the locality prin-
ciples for the SW zone. Let RPSW represent the set of
remaining points that satisfy the locality principles of
the SW zone with these replacements. The redefined
locality principles for the remaining points in the SW
zone can then be expressed as follows:

RPSW ={p(x, y) | ∃i ∈ 1, . . . ,m :

pli.x < x < pbi.x ∧ pbi.y < y < pli.y,

and p lies to the right of the vector −−−→plipbi,

m : the final identification of extremal points}

pli and pbi are the extremal points in the set of points
being processed. Points that lie to the right of the seg-
ment −−−→plipbi in the SW zone satisfy the newly defined
locality principles. Non-candidate points located to the
left of the segment are not considered as vertices of the
final convex hull and are therefore eliminated. We refer
to the process of eliminating non-candidate points as the
“Reduction” process. This involves identifying two new
extremal points in each zone with the same characteris-
tics as the original two extremal points and eliminating
the points that lie to the left of the segment connect-
ing these new extremal points. The segment utilized for

241

35th Canadian Conference on Computational Geometry, 2023

this process is referred to as the “reduction segment”.

Lemma 2 After the reduction process in each zone, re-
maining points are candidates for the convex hull. 2

The reduction process is performed iteratively, and
in each iteration, the locality principles of each zone are
updated using the newly found extremal points. Based
on these updated locality principles, points that do not
satisfy the revised criteria are eliminated from the zone.

In each iteration of the reduction process, newly iden-
tified extremal points are regarded as confirmed candi-
dates for the final convex hull. These “confirmed can-
didates” are more likely to be part of the final convex
hull compared to other candidate points, which may
be eliminated in subsequent iterations. The algorithm
stores these confirmed candidates throughout the pro-
cess. As the algorithm proceeds, the stored extremal
points from each iteration will eventually form the set
of confirmed candidate points for the final convex hull.
Figure 2 demonstrates the reduction process in the SW
zone, illustrating the identification of extremal points,
the updating of the locality principle, and the formation
of two sets of confirmed candidates.

pl

pb

PSW

(a)

pl

pb
pb1

pl1

RPSW

(b)

Figure 2: Examples of the reduction process in the SW
zone: (a) Points in the SW zone with initial extremal
points pl and pb defining the locality principle. (b)
Updated locality principle using newly found extremal
points pl1 and pb1, eliminating non-satisfying points,
and forming two sets of confirmed candidates: one with
pl and pl1, and another with pb and pb1.

3.3 Computation and Merging of Local Convex
Hulls in the Conquer Phase

During the reduction process, two distinct sets of con-
firmed candidate points are generated for each zone,
which are used to compute the local convex hull. In
the SW zone, one set contains points with the smallest
x-coordinates, while the other set consists of points with
the smallest y-coordinates. These points contribute to
the local convex hull computation. The inherent geo-
metric properties of each set are leveraged to construct
the local convex hull.

2Proof of this lemma is provided in Appendix A.

Lemma 3 Points in both sets of confirmed candidates
within each zone are already sorted in order of their x-
coordinates. 3

Zone Set of Pattern

SW
the smallest x-coordinates points increasing
the smallest y-coordinates points decreasing

SE
the largest x-coordinates points decreasing
the smallest y-coordinates points increasing

NE
the largest x-coordinates points decreasing
the largest y-coordinates points decreasing

NW
the smallest x-coordinates points increasing
the largest y-coordinates points decreasing

Table 1: Summary of x-coordinate patterns for each
zone’s point sets.

Lemma 4 Points in the two sets of confirmed candi-
date points within each zone do not intersect. 4

Lemma 3 demonstrates that the locality principles
guarantee the order of the points’ x-coordinates in each
set for every zone, and the geometric properties of the
confirmed candidate points in each zone can be concisely
represented in Table 1. Furthermore, Lemma 3 and
Lemma 4 demonstrate that the two sets of confirmed
candidate points for each zone can be combined to pro-
duce a set of points arranged by their x-coordinates.
These ordered point sets from each zone are employed
to create the local convex hull for each respective zone
using the following method: three consecutive points
are evaluated to identify counterclockwise turns. If such
turns are detected, the algorithm advances to the next
triplet; otherwise, the middle point is omitted, and the
analysis proceeds with the subsequent point. After con-
structing the local convex hulls for each zone, they are
merged to form the final convex hull that encompasses
the entire point set.

4 Complexity Analysis

In this section, we analyze the computational complex-
ity of the proposed algorithm. We discuss each step’s
complexity, determine the overall time complexity, and
also present the space complexity.

4.1 Partition of Points into Zones

The initial step involves partitioning the input points
into four zones, requiring the determination of extremal
points and assigning each point to a zone based on its
position relative to these extremal points. Both pro-
cesses have a time complexity of O(n), where n is the

3Proof of this lemma is provided in Appendix A.
4Proof of this lemma is provided in Appendix A.

242

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

number of input points. Thus, the complexity of this
step is O(n).

4.2 Reduction Process

The complexity of the reduction process depends on the
number of iterations. Each iteration identifies two new
extremal points and eliminates points that do not satisfy
the locality principles. The worst-case time complexity
occurs when all input points, excluding the extremal
points, must be visited in each iteration, resulting in a
complexity of O(n2).

4.3 Computation and Merging of Local Convex
Hulls

Computing local convex hulls involves using a set of
points sorted by their x-coordinates, with a time com-
plexity of O(n). Merging the local convex hulls has a
complexity of O(1). Consequently, the overall complex-
ity of this step is O(n).

4.4 Overall Time Complexity

The overall complexity of the proposed algorithm is de-
termined by summing the complexities of each step.
With n referring to the number of input points, the
worst-case complexity is O(n2), while the average-case
complexity is expected to be lower, depending on the re-
duction process efficiency and input point distribution.
5

4.5 Space Complexity

As the proposed algorithm iteratively processes the in-
put points, it maintains a list of remaining points while
discarding the non-candidates from further considera-
tion. Since the algorithm does not require any addi-
tional data structures for storing intermediate results
or complex transformations, its space complexity is de-
termined by the number of input points. Therefore, the
space complexity of the algorithm is O(n), where n rep-
resents the total number of points in the input set.

5 Experimental Results

We conducted a performance evaluation of our proposed
algorithm by comparing it to well-known convex hull
algorithms, such as the Graham Scan algorithm [6],
Quickhull algorithm [2, 4], and Akl-Toussaint’s algo-
rithm [1]. The experiments were conducted on a system
equipped with an Apple M1 processor and 16 GB of
memory. To generate input data, we created two sets
of points: one set within the shape of a square and the
other within a disk. The number of input points in each

5The average-case time complexity is presented in Appendix C.

Size of Points
Algorithm 104 105 106 107

Quickhull 0.41 3.29 31.65 314.70
Graham Scan 1.56 16.96 195.25 2316.03
Akl-Toussaint 0.74 7.44 84.12 945.13

PRC-CH 0.32 2.51 25.41 239.47

Table 2: Computation times (in milliseconds) for convex
hull algorithms when points are distributed randomly in
a square-boundary.

Size of Points
Algorithm 104 105 106 107

Quickhull 0.38 3.43 33.51 378.70
Graham Scan 1.47 16.86 193.17 2295.44
Akl-Toussaint 0.35 3.50 38.55 434.55

PRC-CH 0.26 2.75 44.53 999.47

Table 3: Computation times (in milliseconds) for convex
hull algorithms when points are distributed randomly in
a disk-boundary.

Size of Points
Algorithm 104 105

Quickhull 4.29 46.01
Graham Scan 1.29 15.32
Akl-Toussaint 1.15 13.00

PRC-CH 20.07 1786.81

Table 4: Computation times (in milliseconds) for convex
hull algorithms when points are distributed randomly on
a circular boundary.

set ranged from 10,000 to 10,000,000. We generated 20
samples for each set of input points and determined the
final results for each algorithm by averaging the out-
comes of the 20 computations.

The selection of convex hull algorithms for compar-
ison is based on the following rationale. The Graham
Scan algorithm includes a sorting process as a prepro-
cessing step, allowing us to analyze the impact of sort-
ing on performance. The Akl-Toussaint algorithm uses
the Akl-Toussaint heuristic and a sorting process, en-
abling us to evaluate our method’s effectiveness in iden-
tifying confirmed candidate points and assess its abil-
ity to reduce the computational burden of sorting. We
also compare our algorithm to the Quickhull algorithm,
which has a worst-case time complexity of O(n2), sim-
ilar to our method. This comparison demonstrates the
performance capabilities of our proposed method. The
Quickhull algorithm used in our comparison is a modi-
fied version minimizing the number of orientation tests,
as introduced by Hoàng and Linh [7].

Based on the experimental results, our proposed
PRC-CH algorithm demonstrates competitive perfor-

243

35th Canadian Conference on Computational Geometry, 2023

mance in comparison to other convex hull algorithms
in terms of computation time. In the square-boundary
scenario (Table 2), the PRC-CH algorithm consistently
outperforms the Quickhull, Graham Scan, and Akl-
Toussaint algorithms across all input sizes. The PRC-
CH algorithm achieves computation time reductions
ranging from approximately 20% to 24% compared to
the Quickhull algorithm. These results suggest that
our proposed algorithm’s strategy for eliminating non-
convex hull vertices is more effective than the Quick-
hull algorithm when points are not generated in ex-
treme cases, despite both algorithms sharing the same
time complexity of O(n2). In comparison to the Gra-
ham Scan and Akl-Toussaint algorithms, the reductions
in computation time range from approximately 79% to
86% and 56% to 66%, respectively, indicating that the
sorting process before computing the convex hull adds
significant computational overhead.

In the disk-boundary scenario (Table 3), the PRC-CH
algorithm faces a higher computational burden due to
the point distribution that hinders our reduction strat-
egy’s ability to eliminate more points. Nonetheless, it
continues to display competitive results. The PRC-
CH algorithm outperforms the Graham Scan algorithm
across all input sizes, achieving computation time reduc-
tions of approximately 60% to 88%. Although the PRC-
CH algorithm’s computation time exceeds that of the
Akl-Toussaint algorithm for larger input sizes (1,000,000
and 10,000,000), it still maintains a competitive edge for
smaller input sizes (10,000 and 100,000), with reduc-
tions of about 21% and 24%, respectively. The PRC-
CH algorithm’s performance is relatively close to the
Quickhull algorithm for smaller input sizes but exhibits
a higher computation time for larger input sizes.

When points are distributed in a circle, more points
lie along the boundary, likely belonging to the con-
vex hull vertices. This can lead to fewer eliminations
and more iterations in the reduction process, reducing
our algorithm’s performance, especially when all input
points lie on a circular boundary.

Table 4 displays the computation time results for cir-
cular point distributions where every point is a con-
vex hull vertex, highlighting a weakness in our algo-
rithm for such extreme cases. Algorithms incorporating
sorting processes, like Graham Scan and Akl-Toussaint,
demonstrate strengths, while those that do not, such
as Quickhull and our proposed method, experience sub-
stantial computational burdens. During each iteration
of the reduction process, our algorithm eliminates only
two points, resulting in a set of n − 2 points for the
subsequent iteration. The Quickhull algorithm, on the
other hand, processes a set of n/2 points for the fol-
lowing recursion, leading to better performance under
such distributions. These distinctions in point elimi-
nation contribute to the differences in performance be-

tween the Quickhull and our proposed algorithm under
extreme point distributions.

In summary, the experimental results suggest that
our proposed PRC-CH algorithm is a promising can-
didate for computing convex hulls in various scenar-
ios. Its performance is particularly noteworthy in the
square-boundary scenario, where it consistently out-
performs other established algorithms. In the disk-
boundary scenario, the PRC-CH algorithm remains
competitive, although it faces a higher computational
burden. However, when points are distributed along
a circular boundary, our algorithm exhibits a weakness,
as it struggles with extreme point distributions. In such
cases, algorithms with a sorting process display better
performance.

6 Conclusion

We propose a novel convex hull algorithm, named Par-
tition, Reduction, and Conquer Convex Hull algorithm
(PRC-CH), which aims to compute the convex hull of
a given set of points using a new concept. The pro-
posed algorithm is designed based on the Akl-Toussaint
heuristic and leverages geometric features to compute
convex hull vertices while the algorithm runs.

The worst-case time complexity of the PRC-CH algo-
rithm is O(n2). However, the average-case complexity is
expected to be lower, depending on the efficiency of the
reduction process and the distribution of input points.
To evaluate the performance of our algorithm, we con-
ducted experiments using randomly distributed input
points within a square and a disk boundary and on a
circular boundary. Our proposed PRC-CH algorithm
demonstrates a competitive performance compared to
other convex hull algorithms, with notable reductions
in computation time, especially in the square-boundary
scenario where the reductions range from 20% to 24%
compared to the Quickhull algorithm. Despite the in-
creased computational burden in the disk-boundary sce-
nario, the PRC-CH algorithm still exhibits competi-
tive results, outperforming the Graham Scan algorithm
across all input sizes. However, our algorithm shows
a weakness with extreme point distributions, such as
those along a circular boundary.

These findings suggest that the PRC-CH algorithm
is particularly effective in certain situations, but further
research could investigate additional strategies for point
elimination and distribution to enhance the algorithm’s
overall performance. This could involve exploring hy-
brid approaches that combine the strengths of different
convex hull algorithms or optimizing the PRC-CH al-
gorithm to address its weaknesses in handling extreme
point distributions. By addressing these challenges, the
PRC-CH algorithm has the potential to become an even
more effective solution for a wider range of convex hull

244

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

computation scenarios.

References

[1] S. G. Akl and G. T. Toussaint. A fast convex hull
algorithm. Information Processing Letters, 7(5):219–
222, 1978. https://doi.org/10.1016/0020-0190(78)

90003-0

[2] A. Bykat. Convex Hull of a Finite Set of Points in Two
Dimensions. Information Processing Letters, 7(6):296–
298, 1978. https://doi.org/10.1016/0020-0190(78)

90021-2

[3] B. K. Bhattacharya and G. T. Toussaint. Time- and
storage-efficient implementation of an optimal planar
convex hull algorithm. Image and Vision Comput-
ing, 1(3):140–144, 1983. https://doi.org/10.1016/

0262-8856(83)90065-3

[4] W. F. Eddy. A New Convex Hull Algorithm for Pla-
nar Sets. ACM Transactions on Mathematical Soft-
ware, 3(4):398–403, 1977. https://doi.org/10.1145/

355759.355766

[5] Z. Fu and Y. Lu. An Efficient Algorithm for the Convex
Hull of Planar Scattered Point Set. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, 1(2):63–66, 2012. https://doi.org/10.

5194/isprsarchives-XXXIX-B2-63-2012

[6] R. L. Graham. An Efficient Algorithm for Determining
the Convex Hull of a Finite Planar Set. Information
Processing Letters, 1(4):132–133, 1972. https://doi.

org/10.1016/0020-0190(72)90045-2

[7] N. Hoàng and N. K. Linh. Quicker than Quickhull. Viet-
nam Journal of Mathematics, 43:57–70, 2015. https:

//doi.org/10.1007/s10013-014-0067-1

[8] G. Mei, J. C. Tipper, and N. Xu. An Algorithm for
Finding Convex Hulls of Planar Point Sets. In Pro-
ceedings of the International Conference on Computer
Science and Network Technology (ICCSNT), pages 888–
891, 2012. https://doi.org/10.1109/ICCSNT.2012.

6526070

[9] R. L. Graham, D. E. Knuth, and O. Patashnik. Con-
crete Mathematics: A Foundation for Computer Sci-
ence. 2nd edition, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1994.

[10] R. P. Boas and J. W. Wrench. Partial Sums of the
Harmonic Series. The American Mathematical Monthly,
78(8):864–870, 1971. http://www.jstor.org/stable/

2316476.

Appendix

A Proofs

Proof. [Proof of Lemma 1] Consider a point p(x, y) within
the SW zone. Given that the point p is within the bound-
ing box defined by the leftmost point pl and the bottommost
point pb, p cannot exist beyond the boundaries of the bound-
ing box. Also, any point located on the left side of the seg-
ment −−→plpb would contribute to a non-convex curve and thus
would not be eligible to be a part of the convex hull.

Therefore, the potential candidates for the convex hull of
the SW zone are the points that lie within the bounding
box and to the right of the directed segment −−→plpb. By def-
inition of the locality principles for points in the SW zone,
all points within the zone satisfy these criteria, and thus are
appropriate candidates for inclusion in the convex hull. By
applying similar reasoning to the other zones, we can con-
clude that the points within each zone are eligible candidates
for consideration in the convex hull. �

Proof. [Proof of Lemma 2] Assume that there exists a point
in a zone that violates the locality principles of the zone,
yet has not been eliminated by the reduction process. This
contradicts the assumption that the reduction process has
been completed and all non-candidate points have been elim-
inated. Therefore, after the reduction process, only the
points that satisfy the locality principles for each zone re-
main, and these points are candidates for the convex hull.

�

Proof. [Proof of Lemma 3] Let us consider the SW zone
with two sets of confirmed candidate points, set A and set
B , generated during the iterative reduction process of the
algorithm for the SW zone. Set A consists of points with the
smallest x-coordinates, while set B consists of points with
the smallest y-coordinates, both found during each iteration.

During each iteration, the reduction process identifies two
new extremal points, one for set A and one for set B . Each
new extremal point must be found within the bounding box
formed by the previously identified extremal points. The
locality principles ensure that the bounding box contains
only points that have not yet been considered as confirmed
candidates, and all points within the bounding box satisfy
the locality principles.

When a new extremal point is identified for set A, it has a
smaller x-coordinate than any other remaining point in the
bounding box. Since the bounding box is formed based on
the previously identified extremal points and their locality
principles, it guarantees that any new extremal point added
to set A has a larger x-coordinate than the previously iden-
tified points in set A. Thus, the points in set A are sorted
in increasing order of their x-coordinates.

Similarly, when a new extremal point is identified for set
B , it has a smaller y-coordinate than any other remaining
point in the bounding box. As the bounding box is formed
based on the previously identified extremal points and their
locality principles, it guarantees that any new extremal point
added to set B has a smaller x-coordinate than the previ-
ously identified points in set B . Thus, the points in set B
are sorted in decreasing order of their x-coordinates.

245

35th Canadian Conference on Computational Geometry, 2023

Hence, we can conclude that the points in both sets A
and B are sorted in x-coordinates order as a result of the
reduction process and the locality principles.

�

Proof. [Proof of Lemma 4] We will consider the SW zone
as a representative case. Let set A consist of confirmed can-
didate points with the smallest x-coordinates, and let set B
consist of confirmed candidate points with the smallest y-
coordinates. According to the locality principles of the SW
zone, points in set A must be to the left of the points in
set B . This is ensured through the reduction process, which
generates a bounding box for each new extremal point found.

The locality principles and reduction process continue to
apply until no more bounding boxes can be generated. As
a result, the points in set A will always be to the left of the
points in set B , ensuring that the two sets do not intersect.

The cases for the SE, NE, and NW zones can be similarly
proven due to the symmetry of the problem. The geometric
properties and locality principles in these zones are analo-
gous to the SW zone, with adjustments made according to
the specific extremal points and coordinate requirements of
each zone. By applying the same reasoning as in the SW
zone case, we can show that the two sets of confirmed candi-
date points in each of the other zones also do not intersect.

�

B Improving PRC-CH Algorithm: Supplemental In-
formation

B.1 Selecting the Optimal Reduction Segment

At the nth iteration of the reduction process, a discarded
point is visited 2n times throughout the entire reduction
process. This implies that the point is visited n times when
the algorithm identifies the two new extremal points and n
times when the algorithm eliminates points that do not sat-
isfy the locality principles. Consequently, by discarding as
many points as possible at each iteration, the algorithm can
reduce the number of visits to each point, thus decreasing
the overall number of operations. Identifying the optimal
reduction segment is crucial for maximizing the number of
points discarded at each iteration, which improves the effi-
ciency and computational performance of the algorithm.

A reduction segment formed by two extremal points in
a zone is not always optimal due to the possible positions
of these extremal points. For instance, when connecting re-
duction segments with one of the endpoints of the reduction
segment used in the previous iteration, a concave curve may
be generated. Figures 3b and 3e illustrate scenarios in which
the concave curves formed by pl, pl1, and pb1 and by pb, pb1,
and pl1 are displayed, respectively. In these cases, the reduc-
tion segment is considered suboptimal because it does not
eliminate a larger number of points, requiring additional it-
erations and potentially affecting the algorithm’s efficiency.
Consequently, to construct the optimal reduction segments,
the proposed algorithm considers the convexity of the ex-
tremal points relative to those identified in previous itera-
tions, as demonstrated in Figure 3c and Figure 3f. Extremal
points removed from consideration for forming optimal re-

pl

pb

(a)

pl

pb

pb1

pl1

(b)

pl

pb

pb1

(c)

pl

pb

(d)

pl

pb

pb1

pl1

(e)

pl

pb

pl1

(f)

Figure 3: Examples of the suboptimal reduction seg-
ments and the optimal reduction segments are shown
for different point distributions. (a) and (d) show ex-
amples of point distributions in the SW zone, respec-
tively. The suboptimal reduction segments formed by
pl1 and pb1 are shown in (b) and (e), while the optimal
reduction segment formed by pl and pb1 is shown in (c),
and the optimal reduction segment formed by pl1 and
pb is shown in (f).

duction segments are also no longer regarded as confirmed
candidates.

B.2 Reducing Computational Burden with Locality
Principles

In addition to the construction of the optimal reduction seg-
ment, the locality principles of each zone can also contribute
to reducing the computational burden. The proposed algo-
rithm eliminates points that do not satisfy the redefined lo-
cality principles of each zone. The orientation test, which
determines whether a point is located to the left or right of
a segment, is performed using the cross-product of vectors,
requiring five subtractions and two multiplications. When
employing the locality principles, the orientation test is per-
formed exclusively on points located within the bounding
box created by the two extremal points. In Figure 3b and
Figure 3e, for instance, any points outside the bounding box
formed by pl1 and pb1 are in violation of the locality prin-
ciples. Hence, such points necessitate only a comparison of
their coordinates without the need for an orientation test,
which significantly reduces the overall number of computa-
tions.

C Estimation of Average-Case Time Complexity Us-
ing Harmonic Numbers

Estimating the average-case time complexity of the algo-
rithm under investigation presents a significant challenge due
to the unpredictable nature of its operations. The algorithm
necessitates several traversals of the input data, with each
traversal systematically reducing the number of points under

246

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

consideration in the subsequent steps. The reduction rate of
points is not uniform across iterations, but instead exhibits a
decreasing trend. This irregularity in the reduction pattern
introduces substantial complexity in deriving an accurate
mathematical representation for the time complexity.

To address the challenge of estimating the average-case
time complexity, we employ an approximation using har-
monic numbers. Harmonic numbers, defined by the series
H(n) = 1

1
+ 1

2
+ 1

3
+ ...+ 1

n
, mirror the number of operations

for estimating the time complexity of our algorithm. We can
consider n∗(1

1
+ 1

2
+ 1

3
+ ...+ 1

n
) as a rough estimate of the to-

tal operations, with each term approximating the number of
remaining points in each iteration. The difference between
two consecutive terms, n ∗ (1

k
− 1

k+1
), can be interpreted as

the number of points eliminated in the kth iteration. The
approximation of the sum of the harmonic numbers is as
follows [9]:

n∑

k=1

1

k
= logn+ γ +

1

2n
− 1

12n2
,

where γ is Euler’s constant

However, this approximation does not perfectly align with
the algorithm’s behavior. The algorithm often reduces more
points than this model predicts, resulting in fewer remaining
points than the harmonic series suggests. Consequently, the
reduction step concludes before the nth round, implying that
the algorithm performs fewer operations than the sum of the
harmonic numbers.

The harmonic series should be truncated at the point
where the difference between the remaining points at two
consecutive stages is less than one, to more accurately es-
timate the time complexity. This occurs at the

√
n
th

term
[10], where the partial sum of the harmonic series up to this
point is approximately half of the total sum. Hence, the
number of operations for the reduction step up to the

√
n
th

term can be estimated as the sum of the operations for the
following two processes: finding a reduction segment and
performing the reduction.

(
1

1
n+

1

1
n) + (

1

2
n+

1

2
n) + (

1

3
n+

1

3
n) + · · ·+ (

1√
n
n+

1√
n
n)

= 2n(
1

1
+

1

2
+

1

3
+ ...+

1√
n

)

≈ 2n(logn+ γ +
1

2n
− 1

12n2
)× 1

2

≈ n× logn

In conclusion, the average-case time complexity of the par-
tition and reduction processes can be estimated as O(n logn)
when there are n input points. This time complexity impacts
the overall performance of the algorithm in average-case sce-
narios.

247

248

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Analysis of Dynamic Voronoi Diagrams in the Hilbert Metric

Madeline Bumpus∗ Xufeng Caesar Dai† Auguste H. Gezalyan‡ Sam Muñoz§

Renita Santhoshkumar¶ Songyu Ye‖ David M. Mount∗∗

Abstract

The objective of this paper is to study the properties of
Hilbert bisectors and analyze Hilbert Voronoi diagrams
in the dynamic setting. Additionally, we introduce dy-
namic visualization software for Voronoi diagrams in the
Hilbert metric on user-specified convex polygons.

1 Introduction

In 1895, David Hilbert introduced the Hilbert met-
ric [11], a projective metric used to measures distances
within a convex body. It generalizes the Cayley-Klein
model of hyperbolic geometry (on Euclidean balls) to
any convex body. Hilbert geometry provides new in-
sights into classical questions from convexity theory and
the study of metric and differential geometries (such as
Finsler geometries).

In particular, Hilbert Geometry is of interest in the
field of convex approximation. To approximate convex
bodies, many techniques [1–4, 8, 9, 14, 20] make use of
covering convex bodies with regions that behave like
metric balls in the Hilbert metric. These regions go by
various names, such as: Macbeath regions, Macbeath el-
lipsoids, Dikin ellipsoids, and (2, ε)-covers. In this way,
a deeper understanding of the Hilbert metric can lead
us to a deeper understanding of convex approximation.

The Hilbert metric is applicable to many other fields
of study such as quantum information theory [19], real
analysis [13], optimization [6], and network analysis [7].
For example, the Hilbert metric is crucial in nonlinear
Frobenius-Perron theory [7,12]. In addition, the Hilbert
metric has often been used in the context of optimal
mass transport and Schrödinger bridges [5–7,18].

There has been little work on the design and analysis
of algorithms in the Hilbert geometry on convex poly-

∗Howard Universty, Washington DC, USA, gmadeline.

bumpus@bison.howard.edu
†Haverford College, Haverford, Pennsylvania, USA,

xdai1@haverford.edu
‡Department of Computer Science, University of Maryland,

College Park, USA octavo@umd.edu
§Colby College, Waterville, Maine, USA, smunoz23@colby.edu
¶Montgomery Blair High School, Silver Spring, Maryland,

USA, renitadsanthoshkumar@gmail.com
‖Cornell Unversty, Ithaca, NY, USA, sy459@cornell.edu
∗∗Department of Computer Science, University of Maryland,

College Park, USA, mount@umd.edu

gons and polytopes, and most of it has been done in the
last two decades. In this paper, we build off of Nielson
and Shao [15] as well as Gezalyan and Mount [10] to im-
plement an algorithm for creating Voronoi diagrams in
the Hilbert metric, characterize their bisectors as con-
ics with an explicit formula, and analyze them in the
dynamic setting.

2 Preliminaries

2.1 Previous Work

In 2017, Nielsen and Shao [15] presented a characteri-
zation of the shape of balls in the Hilbert metric and
explored their properties. They showed that the shape
of a ball depends on the location its center as well as the
vertices of the Hilbert domain. Nielsen and Shao gave
an explicit description of Hilbert balls and studied the
intersection of two Hilbert balls. In 2021, Gezalyan and
Mount [10] expanded on this by studying the geomet-
ric and combinatorial properties of Voronoi diagrams in
the Hilbert metric. They presented two algorithms, a
randomized incremental and a divide and conquer al-
gorithm, for constructing these diagrams. We extend
these works to analyze other properties of Voronoi dia-
grams in the Hilbert geometry, and we develop a soft-
ware package implementing an incremental algorithm
based on the randomized incremental algorithm.

2.2 Defining the Hilbert Metric

A convex body Ω ⊂ Rd is a closed, compact, full-
dimensional convex set. Given two fixed points s, t ∈
Rd, let ‖s−t‖ denote the Euclidean distance and H(s, t)
denote the Hilbert distance between them. Let χ(s, t)
denote the chord defined as the intersection of the line
passing through s and t with Ω.

Definition 1 (Cross Ratio) Given four distinct col-
linear points a, b, c, d in Rd, their cross ratio is defined
to be:

(a, b; c, d) =
‖a− c‖‖b− d‖
‖b− c‖‖a− d‖ .

Where the orientation of the line determines the sign of
each distance.

249

35th Canadian Conference on Computational Geometry, 2023

Note that the cross ratio is invariant under projective
transformations [16].

Definition 2 (Hilbert metric) Given a convex body
Ω in Rd and two distinct points s, t ∈ int(Ω), let x and y
denote endpoints of the chord χ(s, t), so that the points
are in the order 〈x, s, t, y〉. The Hilbert distance between
s and t is defined as:

HΩ(s, t) =

{
1
2 ln(s, t; y, x) if s 6= t

0 if s = t.

It is well known that this is a metric, and in particular, it
is symmetric and satisfies the triangle inequality. More-
over, it is well known that H(a, b) + H(b, c) = H(a, c)
if and only if rΩ(a, b), rΩ(b, c), rΩ(a, c) are collinear and
rΩ(b, a), rΩ(c, b), rΩ(c, a) are collinear, where rΩ(a, b) is
the point where the ray ab meets ∂(Ω) [16, Theorem
12.4]. This follows from the Hilbert metric’s charac-
terization as being the average of the forward and back-
wards Funk metrics. It is also well known that geodesics
are unique if and only if Ω is strictly convex [16, Corol-
lary 12.7].

2.3 Voronoi Diagrams in the Hilbert Metric

Let Ω ⊂ R2 be an open convex region whose boundary,
denoted ∂Ω, is a polygon. Let S denote a set of n sites
in Ω. The Voronoi cell of a site s ∈ S is:

V (s) =
{
q ∈ Ω : d(q, s) ≤ d(q, t), ∀t ∈ S \ {s}

}
.

The Voronoi diagram of S in the Hilbert metric induced
by Ω, denoted VorΩ(S), is the cell complex of Ω induced
by the Voronoi cells V (s), for all s ∈ S. Outside of the
dynamic context, we assume that all sites are in general
position, and in particular that no three sites are co-
linear. It is known that Voronoi cells in the Hilbert
Metric are stars and with complexity Ω(mn) [10].

It will be helpful to define two terms, spokes and sec-
tors. Given our convex body Ω and a site s in Ω it can
be seen that the Hilbert distance from our site s to a
point p is dependent on the edges of Ω that intersect
χ(s, p). This is characterized by taking the vertices of
Ω, which we denote by V , and partitioning Ω into cells
determined by the chords χ(v, s) for all v ∈ V . We de-
fine a spoke rΩ(v, s), rΩ(s, v) to be the intersection of
ray vs and sv respectively with Ω when v is a vertex
of V . Nielsen and Shao showed that Hilbert balls are
Θ(m)-sided polygons whose boundaries are constructed
around these spokes [15].

These spokes subdivide Ω into polygonal regions,
which we will call sectors. Each sector T has the prop-
erty that for all points p ∈ T , given two sites s and
t there are four edges (not necessarily unique) of ∂Ω,
say EA, EB , EC , ED, such that χ(s, p) always intersects

E3

E2

E1

E4s

t

S(s, t, E2, E4, E4, E2)

S(s, t, E2, E1, E4, E1)

S(s, t, E2, E4, E3, E1)

S(s, t, E1, E3, E4, E2)

S(s, t, E2, E3, E1, E3) S(s, t, E3, E2, E4, E2)

Figure 1: Illustration of different sectors.

Ω at EA and EB and χ(t, p) at EC and ED. We will
write S(s, t, EA, EB , EC , ED) to be the unique sector
such that for any p ∈ S(s, t, EA, EB , EC , ED), we have
χ(sp) has in order of intersection EA, s, p, EB and χ(tp)
has EC , t, p, ED (see Figure 1). As a consequence of
this, we can see that the bisector between two sites, s
and t, is composed of curves which depend piece-wise
on the sectors they pass through.

3 Hilbert Bisector analysis

Theorem 1 The equation of the bisector between two
sites in any particular sector is of the form Ax2 +Bxy+
Cy2 +Dx+Ey+F = 0, with coefficients depending only
on the line equations of the four edges and the sites.

Proof. Suppose we are in some arbitrary sector
S(s, t, EA, EB , EC , ED). Let the equation of the edges
be a1x+a2y+a3 = 0, b1x+b2y+b3 = 0, c1x+c2y+c3 =
0, and d1x + d2y + d3 = 0, for EA, EB , EC , and ED

respectively.
Recall the Euclidean distance between a point (x, y)

and a line ux + vy + l = 0 is given by D(u, v, l, x, y) =
|ux+vy+l|√

u2+v2
. Let p ∈ T be an arbitrary point with coor-

dinates (px, py). Notice that, without loss of generality,
if q is the point where chord χ(p, s) hits ∂Ω towards

s, then the ratio ‖q−p‖‖q−s‖ can be replaced with the ratio
D(a1,a2,a3,px,py)
D(a1,a2,a3,sx,sy) by similar triangles. Using this tech-

nique we set H(s, p) = H(t, p) and solve, yielding

D(a1, a2, a3, px, py)

D(a1, a2, a3, sx, sy)

D(b1, b2, b3, sx, sy)

D(b1, b2, b3, px, py)
=

D(c1, c2, c3, px, py)

D(c1, c2, c3, tx, ty)

D(d1, d2, d3, tx, ty)

D(d1, d2, d3, px, py)
.

The equation of the line ux + vy + l = 0 divides the
plane in two, characterized by the sign of the function
g(x, y) = ux + vy + l. Given this, since all our points
are on the same side of each line, when we substitute
in for the function D, we can remove the absolute value

250

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

bars from our equations. It follows that:

a1px + a2py + a3

a1sx + a2sy + a3

b1sx + b2sy + b3
b1tpx + b2py + b3

=

c1px + c2py + c3
c1tx + c2ty + c3

d1tx + d2ty + d3

d1px + d2py + d3
.

Collecting constants on one side gives us:

b1sx + b2sy + b3
d1tx + d2ty + d3

c1tx + c2ty + c3
a1sx + a2sy + a3

=

c1px + c2py + c3
a1px + a2py + a3

b1px + b2py + b3
d1px + d2py + d3

.

Letting the left side be a constant k, we find that the
bisector satisfies the algebraic equation:

Ap2
x +Bpxpy + Cp2

y +Dpx + Epy + F = 0,

where the coefficients are:

A = b1c1 − a1d1k

B = b2c1 + b1c2 − a1d2k − a2d1k

C = b2c2 − a2d2k

D = b3c1 + c3b1 − a3d1k − a1d3k

E = b3c2 + b2c3 − a2d3k − a3d2k

F = b3c3 − a3d3k.

By the symmetry of these equations we can see that
the bisector in S(s, t, EA, EB , EC , ED) is the same as
the bisector in S(s, t, EB , EA, ED, EC).1 �

We present several ways to simplify the bisector de-
pending on the sector case.

3.1 Finding Bisectors in a Sector

There are three main sector types: sectors with four
distinct edges, sectors with three, and sectors with two.
We begin with the four edge case. It is a well known fact
from projective geometry that there exists a projective
transformation that maps any convex quadrilateral to
another (see Figure 2). For the sake of completeness,
we present the derivation of this transformation for the
special case where the target is the unit square.

Observation 1 Bisectors in the four-edge case can be
projectively transformed and solved in the unit square.

Proof. Suppose we are in a strictly four-edge sec-
tor S(s, t, EA, EB , EC , ED) with edges EA, EC , EB , ED

counter clockwise. Let our edges extend out infinity and
let p1 = EA ∩ ED, p2 = EA ∩ EC , p3 = EB ∩ EC , and
p4 = EB ∩ ED. Consider the vector:

QT = [q1,x, q1,y, q2,x, q2,y, q3,x, q3,y, q4,x, q4,y],

1We would like to thank Daniel Skora for comments on a pre-
vious version of this proof.

Figure 2: A projection between two quadrilaterals.

where q1 = (0, 0), q2 = (0, 1), q3 = (1, 1), and q4 =
(1, 0). Then we can calculate the projective transforma-
tion matrix T such that P ′ = TP when T sends points
P on our quadrilateral to the unit square. We force the
right corner of T to be 1 to fix our scaling factor.

x′

y′

1

t11 t12 t13

t21 t22 t23

t31 t32 1

 =

x
y
1

We solve for the elements of T using the follow-
ing matrices: MV = Q where V = [t11, t12, . . .]

ᵀ,
Q = [q1,x, q1,y, . . .]

ᵀ and M is:

p1,x p1,y 1 0 0 0 −p1,x q1,x −p1,y q1,x

0 0 0 p1,x p1,y 1 −p1,x q1,y −p1,y q1,y

p2,x p2,y 1 0 0 0 −p2,x q2,x −p2,y q2,x

0 0 0 p2,x p2,y 1 −p2,x q2,y −p2,y q2,y

p3,x p3,y 1 0 0 0 −p3,x q3,x −p3,y q3,x

0 0 0 p3,x p3,y 1 −p3,x q3,y −p3,y q3,y

p4,x p4,y 1 0 0 0 −p4,x q4,x −p4,y q4,x

0 0 0 p4,x p4,y 1 −p4,x q4,y −p4,y q4,y

Since the Hilbert metric is invariant under projective
transformations, the final bisector can thus be com-
puted for the canonical case of the unit square and then
mapped back using the inverse transformation. �

Given this observation, we will assume henceforth
that any four edges case is in the unit square.

Lemma 2 When the four edges corresponding to a sec-
tor lie on four distinct lines, the bisector is either a hy-
perbola or a parabola.

Proof. Let S(s, t, EA, EB , EC , ED) be an arbitrary sec-
tor with four distinct edges. By applying Observation 1,
we may assume without loss of generality that EA, EB ,
EC , ED lie on the lines x = 0, x = 1, y = 0, and y = 1,
respectively. The discriminant of equation for our bi-
sector is given by B2 − 4AC. Substituting in for our
variables, we get (1− k)2 as our discriminant, which is
nonnegative. �

Next, let us consider the three-edge case. We will
refer to the edge that is hit twice by the Hilbert metric

251

35th Canadian Conference on Computational Geometry, 2023

in the sector as the shared edge, we have the following
three cases, depending on whether the shared edge is
behind both points with respect to the sector, in front
of both (see Figure 3), or behind one and in front of
the other (see Figure 4). As in the four-edge case, we
can projectively transform the problem to a canonical
form, as given in the following lemma. Define the unit
simplex in R2 to be the right triangle with vertices at
(0, 0), (1, 0), and (0, 1).

Observation 2 Bisectors in the three-edge case can be
projectively transformed and solved in the unit simplex.

Proof. The affine transformation between triangles is
well known and inherently projective. We provide it
here. A triangle with corners p, q, r can be projectively
transformed into the unit simplex with the matrix T−1,
where:

T =

px − rx py − ry 0
qx − rx qy − ry 0
rx ry 1

 .

Observe that T−1 sends a point P on the left from our
original triangle to the unit simplex. �

Lemma 3 Given any three-edge sector, where the
shared edge is in front or behind of both sites, the bisec-
tor between the two sites in the sector is a straight line
through the vanishing point of the non-shared edges.

EA EC

EB

O

p
q

s t

Figure 3: Illustration for the proof of Lemma 4 (a bi-
sector in the three-edge case with shared edge in front
of both sites).

Proof. We prove this geometrically for both cases
S(s, t, EA, EB , EC , ED) with edges EB = ED and
S(s, t, EA, EB , EC , ED) with edges EA = EC .

Consider the case in which the edge is in front of
both sites, S(s, t, EA, EB , EC , EB). Let p be a point
in the sector such that H(s, p) = H(t, p), and let O
be vanishing point of EA and EC . We claim the bi-
sector is a straight line through Op. Let q be a point
on the segment Op in the sector. Using the geodesic
triangle inequality in the Funk metric we get F (t, q) =

F (t, p)+F (p, q) and F (s, q) = F (s, p)+F (p, q) [16]. By
definition, F (s, p) + F (p, s) = F (t, p) + F (p, t). Substi-
tuting in our previous equations and cancelling F (p, q)
we have F (s, q)+F (p, s) = F (t, q)+F (p, t). Using prop-
erties of similar triangles and rearranging the equation
we can see that F (s, q) − F (t, q) = log((|pEc|/|tEc|) ·
(|sEA|/|pEA|)). Note that |pEc|/|pEA| = |qEc|/|qEA|.
Substituting in and using the definition of the Funk met-
ric we get F (s, q)− F (t, q) = F (q, t)− F (q, s), yielding
H(s, q) = H(t, q). By choosing p to be the lowest point
on the bisector in the sector we get our characterization
of the bisector as a line.

Note the case where the shared edge is behind both
sites follows from the symmetry of the general equation
of the bisector. �

Lemma 4 Given a three-edge sector in which the
shared edge is in front of one site and behind the other,
the bisector between the sites can be a conic of any type
(ellipse, parabola, or hyperbola) depending on their rel-
ative positions. Further, when either site is fixed, there
exists a line such that the type of conic is determined by
the location of the other site with respect to this line (an
ellipse if it lies on one side, hyperbola if on the other
side, and parabola if lies on the line).

Proof. We prove this algebraically for, without loss
of generality, S(s, t, EA, EB , EC , ED) with edges EB =
EC , and all other edges lying on distinct lines.

By Observation 2, it suffices to assume that the tri-
angle has been mapped to the unit simplex. Let the
edge EA lie on the line y = 0, EB and EC lie on the
line x + y − 1 = 0, and ED lie on the line x = 0. By
applying Theorem 1 with these values, the bisector is
given by x2 + (2− k)xy + y2 − 2x− 2y + 1 = 0, where

k =
sx+sy−1

tx

tx+ty−1
sy

. The discriminant of the equation

of the bisector is (2−k)2−4, which reduces to k(k−4).
By standard results on conics, the type of conic depends
on the sign of the discriminant. Note that k is always
positive since (sx, sy) and (tx, ty) are in the unit sim-
plex. Given this, the discriminant changes sign when
k = 4. Thus, the conic type is given by the sign of the
function (sx + sy−1)(tx + ty−1)−4sxtx. Observe that
when either s or t is fixed, this is a linear equation in
coordinates of the other site. Thus, fixing s yields a line,
and the type of conic (ellipse, hyperbola, or parabola)
is determined by the location of t relative to this line.
The elliptical case holds when t is on one side, the hy-
perbolic case when it is on the other, and the parabolic
case when it lies on the line. This applies symmetrically
for t. �

Figure 4 illustrates four examples of conics as de-
scribed by Lemma 4. The site coordinates and discrim-
inant are given in Table 1. Note that the ellipse case
and hyperbola case happen in general position.

252

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 4: The bisector conics for the cases given in Ta-
ble 1 visualized.

Table 1: The bisector cases illustrated in Figure 4 for
the three-edge case.

s t Discriminant
Ellipse (0.2,0.2) (0.45,0.4) -3

Hyperbola (0.2,0.2) (0.25,0.4) 0.84
Circle (0.1,0.15) (0.6,0.16) -4

Parabola (0.1,0.1) (0.2,0.7) 0

Now that we have evaluated the three-edge case we
will evaluate the two-edge case.

Note that given a sector S(s, t, EA, EB , EC , ED) with
EA = ED and EB = EC , we can choose a point p on
EA, q on EB , and let EA∩EB = r and affinely map the
triangle pqr into the unit simplex using Observation 2.

Lemma 5 Given a two edge sector, S(s, t, EA, EB ,
EC , ED) with x = 0 as EA = ED, and y = 0 as EB =
EC , the bisector between s and t is given by the following
linear equation: y =

√
kx which passes through the van-

ishing point of EA and EB where k = (sy/tx) · (ty/sx).

Proof. Plugging in to the general equation for the bi-
sector in a sector give us −kx2 + y2 = 0 with k =
(sy/tx) · (ty/sx) and solving gives us one viable solu-

tion y =
√
kx. It is clear that this goes through the

vanishing point of EA and EB . �

p

s
t

O

EA = EC

EB = ED

Figure 5: The point p is equidistant from both sites s
and t by the invariance of the cross ratio.

4 Analysis of Hilbert Voronoi Diagrams

The Hilbert metric has some unique features that are
not present in the Euclidean metric, In particular, in
degenerate cases bisectors in the Hilbert metric can con-
tain two dimensional polygons. Next, we present a nec-
essary and sufficient condition for this occurrence.

Lemma 6 The bisector between two sites s and t con-
tains a Hilbert ball of some radius r if and only if both
sites lie on a ray through a vertex V at the vanish-
ing point of two edges EA and EB of Ω and the sector
S(s, t, EA, EB , EB , EA) exists.

Proof. (⇐=) Consider that the Hilbert distance from s
and t to any point p in S(s, t, EA, EB , EB , EA), from the
perspective of both s and t, is equal by the invariance of
the cross ratio. Hence, the entire sector in which both
s and t are between EA and EB is part of the bisector
between s and t. By assumption, Ω is a bounded convex
polygonal body, so our bisector will contain some fully
2-dimensional region. Note that we can always fit a
Euclidean ball in any 2-dimensional region, and by we
therefore must be able to fit a Hilbert ball in one as
well [16].

(=⇒) Suppose the bisector between two sites s and t
contains a Hilbert ball N . Then there exists a ball N ′

nested in N so that N ′ lies entirely within one sector
T . Note that the cross ratio between either site and
any point in N ′ must be equivalent. We assert that T
is defined by at most two edges of Ω.

Suppose that there were more than two unique edges
defining T . Consider a point, p, in N ′. Take a pair of
edges with respect to one site and consider the ray from
the vanishing point of that pair of edges through p. Note
that moving p along this line will not change its distance
to the site, however, since this sector is defined by more
than two edges, it will from the other site. Hence, there
can be only two edges of Ω defining T .

253

35th Canadian Conference on Computational Geometry, 2023

Figure 6: A discontinuity in the Hilbert metric Voronoi.

By the continuity of the Hilbert Metric, it must be
that both sites lie on the same side of the bisector in T.
Otherwise, we could move closer to one site and further
from the other. Since both sites lie on the same side
of their bisector, share two edges with respect to every
point in N ′, and are the same distance to every point
in N ′, they must lie on a ray through o. �

Given this, we can see that any dynamic Hilbert
Voronoi diagram will contain discontinuities whenever
a site passes over a ray from a vanishing point of a pair
of edges and another site. (See Figure 6 for an example.)

Another property of Hilbert Voronoi diagrams that
is distinct from Euclidean Voronoi diagrams is that
three sites in general position do not necessarily cre-
ate a Voronoi vertex. In particular given two site s and
t, there exists a space of positive measure such no ball
containing a point in that space on its boundary can
contain both s and t on its boundary.

Lemma 7 There exists a quadrilateral region Z of pos-
itive measure between any two sites s and t in a convex
polygonal Ω, such that for all r ∈ Z, there is no Hilbert
ball whose boundary passes through r, s and t.

Proof. Let Ω have m edges, denoted {E1, . . . , Em}.
Let s and t be two sites in Ω. Take O to be
the set of vanishing points on pairs of edges O =
{O1,2, O1,3, . . . , Om−1,m} when Oi,j refers to the van-
ishing point of edges Ei and Ej . Let Ri,j be the area
between rays Oi,js and Oi,jt intersected with Ω. Let
R = {R1,2, R1,3, . . . , Rm−1,m}.

Let Z =
⋂

RRi,j . By definition, Z is a polygon whose
edges pass through both s and t, which always contains
st. Note that it is equal to st if and only if s and t lie
on a ray through an element of O.

Consider the boundary of Z. We begin by proving that
Z is a quadrilateral. Without loss of generality let us
consider only the top half of Z above the line st. Let
the first two rays leaving s and t and forming part of the
boundary of Z be denoted ls and lt, respectively. Let
ls and lt intersect at a point v. If v is not in Z, there
must exist some line l that intersects both ls and lt and
either s or t, and therefore, must be one of the original
rays ls or lt. This contradicts the fact that v is not in
Z. Hence we know Z must be a quadrilateral. Next,

s

t

E1

E2

E3

E4

O1,3

O2,3

O1,2
O1,4

O3,4

O2,4

Figure 7: Illustration of region Z.

we prove that no ball through s and t can intersect the
interior of Z on its boundary.

To do this, we prove that any ball containing s and t
must contain Z. Consider an arbitrary Hilbert ball N
with s and t on its boundary. Note that the boundary of
N must be made of segments along rays passing through
elements of O. Since s and t are on the boundary N , it
must be that if an edge, W of N , intersects Z it would
cut through, without loss of generality, the top half of
the quadrilateral. Extending W , we see that it must
intersect ls and lt at exactly one point each. LetW come
from a ray passing through O′ ∈ O. Consider segments
through s and t created by the rays through O′. Note
that W must be either above or below O′s and O′t, or
otherwise either s or t would not be on the boundary.
However, Z is contained in the region between O′s and
O′t, so W cannot cut through it, contradiction. Hence
we can see that N must contain the interior of Z. �

5 Software

In this section we present our software for Dynamic
Voronoi Diagrams in the Hilbert metric.

Our software is built on the structure provided by
the software presented by Nielsen and Shao [15]. We
contributed by implementing a dynamic insertion algo-
rithm. The insertion process works as follows.

Given an existing convex body Ω with a set of sites
S, suppose the user chooses to insert a new site t. Our
software will subdivide Ω into sectors from the perspec-
tive of t. Then for each site s ∈ S our software cal-
culates VorΩ,{s,t}(t). This is done by tracing the bi-
sector through the cell decomposition on Ω induced by
the sectors of both s and t using the method described
in [10]. While the bisector is approximated using line
segments, the equation of the bisector is printed to the
terminal window along with the sector information. Our
algorithm will then update the Voronoi cell of all previ-
ously calculated s ∈ S’s as VorΩ,S∪{t}(s) = VorΩ,S(s)∩
VorΩ,{s,t}(s), and insert VorΩ,S(t) =

⋂
s∈S VorΩ,{s,t}(t)

into the Voronoi diagram. Our software runs in

254

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

quadratic time in terms of the number of sites and
vertices of Ω and is available at https://github.com/
caesardai/Voronoi_In_Hilbert/tree/main/src.

6 Concluding Remarks

In this paper, we presented an analysis of dynamic
Voronoi diagrams in the Hilbert metric and presented
software for the creation of such diagrams. As discussed
in the introduction, the Hilbert metric is useful in the
study of quantum information theory [19], real analy-
sis [13], optimization [6], and network analysis [7]. Re-
search in these fields may benefit from further exten-
sions of algorithmic results in Euclidean to Hilbert ge-
ometry.

References

[1] Ahmed Abdelkader, Sunil Arya, Guilherme Dias
da Fonseca, and David M. Mount. Approximate
nearest neighbor searching with non-euclidean and
weighted distances. In Proc. 30th Annu. ACM-
SIAM Sympos. Discrete Algorithms, pages 355–
372, 2019. doi:10.1137/1.9781611975482.23.

[2] Rahul Arya, Sunil Arya, Guilherme Dias da Fon-
seca, and David M. Mount. Optimal bound on the
combinatorial complexity of approximating poly-
topes. In Proc. 31st Annu. ACM-SIAM Sympos.
Discrete Algorithms, pages 786–805, 2020. doi:

10.1137/1.9781611975994.48.

[3] Sunil Arya, Guilherme Dias da Fonseca, and
David M. Mount. Near-optimal ε-kernel construc-
tion and related problems. In Proc. 33rd Internat.
Sympos. Comput. Geom., pages 10:1–15, 2017.

[4] Sunil Arya, Guilherme Dias da Fonseca, and
David M. Mount. On the combinatorial complex-
ity of approximating polytopes. Discrete Com-
put. Geom., 58(4):849–870, 2017. doi:10.1007/

s00454-016-9856-5.

[5] Yongxin Chen, Tryphon Georgiou, and Michele
Pavon. Optimal mass transport over bridges. In
Internat. Conf. Geom. Sci. of Inf., pages 77–84.
Springer, 2015.

[6] Yongxin Chen, Tryphon Georgiou, and Michele
Pavon. Entropic and displacement interpolation: a
computational approach using the hilbert metric.
SIAM J. Appl. Math., 76(6):2375–2396, 2016.

[7] Yongxin Chen, Tryphon T Georgiou, Michele
Pavon, and Allen Tannenbaum. Relaxed
schrödinger bridges and robust network routing.
IEEE Trans. Contr. Netw. Sys., 7(2):923–931,
2019.

[8] Friedrich Eisenbrand, Nicolai Hähnle, and Martin
Niemeier. Covering cubes and the closest vector
problem. In Proc. 27th Annu. Sympos. Comput.
Geom., pages 417–423, 2011.

[9] Friedrich Eisenbrand and Moritz Venzin. Approx-
imate CVPs in time 20.802n. Journal of Computer
and System Sciences, 2021.

[10] Auguste H. Gezalyan and David M. Mount.
Voronoi diagrams in the Hilbert metric. In Proc.
39th Internat. Sympos. Comput. Geom., pages
35:1–35:16, 2023. doi:10.4230/LIPIcs.SoCG.

2023.35.

[11] D. Hilbert. Ueber die gerade linie als kürzeste
verbindung zweier punkte. Mathematische An-
nalen, 46:91–96, 1895.

[12] Bas Lemmens and Roger Nussbaum. Nonlinear
Perron-Frobenius Theory, volume 189. Cambridge
University Press, 2012.

[13] Bas Lemmens and Roger Nussbaum. Birkhoff’s
version of hilbert’s metric and its applications in
analysis. arXiv preprint arXiv:1304.7921, 2013.

[14] Márton Naszódi and Moritz Venzin. Covering con-
vex bodies and the closest vector problem. arXiv
preprint arXiv:1908.08384, 2019.

[15] Frank Nielsen and Laetitia Shao. On balls in
a Hilbert polygonal geometry (multimedia contri-
bution). In Proc. 33rd Internat. Sympos. Com-
put. Geom., pages 67:1–67:4, 2017. doi:10.4230/

LIPIcs.SoCG.2017.67.

[16] Athanase Papadopoulos and Marc Troyanov. From
Funk to Hilbert geometry. arXiv preprint
arXiv:1406.6983, 2014.

[17] Athanase Papadopoulos and Marc Troyanov. From
Funk to Hilbert geometry. In Handbook of Hilbert
geometry, volume 22 of IRMA Lectures in Mathe-
matics and Theoretical Physics, pages 33–68. Eu-
ropean Mathematical Society Publishing House,
2014. doi:10.4171/147-1/2.

[18] Gabriel Peyré, Marco Cuturi, et al. Computational
optimal transport: With applications to data sci-
ence. Foundations and Trends R© in Machine Learn-
ing, 11(5-6):355–607, 2019.

[19] David Reeb, Michael J Kastoryano, and Michael M
Wolf. Hilbert’s projective metric in quantum infor-
mation theory. Journal of mathematical physics,
52(8):082201, 2011.

[20] Thomas Rothvoss and Moritz Venzin. Approxi-
mate CVP in time 20.802n – now in any norm!
arXiv preprint arXiv:2110.02387, 2021.

255

256

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Every Combinatorial Polyhedron Can Unfold with Overlap

Joseph O’Rourke∗

Abstract

Ghomi proved that every convex polyhedron could be
stretched via an affine transformation so that it has an
edge-unfolding to a net [Gho14]. A net is a simple pla-
nar polygon; in particular, it does not self-overlap. One
can view his result as establishing that every combinato-
rial polyhedron P has a metric realization P that allows
unfolding to a net.

Joseph Malkevitch asked if the reverse holds (in some
sense of “reverse”): Is there a combinatorial polyhedron
P such that, for every metric realization P in R3, and
for every spanning cut-tree T of the 1-skeleton, P cut
by T unfolds to a net? In this note we prove the answer
is no: every combinatorial polyhedron has a realization
and a cut-tree that edge-unfolds the polyhedron with
overlap.

1 Introduction

Joseph Malkevitch asked1 whether there is a combinato-
rial type P of a convex polyhedron P in R3 whose every
edge-unfolding results in a net. One could imagine, to
use his example, that every realization of a combina-
torial cube unfolds without overlap for each of its 384
spanning cut-trees [Tuf11].2 The purpose of this note
is to prove this is, alas, not true: every combinatorial
type can be realized and edge-unfolded to overlap: The-
orem 2 (Section 5). For an overlapping unfolding of a
combinatorial cube, see ahead to Figure 12.

An implication of Theorem 2, together with [Gho14],
is that a resolution of Dürer’s Problem [O’R13] must
focus on the geometry rather than the combinatorial
structure of convex polyhedra.

2 Proof Outline

We describe the overall proof plan in the form of a multi-
step algorithm. We will illustrate the steps with an
icosahedron before providing details.

∗Departments of Computer Science and of Mathematics, Smith
College, Northampton, MA 01063, USA. jorourke@smith.edu.

1Personal communication, Dec. 2022.
2Burnside’s Lemma can show that these 384 trees lead to 11

incongruent non-overlapping unfoldings of the cube [GSV19].

Algorithm. Realizing G to unfold with overlap.
Input : A 3-connected planar graph G.
Output : Polyhedron P realizing G and a cut-tree T that
unfolds P with overlap.

(1) Select outer face B as base.

(2) Embed B as a convex polygon in the plane.

(3) Apply Tutte’s theorem to calculate an equilibrium
stress for G.

(4) Apply Maxwell-Cremona lifting stressed G to P .

(5) Identify special triangle 4.

(6) Compress P vertically to reduce curvatures (if nec-
essary).

(7) Stretch P horizontally to sharpen the apex of 4 (if
necessary).

(8) Form cut-tree T , including ‘Z’ around 4.

(9) Unfold P \ T → Overlap.

We are given a 3-connected planar graph G, which
constitutes the combinatorial type of a convex poly-
hedron. By Steinitz’s theorem, we know G is the 1-
skeleton of a convex polyhedron. Initially assume G is
triangulated; this assumption will be removed in Sec-
tion 3.1.

(1) Select outer face B as base. Initially, any face suf-
fices. Later we will coordinate the choice of B with
the choice of the special triangle 4.

(2) Embed B as a convex polygon in the plane. Select
coordinates for the vertices of B, which then pin B
to the plane. B must be convex, but otherwise its
shape is arbitrary.

(3) Apply Tutte’s theorem [Tut63] to calculate an equi-
librium stress—positive weights on each edge of
G—that, when interpreted as forces, induce an
equilibrium (sum to zero) at every vertex. This
provides explicit coordinates for all vertices inte-
rior to B. The result is a Schlegel diagram, with
all interior faces convex regions. Figure 1 illustrates
this for the icosahedron.3

3Here the drawing is approximate, because I did not explicitly
calculate the equilibrium stresses.

257

35th Canadian Conference on Computational Geometry, 2023

Figure 1: Icosahedron Schlegel diagram.

(4) Apply Maxwell-Cremona lifting to P . The
Maxwell-Cremona theorem says that any straight-
line planar drawing with an equilibrium stress has
a polyhedral lifting via a “reciprocal diagram.” The
details are not needed here;4 we only need the re-
sulting lifted polyhedron. An example from [Sch08]
shows the vertical lifting of a Schlegel diagram of
the dodecahedron: Figure 2. A lifting of the ver-
tices of the icosahedron in Figure 1 is shown in
Figure 3.5

Figure 2: Maxwell-Cremona lifting to a dodecahedral
diagram. [Sch08], by permission of author.

Figure 3: Vertical lifting the vertices of the icosahedron
Schlegel diagram in Figure 1.

(5) Identify special triangle 4. This special triangle
must satisfy several conditions, which we detail
later (Section 3). For now, we select 4 = a1a2a3 =
6, 8, 5 in Figure 4.

4A good resource on this topic is [RG06].
5This is again an approximation as I did not calculate the

reciprocal diagram.

9

12

10

2

7

11

11

5

5

4

6

3

3

3

8

1
19

18

1
2

14

13 10

712 3

15
16

17

20

4

5

8

6

9

3

2

1

11

5

6

8

9

10

12

7
4

Δ Δ'

Figure 4: Red: face numbers; blue: vertex indices. 4 =
5, 4′ = 6. Z-portion of spanning tree T red; remainder
blue.

(6) Compress P vertically (if necessary) to reduce cur-
vatures. Not needed in icosahedron example.

(7) Stretch P horizontally (if necessary) to sharpen
apex of 4. Not needed in icosahedron example.

(8) Form cut-tree T , including a ‘Z’-path around 4.
We think of a1 as the root of the spanning tree,
which includes the Z-shaped (red) path a1a2a3a4
around4 and the adjacent triangle4′ sharing edge
a2a3. In Figure 4, the Z vertex indices are 6, 8, 5, 11.
The remainder of T is completed arbitrarily.

(9) Unfold P \ T . Finally, the conditions on 4 ensure
that cutting T unfolds P with overlap along the
a2a3 edge. See Figure 5.

3 Conditions on 4

We continue to focus on triangulated polyhedra. In
order to guarantee overlap, the special triangle 4 =
a1a2a3 should satisfy several conditions:

1. The angle at a2 in 4 must be ≤ π/3 = 60◦, and
the edge a2a3 at least as long as a1a2.

2. The spanning cut-tree T must contain the Z as pre-
viously explained. In addition, no other edge of T

258

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

5
11

6

8

15
16

17 4

5 6

5

6

8
16

5

6

8

11

11

16

5

5

6

6

a2

a1

a3

a4

Figure 5: Close-up views of overlap.

is incident to either a1 or a2. In particular, edge
a1a3 is not cut, so the triangle 4 rotates as a unit
about a1.

3. The curvatures at a1 and a2 must be small. (The
curvature or “angle gap” at a vertex is 2π minus the
sum of the incident face angles.) We show below
that < 20◦ suffices.

4. 4 should be disjoint from the base B: 4 and B
share no vertices.

This 4th condition might be impossible to satisfy, in
which case an additional argument is needed (Section 4).
For now we concentrate on the first three conditions.
4 is chosen to be the triangle disjoint from B with

the smallest angle α. Clearly α ≤ π/3 = 60◦. Let
4 = a1a2a3 with a2 the smallest angle. Chose the labels
so that |a1a2| ≤ |a2a3|. It will be easy to see that 4 an
equilateral triangle is the “worst case” in that smaller
α lead to deeper overlap, and |a1a2| = |a2a3| suffices for
overlap. So we will assume 4 is an equilateral triangle.

Next, we address the requirement for small curva-
tures, when the second condition is satisfied: no other
edge of T is incident to either a1 or a2. Let ω be the
curvature at both a1 and a2. Then an elementary cal-
culation shows that ω = 1

9π = 20◦ would just barely
avoid overlap: see Figure 6.

One can view the flattening of a1 and a2 when cut
as first turning the edge a2a3 by ω about a2, and then
rotating the rigid path a1a2a

′
3 about a1 by ω. For any

ω strictly less than 20◦, overlap occurs along the a2a3
edge: Figure 6(b). The basic reason this “works” to
create overlap is that the cut-path around 4 is not ra-
dially monotone, a concept introduced in [O’R16] and

a2

a'3
a1 a3

20°

20°
10°

10°

60°

a2

a1 a3

60°

(a) (b)

Figure 6: (a) ω = 20◦ avoids overlap. (b) ω = 10◦

overlaps.

used in [O’R18] and [Rad21] to avoid overlap.

In the unfolded icosahedron in Figure 4, the angle at
a2 is 59◦, and the curvatures ω1, ω2 at a1, a2 are 2.4◦

and 8.1◦ respectively.

If the two curvatures are not less than 20◦, then we
scale P vertically, orthogonal to base B, step (6) of Al-
gorithm 2. As illustrated in Figure 7, this flattens dihe-
dral angles and reduces vertex curvatures (which reflect
the spread of the normals [Hor84]) at all but the ver-
tices of base B, which increase to compensate the Gsuss-
Bonnet sum of 4π. Clearly we can reduce curvatures as
much as desired.

Figure 7: Dihedral angle δ flattens as z-heights scaled:
(1, 12 ,

1
5)→ (90◦, 125◦, 160◦).

3.1 Non-Triangulated Polyhedra

If G and therefore P contains non-triangular faces, then
we employ step (7) of Algorithm 1: Scale P horizontally,
parallel to the xy plane containing B. For example, in
the dodecahedron example (Figure 2), no face has an
angle α ≤ π/3. The following lemma shows we can
sharpen any selected face angle.

Lemma 1. Any face angle ∠a1a2a3 can be reduced
via an affine stretching transformation to be arbitrar-
ily small.

259

35th Canadian Conference on Computational Geometry, 2023

Proof. Adjust the coordinate system so that a1a3 lies
in the yz-plane containing the origin, with a2 in the
x-positive halfspace, wlog at a2 = (1, a2y, a2z). See Fig-
ure 8. The Tutte-embedding guarantees that 4a1a2a3
is not degenerate—the three vertices are not collinear,
and Maxwell-Corona lifting guarantees the triangle is
not vertical because each vertex of the Schlegel dia-
gram lies in the relative interior of its neighbors [RG06,
p.126,136]. Now stretch all vertices by s > 1 in their
x-coordinate. This leaves a1 and a3 fixed, while a2
stretches horizontally to a′2 = (s, a2y, a2z). Eventually
with large s the angle ∠a1a′2a3 decreases monotonically
to zero, while maintaining |a1a′2| ≤ |a′2a3|.

So we can identify a 4 within any face, stretch its
angle below 60◦, and proceed just as in a triangulated
polyhedron: Because a1a3 is not cut, having 4 joined
to a triangle below (4 in Figure 4) is no different than
having 4 part of a face.

a1

a3

a2

a'2

x

z
y

Figure 8: Stretching ∠a1a2a3 = 108◦ to ∠a1a′2a3 = 53◦.

4 No Pair of Disjoint Faces

Finally we focus on the 4th condition that 4 should be
disjoint from the base B. If G contains any two disjoint
faces, triangles or k-gon faces with k > 3, we select one
as B and the other to yield 4. So what remains is those
G with no pair of disjoint faces.

For example, a pyramid—a base convex polygon plus
one vertex a (the apex) above the base—has no pair of
disjoint faces. However, note that a pyramid has pairs
of faces that share one vertex but not two vertices. It
turns out that this suffices to achieve the same struc-
ture of overlap. Figure 9 illustrates why. Here B is a
triangle b1b2a3 and we select 4 = a1a2a3. The small-
curvature requirement holds just for a1, a2—the start of
the Z—the curvature at a3 could be large (117◦ in this

example) but does not play a role, as the unfolding il-
lustrates. Therefore, if G has no pair of disjoint faces,
but does have a pair of faces that share a single vertex,
we proceed just in Algorithm 1, suitably modified.

a1 a3

a2

b2

b1

a1 a3

b'2

b'1

b'2(a) (b)

Figure 9: (a) B and 4 share a3. Z = a1a2a3b2. (b) Un-
folding with overlap.

For the pyramid example, two triangles sharing just
the apex would serve as 4 and base B. Consider the
square pyramid in Figure 10(a), with B and 4 marked.
Mapping4 = 145 to4 = a1a2a3 at the shared pyramid
apex, (b) of the figure shows that this is equivalent to
Figure 9(a). A hexagonal pyramid is illustrated in the
Appendix.

b2

a1

b1

a3
1 2

34

5

1

2

3

4

5

a2

BΔ

(a) (b)

Δ

Δʹ

Figure 10: (a) Square pyramid Schlegel diagram, apex
5, square base 1234. (b) Relablled to match Figure 9(a).

This leaves the case where there are no two disjoint
faces, nor two faces that share just a single vertex: ev-
ery pair of faces shares two or more vertices. If two
faces share non-adjacent vertices, they cannot both be
convex. So in fact the condition is that each two faces
share an edge. Then, it is not difficult to see that G can
only be a tetrahedron, as the following argument shows.

Start with Euler’s formula, V −E+F = 2. Each ver-
tex v must be incident to exactly three faces, because,
if v has degree ≥ 4, then each non-adjacent pair of faces
incident to v cannot share an edge. So 3V = 2E. Sub-

260

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

stituting into Euler’s formula yields F = 2 + E/3.

Because each pair of faces share an edge, F (F − 1)
double counts edges:6 2E = F (F − 1). Substituting,

F = 2 + E/3

E = F (F − 1)/2

F = 2 + F (F − 1)/6

F 2 − 7F + 12 = 0

The two solutions of this quadratic equation are F = 3,
which cannot form a closed polyhedron, and F = 4.
The tetrahedron is the only polyhedron with four faces,
and indeed F = 4 implies V = 4 and E = 6.

So the only case remaining is a tetrahedron. But
it is well known that the thin, nearly flat tetrahedron
unfolds with overlap: Figure 11. And since there is only
one tetrahedron combinatorial type, this completes the
inventory.

Figure 11: Figure 28.2 [detail], p.314 in [DO07]: tetra-
hedron overlap. Blue: exterior. Red: interior. Cut tree
T = abcd. (T is a combinatorial ‘Z’.)

5 Theorem

We have proved this theorem:

Theorem 2. Any 3-connected planar graph G can be
realized as a convex polyhedron P in R3 that has a span-
ning cut-tree T such that the edge-unfolding of P \ T
overlaps in the plane.

So together with Ghomi’s result,7 any combinatorial
polyhedron type can be realized to unfold and avoid
overlap, or realized to unfold with overlap.

6Similar logic is used to form Szilassi’s polyhedral torus.
7See [SZ18] for a different proof of [Gho14].

Returning to Malkevitch’s example of a combinato-
rial cube, consider Figure 12. Starting from the stan-
dard Schlegel diagram for a cube (one square inside an-
other (B), trapezoid faces between the squares), hori-
zontal stretching (step (7) of Algorithm 1) is applied to
squeeze the top and bottom squares to 1×2 and 2×4 di-
amonds, so that the angle at a2 becomes small, in this
case 2 arctan(1/2) ≈ 53◦. The lifting leaves the cur-
vatures at a1, a2 to be small enough, 6.0◦, 6.5◦, so the
vertical scaling step (6) of Algorithm 1 is not needed.

a2

b3 b3b1

b4

a3

a2

b2

a1 a3 a1

B

Figure 12: Unfolding of a combinatorial cube. Diago-
nals in the left figure are an artifact of the software; all
lateral faces are planar congruent trapezoids. Base B
attached left of b1b4 not shown. Vertex coordinates:

(−1, 0, 0.5), (1, 0, 0.5), (0,−2, 0.5), (0, 2, 0.5),

(−2, 0, 0), (2, 0, 0), (0,−4, 0), (0, 4, 0)

6 Open Problem

Is there a combinatorial type P of a Hamiltonian poly-
hedron (i.e., one with a Hamiltonian path), such that,
for every metric realization P ⊂ R3, and every Hamil-
tonian path T , P \ T unfolds to a net?

This restricts Malkevitch’s question to combinatorial
Hamiltonian polyhedra P, and restricts T to a Hamil-
tonian path, producing a zipper unfolding [DDL+10].
Note: Some convex polyhedra are not Hamiltonian, e.g.,
the rhombic dodecahedron.

To rephrase the question: Is there a combinatorial
Hamiltonian polyhedron whose every metric realization
and zipper unfolding avoids overlap? Or is there instead
an analog of Theorem 2 showing that even under these
restrictions, there is always a realization and a zipper
unfolding that overlaps?

Acknowledgements. I benefitted from discussions
with Richard Mabry and Joseph Malkevitch, and three

261

35th Canadian Conference on Computational Geometry, 2023

referees. In particular, one referee suggested Lemma 1
to repair an oversight.

262

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[DDL+10] Erik D. Demaine, Martin L. Demaine, Anna Lu-
biw, Arlo Shallit, and Jonah Shallit. Zipper un-
foldings of polyhedral complexes. In Proc. 22nd
Canad. Conf. Comput. Geom., pages 219–222,
August 2010.

[DO07] Erik D. Demaine and Joseph O’Rourke. Geo-
metric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, 2007.
http://www.gfalop.org.

[Gho14] Mohammad Ghomi. Affine unfoldings of convex
polyhedra. Geometry & Topology, 18(5):3055–
3090, 2014.

[GSV19] Richard Goldstone and Robert Suzzi Valli. Un-
foldings of the cube. The College Mathematics
Journal, 50(3):173–184, 2019.

[Hor84] Berthold K. P. Horn. Extended Gaussian images.
Proceedings of the IEEE, 72(12):1671–1686, 1984.

[O’R13] Joseph O’Rourke. Dürer’s problem. In Marjorie
Senechal, editor, Shaping Space: Exploring Poly-
hedra in Nature, Art, and the Geometrical Imag-
ination, pages 77–86. Springer, 2013.

[O’R16] Joseph O’Rourke. Unfolding convex
polyhedra via radially monotone cut
trees. arXiv:1607.07421, 2016. https:

//arxiv.org/abs/1607.07421.

[O’R18] Joseph O’Rourke. Edge-unfolding nearly flat
convex caps. In Proc. Symp. Comput. Geom.
(SoCG), volume 99, pages 64:1–64:14. Leibniz
Internat. Proc. Informatics, June 2018. Full ver-
sion: https://arxiv.org/abs/1707.01006.

[Rad21] Manuel Radons. Edge-unfolding nested prisma-
toids. arXiv:2105.00555, 2021.

[RG06] Jürgen Richter-Gebert. Realization Spaces of
Polytopes. Springer, 2006.

[Sch08] André Schulz. Lifting planar graphs to real-
ize integral 3-polytopes and topics in pseudo-
triangulations. PhD thesis, Univerität Berlin,
2008.

[SZ18] Gözde Sert and Sergio Zamora. On unfoldings
of stretched polyhedra. arXiv:1803.09828, 2018.
https://arxiv.org/abs/1803.09828.

[Tuf11] Christopher Tuffley. Counting the spanning trees
of the 3-cube using edge slides. arXiv:1109.6393,
2011. https://arxiv.org/abs/1109.6393.

[Tut63] William T. Tutte. How to draw a graph. Proc.
London Mathematical Society, 13(52):743–768,
1963.

A Hexagonal Prism

Figure 13 shows a hexagonal prism, following the model
of the square prism in Figure 10: no pair of faces are
disjoint, but 4 and B marked share just one vertex.
Figure 14 shows its overlapping unfolding.

1 2

1

2

3

45

6 7
B

(a) (b)

Δ
5

6 7
Δ

3

4

a1
a3

a2
Δʹ

Figure 13: (a) Schlegel diagram of a hexagonal prism.
(b) Overhead view of combinatorial rearrangement. The
cut tree T is marked with red and blue paths.

1

2

3

4

6

4

1

5

7

7

B

Δ

Figure 14: Unfolding of Figure 13(b). Curvature at v6
and v5 is 5.7◦. Vertices 1 and 4 are collinear with 26
and 35 respectively. Hexagon: 123456.

263

264

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Reconfiguration of Linear Surface Chemical Reaction Networks with
Bounded State Change

Robert M. Alaniz∗ Michael Coulombe† Erik D. Demaine† Bin Fu∗ Timothy Gomez†

Elise Grizzell∗ Ryan Knobel∗ Andrew Rodriguez∗ Robert Schweller∗ Tim Wylie∗

Abstract

We present results on the complexity of reconfigura-
tion of surface Chemical Reaction Networks (sCRNs)
in a model where surface vertices can change state a
bounded number of times based on a given burnout pa-
rameter k. We primarily focus on linear 1× n surfaces.
Without a burnout bound, or even with an exponen-
tially high bound on burnout, reconfiguration on linear
surfaces is known to be PSPACE-complete. In contrast,
we show that the problem becomes NP-complete when
the burnout k is polynomially bounded in n. For smaller
k = O(1), we show the problem is polynomial-time solv-
able, and in the special case of k = 1 burnout, reconfig-
uration can be solved in linear O(n + |R|) time, where
|R| denotes the number of system rules. We addition-
ally explore some extensions of this problem to more
general graphs, including a fixed-parameter tractable
algorithm in the height m of an m × n rectangle in
1-burnout, a polynomial-time solution for 1-burnout in
general graphs if reactions are non-catalytic, and an NP-
complete result for 1-burnout in general graphs.

1 Introduction

A prominent area of research in molecular computation,
Chemical Reaction Networks (CRNs), study well-mixed
solutions of molecules. Limited by the inherent lack of
geometry, the model has important restrictions on its
computational power, including no proven capability of
error-free computation of logarithm [6] or Turing uni-
versality [16]. Specifically, CRNs are capable of com-
puting all semilinear functions [5]. The introduction of
a surface and, by extension, geometry, with abstract
Surface Chemical Reaction Networks (sCRNs) removes
these limitations, and thus has increased computational
power. Molecular computing on a surface is an increas-
ingly popular direction in both experimental [4, 18] and
theoretical [10, 13] research.

In this paper, we explore a restricted version of the
powerful surface CRN model, where each molecule in
the system can only change in a reaction a set number of

∗Department of Computer Science, University of Texas Rio
Grande Valley
†Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology

times. We refer to this constraint as burnout. Bounding
the number of state changes leads to polynomial-time
and XP algorithms for many reconfiguration problems
that are otherwise PSPACE-complete.

Motivations for the study of problems with burnout
include examples such as optimizing limited lifetime
biomolecules or modeling redox reactions in which the
electron transfer from one chemical species to another
increases the cost of further reaction beyond what any
other current or future neighbors could afford.

1.1 Previous Work

Surface Chemical Reaction Networks (sCRNs) were in-
troduced in [15] with a simulator provided in [7]. These
papers show various constructions such as Boolean cir-
cuits and a Cellular Automata simulation.

Another restricted version of sCRNs uses only swap
reactions, in which the two species only change position,
Example: A + B → B + A. In [2], the authors show
swap reactions are capable of feed-forward computation
and provide an analysis of thermodynamic properties of
the circuit. Recently, [1] showed that reconfiguration is
PSPACE-complete for swap surface CRNs with only 4
species and 3 reactions, and in P with any system of
fewer species or reactions. This work also introduces k-
burnout surface CRNs and show two important results:
that 1-reconfiguration (whether a single cell can change)
is NP-complete with 1-burnout and that general recon-
figuration is NP-complete with 2-burnout. Burnout is
similar to the freezing concept from Cellular Automata
[11, 12, 17] and Tile Automata [3], but while freezing is
defined as having an ordering on states or a tile never
revisiting a state, burnout is a constraint where a cell
never reacts more than a fixed number of times. Thus,
returning to a previous state is possible, unlike the freez-
ing restrictions.

1D Cellular Automata are capable of Turing compu-
tation from [8]. P-completeness of prediction, is this cell
in state at time step less than t, for Cellular Automata
Rule 110 was shown in [14], implying it is also capable of
efficient computation. This problem is also P-complete
for a number of Freezing CAs in 2D, while it is always
in NL for Freezing 1D CAs [12]. This work also gives a
1D freezing CA, which is Turing universal.

265

35th Canadian Conference on Computational Geometry, 2023

Shape Burnout Result Theorem
1× n 1 O(n+ |R|) Thm. 1
1× n 2 O(n · |S|2 · |R|4) Thm. 2
1× n O(1) P for O(1) degree Thm. 3
1× n k (unary) NP-complete Thm. 4
1× n Unbounded PSPACE-complete [15]

Planar 1 O(|V |1.5 + |R|) Thm. 5**
General 1 NP-complete Thm. 7

m× n 1 NP-complete [1]‡

m× n 1 FPT in m Thm. 8‡

Table 1: Comparison of reconfiguration results. For a
CRN system, R is the set of rules and S is the set of
species. V is the set of vertices for the graph defining
the shape. **Non-catalytic rules only. ‡These results
are for the problem of 1-Reconfiguration.

1.2 Our Contributions

This work investigates the reconfiguration problem for
linear surface CRNs with k-burnout. Our results are
outlined in Table 1. We begin in Section 3, where we
present a polynomial-time algorithm for 1D 1-burnout.
We then increase the burnout number to investigate
1D 2-burnout systems and prove that this is still in P.
Following this, we show that for the case of any fixed
k = O(1), there exists an algorithm that has a polyno-
mial runtime. In the terms of parameterized complex-
ity classes, this is the class XP, also known as slice-wise
polynomial [9]. We then present an NP-completeness
proof for when the burnout is a unary input. This re-
sult contrasts PSPACE-completeness known when the
burnout is unbounded or exponentially high [15].

After 1×n lines, we begin investigating 1-burnout in
2D systems in Section 5. We start with the problem
of reconfiguration, where we only have non-catalytic
rules. We then show that on an arbitrary graph and
with all types of rules, the reconfiguration problem
is NP-complete. Finally, we study the problem of 1-
reconfiguration for bounded-height surfaces, presenting
an XP algorithm parameterized by height.

2 Preliminaries

A brief overview of the model and relevant problems.
Surface, Cells and Species. A surface for a CRN

Γ is an undirected graph G of large size n. The vertices
of the surface are also referred to as cells. Many of our
results deal with 1× n grid graphs, or linear surfaces.

The state of a vertex is representative of a molecu-
lar species in the system. Chemical reactions consid-
ered here are bimolecular, as in they occur between two
species in neighboring vertices. A rule denoting that
neighboring species A and B may react to become C
and D is written as A + B → C + D. This is a non-
catalytic rule, as both species change. In a catalytic
reaction, only one of the two species will change, e.g.

{

Species

Reaction Rules

⟶

⟶

⟶

(a)

⟶

Left Catalytic

vi

⟶vi-1

Left

vi

⟶

Right Final

vi

(b)

Figure 1: (a) An example sCRN system with 4 species,
three rules, and 1 burnout. (b) Rule types used in
Figure 2 example. Note: The red ring outline shows
whether the vertex has been “burned out.” There is no
effect on the reaction rule itself.

Initial Configuration Final Configuration

Figure 2: A possible sequence of reactions for the system
described in Figure 1

C +D → C +B, the other used as a catalyst.
A surface Chemical Reaction Network (sCRN)

consists of a surface, a set of molecular species S, and
a set of reaction rules R. A configuration is a mapping
from each vertex to a species from the set S.

Reachable Configurations. For two configurations
I, T , we write I →1

Γ T if there exists a r ∈ R such that
performing reaction r on a pair of species in I yields the
configuration T . Let I →Γ T be the transitive closure
of I →1

Γ T , including loops from each configuration to
itself. Let Π(Γ, I) be the set of all configurations T
where I →Γ T is true.

Burnout. A limit on the number of changes that can
occur in any vertex vi. In systems that allow catalytic
reactions, after this limit has been reached, while vi will
not change again, neighboring species may still use the
species in that cell as a catalyst.

Reconfiguration Problem. Given an sCRN Γ and
two configurations I and T , is T ∈ Π(Γ, I)?

1-Reconfiguration Problem. Given an sCRN Γ,
configuration I, vertex v, and species s, does there exist
a T ∈ Π(Γ, I) such that T has species s at vertex v?

3 Algorithms for Constant Burnout

We show that reconfiguration of a linear surface is solv-
able in polynomial-time when the burnout is one or two.

3.1 1-Burnout Linear Surfaces

In the case of 1-burnout with a 1× n line, the problem
of reconfiguration is solvable in linear time with respect
to n and the size of the rule set. As an observation,
there are at most six reactions for any vertex, vi, on a

266

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

linear surface since a vertex has at most two neighbors.
These reactions include the following:

• A left reaction, where vertex vi reacts with vertex
vi−1 and both vertices reach their final states.

• A left catalytic reaction, where vertex vi reacts with
vertex vi−1 in its initial state to transition vertex
vi to its final state without changing vi−1.

• A left final-catalytic reaction (or left final), where
vertex vi reacts with vertex vi−1 in its final state to
transition vertex vi to its final state without chang-
ing vi−1.

• A right reaction, where vertex vi reacts with vertex
vi+1 and both vertices reach their final states.

• A right catalytic reaction, where vertex vi reacts
with vertex vi+1 in its initial state to transition
vertex vi to its final state without changing vi+1.

• A right final-catalytic reaction (or right final),
where vertex vi reacts with vertex vi+1 in its fi-
nal state to transition vertex vi to its final state
without changing vi+1.

Additionally, we also consider when a vertex is in its fi-
nal state. An example system and sequence of reactions
can be found in Figures 1 and 2.

We construct a 7 × n table (Example in Table 2),
where each row represents one of the possible reactions,
including no reaction, and each column represents the
starting configuration’s vertices from left to right. For
each entry in the table, we see if the reaction exists for
that vertex and if the vertex reaches its final state. If
both cases are satisfied, place a 1 in the corresponding
row, otherwise, place a 0. After all cells are evaluated,
we construct a directed graph with edges being directed
from column i to column i+ 1 with the following prop-
erties for each row entry in column i:

• In final state: edge to every row in column i + 1
with a 1 except left reaction.

• Left final: edge to every row in column i + 1 with
a 1 except left reaction.

• Left catalytic: edge to every row in column i + 1
with a 1 except left reaction.

• Left reaction: edge to every row in column i + 1
with a 1 except left reaction.

• Right final: edge to every row in column i+ 1 with
a 1 except left reaction and left final.

• Right catalytic: edge to every row in column i+ 1
with a 1 except left reaction and left catalytic.

• Right reaction: edge only to the row corresponding
to left reaction in column i+ 1 if there is a 1.

These edges ensure that no matter which reaction is
chosen for a vertex represented by column i, the reaction
chosen for the column i+1 vertex will be able to perform
its reaction either before or after the previous reaction.

Once these edges are defined for every column, the
problem is then finding a path from s to t, where s is a

Reaction Type

In Final State - - - -
Left - 1 - -
Left Catalytic - - - 1
Left Final - - - -
Right 1 - - -
Right Catalytic - - - -
Right Final - - 1 -

Table 2: Turning the example system from Figure 1 into
a table of reactions.

1

S T

1

1

1

Figure 3: Table 2 as a graph.

vertex that has directed edges to each entry in column 1
and t is a vertex that can be reached from each entry in
column n (see Table 2 and Figure 3 for reference). Any
path represents a set of rules that can be assigned an
ordering to reconfigure all vertices to their final states.

Theorem 1 Reconfiguration in 1-burnout for 1 × n
lines is solvable in O(n+ |R|) time.

Proof. We provide proof by induction for the previ-
ously described algorithm that solves reconfiguration in
1× n surfaces. This proof guarantees that any solution
from this algorithm constitutes a set of reactions that
can be reordered to successfully reconfigure a given ini-
tial configuration to its final configuration.

Base case: n = 2. Let vi be the leftmost vertex. Since
this vertex does not have a neighbor to its left, there are
only 4 reactions we need to consider for this vertex:

1. In final state: vertex vi+1 must be in its final state
or a left catalytic or left final reaction.

2. Right catalytic: vertex vi+1 must be in its final
state or a left final reaction.

3. Right final: vertex vi+1 must be in its final state or
a left catalytic reaction.

4. Right reaction: vertex vi+1 must be a left reaction.

If two such reactions exist for each vertex, then a path
exists from s to t visiting the vertices in the table that
correspond to each reaction. Otherwise, no such path
would exist.

Inductive step: let n = k. Assume that there is a
set of k reactions for vertices v1, . . . , vk that can be re-
ordered to transition all k vertices to their final states.

267

35th Canadian Conference on Computational Geometry, 2023

In order for the reaction chosen for vertex vk+1 to be
valid, it must not interfere with the kth reaction corre-
sponding to vertex vk. Consider two cases:

1. Vertex vk is currently in its final state or reacts with
its left neighbor vk−1. Vertex vk+1 is never used,
so as long as vk+1 does not perform a left reaction
with vk, it will not interfere with the kth reaction.

2. Vertex vk reacts with vertex vk+1. Consider 3 pos-
sible reactions for vk: (1) Right reaction: the only
valid reaction for vk+1 is a left reaction, (2) Right
catalytic: except left or left catalytic, all reactions
are valid for vk+1, and (3) Right final: except left
or left final, all reactions are valid for vk+1.

If we think of vk as being column i and vk+1 as being
column i + 1, edges are defined from i to i + 1 in a
way that avoid these conflicting reactions. Any other
reaction that is chosen for vi+1 can always perform its
reaction before or after vi performs its reaction. As a
result, any path up to column i + 1 would represent a
set of reactions that can be reordered to transition these
k + 1 vertices to their final states.

Given the initial and final configurations, it takes
O(n) time to compare the states. Constructing the ta-
ble takes O(|R|) time. The path finding algorithm runs
in O(V + E) = O(n + E) time. However, the number
of edges is a constant factor of the number of vertices,
whereas |R| might be exponential in n. Thus, the final
runtime for the algorithm is O(n+ |R|). �

3.2 2-Burnout Linear Surfaces
Theorem 2 Reconfiguration of a 1×n line for surface
CRNs with 2-burnout is solvable in O(n·|S|2 ·|R|4) time.

Proof. Since we are considering 2-burnout, every cell
can only change species twice. This is a cell starting
with the initial species, possibly changing to an interme-
diate species, then finally changing to the target species.
It is then possible to track all the possible transitions of
a cell in a polynomial sized table. We define the table
D with each entry D(x, s, r1, r2) being a Boolean indi-
cating if the cells at indices 0, 1, . . . , x can reach their
target species using reactions r1 and r2 on x, and us-
ing s as intermediate species for cell x. (Note, r1 and
s may be null if the cell only reacts once to reach the
target species.) The reactions are specific with which
neighbor the cell reacts with, left or right. This results
in O(n · |S| · |R|2) cells of the table.

To compute each entry D(x, s, r1, r2), we check if r1

and r2 are consistent with cell x− 1. Meaning, if r1 re-
acts with the left neighbor, some entry D(x−1, s′, r1, r3)
or D(x− 1, s′, r3, r1) for any s, r3 must be true. If r1 is
a catalytic reaction, then the species in cell x − 1 does
not change and must be the initial species, intermediate
species, or the target species. We must also be careful
with the ordering of the reactions. If r1 or r2 reacts with

the intermediate species s′ of the (x− 1)th cell, then r1

must be the second reaction for x− 1. The run time to
compute each cell of the table is O(|S| · |R|2).

If any D(n − 1, s, r1, r2) is true, then the answer to
reconfiguration is true. �
3.3 Constant Burnout

In this section, we consider the problem of reconfigu-
ration for a surface CRN with n cells with at most k-
burnouts on a 1× n board.

Theorem 3 There is an n1+k log h-time algorithm for
k-burnout degree-h 1D surface CRN reconfiguration,
where each species is in at most h rules.

Proof. We have a divide-and-conquer approach in our
algorithm. A brute force method is used to enumerate
all the possible transitions for the median position. The
problem is split into two independent problems that can
be solved independently.

Let p be the position of the median in a 1D surface
CRN. We enumerate all the possible ways to burn out
the position p at most k times. Since each species is
in at most h rules, we have at most hk combinations
about the list of transitions involved by position p. Let
T (n) be the running time to solve the reconfiguration
problem. We have the recursion T (n) = hk(2T (n

2)). It
brings a solution with T (n) = hk log n ·n = n1+k log h. �

4 Non-constant Burnout on a Line

Here, we show that reconfiguration with k-burnout,
where k is part of the input, is NP-hard. Without
burnout (no bound on state changes), reconfiguration
of a 1× n line is PSPACE-complete [15], but even with
a burnout k given in binary, the problem may not be in
the class NP since O(kn) possible reactions could occur,
which is exponential in log k. This motivates looking at
bounds on state changes that are polynomial in n and
further motivates the other algorithms in the paper.

Reduction. We reduce from Vertex Cover (VC) by
enumerating all vertices and using them as states on a
1×n line. A state “walks” back and forth choosing a ver-
tex to add to the cover and crossing off instances it finds.
Given a graph G = (V,E) where V = {1, 2, . . . , n} and
an edge e ∈ E is defined as e = {vi, vj} for vi, vj ∈ V
and i 6= j. An edge is listed as two states: 34 meaning
an edge between vertices v3 and v4. Between any two
edges we include a spacing state −.

Create the line representing the graph with edges in
any order: BS0−e1−e2−· · ·−em−E, where the B state
indicates the beginning of the line, E is the end of the
line, and S0 is a special state indicating no vertices are
in the vertex cover. Example: BS0−34−13−21−14−E.

Basically, each edge independently and nondetermin-
istically picks the vertex to cover it with both possible

268

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

rules. Create rules for all vi, vj ∈ V as vi + vj → v′i + x
and vi + vj → x + v′j where x is an ignored state and
the prime state is the chosen vertex for that edge. The
spacing states ensure edges do not affect each other.
Example: 3 + 4→ 3′ + x and 3 + 4→ x+ 4′.

The S counting state sweeps back and forth k times
to choose a vertex to add to the cover and ignores the
other states. The S state takes the first picked vertex
and removes all duplicates of it while remembering the
count. There is a state Svertex

count that exists for each vertex
and count up to k. Thus, the rules Si + v′j → Sj

i+1 + x
are added for each vertex and count up to k. Example:
S0 + 3′ → S3

1 + x is used if v3 is the first vertex added.
Once a vertex transitions to an Si state, it ignores

everything but v′i states. Meaning it only swaps states,
or “walks” in that direction. Thus, all rules Si + A →
A+Si is added for any state X that is not vi, B, or E.
For vi, S

i
c + v′i → Si

c + x.
When a Sj

c vertex is next to the B or E states, it
can transition to Sc. The rules B + Sj

c → B + Sc and
E + Sj

c → E + Sc exist for all vertices vj . This means
we have removed all instances of the chosen vertex and
can pick a new vertex for the cover.

This requires O(kn) states to handle counting for each
vertex. If k is odd, the final configuration, given a k VC
exists, is B−xx−xx−xx−· · ·−SkE. If k is even, then
the final configuration is BSk −xx− xx− xx− · · · −E.
Sk can not interact with anything. This requires k + 1
burnout.

Theorem 4 Reconfiguration of a 1 × n configuration
in sCRNs with k-burnout is NP-hard, even when k < n,
and NP-complete as long as k is polynomial in n.

Proof. Given a VC with graph G = (V,E) and k ∈ N,
we create a surface CRN system with configuration C
and rules R as described above. We define the output
configuration D based on the number of edges and par-
ity of k as described. G has a VC of size k if and only if
C can reach configuration D with burnout k + 1. Note
that k ≤ n as input from VC, so the number of states
and rules in the reduction is polynomial.

Given that the graph G has a k vertex cover, in the
sCRN system, the only transitions possible at first are
for each edge to pick a vertex to cover it. Then the
counting state walks across, increases the count and se-
lects the vertex from the first edge, and that state con-
tinues walking and removes any other instance of that
vertex. In the best case, all locations but the first and
last have changed twice. If this continues, and it always
adds the correct vertices, then after k passes only x’s
are left. Sk does not interact with anything, so noth-
ing else transitions. The k passes and the initial choice
requires k + 1 burnout.

If the sCRN system ends in the output configuration
with x’s on every edge state, which can only occur if

the k passes chose vertices that appeared in the other
edges and were crossed out. Thus, every edge correctly
chose the right vertex to cover it so that only k different
vertices were used. �
5 Extension to 2D Graphs

As an extension to the 1D case, we now consider recon-
figuration and 1-reconfiguration for 2D surfaces. In the
case of reconfiguration, we study a restricted version of
the problem where all reactions are non-catalytic.

Theorem 5 Reconfiguration in 1-burnout for a planar
graph G = (V,E) is solvable in O(|V |1.5 + |R|) time if
every reaction is non-catalytic.

Proof. Given a planar graph G = (V,E), construct
a subgraph G′ from G such that there is an edge be-
tween pairs of vertices if there exists a non-catalytic re-
action that transitions both vertices to their final states.
Run maximum matching on G′. If all vertices are either
matched or in their final state, then reconfiguration is
possible. Otherwise, reconfiguration is not possible.

Since non-catalytic reactions transition both vertices
to their final states, a vertex must be involved in at
most one reaction. Edges represent these non-catalytic
reactions between two vertices. As a result, limiting a
vertex to one reaction is the equivalent of matching each
vertex inG′ to at most one other vertex it shares an edge
with, which is a perfect matching problem. For planar
graphs, this can be solved using a maximum matching
algorithm. If any unmatched vertex is not in its final
state, then reconfiguration is not possible because this
vertex is unable to react.

Constructing G′ takes O(V + |R|) time. Running the
maximum matching algorithm takes O(V 1.5) time. A
last check of G′ for any unmatched vertices that are
not in their final state takes O(V) time. Therefore, the
runtime is O(V 1.5 + |R|). �

Corollary 6 Reconfiguration in 1-burnout for general
graphs is solvable in O(V 4 + |R|) time if every reaction
is non-catalytic, where V is the number of vertices.

Proof. Proof follows from Theorem 5. Maximum
matching on general graphs runs in O(V 4) time. �

5.1 Arbitrary Graphs with 1-Burnout
We now consider surface CRNs that allow catalytic as
well as non-catalytic rules. With this additional rule
type, we prove the problem of reconfiguration is NP-
complete on an arbitrary graph with 1-burnout.

Theorem 7 Reconfiguration with 1-burnout of an ar-
bitrary surface in surface CRNs is NP-complete.

Proof. We reduce from the dominating set problem to
sCRN reconfiguration with 1-burnout. Let G = (V,E)
be an arbitrary graph and k be an integer parameter.

269

35th Canadian Conference on Computational Geometry, 2023

We need to decide if graph G has a dominating set of
size k. Note that a subset U ⊆ V is a dominating set
of G if each vertex v ∈ V − U has (u, v) ∈ E for some
u ∈ U (vertex u dominates v).

Let v1, · · · , vn be the n vertices of G. We design a
surface CRN system. For each edge (vi, vj) in E, create
two rules vi + vj → vi + v′j and vi + vj → v′i + vj . We
introduce k additional species u1, · · · , uk. The target
configuration is to let each vi enter v′i for i = 1, · · · , n
and each ut enter u′t. We set up the rules ut + vj →
u′t + v′j for all t ≤ k and all j ≤ n.

If graph G has a dominating set of size k, the tar-
get configuration is reachable. Assume that vi1 , · · · , vik
dominate all the vertices in the graph G. For each vj
with j ∈ {1, · · · , n}−{i1, · · · , ik}, it can be transformed
into v′j by a rule vis + vj → vis + v′j . Each vis can enter
v′is by a rule us + vis → u′s + v′is . Here, the burnout
is 1. Similarly, if the target configuration is reachable,
there is a dominating set of size k. If the target config-
uration is reachable, we have at most vi1 , · · · , vih with
(h ≤ k) such that each vir enters v′ir via the type of rule
ut +vir → u′t +v′ir as there is only one burnout for each
vi and uj . Clearly, vi1 , · · · , vih dominate all the other
vertices in the graph G.

This is a polynomial-time reduction and membership
is known from [1]. �

5.2 1-Burnout 1-Reconfiguration

Theorem 8 1-Reconfiguration in 1-burnout of a
w × n rectangle for surface CRNs is solvable in
O
(
n · (|S||R|)2w · f(w)

)
time.

Proof. We use a dynamic programming approach sim-
ilar to that in Theorem 2, defining a table D with
Boolean entries D(x,~s, ~r, π), where x is a column in-
dex, ~s = [s1, s2, . . . , sw], ~r = [r1, r2, . . . , rw], and π a
permutation of [1, w]. Each sy ∈ S is a potential fi-
nal species of cell (x, y), which changes from its initial
species into (x, y) due to reaction ry ∈ R, and π gives
the order in which the reactions occur. As before, ry
specifies which of its up-to-four neighboring cells par-
ticipated in the reaction, and sy and ry may be null if
the cell never changes species.

Since only one cell (xt, yt) of the target configuration
is fixed, the top-level of the dynamic program will be
column xt, and it will symmetrically recurse outwards
in both directions, with base-cases at both ends. So,
for x < xt D(x,~s, ~r, π) is true if the cells in columns
0, 1, . . . , x can reach a target configuration in which col-
umn x reaches species ~s using reactions ~r occurring in
order π, for x > xt we consider columns x, x+1, . . . , n−1
instead, and for x = xt we consider the entire surface.

To compute D(x,~s, ~r, π), say when x < xt, we search
for a smaller subproblem D(x − 1, ~s ′, ~r ′, π′) which has
value true and (~r ′, ~r) together are a chain of reactions
that actually transform columns x−1 and x into species

(~s ′, ~s) from their initial species, given that they must
occur in relative orders π′ and π. Specifically, we can
search each possible interleaving of π(~r) and π′(~r ′), sim-
ulate the reactions in that order, and verify that the
reactions within these two columns can actually be per-
formed and do result in (~s ′, ~s). Notably, for reactions
between columns x − 2 and x − 1, we do not need to
validate the species in column x−2 because the smaller
subproblem already performed that validation, and for
reactions between columns x and x + 1, the species in
column x+1 are assumed to be validated later in a larger
subproblem. For x > xt, the recursion is symmetric.

For top-level subproblems D(xt, ~s, ~r, π), we only con-
sider ~s that include the fixed target species syt , and
we search for both D(xt − 1, ~s ′, ~r ′, π′) and D(xt +
1, ~s ′′, ~r ′′, π′′) and validate between all three columns
xt−1, xt, xt+1 in a similar manner. If any D(xt, ~s, ~r, π)
is true, then the answer to 1-reconfiguration is true.

The size of D is O (n · |S|w · (4|R|)w · w!). Computing
each entry involves checking O (|S|w · (4|R|)w · w!) sub-
problems, and each check considers

(
2w
w

)
interleavings

of orderings and runs an simulation taking O(w) time.
Combined, the total time is O

(
n · (|S||R|)2w · f(w)

)
for

a function f only depending on w. Therefore, for con-
stant w, this is polynomial time. �

6 Conclusion

In this paper, we have shown that the reconfiguration
problem on 1× n surface CRNs with k-burnout is in P
when k = 1 or k = 2. To show this, we have given al-
gorithms that output a sequence of reactions to achieve
the given configuration. Further, we show that for any
k = O(1), there exists an algorithm that has a poly-
nomial runtime in k. To conclude our investigation of
1-Dimensional surface CRNs, we prove that when the
burnout number, k, is part of the input (in unary), the
problem of reconfiguration is NP-complete.

Following by exploring 2-Dimensional surface CRNs
and showing that a restricted case of 1-burnout re-
configuration can be seen as perfect matching, show-
ing this case of the problem to still be in P. Finishing
with a proof that the problem of 1-Reconfiguration in
1-burnout can be solved in polynomial time on a w× n
rectangle when w is constant.

Some of the open questions are then:

• What is the lower bound for a given k-burnout?

• In a rectangle/grid graph, what is the lower/upper
bound for k-burnout?

• Most of our complexity is in terms of the size of
the surface. Are there interesting results looking at
the complexity of other aspects of an sCRN such
as states, rules, and burnout?

• We have a direct NP-complete reduction but does
there exist an L-reduction for some inapproxima-
bility result?

270

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] R. M. Alaniz, J. Brunner, M. Coulombe, E. D. De-
maine, Y. Diomidov, T. Gomez, E. Grizzell, R. Knobel,
J. Lynch, A. Rodriguez, R. Schweller, and T. Wylie.
Complexity of reconfiguration in surface chemical reac-
tion networks. In Proc. of the 29th International Con-
ference on DNA Computing and Molecular Program-
ming, DNA’23, 2023. To appear.

[2] T. Brailovskaya, G. Gowri, S. Yu, and E. Winfree. Re-
versible computation using swap reactions on a surface.
In Proc. of the International Conference on DNA Com-
puting and Molecular Programming, DNA’19, pages
174–196. Springer, 2019.

[3] C. Chalk, A. Luchsinger, E. Martinez, R. Schweller,
A. Winslow, and T. Wylie. Freezing simulates non-
freezing tile automata. In DNA Computing and Molecu-
lar Programming: 24th International Conference, DNA
24, Jinan, China, October 8–12, 2018, Proceedings 24,
pages 155–172. Springer, 2018.

[4] G. Chatterjee, N. Dalchau, R. A. Muscat, A. Phillips,
and G. Seelig. A spatially localized architecture for fast
and modular DNA computing. Nature nanotechnology,
12(9):920–927, 2017.

[5] H.-L. Chen, D. Doty, and D. Soloveichik. Deterministic
function computation with chemical reaction networks.
Natural computing, 13:517–534, 2014.

[6] C. T. Chou. Chemical reaction networks for computing
logarithm. Synthetic Biology, 2(1):ysx002, Jan. 2017.

[7] S. Clamons, L. Qian, and E. Winfree. Program-
ming and simulating chemical reaction networks on
a surface. Journal of the Royal Society Interface,
17(166):20190790, 2020.

[8] M. Cook et al. Universality in elementary cellular au-
tomata. Complex systems, 15(1):1–40, 2004.

[9] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized algorithms, volume 5. Springer, 2015.

[10] F. Dannenberg, M. Kwiatkowska, C. Thachuk, and
A. J. Turberfield. DNA walker circuits: computational
potential, design, and verification. Natural Computing,
14(2):195–211, 2015.

[11] E. Goles, D. Maldonado, P. Montealegre, and M. Ŕıos-
Wilson. On the complexity of asynchronous freez-
ing cellular automata. Information and Computation,
281:104764, 2021.

[12] E. Goles, N. Ollinger, and G. Theyssier. Introducing
freezing cellular automata. In Cellular Automata and
Discrete Complex Systems, 21st International Work-
shop (AUTOMATA 2015), volume 24, pages 65–73,
2015.

[13] R. A. Muscat, K. Strauss, L. Ceze, and G. Seelig. DNA-
based molecular architecture with spatially localized
components. ACM SIGARCH Computer Architecture
News, 41(3):177–188, 2013.

[14] T. Neary and D. Woods. P-completeness of cellu-
lar automaton rule 110. In Automata, Languages and
Programming: 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part
I 33, pages 132–143. Springer, 2006.

[15] L. Qian and E. Winfree. Parallel and scalable com-
putation and spatial dynamics with DNA-based chem-
ical reaction networks on a surface. In DNA Com-
puting and Molecular Programming: 20th International
Conference, DNA 20, Kyoto, Japan, September 22-26,
2014. Proceedings, volume 8727, page 114. Springer,
2014.

[16] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck.
Computation with finite stochastic chemical reaction
networks. natural computing, 7:615–633, 2008.

[17] G. Theyssier and N. Ollinger. Freezing, bounded-
change and convergent cellular automata. Discrete
Mathematics & Theoretical Computer Science, 24,
2022.

[18] A. J. Thubagere, W. Li, R. F. Johnson, Z. Chen,
S. Doroudi, Y. L. Lee, G. Izatt, S. Wittman, N. Srinivas,
D. Woods, et al. A cargo-sorting DNA robot. Science,
357(6356):eaan6558, 2017.

271

272

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Catalan Squares and Staircases: Relayering and Repositioning Gray Codes

Emily Downing∗ Stephanie Einstein† Elizabeth Hartung‡ Aaron Williams§

Abstract

An n-step staircase can be tiled by n rectangles in Cn

ways, where Cn is the nth Catalan number (e.g. , ,

, , for C3 = 5). We introduce a new Catalan
object—Catalan squares—by extending each rectangle
down and left into an n-by-n square (e.g., to).
From this perspective, there are Cn distinct layerings
of n squares, where the relative order of ith and kth is
concealed when the jth is above them, for any i < j < k.

We provide the first Gray codes for these objects.
That is, we order the Cn objects so that successive ob-
jects differ by a constant amount. More specifically, we
provide (a) a relayering Gray code, and (b) a reposi-
tioning Gray code, meaning that shapes move to a new
layer or are translated to a new position, respectively.
We obtain these two Gray codes by working with string-
based encodings, including (a) Dyck words (e.g., 110010

for) in cool-lex order, and (b) 231-avoiding permuta-

tions (e.g., 132 for) using Algorithm J.

1 Introduction

The Catalan sequence C0, C1, C2, . . . is one of the most
well-known sequences in mathematics,

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . (Oeis A000108[21]).

It has natural closed forms and recursive definitions,

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n+ 1

)
(1)

Cn =

n−i∏

i=0

Ci · Cn−1−i with C0 = 1. (2)

Catalan objects (i.e., those enumerated by the sequence)
are the chameleons of combinatorics. Classic examples
include n pairs of balanced parentheses, binary trees
with n nodes, triangulations of (n+ 2)-gons, and Stan-
ley’s book [22] provides more than 200 examples. In this

∗Department of Mathematics, Massachusetts College of Lib-
eral Arts, emilylydondowning@gmail.com

†Department of Mathematics and Statistics, Mount Holyoke
College, einst22s@mtholyoke.edu

‡Department of Mathematics, Massachusetts College of Lib-
eral Arts, e.hartung@mcla.edu

§Department of Computer Science, Williams College,
aw14@williams.edu

paper we focus on Catalan staircases, which are the Cn

tilings of an n-step staircase with n rectangles. We view
these objects as being comprised of rectangles of size i-
by-(n− i+ 1) that are layered to create a specific tiling.
This view leads to a natural new Catalan object that
we refer to as Catalan squares. A pair of sample stair-
cases is shown in Figure 1 using each perspective, and
Figure 2 clarifies our notion of layers.

(a) Staircases. (b) Centered layers. (c) Catalan squares.

Figure 1: (a) Two Catalan staircases of order n = 6 and
their representations using (b) centered layers and (c)
squares. Center each layer (see Figure 2) to transform
(a) to (b). Extend each rectangle down and left into an
n-by-n square to transform (a) to (c). The staircases in
(a) are the top-right quadrants of (b) and (c).

top

size
2-by-5

top layer

Figure 2: A layered representation views the shapes as
i-by-(n− i+1) rectangles that are layered to create dis-
tinct tilings. A standard bottom-left alignment is used
above, while center-alignments (e.g., Figure 1b) allow
all four corners in each shape to be visible. Catalan
squares replace the rectangles in the standard bottom-
left-aligned view with n-by-n squares.

Our primary goal is to construct Gray codes for these
objects for any fixed n. In other words, we order the Cn

objects so that successive objects differ by a constant
amount. The term Gray code is in reference to the bi-
nary reflected Gray code (BRGC), named after Frank
Gray [7], which orders the n-bit binary strings so that
consecutive strings differ in one bit. For example,

Brgc(3) = 000, 001, 011, 010, 110, 111, 101, 100 (3)

where overlined bits are flipped to create the next string,
including the wrap-around from last 100 to first 000.

In the context of binary strings, it is clear that flipping
a single bit constitutes a small constant-sized change.

273

35th Canadian Conference on Computational Geometry, 2023

This notion is less obvious in the context of Catalan
staircases and squares. For this reason, we’ll devote
some of our attention to representations of these objects,
with an emphasis on those that use layers.

We provide a pair of Gray codes that move the shapes
(i.e., rectangles or squares) in mutually-exclusive ways.

1. Relayering staircases or squares. One or two shapes
move to a new layer at the same position.

2. Repositioning squares. One square is translated to
a new position on the same layer.

Both results are obtained by translating existing string-
based Gray codes: Dyck words in cool-lex order and
231-avoiding permutations using Algorithm J.

Vast numbers of Catalan Gray codes have been cre-
ated over the years, often by manipulating other Cata-
lan objects. For example, binary trees have been cre-
ated indirectly by making transpositions [15] or adja-
cent transpositions [16] in the corresponding balanced
parentheses or p-sequence [23], or directly using tree ro-
tations [12]. However, this appears to be the first such
investigation involving Catalan staircases (and squares).

Sections 2–3 provide background information, and
our new results are in Sections 4–5. Section 6 concludes
with final remarks; the Appendix adds auxiliary figures.

2 Catalan Objects

This section describes a handful of Catalan objects,
starting with string-based objects, and ending with their
bijections to Catalan staircases and squares.

2.1 Dyck Words and Balanced Parentheses

A Dyck word is a binary string b1b2 · · · bn of length
n = 2m and weight m (i.e., m copies of 1) in which
every prefix contains at least as many 1s as 0s. A string
of balanced parentheses is obtained from a Dyck word
by replacing 1s and 0s with (and), respectively. For
example, all C3 = 5 such strings with m = 3 are below.

101010 101100 110010 110100 111000

()()() ()(()) (())() (()()) ((()))
(4)

2.2 231-Avoiding Permutations

A permutation p1p2 . . . pn avoids the pattern 231 unless

∃i, j, k with 1 ≤ i < j < k ≤ n and pk < pi < pj . (5)

That is, it has no sequence of three symbols with rel-
ative order 2, 3, 1. For example, 3412 does not suf-
fice as 34 · 1 has the forbidden pattern. It is well-
known that the number of 231-avoiding permutations of
[n] = {1, 2, . . . , n} is Cn. In fact, avoiding any one pat-
tern of length three results in a Catalan object [2]. For
example, the C4 = 14 such strings with n = 4 are below.

1234 1243 1324 1423 1432 2134 2143

3124 3214 4123 4132 4213 4312 4321
(6)

2.3 Catalan Staircases

Recall that a Catalan staircase is a tiling of an n-step
staircase with n rectangles. We’ll view the staircase as
having its bottom-left coordinate at the origin (0, 0).
The ith rectangle is the unique rectangle that touches
the ith corner (i, n− i+ 1) for i = 1, 2, . . . , n.

2.3.1 Representations: Rectangle, Line, Slice, Layer

There are several natural geometric representations for
Catalan staircases. We consider four categories here,
and return to them in Section 6. The first three treat the
constituent shapes as they are drawn, and they change
dimensions in different tilings. The fourth assumes that
the underlying shapes never change, but they are relay-
ered to give the appearance of different tilings.

• A rectangle representation directly describes the rect-
angles. One such representation is a list whose ith entry
is the bottom-left co-ordinate of the ith rectangle.

• A line representation describes the interior lines. One
such representation is a list whose ith entry is the length
of a leftward or downward line extending from the point
between the ith and (i + 1)st corner for 1 ≤ i < n. In
this case, the length can be measured in units, with
negative values for leftward lines.

• A slice representation differs from a line representation
in that order matters rather than length. More specifi-
cally, a Catalan staircase can be created by a sequence
of n− 1 horizontal or vertical cuts, analogous to how a
paper cutter can slice a guillotine rectangulation [1].

• A layer representation considers the rectangles as hav-
ing the same perimeter (as in Figure 2) and the tiling
is obtained by layering these shapes. Figures 2 and 3d
draw the layers with different alignments.

(0,0)

(0,3)

(0,5)

(4,0)(5,0)

(2,3)

(a) Rectangles.

(0,0)

(0,3)

(0,5)

(4,0)(5,0)

(2,3)

-1
1
-3

2
1

(b) Lines.

①
②

③

④
⑤

(c) Slices. (d) Centered layers.

Figure 3: Various geometric representations.

2.4 Catalan Squares

The layer representation of staircases is more purely
realized by a new Catalan object. As stated in Sec-
tion 1, Catalan squares can be viewed as modified stair-
case tilings where each rectangle is extended down and
left into an n-by-n square. More directly, we consider
n squares of size n-by-n whose top-right corners oc-
cupy unique points on the main diagonal line segment
(1, n)−(n, 1), with the ith square being the ith closest to
(1, n). We’ll often draw the squares in standard position,
meaning their top-right co-ordinates are (i, n− i+1) for
i = 1, 2, . . . , n (i.e., corner points in a staircase).

274

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Note that the change from rectangles to squares is not
simply cosmetic. In particular, Catalan squares support
repositioning modifications (see Section 5) while Cata-
lan staircases do not. When discussing Catalan squares
we’ll differentiate between top/bottom and front/back,
with the latter terms referring to the depth of the layer.

2.5 Visibility Property and Depth-Protocol

One may object to Catalan squares being a Catalan
object, as there are n! ways to layer n squares. How-
ever, some of these choices are equivalent in the sense
that they appear identical. For example, consider Fig-
ure 1c. Note that the relative order of the red and yellow
squares is obfuscated by the orange square above them.
More generally, the position of the squares along the
main diagonal ensures the following visibility property :

The relative order of the ith and kth squares
is hidden by the jth square whenever the jth
square is in front of them, for all i < j < k.

When imagining the squares on different layers, we’ll
follow this depth-protocol : if the jth square is in front
of the ith and kth squares, then the kth square is in front
of the ith square. This protocol ensures each of the Cn

unique objects has one canonical representation among
the n! layerings; see Figure 4. The same comments hold
for layer representations of Catalan staircases.

1234

4321

1243
2341
1342

1324
2314

1423
2413
3412

1432
2431
3421

2134 2143
3142
3241

3124 3214 4123 4132
4231

4213 4312

Figure 4: The 4! = 24 layerings of n = 4 squares par-
titioned into their C4 = 14 equivalence classes. For ex-
ample, the layerings 4132 and 4231 are equivalent, since
the relative order of 1 and 2 is obfuscated by 3 due to
the visibility property. In each case, the top permuta-
tion is the canonical representative that avoids 231.

2.6 Bijections

This section provides a pair of bijections that are cen-
tral to Sections 4–5. In both cases, we use the notion
of a staircase’s cornerstone, which is the unique rectan-
gle touching the origin. Cornerstones are then defined
recursively for sub-staircases following the familiar re-
currence in (2). For example, in Figure 5a, the corner-
stone is green, with orange and blue cornerstones for
the staircases above it and to its right, respectively.

2.6.1 Staircases and Dyck Words

To visualize our first bijection, it is helpful to horizon-
tally center the rectangles above each cornerstone, re-
cursively, rather than use the standard left-alignment.
For example, see Figure 5a–5b. We then label the top-
left corner of each rectangle with 1 and the top-right
corner with 0. A Dyck word is then obtained by read-
ing the bits from left to right, as shown in Figure 5b.
We refer to this centered representation as pyramidal.

2.6.2 Staircases and 231-Avoiding Permutations

A bijection between 231-avoiding permutations and
staircases recursively maps the largest symbol in the
permutation to the cornerstone of the staircase. Start-
ing with a 231-avoiding permutation, the largest sym-
bol, n, is the initial cornerstone. Symbols to the left of
n correspond to rectangles above the cornerstone, while
symbols to the right of n correspond to the rectangles
to the right of the cornerstone. We then repeat this
process for the sequence of symbols to the left of n and
to the right of n: for each sequence, we find the largest
symbol, m, which maps to the cornerstone of this subset
of rectangles, and shows how many rectangles are above
it and to its right within the subset.

The reverse mapping recursively finds the cornerstone
and maps it to the largest symbol of the permutation.
Rectangles above the cornerstone correspond to values
to the left of the largest symbol; rectangles to the right
correspond to symbols to the right. If j rectangles are
above the cornerstone, then the symbols to the left of
the largest symbol, m, are 1, 2, . . . , j, while the symbols
to the right are j + 1, . . . ,m− 1. This ensures that the
pattern 231 is avoided.

2
1
4
3
8
7
5
6

2 1 4 3 8 7 5 6

(a) Staircase.

0
0

((() ()) ()) () (())
((() ()) ()) () (())
((() ()) ()) () (())
((() ()) ()) () (())
((() ()) ()) () (())
((() ()) ()) () (())

2
1

4
3

8
7

5
6

2 1 4 3 8 7 5 6

)
(

)

()(
)(

)(
)(

)(
)

(

01

01

01
01

01

01
1

1110100100101100

1

(b) Dyck word.

2
1
4
3
8
7
5
6

21438756

(c) Permutation.

Figure 5: Bijectively mapping an (a) Catalan staircase
to a (b) Dyck word or (c) 231-avoiding permutation.

3 Gray Codes

Recall that a Gray code is an exhaustive list of some
combinatorial object (parameterized by size) in which a
constant change occurs from one object to the next. In
this section, we’ll discuss two specific Gray codes, and

275

35th Canadian Conference on Computational Geometry, 2023

how they relate to Catalan objects. For background
information on Gray codes, see the classic survey by
Savage [20] and the more recent treastise by Mütze [14].

3.1 Cool-lex Order

Cool-lex order is a versatile minimal-change order for
strings that is based on the shift operation, which re-
moves a symbol and reinserts it elsewhere. More specif-
ically, each shift is a left-shift, meaning that the shifted
symbol moves to the left. 1 The order was first dis-
covered for combinations [19], which are n-bit binary
strings in which k of the bits are 1. In other words,
they are the incidence vectors of k-subsets of n. The
order is notable for its simple successor rule: Shift the
bit following the leftmost 01 into the first position. 2

Cool-lex’s successor rule for combinations can be vi-
sualized using black and white marbles on a ramp; see
Figure 6. Notice that the successor rule rarely changes
the rightmost bit. As a result, the order is very similar
to co-lexicographic order, from which its name is de-
rived. A generalization of the successor rule generates
the permutations of any multiset [24]. In other words,
there is a way to shift your way through all arrange-
ments of marbles, regardless of the number of colours.

{
first
◯⚫

1 1 0 1 0 0
(a) Before.

{
first
◯⚫

0 1 1 0 1 0
(b) After.

011100 010110 101001 001011
101100 001110 010101 000111

110100 100110 001101 100011

011010 110010 100101 110001
101010 011001 010011 111000

(c) Full order.

Figure 6: Cool-lex order for combinations with n =
6 bits and k = 3 copies of 1. (a)-(b) illustrates the
successor rule which shifts the bit after the leftmost 01
into the first position; (c) shows the full (cyclic) order
where the blue bit is shifted to create the next string.

3.1.1 Bubble Languages and Dyck Words

Dyck words have a simple closure property: If 1i01β is a
Dyck word, then so too is 1i10β. In other words, in any
Dyck word, the leftmost 01 can be replaced with 10, and
the result will be another Dyck word. This modification
can be described as ‘bubbling’ (in reference to bubble
sort) the 1 to the left. This property ensures that Dyck
words of a given length form a bubble language, and that
cool-lex order provides a shift Gray code for it [17].

The cool-lex Gray code for Dyck words can be ob-
tained by taking the corresponding sublist of combina-
tions. In other words, if the non-Dyck words are re-

1Equivalently, a substring is rotated one position to the right.
2Special case: If the string has no 01 (e.g., 111000 or 110001),

then the rightmost bit is the bit that is shifted.

moved from the list of combinations, then the remain-
ing strings will be in a shift Gray code order; see Figure
7a. More importantly, the order of Dyck words also
has a simple successor rule. In fact, it differs from the
successor rule for combinations in two ways.

1. Bits are shifted into the second position.
2. If the string has a balanced prefix 1i0i10, then the

previous bit is shifted (i.e., 1 is shifted instead of 0).
The successor rule is formally stated in Theorem 1 and
is illustrated in Figure 7b.

Theorem 1 ([18]) The cool-lex order of Dyck words
begins with 101n−10n−1 and the following successor rule
generates each successive word where p > 0 and q > 0.
(a) 1p0q11α is followed by 111p−10q1α.
(b) 1p0q10α is followed by 111p−10q0α when p = q.
(c) 1p0q10α is followed by 101p−10q1α when p > q.
The next word is obtained by shifting the red bit into
the second position; blue bits would be shifted using the
successor rule for combinations. The order ends at the
final string 1n0n, where none of the above cases applies.

Cool-lex order for Dyck words of length n = 2m pro-
vides a simultaneous Gray code for binary trees with m
nodes [18] and ordered trees with m+1 nodes [11]. This
paper shows that cool-lex’s ability to create simultane-
ous Gray codes extends to more geometric objects.

���011100 ���010110 ���101001 ���001011
101100 ���001110 ���010101 ���000111
110100 ���100110 ���001101 ���100011

���011010 110010 ���100101 ���110001
101010 ���011001 ���010011 ���111000

(a) Cool-lex order of combinations with
all of the non-Dyck words crossed out.

101100
110100
101010
110010
111000

(b) Cool-lex order
of Dyck words.

Figure 7: Cool-lex order for Dyck words of length n = 6.
It is a shift Gray code that is (a) a sublist of Figure 6c,
and (b) generated by the successor rule in Theorem 1.

3.2 Greedy Algorithm J

Another prominent Gray code is plain changes (or the
Steinhaus–Johnson–Trotter algorithm) which orders the
n! permutations of [n] in one-line notation. The order
was used by change ringers in the 1600s [5] before being
rediscovered several times in the early 1960s [14]. Its
notion of a minimal-change is an adjacent transposition
(or swap) which interchanges two neighboring symbols,
as illustrated in Figure 8a.

The order can be understood using local recursion,
meaning that each string in Plain(n−1) is expanded
to create consecutive strings in Plain(n). More specif-
ically, strings in Plain(n−1) have n inserted in all n
possible locations, alternately from right-to-left (zig)
and left-to-right (zag), interspersed by the swaps from

276

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

123 1234 3124 2314
132 1243 3142 2341
312 1423 3412 2431
321 4123 4312 4231
231 4132 4321 4213
213 1432 3421 2413

1342 3241 2143
1324 3214 2134

(a) Plain(3) and Plain(4).
Notice the zig-zagging of n.

123 1234 3124
132 1243 4312
312 1423 4321
321 4123 3214
213 4132 2134

1432 2143
1324 4213

(b) Jumps that avoid 231 (e.g.,
321 to 213 and 3124 to 4312).

Figure 8: (a) Plain changes using adjacent transposi-
tions. This is equivalent to Algorithm J’s output for all
permutations.. (c)–(d) Algorithm J’s ordering of 231-
avoiding permutations using jumps.

Plain(n−1). The order also has a simple greedy inter-
pretation: swap the largest value [25]. 3 More specifi-
cally, start with 12 · · ·n, then extend the order by ap-
plying the greediest change that results in a new per-
mutation when applied to the most recent permutation.

A jump is a shift (in either direction) where the
shifted symbol only moves over smaller symbols. An
adjacent transposition is always a jump because we can
view the larger symbol as jumping over the smaller sym-
bol. This leads to the following generalized greedy ap-
proach known as Algorithm J : jump the largest value
the shortest possible distance.

3.3 Zig-Zag Languages and 231-Avoidance

The 231-avoiding permutations have a simple inductive
property: If α is a valid permutation of n−1, then n ·α
and α · n is a valid permutation for n. As a result,
these strings form a zig-zag language for any fixed n, and
Algorithm J provides a jump Gray code; see Figure 8b.

Theorem 2 ([9]) Algorithm J provides a jump Gray
code for 231-avoiding permutations of [n].

This generalization of plain change order was first
announced for permutations avoiding tame patterns [8]
before being generalized to lattice congruences of the
weak order on Sn [9]. Subsequent results considered
additional lattice congruences [10], rectangulations [13],
elimination trees [4], and acyclic orientations [3]. Our
Theorem 4 is a modest contribution to this series of
results, with interesting connections to [13].

4 Relayering Gray Code for Staircases and Squares

Now we present our first Gray code for Catalan stair-
cases or squares. Broadly speaking, it is a relayering

3This directive may seem underspecified, since a value can be
swapped to the left or right. However, this never ends up being
an issue—consider the first two swaps in Figure 8a.

Gray code or a 2-relayering Gray code, meaning that at
most two shapes have their relative depths changed. In
other words, if we physically have a layering of n rectan-
gles or squares, then we can create the next layering by
pulling out and reinserting at most two of the shapes.
Moreover, the depth-protocol will be preserved. For ex-
ample, Figure 1 shows orange relayered above green.

Theorem 3 Catalan staircases and Catalan squares
have 2-relayer Gray codes.

Proof. Consider Catalan staircases in cool-lex order.
In other words, translate each Dyck word in cool-lex or-
der to its corresponding Catalan staircase, as per Sec-
tion 2.6.1. Figure 9 shows the cool-lex successor rule
cases from Theorem 1 with the corresponding staircases;
the next is created via one or two relayerings.

More precisely, we can provide a successor rule that
maps one staircase into the next. Towards this goal, we
introduce some terminology. Two rectangles are neigh-
bors if they share any points. A rectangle can have mul-
tiple right neighbors and/or top neighbors, but at most
one left neighbor and at most one bottom neighbor. A
rectangle is thick if it has height > 1, or equivalently, it
has at least one right neighbor; otherwise, it is thin.

Let ℓ be the topmost thick rectangle, and s be its
bottommost right neighbor. Note that ℓ and s are
well-defined except for the final staircase in cool-lex or-
der (which corresponds to 1n0n and contains only thin
rectangles) where we leave the successor rule undefined.
The next staircase is then obtained as follows.

• If s has a top neighbor or no bottom neighbor, then
relayer s directly above ℓ. This covers cases (a)–(b).

• Otherwise, relayer s directly above its bottom
neighbor b, and the top rectangle t to the front.
This covers case (c) and t = ℓ is possible.

The rule is easily adapted to Catalan squares, and in
both settings the depth-protocol is preserved. □

5 Repositioning Gray Code for Catalan Squares

Now we present our second Gray code for Catalan
squares. It is a reposition Gray code, meaning that one
square has its position (but not its depth) changed. In
other words, if we have a physical layering of n squares,
then we create the next layering by sliding one square
to a new position on the main diagonal without chang-
ing its depth. This operation is not valid for Catalan
staircases as they don’t consist of uniform shapes.

Repositions can result in Catalan squares that are not
in standard position (see Section 2.4). However, they do
satisfy the visibility property (see Section 2.5), and are
isomorphic to a configuration in standard position. To
realize these changes with physical squares, we’ll need to
restrict ourselves to repositions that preserve our depth-
protocol. These ideas are illustrated in Figure 10.

277

35th Canadian Conference on Computational Geometry, 2023

1···1111···1100···00011𝛽 = 1p0q11𝛽

ℓ

⋮

s

a

⋱

⋱

⋱

⋱

⋱

⋮

1

1

1
1

1
1

1

0
0

0
0

0

1

1

Before: 1p0q11β.

1···11111···1100···0001𝛽 = 111p-10q1𝛽

ℓ

⋮

a

⋱

⋱

⋱

⋱

⋱

s

⋮

1

1

1
1

1
1

1

0
0

0
0

0

1

1

After: 111p−10q1β.
Case (a): Relayer s above ℓ.

ℓ

⋮

s
⋱

1
1
1

1
1 0

0

0
0

0
1 0

11···11111···1100···00010𝛽 = 11···100···010𝛽

111···1100···00010𝛽 = 1p0q10𝛽

Before: 1p0q10β for p = q.

ℓ

⋮

s
⋱

1
1
1

1
1 0

0

0
0

0
1 0

11···11111···1100···00010𝛽 = 11···100···010𝛽

1111···1100···0000𝛽 = 111p-10q0𝛽

After: 111p−10q0β.
Case (b): Relayer s above ℓ.

t

ℓ

⋮

s

bb
⋱

⋱

⋮

⋱

⋱

1

1

1
1
1

1
1

1

0
0

0
0

0
1 0

11···11111···1100···00010𝛽 = 11···100···010𝛽

1···11111···1100···00010𝛽 = 1p0q10𝛽

Before: 1p0q10β for p > q.

1

ℓ

⋮

b b
s

⋱

⋱

⋮

⋱

t

⋱

0

1

1

1
1
1

1

10

0
0

0
0

101···11111···10···00001𝛽 = 101p-10q1𝛽

1

1011···11111···10···00001𝛽 = 101···100···01𝛽

After: 101p−10q1β.
Case (c): Relayer s above b, then t to the front.

Figure 9: Theorem 3’s proof follows Theorem 1’s cases.
ℓ is the top thick rectangle with no left neighbor; s is ℓ’s
bottom right neighbor; a is s’s left top neighbor (if it
exists); b is the bottom neighbor of ℓ and s (if it exists); t
is the top rectangle. Gray shapes may or may not exist,
with triangles for sub-staircases. Rectangles are thin if
drawn as such. See Figure 13 for pyramidal drawings.

Theorem 4 Catalan squares have a reposition Gray code.

Proof. Consider Catalan squares in Algorithm J’s or-
der. In other words, translate each 231-avoiding permu-
tation in Algorithm J order to its corresponding Catalan
squares, as per the bijection in Section 2.6.2.

A jump of symbol x corresponds to repositioning
square x over deeper squares. The jumps performed
by Algorithm J do not create permutations with the
pattern 231, so they preserve our depth-protocol. □

(a) Before. (b) Valid reposition. (c) Normalize.

(d) Before. (e) Invalid reposition. (f) Normalize.

Figure 10: (a)–(c) A valid reposition where orange
moves between green and blue which are below it. (d)–
(f) An invalid reposition where orange moves between
red and yellow. It is invalid because the depth-protocol
has orange below yellow in (d) but above it in (f).

6 Final Remarks

In this paper, we set out to investigate Gray codes for
Catalan staircases. Motivated by changes observed us-
ing cool-lex order, we developed a layer representation of
Catalan staircases, and found that cool-lex order gives
a 2-relayering Gray code. The layer representation led
to our introduction of Catalan squares, and we found
that Algorithm J gives a reposition Gray code.

6.1 Additional Results and Future Work

Theorems 3–4 are existence results, but they have an
eye towards efficiency. Cool-lex has efficient ranking
and unranking algorithms [18], so our relayering order
does as well. Theorem 3’s proof also shows how to create
each successive staircase. Algorithm J can be generated
efficiently using recursion (see Figure 14).

We considered k-ary generalizations of Catalan
squares, and how to model them as strings. This led to a
pattern avoidance theorem for k-Catalan sequences [26].

More broadly, we are investigating cool-lex order and
Algorithm J for other (k-ary) Catalan objects, including
bijections with cool-lex order for k-ary Dyck words [6].

6.2 Open Problems

• Do Catalan staircases have 1-relayering Gray codes,
or using other representations (see Section 2.3.1)?

• Our orders have O(n) distance (e.g., see bottom-
to-top and right-to-left changes in Figures 11–12).
Do O(1) distance Gray codes exist?

• Does Algorithm J have efficient (un)ranking and
successor rules for 231-avoiding permutations?

• Is there a Cn formula that mimics Section 2.5?

278

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] A. Asinowski and T. Mansour. Separable d-
permutations and guillotine partitions. Annals of
Combinatorics, 14:17–43, 2010.

[2] D. Bevan. Permutation patterns: basic definitions
and notation. arXiv preprint arXiv:1506.06673,
2015.

[3] J. Cardinal, H. P. Hoang, A. Merino, and T. Mütze.
Zigzagging through acyclic orientations of chordal
graphs and hypergraphs. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 3029–3042. SIAM, 2023.

[4] J. Cardinal, A. Merino, and T. Mütze. Efficient
generation of elimination trees and graph associ-
ahedra. In Proceedings of the 2022 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 2128–2140. SIAM, 2022.

[5] R. Duckworth and F. Stedman. Tintinnalogia: Or,
The Art of Ringing. Kingsmead Reprints, 1970.

[6] S. Durocher, P. C. Li, D. Mondal, F. Ruskey, and
A. Williams. Cool-lex order and k-ary catalan
structures. Journal of Discrete Algorithms, 16:287–
307, 2012.

[7] F. Gray. Pulse code communication. United States
Patent Number 2632058, 1953.

[8] E. Hartung, H. Hoang, T. Mütze, and A. Williams.
Exhaustive generation of pattern-avoiding permu-
tations. In Proceedings of the 17th International
Conference on Permutation Patterns, pages 81–83,
2019.

[9] E. Hartung, H. Hoang, T. Mütze, and A. Williams.
Combinatorial generation via permutation lan-
guages. I. fundamentals. Transactions of the
American Mathematical Society, 375(04):2255–
2291, 2022.

[10] H. P. Hoang and T. Mütze. Combinatorial genera-
tion via permutation languages. II. lattice congru-
ences. Israel Journal of Mathematics, 244(1):359–
417, 2021.

[11] P. Lapey and A. Williams. Pop & push: Or-
dered tree iteration in O(1)-time. In 33rd Interna-
tional Symposium on Algorithms and Computation
(ISAAC 2022). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2022.

[12] J. M. Lucas, D. R. Vanbaronaigien, and F. Ruskey.
On rotations and the generation of binary trees.
Journal of Algorithms, 15(3):343–366, 1993.

[13] A. Merino and T. Mütze. Combinatorial gener-
ation via permutation languages. III. rectangula-
tions. Discrete & Computational Geometry, 70:51–
122, 2023.

[14] T. Mütze. Combinatorial Gray codes-an updated
survey. arXiv preprint arXiv:2202.01280, 2022.

[15] A. Proskurowski and F. Ruskey. Binary tree Gray
codes. Journal of Algorithms, 6(2):225–238, 1985.

[16] F. Ruskey and A. Proskurowski. Generating binary
trees by transpositions. Journal of Algorithms,
11(1):68–84, 1990.

[17] F. Ruskey, J. Sawada, and A. Williams. Binary
bubble languages and cool-lex order. Journal of
Combinatorial Theory, Series A, 119(1):155–169,
2012.

[18] F. Ruskey and A. Williams. Generating balanced
parentheses and binary trees by prefix shifts. In
CATS, volume 8, page 140. Citeseer, 2008.

[19] F. Ruskey and A. Williams. The coolest way
to generate combinations. Discrete Mathematics,
309(17):5305–5320, 2009.

[20] C. Savage. A survey of combinatorial Gray codes.
SIAM Review, 39(4):605–629, 1997.

[21] N. J. Sloane et al. The on-line encyclopedia of in-
teger sequences, 2003.

[22] R. P. Stanley. Catalan Numbers. Cambridge Uni-
versity Press, 2015.

[23] V. Vajnovszki. Generating a Gray code for P-
sequences. Journal of Mathematical Modelling
and Algorithms in Operations Research, 1(1):31–
41, 2002.

[24] A. Williams. Loopless generation of multiset per-
mutations using a constant number of variables
by prefix shifts. In Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 987–996. SIAM, 2009.

[25] A. Williams. The greedy Gray code algorithm.
In Algorithms and Data Structures: 13th Inter-
national Symposium, WADS 2013, London, ON,
Canada, August 12-14, 2013. Proceedings 13, pages
525–536. Springer, 2013.

[26] A. Williams. Pattern avoidance for k-Catalan se-
quences. In Proceedings of the 21st International
Conference on Permutation Patterns, 2023.

Appendix

Figures 11–12 show our n = 5 orders. Figures 13–14
show pyramidal drawings, and Algorithm J recursively.

279

35th Canadian Conference on Computational Geometry, 2023

Stairs Dyck word Next

1011110000
(a)

1101110000
(a)

1110110000
(a)

1111010000
(c)

1011101000
(a)

1101101000
(a)

1110101000
(c)

1011011000
(a)

1101011000
(c)

1010111000
(b)

1100111000
(a)

1110011000
(a)

1111001000
(c)

1011100100
(a)

1101100100
(a)

1110100100
(c)

1011010100
(a)

1101010100
(c)

1010110100
(b)

1100110100
(a)

1110010100
(c)

Stairs Dyck word Next

1011001100
(a)

1101001100
(c)

1010101100
(b)

1100101100
(b)

1110010100
(a)

1111000100
(c)

1011100010
(a)

1101100010
(a)

1110100010
(c)

1011010010
(a)

1101010010
(c)

1010110010
(b)

1100110010
(a)

1110010010
(c)

1011001010
(a)

1101001010
(c)

1010101010
(b)

1100101010
(b)

1110001010
(b)

1111000010
(a)

1111100000

Figure 11: The Catalan staircases of order n = 5 in cool-
lex order. Each Dyck word of length 10 is created using
the cool-lex successor rule which left-shifts the red bit
into the second position, with cases from Theorem 1.
The Dyck words are translated to Catalan staircases
using the bijection in Section 2.6.1. The result is a 2-
relayering Gray code for the Catalan staircases (or their
Catalan square equivalents).

Squares Permutation

12345

12354

12534

15234

51234

51243

15243

12543

12435

14235

15423

51423

54123

41235

41325

54132

51432

15432

14325

13245

13254

Squares Permutation

15324

51324

53124

31254

31245

43125

54312

54321

43215

32145

32154

53214

52134

21534

21354

21345

21435

21543

52143

54213

42135

Figure 12: The Catalan squares of order n = 5 as
generated by Algorithm J. The order is a reposition
Gray code, meaning that one square is translated but
not raised or lowered (and then the squares are drawn
in normal position). Each 231-avoiding permutation
is transformed into the next by greedily jumping the
largest value the shortest possible distance.

280

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Before: 1p0q11β.

1···11111···1100···0001𝛽 = 111p-10q1𝛽

⋮

⋮

⋮

1
s

⋮

1

ℓ

⋮

a

⋮

⋮

1

1
10

0

0
0

0

1

1
1

1

After: 111p−10q1β.
Case (a): Relayer s above ℓ.

11···11111···1100···00010𝛽 = 11···100···010𝛽

111···1100···00010𝛽 = 1p0q10𝛽

ℓ

⋮

s

1
1

1

1
1 0

0

0
0

0
10

⋮
Before: 1p0q10β for p = q.

11···11111···1100···00010𝛽 = 11···100···010𝛽

1111···1100···0000𝛽 = 111p-10q0𝛽

s

ℓ

⋮

1
1

1

1
1 0

0

0
0

0
1 0

⋮
After: 111p−10q0β.

Case (b): Relayer s above ℓ.11···11111···1100···00010𝛽 = 11···100···010𝛽

1···11111···1100···00010𝛽 = 1p0q10𝛽

1

1

⋮

bb

t

ℓ

⋮

s
⋮

⋮

1
1

1

1
10

0

0
0

0

1

10

⋮

⋮

Before: 1p0q10β for p > q.

101···11111···10···00001𝛽 = 101p-10q1𝛽
1011···11111···10···00001𝛽 = 101···100···01𝛽

⋮

t b

ℓ

⋮

b
s ⋮

⋮

⋮

⋮

10

1

1

1
1

1 0
0

0
1

1

10

0

After: 101p−10q1β.
Case (c): Relayer s above b, then t to the front.

Figure 13: A duplication of Figure 9 but with pyramidal
drawings. This simplifies the translation to and from
Dyck words, at the expense of slightly obfuscating the
staircase structure.

1234

4321

1243
2341
1342

1324
2314

1423
2413
3412

1432
2431
3421

2134 2143
3142
3241

3124 3214 4123 4132
4231

4213 4312

123

132

213 321

312

21

12

1
1234

1243

1423

4123

4132 1432

1324

3124

4312

4321

3214

2134

2143

4213

1243

Figure 14: The recursive structure generated by Algo-
rithm J for 231-avoiding permutations and the corre-
sponding Catalan squares for n = 1, 2, 3, 4.4The Gray
codes are obtained by following the gray arrows start-
ing from 12 · · ·n. Each node’s children are obtained by
inserting n into the permutation, or repositioning the
front square, in all possible ways (i.e., while avoiding
the 231 pattern or satisfying the depth-protocol), with
the center node 1 as the root. More specifically, nodes at
the same depth alternately perform the insertions from
left-to-right or right-to-left, thus recreating the familiar
zig-zag pattern from Figure 8, which is the hallmark of
Algorithm J. This graphic mirrors the tree of generic
rectangulations found in [13]. More broadly, this recur-
sive structure creates a jump Gray code for any zig-zag
language [9].

4The colour scheme used here differs from that in Figure 4.

281

282

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Computing Representatives of Persistent Homology Generators with a
Double Twist

Tuyen Pham∗, Hubert Wagner †

Abstract

With the growing availability of efficient tools, persis-
tent homology is becoming a useful methodology in a
variety of applications. Significant work has been de-
voted to implementing tools for persistent homology di-
agrams; however, computing representative cycles cor-
responding to each point in the diagram can still be inef-
ficient. To circumvent this problem, we extend the twist
algorithm of Chen and Kerber. Our extension is based
on a new technique we call saving, which supplements
their existing killing technique. The resulting two-pass
strategy can be realized using an existing matrix reduc-
tion implementation as a black-box and improves the
efficiency of computing representatives of persistent ho-
mology generators. We prove the correctness of the new
approach and experimentally show its performance.

1 Overview

Persistent homology is a popular methodology for
studying geometric and topological information of data.
Briefly, as we vary a parameter, persistent homology
captures the creation and destruction of topological fea-
tures present in the data. Typically a persistence dia-
gram is used as a concise geometric-topological descrip-
tor of this evolution. Its usage is becoming popular in
various applied fields, including medical imaging [17],
astronomy [15], genetics [22] and material science [16].

In many applications it is useful to go beyond this
standard descriptor, and study a geometric representa-
tion of the captured topological features. More techni-
cally, we are referring to the geometry of the represen-
tatives of persistent homology generators, which we ex-
plain in the next section along with other technicalities;
see Figure 1 for an illustration. Visualizing topological
information can make topological analysis more intu-
itive and transparent. Indeed, our work is motivated by
a recent project on analyzing neural networks using per-
sistent homology [25]. During this project, we encoun-
tered some computational obstacles related to comput-
ing representative cycles – and overcome them by cre-
ative use of available tools. This enabled visualization
and further analysis of important topological features in

∗University of Florida, Gainesville; tuyen.pham@ufl.edu
†University of Florida, Gainesville; hwagner@ufl.edu

r =0.53 r =0.55 r =0.57 r =0.65

r =0.71 r =0.90 r =0.94 r =1.06

Figure 1: Example of a Vietoris–Rips filtration which
approximates the topology of the growing union of disks.
Typically information about the birth and death of
topological features would be encoded as a persistence
diagram. The cycle highlighted in yellow (born at ra-
dius 0.71, and destroyed at 1.06) is one representative
cycle returned by the algorithm we propose.

the data. We share the developed techniques, as they
can be applied more generally.

These techniques are beneficial because most exist-
ing software packages focus on optimizing the compu-
tation of persistence diagrams, and not the cycle rep-
resentatives. Interestingly, the standard algorithm for
persistent homology produces cycle representatives (of
non-essential classes) with no extra work. On the other
hand, applying certain crucial optimizations compli-
cates the situation. As a result, persistence diagrams
are typically computed in time approximately linear in
the number of input simplices – but computing the rep-
resentatives can scale quadratically in practical situa-
tions. In this work, we aim to close this performance
gap by proposing an efficient algorithm for computing
representatives of persistent homology generators.

One setting in which our results are particularly use-
ful is low-dimensional skeleta of geometric complexes
describing high-dimensional point clouds. In this sce-
nario, it is beneficial [2] to switch to persistent coho-
mology [9] and apply the crucial killing optimization by
Chen and Kerber [8]. While a duality between homol-

283

35th Canadian Conference on Computational Geometry, 2023

ogy and cohomology allows us to efficiently compute the
persistent homology diagram, we directly obtain only
representatives of persistent cohomology generators –
and not their easier to interpret and visualize homo-
logical counterparts. We offer a simple computational
technique which allows us to obtain representatives of
persistent homology generators with little extra over-
head while benefiting from these crucial optimizations.

Contributions. In short, we propose a more optimistic
counterpart of the killing technique which we call the
saving technique. It allows us to generate only a subset
of the columns of the boundary matrix, without affect-
ing the results. This technique is part of a new two-pass
strategy for computing representatives of non-essential
persistent homology classes. In the first pass, we re-
duce the coboundary matrix using the usual twist algo-
rithm, and generate a subset of the boundary matrix.
In the second pass, we reduce the pruned boundary ma-
trix which allows us to retrieve the representatives. We
implement this strategy and experimentally show it is
typically much faster than reducing the original bound-
ary matrix.

Structure of the paper. In Section 2, we review
the usual mathematical background related to persis-
tent homology, trying to make it accessible to audiences
with limited exposure to algebraic topology. In Sec-
tion 3 we briefly review literature on computational as-
pects of persistent homology. In Section 4 we explain
in more details the techniques and algorithms we use in
our approach. In Section 5 we explain our approach and
then experimentally show its efficiency in Section 6. We
conclude the paper in Section 7.

2 Mathematical background

We offer a quick review of the algebraic machinery be-
hind persistent homology [12]. We focus on its common
usage in which one computes a sequence of simplicial
complexes describing the geometry and topology of a fi-
nite point set in RD. One popular choice is the Vietoris–
Rips construction. It allows us to track the birth and
death of topological features as a scale parameter is var-
ied. Our main focus is on representatives of persistent
homology, which additionally allow us to find geometric
representation of topological features.

A k-simplex is the convex hull of k + 1 affinely in-
dependent points in RD. For k = 0, 1, 2, 3, these are
vertices, edges, trianges and tetrahedra. A face of a
simplex is the convex hull of a subset of its vertices. A
face of a simplex σ is called proper if its dimension is
one less than the dimension of σ. The boundary of a
simplex is the set of its proper faces. By a simplicial
complex K we mean collection of simplices such that
for every simplex σ ∈ K, every face of σ is also in K.

Before we discuss homology groups, we define k-
chains as formal sums of simplices with coefficients in
Z2. The kth chain group, Ck(K) is formed by k-chains
along with elementwise addition. These chains can be
viewed as subsets of simplices in K; the addition reduces
to exclusive-difference operation. We define boundary
homomorphisms ∂k : Ck → Ck−1 mapping a chain to
the sum of the boundaries of the simplices with nonzero
coefficients. Crucially, taking the boundary of any chain
twice yields the 0 chain. Because of this property, we
can define k-cycles in Ck(K) as ker ∂n and k-boundaries
in Ck(K) as im ∂k+1. We finally define the degree-k ho-
mology group of K as Hk(K) = ker ∂k/ im ∂k+1. We say
that two k-cycles are homologous if they belong to the
same homology class, namely when one can be formed
from the other by adding any k-boundary.

Intuitively, homology group of degree 0, 1, 2 capture
the gaps between components, tunnels and voids of sub-
sets of R3. Each generator of a k-dimensional homology
group can be represented with a k-cycle. In practice,
this information can be used to visualize the geometry
of each hole present in a dataset.

Persistent homology. A filtration of a simplicial com-
plex K is a sequence of nested simplicial complexes
∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K. For simplicity, we
assume Ki is formed by adding a simplex σi to Ki−1.
Upon adding σi to Ki−1, there are only two possible
effects: σi either creates a new homology class or de-
stroys an existing one. Depending on the case, we call
this simplex a positive simplex or a negative one. For
example, adding a 1-simplex (edge) can either connect
two existing connected components, or create a new 1-
dimensional cycle. Every negative simplex σj can be
paired with a corresponding positive simplex σi with
i < j. We call this pairing (i, j) an index persistence
pair. If σi is a positive simplex with no corresponding
negative simplex, then σi creates an essential homology
class, namely a homology class of K. In this work we are
particularly interested in a computing representatives of
non-essential homology classes, namely the ones which
are eventually destroyed by a negative simplex.

Boundary matrix. The boundary matrix of the fil-
tration F with n simplices, is a n× n binary matrix M
where Mi,j = 1 for every pair (σi, σj) such that σi is
a proper face of σj , and 0 otherwise. The order of the
columns and rows of M is induced by the order of the
simplices in the filtration. From the boundary matrix,
we get the index persistence pairs and representatives
of persistent homology generators – which in particular
allow us to visualize the changing topology of the filtra-
tion. We overview related work in the next section, and
provide more details in Section 4.

Reversing the face relationship, we can talk about
cofaces, cochains, cocycles, coboundaries, cohomology,
and persistent cohomology. We mostly suppress these

284

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

definitions, and focus on the coboundary matrix, whose
columns store proper cofaces of each simplex. We
will exploit certain properties of coboundary matrices
proven in [9] to compute homological information.

3 Related work

In this section we briefly review literature on compu-
tations of (1-parameter) persistent homology. We put
emphasise on work which directly inspired this paper.

The standard boundary matrix reduction algorithm
for persistent homology is due to Edelsbrunner, Letscher
and Zomorodian [13]. The work of de Silva, Mo-
rozov and Vejdemo-Johansson [9] proved various du-
alities between persistent homology and cohomology,
which resulted in increased efficiency of the Dionysus
library. Chen and Kerber introduced an important
killing (clearing) optimization. It played a crucial role in
the implementation introduced in the PHAT library [2].
This work also experimentally showed the importance of
using the clearing optimization along with cohomologi-
cal computations in the context of skeleta of simplicial
complexes. This phenomenon was described in much
more detail by Bauer [1], contributing to the efficiency
of his popular Ripser package.

Concurrently, various important optimizations [3, 6,
4, 5] were developed in the context of the extensive
GUDHI library [19].

Computing optimal representatives of homology gen-
erators is a computationally hard problem in general [7],
but some special cases are more tractable [11, 18]. In
this work we do not aim at optimality.

It is worth noting that the algorithmic improve-
ments increase the efficiency by a factor of several thou-
sands times compared to the original algorithm (on the
same hardware) [2]. There are also practical situa-
tions in which even the optimized algorithms exhibit
prohibitively slow scaling, but switching to coboundary
matrices and using the twist technique results in linear
scaling and overall fast computation. This is an impor-
tant motivation for our work, and we elaborate on such
situations in Section 5.

This efficient behaviour for datasets arising in prac-
tice should be contrasted with the worst-case computa-
tional complexity, which is Θ(n3), where n is the num-
ber of simplices in the input filtration. This bound is re-
alized for a synthetic dataset [21]. There exist subcubic
algorithms [20], but they remain of theoretical interest.
The result of Edelsbrunner and Parsa [14] shows that
computing persistence diagrams is as hard as computing
the rank of a matrix, leaving little hope for algorithms
that would be efficient in the worst case.

We also stress that persistent cohomology and its
generating cocycles are powerful tools in their own
right [10, 23]. In this paper, however, we reduce their

role to computing homology generators – which in some
situations are more natural but harder to compute.

Similar techniques to the ones presented in this work
were independently devised by Virk and Čufar [24].
Combining with techniques from Ripser [1] allowed
for efficient computation of cycle representatives of
Vietoris–Rips complexes in Čufar’s Ripserer software.

4 Existing algorithms

We review selected algorithms for persistent homology
computations using matrix reduction techniques. In-
put to these algorithms is a boundary matrix, typically
arising from a simplicial filtration. Output is a reduced
matrix, from which persistence pairs and representative
cycles (of non-essential classes) can be directly obtained.

More precisely, let M be the boundary matrix of a
filtration with the jth column of M denoted Mj . We
define the lowest-one of the column Mj as low(Mj) =
max{i = 1, . . . , n|Mi,j = 1}, namely the index of the
(visually) lowest nonzero entry in the column Mj .

Standard reduction. The standard matrix reduc-
tion algorithm by Edelsbrunner, Letscher and Zomoro-
dian [13] can be summarized as a column-wise Gaussian
elimination. The goal is to bring the matrix to a re-
duced form in which each column has a unique lowest
one (or is empty). To this end we perform left-to-right
column additions, namely Mj ←Mj+Mi for i < j when
low(Mi) = low(Mj). Due to our choice of coefficients,
this removes the entry at index low(Mj) from the col-
umn, necessarily decreasing the value of low(Mj). See
Algorithm 1 for pseudocode, and Figure 2 for a simple
computational example.

We mention some well-known properties of reduced
boundary matrices [12].

Property 1 Given a reduced matrix M , we extract the
index persistence pairs as (low(Mi), i) for each nonzero
column Mi.

Property 2 Each zero column in a reduced boundary
matrix identifies a positive simplex.

Property 3 Each nonzero column of the reduced
boundary matrix is a representative of a unique non-
essential persistent homology class.

Twist algorithm. We recall that each simplex in a
filtration either creates a single homology class, or de-
stroys one. If it creates a homology class, the corre-
sponding column in the boundary matrix is necessarily
zero (i.e. empty when viewed as a set). This fact was
exploited by Chen and Kerber [8] to develop the killing
technique, which zeroes the columns corresponding to
positive simplices. Their twist algorithm for persistence

285

35th Canadian Conference on Computational Geometry, 2023

Algorithm 1 Standard Boundary Matrix Reduction

Require: Boundary matrix M of a simplicial complex
filtration with n columns

Ensure: Reduced boundary matrix M
1: L← [0, . . . , 0] of size n
2: for j = 1, . . . , n do
3: while Mj 6= 0 and L[low(Mj)] 6= 0 do
4: Mj ←Mj +ML[low(Mj)]

5: if Mj 6= 0 then
6: L[low(Mj)]← j

0

1
2

3

4

5

6

7

9

8

0 · · · 3 4 5 6 7 8 9

∅
0

2 �
��
1
2

1

3 �
��
0
3 �

��
2
3 �

��
0
1

0

1 �
��
0
1 �

��
1
2

∅

∅
�
��
0
1
∅

Figure 2: Standard boundary matrix reduction of a fil-
tration of the 1-skeleton of a tetrahedron. The order in
which the vertices and edges are added is determined by
the numbers. Intermediate state of each column during
reduction is shown.

homology capitalizes on this technique by using the re-
duced columns corresponding to (p+1)-simplices to kill
columns corresponding to p-dimensional ones. To this
end the algorithm visits columns in decreasing order of
dimension.

Optimized implementations. Algorithm 2 outlines
an implementation of boundary matrix reduction tak-
ing into account useful optimizations. The killing opti-
mization [8] is employed in line 12. As shown in [2], it is
important to decouple the storage of the columns from
the storage and handling of the column being currently
reduced. In practice, each column is stored as an array
of nonzero indices, but the currently reduced column is
represented a data-structure which allows for quick up-
dates and maximum queries. The specialized bit-tree
data structure described in [2] is a good choice. Such
data structures can be costly to initialized, but this is
done only once, in line 2. It is subsequently used in lines
7, 9, 13 at which point it is efficiently cleared.

Coboundary matrix reduction. Persistent homol-
ogy can be also obtained form a reduced cobound-
ary matrix [9]. More concretely, we consider the anti-
transpose of a boundary matrix obtained by mapping
each 0-based index i to a dual index i∗ = n − 1 − i,
where n is the total number of simplices. This dual
index notation makes it easier to follow computational
examples. We remark that in practice it is typically
more convenient and faster to generate a coboundary

Algorithm 2 Optimized Boundary Matrix Reduction

Require: Boundary matrix M of a simplicial complex
filtration of dimension d with n columns

Ensure: Reduced boundary matrix M
1: L← [0, . . . , 0] of size n
2: C ← data-structure for a column of size n
3: for δ = d, . . . , 1 do
4: for j = 1, . . . , n do
5: if j corresponds to simplex of dim 6= δ then
6: continue
7: copy Mj to C
8: while C 6= 0 and L[low(C)] 6= 0 do
9: add ML[low(C)] to C

10: if C 6= 0 then
11: L[low(C)]← j
12: Mlow(C) ← 0

13: move C to Mj

matrix directly rather than by anti-transposing a previ-
ously generated boundary matrix.

Property 4 (Pairing) If j∗ is the lowest one of a col-
umn i∗ in a reduced coboundary matrix, we obtain an
index persistence pair (i∗, j∗) [2, 9].

We note this is reversed compared to the boundary ma-
trix case: in this case j being the lowest one of i yields
(j, i).

The killing technique can be adapted to the case of
coboundary matrix as follows [2]. The lowest-one j∗

of a nonempty column i∗ in the coboundary matrix in-
forms us that column j∗ of the coboundary matrix can
be killed. In this case, however, simplex σj∗ is of higher
dimension, which means we should proceed in an in-
creasing order of simplex dimensions.

5 Double twist strategy

In this section we first explain certain computational is-
sues arising in practice. We then propose a high-level
algorithmic strategy which allows to efficiently compute
representatives of persistent homology generators using
existing software implementations. To this end, we in-
troduce the counterpart of the killing technique that we
call the saving technique and a two-pass algorithm that
we call a double twist algorithm.

Simplicial filtrations often arise from Vietoris–Rips or
Čech complexes built from a point cloud with n points
in RD. The number of k-simplices can be as large as(

n
k+1

)
. Due to this, we are often restricted to the d-

dimensional skeleton, namely the simplices with dimen-
sion not exceeding d < D. In practice, d is 2, 3, or an-
other small constant. In such cases there are Θ(nd+1)
top-dimensional simplices, and these simplices are the
most numerous.

286

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

The good news is that persistent homology up to de-
gree d − 1 can be be computed from such a d dimen-
sional skeleton. There is however a subtle computa-
tional downside to restricting the complex in this way.
In short, the killing technique cannot be used to zero out
the columns corresponding to the top-dimensional sim-
plices (since there are no higher dimensional simplices
to do the work). In practice, the bulk of work is spent
reducing these columns, which makes the killing tech-
nique ineffective and often results in prohibitively slow
performance [2]. This is not only because these columns
are the most numerous – they are also often harder to
reduce, since most of them have to be reduced to zero.

Switching to coboundary reduction largely alleviates
this problem, as elaborated in [9, 2, 1]. Briefly, the
coboundary of each top-dimensional simplex in the in-
put skeleton is empty, so no work is needed. Addition-
ally, the killing technique helps zero-out the columns of
penultimate dimension.

However, unlike the columns of the reduced bound-
ary matrix (using column operations), the columns of
the reduced coboundary matrix (using column opera-
tions) do not contain cycle representatives of homology
groups. Instead they capture information about cocy-
cle representatives of cohomology groups. We therefore
propose a strategy which allows us to obtain the desired
homological information while exploiting the improve-
ment granted by coboundary matrix reduction.

We stress that it is possible to obtain representatives
of homological generators directly from the coboundary
matrix reduction. This however requires tracking the
change of basis matrix [9], which may incur a signifi-
cant additional cost. Many software implementations,
including the PHAT library, avoid this extra cost; the
Eirene software by Henselman-Petrusek is a notable ex-
ception. One advantage of our technique is that it allows
us to use existing, optimized matrix reduction software
without any modification. This is not only easier for
the user, but also ensures that performance is not inad-
vertently degraded due to modifications.

Saving technique. The new trick is to use the in-
formation contained in the reduced coboundary matrix
to prune the boundary matrix. Reducing this pruned
boundary matrix yields the desired representatives of
homological generators. This technique is used in Al-
gorithm 3 which we call the double twist algorithm.
Despite involving two passes, experiments in the next
section show that this approach is much faster than re-
ducing the original boundary matrix.

More precisely, if a column j∗ is the lowest one of a
column in the reduced coboundary matrix, we save the
corresponding simplex j = n − 1 − j∗. This is done in
lines 4-7 of Algorithm 3. We then construct a bound-
ary matrix – but only the columns corresponding to the
previously saved simplices are generated. Dually, all

the remaining columns are set to 0 in the constructed
boundary matrix. We emphasize that the boundary
matrix is not obtained by anti-transposing the reduced
coboundary matrix and zeroing out selected columns,
which would lose useful information about cycle repre-
sentatives. See Figure 3 for a computational example
using the same input as Figure 2. Next, we prove that
the proposed algorithm yields correct results.

Proposition 1 (Saving Works) The output of the
double twist algorithm applied to a filtration F coincides
with the reduced matrix B′ output by the twist algorithm
applied to the boundary matrix B of F .

Proof. First, Property 4 implies that each saved sim-
plex corresponds to a negative simplex. The remaining
ones are therefore positive simplices. Property 2 implies
that these columns of B would reduce to zero, so the
zero columns are returned by both algorithms. Second,
the twist algorithm only adds fully reduced columns to
other columns on their right. This implies that the
columns corresponding to positive simplices do not af-
fect any of the remaining columns of the reduced ma-
trix. Therefore, the nonzero entries of B are reduced
in the same way by both algorithms and the outputs
coincide. �

Along with Property 3, the above implies that B′ con-
tains representatives of non-essential persistent homol-
ogy classes of F as columns.

Technicalities. We remark that only a single bound-
ary (or coboundary) matrix is stored at a time. After
the first pass, the reduced coboundary matrix can be
removed from memory, and we only need to store the
information about the saved simplices, which is of neg-
ligible size.

Algorithm 3 Double twist strategy

Require: Filtration F of a simplicial complex
Ensure: Reduced boundary matrix B containing cycle

representatives as columns
1: saved-simplices ← [False, . . . ,False] of size n
2: M ← coboundary matrix of F
3: reduce M (Alg. 2 but with reversed dimensions)
4: for i = 1, . . . n do
5: if Mi 6= 0 then
6: j ← low(Mi)
7: saved-simplices[n− 1− j] ← True

8: delete M from memory
9: B ← empty boundary matrix with n columns

10: for i = 1, . . . , n do
11: if saved-simplices[i] =True then
12: B[i]← boundary of simplex i

13: reduce B

287

35th Canadian Conference on Computational Geometry, 2023

Table 1: Results of computational experiments. Each rows corresponds to different datasets. In particular, the two
rightmost columns show the timings of the two matrix reductions in our double twist approach.

Data
size

Maximum
distance

Number of
simplices

Nonzero entries
in input (co)boundary matrix

Nonzero entries after
1st pass

Boundary matrix
reduction time

(naive approach)

Coboundary
reduction time

(1st pass of proposed alg.)

Pruned boundary
reduction time

(2nd pass of proposed alg.)

800 1.5 24,134,214 72,195,145 614,492 443.613s 2.445s 0.058s
800 2 85,334,000 255,680,000 958,001 2,292.590s 9.361s 0.157s

1,600 1.3 34,482,186 103,026,427 1, 244,394 950.334s 4.963s 0.125s
1,600 1.5 193,843,549 580,703,170 2,466,432 8,160.460s 23.611s 0.414s
3,200 1 5,767,306 16,991,750 898,505 126.506s 1.391s 0.043s
3,200 1.2 89,682,378 268,002,505 3,101,888 4,753.800s 14.811s 0.279s

6,400 1 44,724,301 132,953,878 3,593,076 2,665.040s 13.482s 0.234s
12,800 1 354,104,851 1,057,473,077 14,396,429 >7,200s 205.768s 2.030s

9∗ · · · 4∗ 3∗ 2∗ 1∗ 0∗

∅
8∗

7∗

6∗

8∗

5∗

4∗

9∗

6∗

5∗ �
�
�
�9∗

7∗

4∗

...
∅

0 1 2 3 4 5 6 7 8 9
[]F F F F T T T F F F

0 · · · 3 4 5 6 7 8 9

∅
0

2 �
��
1
2

1

3
∅ ∅ ∅

0

1

Figure 3: Double twist applied to the same filtration as
in Figure 2. After the first pass (top), simplices 4, 5, 6
are saved as indicated by the array (middle) represent-
ing the saved-simplices variable. After the second pass
(bottom) we obtain a matrix identical to the reduced
matrix in Figure 2.

6 Experiments

In our experiments we focus on Vietoris–Rips filtrations
coming from synthetic data. The aim is to check how
the two matrix reductions in the double-twist algorithm
scale, compared to a naive strategy in which the bound-
ary matrix is reduced directly. We note that we use a
fully optimized twist reduction also for the naive strat-
egy. We also aim to verify that the boundary matrix
used in the second pass of our algorithm contains only
a small number of nonzero elements.

We implemented our strategy in C++ using the
PHAT library. We used a Clang 14.0.3 compiler. The
experiments were done on a single core of a 3.5 GHz
CPU with 32 GB RAM.

The results are presented in Table 1. Each row corre-
sponds to a single dataset. Each dataset is samples of a
9-dimensional sphere in R10 with a different number of
points and radius cutoff. We benchmark both strategies
on the 2-skeleton of the Vietoris–Rips filtration for each

dataset.

Observations. Analyzing Table 1, we observe that the
second pass of the double twist algorithm has negligible
impact on the overall execution time (less than 10%).
This is not surprising, given the number of nonzero el-
ements in pruned boundary matrix is at least an or-
der of magnitude smaller than compared to the original
(co)boundary matrix. Overall, the proposed two-pass
algorithm is much faster (up to 200 times) than the
naive approach.

The experiments clearly show that there are situa-
tions in which using the new double twist strategy is
beneficial compared to direct reduction of the bound-
ary matrix. Finally, we add that the results apply also
to other situations in which the top-dimensional cells
dominate, for example low-dimensional skeleta of high-
dimensional Čech, Delaunay or even cubical filtrations.

7 Summary

We proposed a simple algorithmic strategy and showed
that – in certain important situations – it significantly
speeds up computation of representatives of persistent
homology generators. We stress that it does not re-
quire implementing a new matrix-reduction algorithm.
Instead, any optimized implementation can be used in
a black-box fashion, provided it computes index persis-
tence pairs.

We also reiterate that only the representatives of
non-essential classes can be obtained from the reduced
boundary matrix. While this is actually the more in-
teresting information captured by the persistent homol-
ogy, we hope that future software packages will sup-
port efficient implementation of all representatives. In
the meanwhile, however, techniques like the one we pro-
posed serve as a useful workaround.

References

[1] Ulrich Bauer. Ripser: efficient computation of
vietoris–rips persistence barcodes. Journal of Ap-
plied and Computational Topology, 5(3):391–423,
2021.

288

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[2] Ulrich Bauer, Michael Kerber, Jan Reininghaus,
and Hubert Wagner. Phat: Persistent homology
algorithms toolbox. Journal of Symbolic Compu-
tation, 78:76 – 90, 2017. Algorithms and Software
for Computational Topology.

[3] Jean-Daniel Boissonnat and Clément Maria. The
simplex tree: An efficient data structure for gen-
eral simplicial complexes. Algorithmica, 70:406–
427, 2014.

[4] Jean-Daniel Boissonnat and Siddharth Pritam.
Edge collapse and persistence of flag complexes.
In SoCG 2020-36th International Symposium on
Computational Geometry, 2020.

[5] Jean-Daniel Boissonnat, Siddharth Pritam, and
Divyansh Pareek. Strong collapse and persistent
homology. Journal of Topology and Analysis, pages
1–29, 2021.

[6] Jean-Danieland Boissonnat, Tamal K. Dey, and
Clément Maria. The compressed annotation ma-
trix: An efficient data structure for computing per-
sistent cohomology. In Algorithms – ESA 2013,
pages 695–706, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[7] Chao Chen and Daniel Freedman. Hardness results
for homology localization. Discrete & Computa-
tional Geometry, 45(3):425–448, 2011.

[8] Chao Chen and Michael Kerber. Persistent ho-
mology computation with a twist. In Proceedings
27th European workshop on computational geome-
try, volume 11, pages 197–200, 2011.

[9] Vin de Silva, Dmitriy Morozov, and Mikael
Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003,
nov 2011.

[10] Vin De Silva and Mikael Vejdemo-Johansson. Per-
sistent cohomology and circular coordinates. In
Proceedings of the twenty-fifth annual symposium
on Computational geometry, pages 227–236, 2009.

[11] Tamal K. Dey. Computing height persistence and
homology generators in R3 efficiently. In Pro-
ceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’19, page
2649–2662, USA, 2019. Society for Industrial and
Applied Mathematics.

[12] Herbert Edelsbrunner and John Harer. Computa-
tional topology: an introduction. American Mathe-
matical Soc., 2010.

[13] Herbert Edelsbrunner, David Letscher, and Afra
Zomorodian. Topological persistence and simplifi-
cation. In Proceedings 41st annual symposium on
foundations of computer science, pages 454–463.
IEEE, 2000.

[14] Herbert Edelsbrunner and Salman Parsa. On the
computational complexity of betti numbers: re-
ductions from matrix rank. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on dis-
crete algorithms, pages 152–160. SIAM, 2014.

[15] Sven Heydenreich, Benjamin Brück, and Joachim
Harnois-Déraps. Persistent homology in cosmic
shear: constraining parameters with topological
data analysis. Astronomy & Astrophysics, 648:A74,
2021.

[16] Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hi-
rata, Emerson G Escolar, Kaname Matsue, and Ya-
sumasa Nishiura. Hierarchical structures of amor-
phous solids characterized by persistent homology.
Proceedings of the National Academy of Sciences,
113(26):7035–7040, 2016.

[17] Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao
Chen. Topology-preserving deep image segmenta-
tion. Advances in neural information processing
systems, 32, 2019.

[18] Lu Li, Connor Thompson, Gregory Henselman-
Petrusek, Chad Giusti, and Lori Ziegelmeier. Min-
imal cycle representatives in persistent homology
using linear programming: An empirical study with
user’s guide. Frontiers in artificial intelligence,
4:681117, 2021.

[19] Clément Maria, Jean-Daniel Boissonnat, Marc
Glisse, and Mariette Yvinec. The gudhi library:
Simplicial complexes and persistent homology. In
Mathematical Software–ICMS 2014: 4th Interna-
tional Congress, Seoul, South Korea, August 5-9,
2014. Proceedings 4, pages 167–174. Springer, 2014.

[20] Nikola Milosavljević, Dmitriy Morozov, and Pri-
moz Skraba. Zigzag persistent homology in matrix
multiplication time. In Proceedings of the twenty-
seventh Annual Symposium on Computational Ge-
ometry, pages 216–225, 2011.

[21] Dmitriy Morozov. Persistence algorithm takes cu-
bic time in worst case. BioGeometry News, Dept.
Comput. Sci., Duke Univ, 2, 2005.

[22] Raúl Rabadán, Yamina Mohamedi, Udi Rubin,
Tim Chu, Adam N Alghalith, Oliver Elliott, Luis
Arnés, Santiago Cal, Álvaro J Obaya, Arnold J
Levine, et al. Identification of relevant genetic al-
terations in cancer using topological data analysis.
Nature communications, 11(1):3808, 2020.

289

35th Canadian Conference on Computational Geometry, 2023

[23] Luis Scoccola, Hitesh Gakhar, Johnathan Bush,
Nikolas Schonsheck, Tatum Rask, Ling Zhou, and
Jose A Perea. Toroidal coordinates: Decorrelating
circular coordinates with lattice reduction. arXiv
preprint arXiv:2212.07201, 2022.

[24] Matija Čufar and Žiga Virk. Fast computation of
persistent homology representatives with involuted
persistent homology. Foundations of Data Science,
(early access), 2023.

[25] Songzhu Zheng, Yikai Zhang, Hubert Wagner,
Mayank Goswami, and Chao Chen. Topological
detection of trojaned neural networks. Advances in
Neural Information Processing Systems, 34:17258–
17272, 2021.

290

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Approximate Line Segment Nearest Neighbor Search
amid Polyhedra in 3-Space

Ovidiu Daescu∗ Ka Yaw Teo†

Abstract

We consider the problem of finding approximate near-
est neighbors for query line segments against a given
set of polyhedra with a total of n vertices in R3. In
this problem, for any query line segment s, we wish to
quickly report an input polyhedron whose distance to
s is at most (1 + ε) times the shortest such distance,
for any ε > 0. We present an algorithm that achieves a
query time of O((1/ε)(n/m1/3) polylog n + log n) after
a preprocessing that takes O((m/ε) polylog n + n2+ε)
time and space, where m ∈ [n, n3] can be specified to
yield any desired trade-off between storage and query
time. In particular, we require only near-quadratic pre-
processing space to answer a query in sub-linear time.
In addition, our approach answers exact line segment
nearest neighbor queries amid polyhedra with respect
to any polyhedral metrics.

1 Introduction

In its most classical sense, a nearest neighbor search
problem can be defined as follows. Let C be a collection
of input geometric objects in Rd, where d is assumed to
be a fixed positive integer. Preprocess C so that given
a query geometric object q, one can quickly find the
object in C nearest to q – that is, the (exact) near-
est neighbor given by NN(q, C) = arg minc∈C d(q, c),
where d(q, c) is the minimum distance between q and c
based on some distance metric. In our study, we use
the Euclidean norm. An approximate nearest neigh-
bor ANN(q, C) is defined as an object in C such that
for a real error parameter ε > 0, ANN(q, C) ∈ {c ∈
C|d(q, c) ≤ (1 + ε)d(q,NN(q, C))}.

This study focuses on the setting where C is a
collection of polyhedra in R3, and q is a line segment,
as formally stated below.

Given a set Π of polyhedra with n vertices, edges,
and faces in 3-space, preprocess Π into a data structure
such that for any query line segment s, one can
efficiently determine the polyhedron in Π closest to s.

∗Department of Computer Science, University of Texas at Dal-
las, ovidiu.daescu@utdallas.edu
†Department of Computer Science, University of Texas at Dal-

las, ka.teo@utdallas.edu

We consider the approximate version of the prob-
lem, where we wish to return an ANN(s,Π), that is,
an input polyhedron whose distance from a query line
segment s is at most (1 + ε) times the distance from s
to its nearest polyhedron in Π.

2 Related work and motivation

The most basic nearest neighbor search problem, where
the input and query objects are points, has been exten-
sively studied for many years, and efficient algorithms
exist for solving the problem especially when the di-
mension d is small [15, 27]. There are efficient solution
approaches for high dimensions, provided that one is
allowed to report an approximate nearest neighbor, in
which case several approximation methods are known
and offer trade-offs between the approximation factor,
space, and query time (e.g., see [5, 7, 9] and their refer-
ences).

However, when the input and query objects are more
complex than points (e.g., lines, line segments, triangles,
polyhedra, and k-flats), the corresponding different vari-
ants of nearest neighbor search problem are less under-
stood and remain mostly unresolved. The data struc-
tures obtained so far for problems under such settings
are typically more costly than those involving points.
Note that nearest neighbor searching on non-point ob-
jects is at least as hard as that on point objects, for
which there are quadratic worst-case lower bounds in
exact and approximate settings [8, 22].

On one hand, when the query object is a point, near-
est neighbor search problems with the following non-
point input objects have been addressed – triangles (and
polyhedra in R3) [23], lines [14, 22, 25], k-flats [4, 10, 24],
and line segments [1]. On the other hand, when the in-
put objects are points, the non-point query objects that
have been considered include a line [6], a k-flat [28], and
a line segment (in R2) [11, 12, 21, 29]. Among these re-
sults, the most closely related recent work to ours is
that of Abdelkader and Mount [1], according to which
a set of n line segments in Rd can be preprocessed into
a data structure of size O((n2/εd) log(4/ε)) such that
for any query point, an approximate nearest neighbor-
ing line segment can be found in O(log(max{n,4}/ε))
time, where 4 is the spread of the input line segments.

291

35th Canadian Conference on Computational Geometry, 2023

Daescu and Malik [16] have proposed a data struc-
ture for answering exact nearest neighbor search queries
when the input objects are (simple) polygons in the
plane, and the query object is a line segment. The data
structure has a size of O(m), a preprocessing time of
O(m log n), and a query time of O((n/m1/2) polylog n),
for any n ≤ m ≤ n2. In our study, we are interested in
the three-dimensional variant of said problem – specifi-
cally, the case where the query object is a line segment,
and the input objects are polyhedra in R3. Just as any
other nearest neighbor search problem, our variant has
numerous applications in computational geometry, ma-
chine learning, and data science, with a particular rel-
evance to path planning problems where one needs to
quickly answer collision or clearance queries for non-
point objects moving in 3-dimensional space (see Sec-
tion 5 for further discussion).

3 Our results

In this paper, we provide the first non-trivial algo-
rithm for the approximate line segment nearest neighbor
search problem amid polyhedra in three dimensions.

To derive our solution, we first reduce the nearest
neighbor search problem to two subproblems – finding
i) the nearest neighbor to each endpoint of the query
line segment and ii) the nearest orthogonal neighbor to
the query line segment (see Section 4 for further descrip-
tion). Our main contribution lies in deriving a solution
to the second subproblem.

We approximate the Euclidean distance using an ap-
propriate polyhedral metric. As a result, the first sub-
problem can be solved efficiently using an approximate
Voronoi diagram (see Section 4.1), and the second sub-
problem can be reduced to a series of edge and face
shooting queries (amid edges and points, respectively),
which are then addressed using multi-level partition
trees (see Section 4.2). As a corollary, we obtain a
data structure that finds the exact line segment nearest
neighbor amid polyhedra in 3-space under a polyhedral
metric.

Our data structure has a query time sub-linear in n
and uses polynomial preprocessing space and time (see
Theorem 3). Specifically, for a (1 + ε) approximation,
we obtain a query time of O((n2/3/ε) polylog n) with
O(n2+ε) preprocessing time and space usage. Unlike
the solution for point queries among line segments in
3-space [1], our solution does not depend on the spread
of the input objects.

4 Approximate line segment nearest neighbor

In this section, we describe our algorithm for solving
the approximate line segment nearest neighbor search
problem amid polyhedra in R3.

We begin by assuming that the faces of the polyhedra
in Π are triangular; if that is not the case, we triangulate
the faces of the polyhedra in Π and obtain a set of O(n)
triangles in 3-space. Let T be the set of O(n) triangular
faces of the polyhedra in Π.

Let s denote a query line segment. First, we address
the scenario where s intersects a polyhedron of Π. Ac-
cording to a recent work by Ezra and Sharir [20], for any
α > 0, we can determine if such an intersection exists in
time O(n1/2+α) after preprocessing T into a data struc-
ture of size O(n3/2+α) in expected time O(n3/2+α). For
the rest of the discussion, we assume that s does not
intersect any polyhedron in Π.

Let a and b be the two endpoints of the query line
segment s. Let Ha (resp. Hb) be the plane containing
a (resp. b) and normal to s. Let Sa (resp. Sa) be the
closed half-space bounded by Ha (resp. Hb) and not
containing s. Define Sab = R3 \ (Sa ∪ Sb).

To find the polyhedron of Π closest to s, we address
the following two subproblems individually:

(1) Find the polyhedron in Π closest to each endpoint
of s (i.e., a and b).

(2) Find the polyhedron in Π ∩ Sab closest to s.

We call a polyhedron P in Π∩Sab an orthogonal neighbor
of s since the closest distance between P and s is given
by the shortest orthogonal path from P to s. Note that,
of the two polyhedra found in the subproblems above,
the one with the shortest distance to s is the polyhedron
in Π nearest to s. We now proceed to solve the two
subproblems in Section 4.1 and 4.2, respectively.

4.1 Nearest neighbor to each endpoint of s

In this subsection, we consider the following subprob-
lem.

Subproblem 1 Given a set Π of polyhedra with total
complexity n in R3, preprocess Π into a data structure
such that for any query point p, one can efficiently de-
termine the polyhedron in Π closest to p.

We derive an exact solution to Subproblem 1 in the
following manner.

Recall that T is the set of O(n) triangular faces of
the polyhedra in Π. Subproblem 1 can be reduced to
finding the triangle of T nearest to the query point p.

For each triangle τ in T , we define fτ (p) to be the
Euclidean distance from any point p ∈ R3 to τ . Since a
point p is given by a 3-tuple (x, y, z), where x, y, z ∈ R,
fτ (p) is a piecewise (algebraic) function of three scalar
variables x, y, and z.

Let CT be the collection of functions {fτ (p)|τ ∈ T},
and let MT be the lower envelope of the functions of
CT . Given a query point p = (x, y, z), the triangle τ ∈

292

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

T nearest to p is the triangle for which function fτ (p)
attains MT (in 4-space) at (x, y, z).

Based on a result by Agarwal et al. [3, Theorem
3.3], for any α > 0, the lower envelope MT can be con-
structed in expected time O(n3+α) and stored in a data
structure of size O(n3+α) such that each nearest trian-
gle searching query described above can be answered in
O(log2 n) time.

In search of a more efficient data structure, we now
choose to resort to approximation as follows.

Let Q to be a (centrally) symmetric convex poly-
tope in R3. For any two points p, q ∈ R3, the poly-
hedral distance between p and q with respect to Q is
defined as dQ(p, q) = sup{t|q /∈ p + tQ}. For any
ε > 0, there exists a convex polytope Q represented by
the intersection of O(1/ε) half-spaces such that dQ ap-
proximates the Euclidean distance d(p, q) between any
two points p and q up to a factor of (1 + ε) – that is,
d(p, q) ≤ dQ(p, q) ≤ (1 + ε)d(p, q) [19].

We can construct the Voronoi diagram V of Π under
a polyhedral distance function (defined with respect to
Q) in near-quadratic time [23], and the complexity of V
is O(n2+ε). Using V , for any query point p, we can find,
in O(log n) time, a polyhedron in Π whose distance to
p is at most (1 + ε) times the shortest such distance.

Lemma 1 Let Π be a set of polyhedra with n vertices,
edges, and faces in R3. Let s denote any query line
segment, and let p be either endpoint of s.

i. (Exact) For any α > 0, Π can be preprocessed
into a data structure of size O(n3+α) in expected
time O(n3+α) such that NN(p,Π) can be reported
in O(log2 n) time.

ii. (Approximate) For any ε > 0, Π can be prepro-
cessed into a data structure of size O(n2+ε) in time
O(n2+ε) such that an ANN(p,Π) can be found in
O(log n) time.

4.2 Nearest orthogonal neighbor to s

The subproblem of interest in this subsection is stated
as follows.

Subproblem 2 Given a set Π of polyhedra of total
complexity n in R3, preprocess Π into a data structure
such that for any query line segment s, one can effi-
ciently determine the polyhedron in Π ∩ Sab closest to
s.

We now proceed to derive an approximate solution
to Subproblem 2 – that is, preprocess Π so that an
ANN(s,Π ∩ Sab) can be quickly computed – by using
a polyhedral metric.

Recall that Q is a convex polyhedral in R3 (as pre-
viously described in Section 4.1). Let H be a plane

orthogonal to s and containing the center of Q. Let
Q′ be the intersection of Q and H. Note that Q′ is a
centrally symmetric convex polygon in plane H. Let
Q′a (resp. Q′b) be a translated copy of Q′ centered at a
(resp. b). We denote by T the convex polygonal prism
with Q′a and Q′b as its base faces (Figure 1). Prism T
consists of two parallel O(1/ε)-gons (i.e., Q′a and Q′b)
connected by O(1/ε) rectangular sides. Note that T is
axially symmetrical to s and is defined by s + tQ′ for
any t ∈ R.

Figure 1: A convex polygonal prism T that is axially
symmetrical to line segment s.

Then, the polyhedral distance between s and a poly-
hedron P in Π ∩ Sab can be defined as dQ′(s, P) =
sup{t|P ∩ (s + tQ′) = ∅}. In other words, dQ′(s, P)
can be characterized as the smallest expansion factor t
such that P makes contact with some face or edge of the
axially expanding prism T . Note that for a polyhedron
P lying completely outside Sab, we have dQ′(s, P) =∞.

We process each of the O(1/ε) faces and edges of T
for fast face- and edge-shooting queries. There are only
two scenarios to be considered:

(A) A shooting face hits a vertex of P .

(B) A shooting edge hits an edge of P .

Scenario A. Briefly, each query shoots a fixed-
direction rectangular face from s. The expanding face
traces a three-dimensional wedge that emanates from
s (Figure 2). We look for the first time at which the
expanding wedge hits a vertex of an input polyhedron
and return the corresponding polyhedron.

Figure 2: A shooting rectangle in Scenario A.

293

35th Canadian Conference on Computational Geometry, 2023

For each edge e of Q′, let 4e denote the three-
dimensional wedge defined by s+λe, where λ ∈ R (Fig-
ure 3). Notice that 4e is bounded by three rectangular
faces. Let c and d denote the two endpoints of edge e.
Let �c be the rectangle given by s + γc, where γ ∈ R.
Similarly, let �d be the rectangle defined by s + γd,
where γ ∈ R. Rectangles �c and �d are bounded by s.
Let fe be the (fixed) shooting rectangular face (i.e., one
that is not bordered by s).

Figure 3: A wedge 4e in Scenario A.

Let V denote the set of O(n) vertices of the polyhedra
in Π. For each vertex v of V , there exists a unique
scaling factor λ(v) ∈ R ∪∞ such that v lies in the face
fe of s + λ(v)e. Note that λ(v) = ∞ if and only if v
does not lie within ∪λ(v)≥0s+ λ(v)e.

We build a data structure De, for each edge e of Q′,
that answers queries of the following form. Given a
query line segment s, find the smallest scaling factor
λ∗ = minv∈V λ(v) and return the corresponding vertex
v∗ that achieves λ∗.

To begin with, we fix an edge e of Q′. Edge e is
bounded by endpoints c and d. We denote by Hc (resp.
Hd) the affine plane spanned by �c (resp. �d). Let
Sc (resp. Sd) be the closed half-space bounded by Hc

(resp. Hd) and containing �d (resp. �c). Note that
∪λ≥0s+λe is the intersection of four half-spaces Sa, Sb,
Sc, and Sd in R3. Let Sabcd = Sa ∩ Sb ∩ Sc ∩ Sd. Let
u be the (unit) direction vector normal to the shooting
face fe of 4e.

We construct a five-level partition tree on V . The
first four levels are used to collect, for any query line
segment s, the vertices in V that lie within Sabcd as the
union of a small number of canonical subsets. The fifth
level supports queries that ask for the vertex in said
canonical subsets that is minimal in direction u.

We follow the standard methodology for constructing
multi-level partition trees as detailed in [2, 13, 18, 26].
Each of the first four levels of our partition tree supports
half-space range searching queries among the points of
V . As described in [2, Theorem 3.4], a d-dimensional
half-space range searching query amid a set of n points
can be answered in time O(n/m1/d polylog(m/n)) using
O(m) space, for any n ≤ m ≤ nd (where the preprocess-
ing time is at most a polylogarithmic factor larger than
the space).

At the last level, we preprocess each canonical subset
S into a data structure so that we can quickly determine
the first point in S in direction u. For a set P of n points
in d-space where d ≤ 3, given a query direction vector
u ∈ Rd, we can find the first point of P along direction
u in O(log n) time using O(n) space by constructing
the normal diagram of the convex polytope for P and
preprocessing it for point-location queries (see Section
6 in [2]).

According to [2, Theorem 6.1], when we construct our
multi-level data structure De by cascading half-space
range searching data structures, each additional level
costs at most one logarithmic factor in space and query
time. So, the overall preprocessing time and size of
data structure De are O(m polylog n), and a query can
be answered in time O(n/m1/3 polylog n), for any fixed
parameter m where n ≤ m ≤ n3.

Remark 1 Alternatively, we can construct a three-level
partition tree on V . The first two levels are used to
collect, for any given query segment s, the vertices in
V that lie within Sab as the union of a small number
of canonical subsets. Let Ls be the line supporting s.
The third level supports line nearest neighbor searching
queries, each of which asks for the vertex in said canon-
ical subsets closest to Ls.

As given by [17, Corollary 1], a set P of n points in R3

can be preprocessed using space and time O(κpolylog n)
such that for a query line L, the minimum width cylin-
drical shell enclosing P with central axis L (and thus
the exact closest point of P to L) can be computed in
O((n/κ1/4) log n), where n ≤ κ ≤ 4. By incorporating
this result at the third level of our data structure, we can
achieve a query time of O((n/κ1/4 +n/m1/3) polylog n)
with a preprocessing storage of O((κ + m) polylog n).
So, when we set κ = m = n2, we attain a query
time of O(n1/2 polylog n) with a preprocessing space of
O(n2 polylog n).

Scenario B. There are two types of shooting edges –
I) those that are normal to s, and II) those that are
parallel to s.

Type I. Each query shoots a fixed line segment nor-
mal to s from an endpoint p of s. The expanding line
segment traces a two-dimensional wedge that emanates
from p (Figure 4). We seek the first time at which the
expanding wedge hits an edge of an input polyhedron
and return the associated polyhedron.

Note that this scenario has been taken into consider-
ation (indirectly) when solving Subproblem 1, and thus
no further action is required.

Type II. Each query shoots a fixed line segment,
identical and moving parallel to s, from s. The trajec-
tory of the segment traces a rectangle that emanates

294

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 4: A shooting edge normal to s in Scenario B.

from s (Figure 5). We look for the first time at which
the expanding rectangle hits an edge of an input poly-
hedron and return the corresponding polyhedron.

Figure 5: A shooting edge parallel to s in Scenario B.

Formally, let E be the set of O(n) edges of the polyhe-
dra in Π. For each vertex v of Q′, we have an expanding
rectangle given by s+λv, where λ ∈ R. For each edge η
of E, there is a unique scaling factor λ(η) ∈ R∪∞ such
that s+λ(η)v touches η at a point. Note that λ(η) =∞
if and only if η does not intersect ∪λ(η)≥0s+ λ(η)v.

We construct a data structure Dv, for each vertex v
of Q′, that answers queries of the following form. Given
a query line segment s, find the smallest scaling factor
λ∗ = minη∈E λ(η) and return the corresponding edge η∗

that attains λ∗.

First, we fix a vertex v of Q′, and let e denote the
fixed shooting edge of s + λv parallel to s. For ease of
exposition, and without loss of generality, assume that s
and e are both located in some plane z = z0; specifically,
s is given by {(x, y, z)|z = z0, x = x0, y0 − `/2 ≤ y ≤
y0 + `/2}, and e is defined by {(x, y, z)|z = z0, x =
x0 +1, y0− `/2 ≤ y ≤ y0 + `/2}, where (x0, y0, z0) ∈ R3,
and ` is the length of s.

Suppose that no edge in E is parallel to plane
z = z0 (if that is not the case, we apply an infinites-
imally small rotation to Q). We can parameterize
such an edge η in R3 using {(x, y, z)|x = ux(η)z +
vx(η), y = uy(η)z + vy(η), uz(η) ≤ z ≤ vz(η)}, where
ux(η), vx(η), uy(η), vy(η), uz(η), vz(η) ∈ R. Note that
η intersects plane z = z0 at point pη = (ux(η)z0 +
vx(η), y = uy(η)z0 + vy(η), z0) if uz(η) ≤ z0 ≤ vz(η). In
which case, pη lies within the rectangle bounded by s
and e when y0 − `/2 ≤ uy(η)z0 + vy(η) ≤ y0 + `/2. So,

we have

uy(η)z0 + vy(η) ≥ y0 − `/2,
uy(η)z0 + vy(η) ≤ y0 + `/2,

z0 − uz(η) ≥ 0, and

z0 − vz(η) ≤ 0.

(1)

The constraints (1) are all linear in uy(η), vy(η), uz(η),
and vz(η), with coefficients dependent on s. Among all
the edges in E that satisfy the inequalities (1), we wish
to return the edge that minimizes

ux(η)z0 + vx(η)− x0, (2)

which is linear in ux(η) and vx(η).
To that end, we construct a five-level partition tree

on E [2, 13, 18, 26]. The first four levels are to collect,
for any query line segment s, the edges in E that sat-
isfy the conditions (1). The fifth level supports linear-
programming queries, each of which asks for the edge
that attains the minimum of the linear objective func-
tion (2).

In detail, we represent each edge η ∈
E, which is parameterized by a 6-tuple
(ux(η), vx(η), uy(η), vy(η), uz(η), vz(η)), using the
following four points in R2:

p1(η) = (uy(η), vy(η)),

p2(η) = (1,−uz(η)),

p3(η) = (1,−vz(η)), and

p4(η) = (ux(η), vx(η)).

Define point sets Pi = {pi(η)|η ∈ E}, where 1 ≤ i ≤ 4.
Note that there is a one-to-one correspondence between
sets Pi and Pj , where 1 ≤ i < j ≤ 4 (and we maintain
such mapping through a dictionary). An edge η satisfies
the conditions (1) if and only if

i. p1(η) lies above line xz0 + y = y0 − `/2,

ii. p1(η) lies below line xz0 + y = y0 + `/2,

iii. p2(η) lies above line xz0 + y = 0, and

iv. p3(η) lies below line xz0 + y = 0.

In view of the above, the first and second levels of
our partition tree are built to support half-plane range
searching queries against point set P1, the third level
against P2, and the fourth level against P3. Specifically,
the first level is a partition tree T over point set P1,
where each node v of T is associated with some canon-
ical subset P1,v. For each node v of T , we construct a
similar partition tree T (v), as a second-level structure,
on the subset P1,v. Each node w ∈ T (v) is associated
with a canonical subset P1,v,w ⊂ P1,v. For each node
w ∈ T (v), we construct a partition tree T (w), as a third-
level structure, on the subset P2,w = {p2(η)|p1(η) ∈

295

35th Canadian Conference on Computational Geometry, 2023

P1,v,w} of P2 (put simply, on the subset of points of P2

whose corresponding points of P1 are in the canonical
subset P1,v,w). Each node α of T (w) is associated with a
canonical subset P2,w,α ⊂ P2,w. In a similar fashion, we
build a partition tree T (α), as a fourth-level structure,
on the subset P3,α = {p3(η)|p2(η) ∈ P2,w,α} of P3 for
each node α of T (w). Every node β of T (α) is associated
with a canonical subset P3,α,β ⊂ P3,α.

Finally, at the fifth level, for each node β of T (α), we
preprocess the subset P4,β = {p4(η)|p3(η) ∈ P3,α,β} of
P4 into a data structure such that for any query vector
u ∈ R2, the point in P4,β that is minimal in direction
u can be computed efficiently; in this case, the data
structure simply constitutes the convex hull of P4,β , and
such a query can be answered in O(log n) time.

Putting together, by following the current results
on multi-level partition trees and half-space range
searching [2, 13, 18, 26], we can construct the data
structure Dv using O(mpolylog n) space such that for
a query line segment s, the edge η∗ ∈ E can be found
in time O(n/m1/2 polylog n), where n ≤ m ≤ n2.

Overall, in order to solve Subproblem 2, we prepare a
constant number of face- and edge-shooting data struc-
tures, one for each face and edge of T , search with the
query line segment s in each of them, and return the
closest among the polyhedra output by the queries.

Specifically, in Scenario A, for any n ≤ m ≤ n3, and
for each of the O(1/ε) faces of T (i.e., each of the O(1/ε)
edges e of Q′), we construct data structure De in time
O(m polylog n). Similarly, in Scenario B(II), for any
n ≤ m ≤ n2, and for each of the O(1/ε) edges of T
parallel to s (i.e., each of the O(1/ε) vertices v of Q′),
we build data structureDv in timeO(m polylog n). This
takes a total of O((m/ε) polylog n) preprocessing time
and storage.

Given a query line segment s, we query each of
these data structures with s and return the small-
est scaling factor λ (over all said faces and edges of
T) and the polyhedron that achieves the minimum.
Since, of the two scenarios above, Scenario A has the
dominating query time, the total cost of a query is
O((1/ε)(n/m1/3) polylog n).

Lemma 2 Let Π be a set of polyhedra with n vertices,
edges, and faces in R3. Let s denote any query line seg-
ment. For any n ≤ m ≤ n3 and ε > 0, Π can be prepro-
cessed into a data structure of size O((m/ε) polylog n)
in time O((m/ε) polylog n) such that an ANN(s ∩ Sab)
can be found in O((1/ε)(n/m1/3) polylog n) time.

Based on Lemmas 1 and 2, we reach the following
conclusion.

Theorem 3 For any n ≤ m ≤ n3 and ε > 0,
Π can be preprocessed into a data structure of size

O((m/ε) polylog n+n2+ε) in time O((m/ε) polylog n+
n2+ε) such that for any query line segment s, one can
find an ANN(s,Π) in O((1/ε)(n/m1/3) polylog n+log n)
time.

Particularly, we can find an ANN(s,Π) in time
O((n2/3/ε) polylog n) using O(n2+ε) space, or in time
O((1/ε) polylog n) using O((n3/ε) polylog n) space.

5 Concluding remarks

Our nearest neighbor search problem is partly moti-
vated by the following real-world task. In several practi-
cal path planning applications, such as emergency inter-
vention, autonomous navigation, and medical treatment
planning, (polygonal) paths are suggested by experts in
real time, and one is required to quickly answer if the
suggested paths satisfy certain constraints, such as a
given clearance from the neighboring obstacles. Specif-
ically, given an input set of n polyhedra in 3-space, the
goal is to preprocess them so that for any query polygo-
nal path and any c > 0, one can efficiently i) report the
clearance of the path, and/or ii) determine if the path
has a clearance of at least c.

Clearly, query (i) can be answered by finding the ex-
act nearest neighboring input polyhedron, and query
(ii) can be easily addressed after determining the path’s
clearance in query (i). Unfortunately, an exact nearest
neighbor search in such a setting is likely to be compu-
tationally expensive.

Suppose that we find a (1 + ε)-approximation cε to
the clearance of the path using the data structure pro-
posed herein. If cε/(1 + ε) ≥ c, then we know that the
path has a clearance of at least c. Otherwise, the an-
swer is inconclusive, as the path may or may not have
a clearance of at least c.

So, the question remains as to whether it is feasible to
answer query (ii) definitively without an exact solution
to query (i). Note that if we have a decision algorithm
for query (ii), we could answer query (i) using optimiza-
tion methods such as parametric search.

Finally, we leave it to future work to improve the
space and time bounds in Theorem 3, possibly by ad-
dressing the face and edge shooting queries (reduced
from Subproblem 2) using approximation and without
resorting to simplex range searching data structures.

References

[1] A. Abdelkader and D. M. Mount. Approximate nearest-
neighbor search for line segments. In 37th International
Symposium on Computational Geometry, 2021.

[2] P. K. Agarwal. Simplex range searching and its variants:
A review. A Journey Through Discrete Mathematics: A
Tribute to Jiř́ı Matoušek, pages 1–30, 2017.

296

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[3] P. K. Agarwal, B. Aronov, and M. Sharir. Computing
envelopes in four dimensions with applications. SIAM
Journal on Computing, 26(6):1714–1732, 1997.

[4] P. K. Agarwal, N. Rubin, and M. Sharir. Approximate
nearest neighbor search amid higher-dimensional flats.
In 25th Annual European Symposium on Algorithms,
2017.

[5] A. Andoni and P. Indyk. Nearest neighbors in high-
dimensional spaces. In Handbook of Discrete and Com-
putational Geometry, pages 1135–1155. Chapman and
Hall/CRC, 2017.

[6] A. Andoni, P. Indyk, R. Krauthgamer, and H. L.
Nguyên. Approximate line nearest neighbor in high
dimensions. In Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
293–301, 2009.

[7] A. Andoni, P. Indyk, H. L. Nguyên, and I. Razenshteyn.
Beyond locality-sensitive hashing. In Proceedings of the
Twenty-fifth Annual ACM-SIAM Symposium on Dis-
crete algorithms, pages 1018–1028, 2014.

[8] B. Aronov. A lower bound on Voronoi diagram com-
plexity. Information Processing Letters, 83(4):183–185,
2002.

[9] S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal
approximate polytope membership. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 270–288, 2017.

[10] R. Basri, T. Hassner, and L. Zelnik-Manor. Approxi-
mate nearest subspace search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(2):266–
278, 2010.

[11] S. Bespamyatnikh. Computing closest points for seg-
ments. International Journal of Computational Geom-
etry & Applications, 13(05):419–438, 2003.

[12] S. Bespamyatnikh and J. Snoeyink. Queries with seg-
ments in Voronoi diagrams. Computational Geometry,
16(1):23–33, 2000.

[13] T. M. Chan. Optimal partition trees. Discrete & Com-
putational Geometry, 47:661–690, 2012.

[14] L. P. Chew, K. Kedem, M. Sharir, B. Tagansky, and
E. Welzl. Voronoi diagrams of lines in 3-space under
polyhedral convex distance functions. Journal of Algo-
rithms, 29(2):238–255, 1998.

[15] K. L. Clarkson. A randomized algorithm for closest-
point queries. SIAM Journal on Computing, 17(4):830–
847, 1988.

[16] O. Daescu and H. Malik. Does a robot path have clear-
ance c? In Proceedings of the 12th International Confer-
ence on Combinatorial Optimization and Applications,
pages 509–521, 2018.

[17] O. Daescu and R. Serfling. Extremal point queries with
lines and line segments and related problems. Compu-
tational Geometry, 32(3):223–237, 2005.

[18] D. P. Dobkin and H. Edelsbrunner. Space searching for
intersecting objects. Journal of Algorithms, 8(3):348–
361, 1987.

[19] R. M. Dudley. Metric entropy of some classes of sets
with differentiable boundaries. Journal of Approxima-
tion Theory, 10(3):227–236, 1974.

[20] E. Ezra and M. Sharir. On ray shooting for triangles in
3-space and related problems. SIAM Journal on Com-
puting, 51(4):1065–1095, 2022.

[21] P. P. Goswami, S. Das, and S. C. Nandy. Triangu-
lar range counting query in 2D and its application in
finding k nearest neighbors of a line segment. Compu-
tational Geometry, 29(3):163–175, 2004.

[22] S. Har-Peled. A replacement for Voronoi diagrams of
near linear size. In Proceedings 42nd IEEE Symposium
on Foundations of Computer Science, pages 94–103,
2001.

[23] V. Koltun and M. Sharir. Polyhedral Voronoi diagrams
of polyhedra in three dimensions. Discrete & Compu-
tational Geometry, 31:83–124, 2004.

[24] A. Magen. Dimensionality reductions in `2 that pre-
serve volumes and distance to affine spaces. Discrete &
Computational Geometry, 38(1):139–153, 2007.

[25] S. Mahabadi. Approximate nearest line search in high
dimensions. In Proceedings of the Twenty-sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
337–354, 2014.

[26] J. Matoušek. Range searching with efficient hierarchical
cuttings. Discrete & Computational Geometry, 10:157–
182, 1993.

[27] S. Meiser. Point location in arrangements of hyper-
planes. Information and Computation, 106(2):286–303,
1993.

[28] W. Mulzer, H. L. Nguyên, P. Seiferth, and Y. Stein.
Approximate k-flat nearest neighbor search. In Pro-
ceedings of the Forty-seventh Annual ACM Symposium
on Theory of Computing, pages 783–792, 2015.

[29] M. Segal and E. Zeitlin. Computing closest and far-
thest points for a query segment. Theoretical computer
science, 393(1-3):294–300, 2008.

297

298

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Universal convex covering problems under affine dihedral group actions∗

Mook Kwon Jung† Sang Duk Yoon‡ Hee-Kap Ahn§ Takeshi Tokuyama¶

Abstract

We consider the smallest-area universal convex Hk-
covering of a set of planar objects, which covers every
object in the set allowing the group action of the affine
dihedral group Hk = T ⋊Dk generated by the transla-
tion T and the dihedral group Dk. The dihedral group
Dk is the group of symmetries of a regular polygon gen-
erated by the discrete rotation group Zk and a reflection.
We first classify the smallest-area convex Hk-coverings
of the set of all unit segments. Then we show that a
suitably positioned equilateral triangle of height 1 is a
universal convex H1-covering of the set Sc of all closed
curves of length 2. We show that no proper closed sub-
set of the covering is a H1-covering and the covering is a
smallest-area triangle H1-covering of Sc. We conjecture
that it is the smallest-area convexH1-covering of Sc. We
also show that a suitably positioned equilateral triangle
△β of height 0.966 is a universal convex H2-covering of
Sc. Finally, we give a universal convex H3-covering of
Sc whose area is strictly smaller than that of △β .

1 Introduction

Given a (possibly infinite) set S of planar objects and
a group G of geometric transformations, a universal G-
covering K of S is a region such that every object in
S can be contained in K by transforming the object
with a suitable transformation g ∈ G. Equivalently,
every object of S is contained in g−1K for a suitable

∗Work by M. K. Jung and H.-K. Ahn were supported by the In-
stitute of Information & communications Technology Planning &
Evaluation(IITP) grant funded by the Korea government(MSIT)
(No. 2017-0-00905, Software Star Lab (Optimal Data Structure
and Algorithmic Applications in Dynamic Geometric Environ-
ment)) and (No. 2019-0-01906, Artificial Intelligence Graduate
School Program(POSTECH)). Work by T. Tokuyama was par-
tially supported by MEXT JSPS Kakenhi 20H04143.

†Department of Computer Science and Engineering, Po-
hang University of Science and Technology, Pohang, Korea,
jmg1032@postech.ac.kr

‡Department of Service and Design Engineer-
ing, SungShin Women’s University, Seoul, Korea,
sangduk.yoon@sungshin.ac.kr

§Graduate School of Artificial Intelligence, Department of
Computer Science and Engineering, Pohang University of Science
and Technology, Pohang, Korea, heekap@postech.ac.kr

¶Department of Computer Science, School of En-
gineering, Kwansei Gakuin University, Sanda, Japan,
tokuyama@kwansei.ac.jp

transformation g ∈ G. That is,

∀γ ∈ S, ∃g ∈ G such that γ ⊆ g−1K.

A G-covering K of S is minimal if no proper closed
subset of K is a G-covering of S. We denote the
group of planar translations by T and that of pla-
nar translations and rotations by TR. Mathematically,
TR = T⋊R is the semidirect product of T and the rota-
tion group (i.e., the two-dimensional special orthogonal
group) R = SO(2,R). We denote O for the orthogonal
group O(2,R), which is generated by the rotation group
R and a reflection (say, with respect to the x-axis). Our
groupG is a subgroup of TO = T⋊O, which is the group
generated by T and O. The group TO contains every
affine linear transformation for which the shapes of ge-
ometric objects are invariant. For simplicity, we often
call a universal G-covering a G-covering, or a covering
if G is known from the context.

The problem of finding a smallest-area covering is a
classical problem in mathematics. In the literature, the
cases where G = T or G = TR have been widely stud-
ied.

The universal covering problem has attracted many
mathematicians. Henri Lebesgue (in his letter to J. Pál
in 1914) proposed a problem to find the smallest-area
convex TR-covering of all objects of unit diameter (see
[7, 4, 11] for its history). Soichi Kakeya considered in
1917 the T -covering of the set Sseg of all unit line seg-
ments (called needles) [15]. Precisely, his formulation is
to find the smallest-area region in which a unit-length
needle can be turned round, but it is equivalent to the
T -covering problem if the covering is convex [3]. Fuji-
wara conjectured that the equilateral triangle of height
1 is the smallest-area convex T -covering of Sseg. The
conjecture was affirmatively solved by Pál in 1920 [21].
For the nonconvex variant of the Kakeya problem, Besi-
covitch [5] gave a construction such that the area can
be arbitrarily small, and its variants are widely stud-
ied with strong influence on several fields of mathemat-
ics [9, 24].

Generalizing Pál’s result, for any set of n segments,
there is a triangle to be a smallest-area convex T -
covering of the set, and the triangle can be computed
efficiently in O(n log n) time [1]. It is further conjec-
tured that the smallest-area convex TR-covering of a
family of triangles is a triangle, which is shown to be
true for some families [23].

299

35th Canadian Conference on Computational Geometry, 2023

The equilateral triangle of height 1 is the smallest-
area convex T -covering of the set of all curves of unit
length, as well as the unit line segments. In contrast
to it, the problem of finding the smallest-area convex
TR-covering of the set of all curves of unit length is
notoriously difficult. The problem was given by Leo
Moser as an open problem in 1966 [17], and it is still
unsolved. The best lower bound of the smallest area is
0.21946 [27]. For the best upper bound, Wetzel infor-
mally conjectured (formally published in [28]) in 1970
that the 30◦ circular fan of unit radius, which has an
area π/12 ≈ 0.2618, is a convex TR-covering of all
unit-length curves, and it was proved by Panraksa and
Wichiramala [22]. Recently, the upper bound was im-
proved to 0.260437 [20], but there still remains a sub-
stantial gap between the lower and upper bounds.

This problem is known as Moser’s worm problem, and
it has many variants. The history of progress on the
topic can be found in an article [18] by William Moser
(Leo’s younger brother), in Chapter D18 in [8], and in
Chapter 11.4 in [7]. It is interesting to find a new variant
of Moser’s worm problem with a clean mathematical
solution.

Let us consider the set Sc of all closed curves of length
2. Here, we follow the tradition of previous works on this
problem that deals with closed curves of length 2 instead
of length 1, since a unit line segment can be considered
as a degenerate convex closed curve of length 2. The
problem to find a small-area convex covering of Sc is
known to be an interesting but hard variant of Moser’s
worm problem, and it remains unsolved for T and TR
despite of substantial efforts in the literature [10, 28, 25,
8, 7]. Wichiramala [29] showed that a hexagon obtained
by clipping two corners of a rectangle is a convex TR-
covering of Sc, which has area slightly less than 0.441.
It is also shown that any convex TR-covering of Sc has
area at least 0.39 [12], which has been recently improved
to 0.4 [13] with help of computer programs. For convex
T -coverings, the smallest area is known to be between
0.620 and 0.657 [7].

There are some works on restricted shapes of cov-
ering. Especially, if we consider triangular coverings,
Wetzel [25, 26] gave a complete description, and it is
shown that an acute triangle with side lengths a, b, c
and area X becomes a T -covering (resp. TR-covering)

of Sc if and only if 2 ≤ 8X2

abc (resp. 2 ≤ 2πX
a+b+c). As

a consequence, the equilateral triangle of side length

4/3 (resp. 2
√
3

π) is the smallest triangular T -covering
(resp. TR-covering) of Sc. Unfortunately, their areas
are larger than those of the known smallest-area convex
coverings.

Finite subgroups of the rotation group R = SO(2,R)

are cyclic groups Zk = {e2iπ
√−1/k | 0 ≤ i ≤ k − 1} for

k = 1, 2, . . . , where eθ
√−1 means the rotation of angle

θ. The group generated by T and Zk is denoted by

Gk = T ⋊ Zk.
Recently, the convex coverings under the action of the

group Gk was investigated by Jung et al. [14]. They
showed that the smallest-area convex G2-covering of
Sc is the equilateral triangle of height 1, whose area

is
√
3
3 ≈ 0.577. They also showed that the equilateral

triangle with height β = cos(π/12) ≈ 0.966 is a con-

vex G4-covering of Sc. Its area is 2
√
3+3
12 ≈ 0.538675,

and it is conjectured to be the smallest-area convex G4-
covering. If the above conjecture is true, it is a curi-
ous phenomenon that the discrete rotations in G2 and
G4 make the shape of the smallest-area convex covering
of Sc simple and symmetric compared to the currently
known small-area convex T -coverings and TR-coverings.

Among the convex G3-coverings of Sc known so far,
the smallest one has area 0.568 [14], and its shape is not
a triangle.

There is another type of discrete groups of linear
transformations from Zk for which the shapes of geo-
metric objects are invariant. They are dihedral groups
Dk generated by the discrete rotation group Zk and the
reflection with respect to the x-axis. They have order
2k. As groups, D1 ≃ Z2, D2 ≃ Z2 × Z2, and D3 ≃ S3,
which is the symmetric group of degree 3. The dihe-
dral group D3 is also called the A1-Weyl group as a
reflection group. Therefore, it is natural to consider the
group Hk = T ⋊Dk generated by the translation group
T and the dihedral group Dk, which we call an affine
dihedral group. Note that Hk is a subgroup of TO, but
not a subgroup of TR.

Our results are as follows.

1. The smallest-area convex Hk-covering of the set
Sseg of all unit segments is determined for each k.

2. The equilateral triangle of height 1 is an H1-
covering of the set Sc of all closed curves of length
2 if and only if it is located so that one of the edges
is parallel to the x-axis.

3. The equilateral triangle given above is a minimal
convex H1-covering of Sc. It is a smallest-area tri-
angle H1-covering of Sc.

4. The equilateral triangle of height β = cos(π/12) is
a minimal convex H2-covering of Sc if it is located
such that one of its sides has orientation π/4.

5. The trapezoid obtained by clipping the top corner
of the equilateral triangle of height 1 with base par-
allel to the x-axis is a convex H3-covering of Sc.
The area of the covering is strictly smaller than that
of the equilateral triangle of height β = cos(π/12).

We use elaborate but quite elementary geometric meth-
ods to show the results.

Here we introduce the notation and preliminaries.
The orientation of a line is the angle swept from the

300

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

x-axis in a counterclockwise direction to the line, and
it is thus in [0, π). The orientation of a segment is the
orientation of the line containing the segment. For two
points X and Y , we use ℓXY to denote the line through
X and Y . For a compact set U in the plane, we use |U |
to denote the area of U . If U is a line segment, then |U |
denotes the length of U .

The missing proofs of lemmas and corollaries can be
found in the full version.

2 Universal convex coverings of line segments

Since we only consider convex coverings, we say covering
for a convex covering from now on unless specifically
noticed. We recall a result by Ahn et al. [1].

Theorem 1 ([1]) For any set S of line segments, there
exists a triangle that is a smallest-area convex T -
covering of S. If S is a finite set and |S| = n, such
a triangle can be computed in O(n log n) time.

The G-orbit of a segment s in S is the set of segments
in S to which s can be moved by the elements of a group
G. We derive the following corollary from Theorem 1:

Corollary 2 For any set S of line segments, there is a
triangle that is the smallest-area convex Hk-covering.

The orbit structure of the Dk-action on Sseg is not
uniform; for example, each of the horizontal and verti-
cal line segments is invariant under the D2-action and
forms a single-element orbit while other orbits have two
segments. This contrasts to the Zk-action, for which
the orbit structure is uniform. Consequently, any ro-
tated copy of a Gk-covering of Sseg is also a Gk-covering
of Sseg, but there are cases where a rotated copy of an
Hk-covering of Sseg is not an Hk-covering of Sseg.

Theorem 3 If k is odd, the smallest area of Hk-
coverings of Sseg is

1
2 sin π

2k , and it is attained by any tri-
angle △XY Z with horizontal bottom side XY of length

1 and height sin π
2k such that π

2 ≤ ∠X ≤ (2k−1)π
2k . If

k is even, the smallest area of Hk-coverings of Sseg is
1
2 sin π

k , and it is attained by any triangle △XY Z with
horizontal bottom side XY of length 1 and height sin π

k

such that π
2 ≤ ∠X ≤ (k−1)π

k .

Proof. The set of orientations of segments in Sseg cor-
responds to the angle interval [0, π). First, consider the
case where k is odd. Each orbit of Zk action has ex-
actly k elements. Each of the horizontal and vertical
segments has a single orbit in the orbit structure of the
action of the reflection with respect to the x-axis while
the other segments has 2 orbits in the same orbit struc-
ture. The orbit structure of Dk is given by the above
combinations, and thus each orbit has at most 2k ele-
ments.

Let P be an Hk-covering of Sseg. For any segment s
in Sseg, at least one segment in the Dk-orbit of s must
be contained in P by translation. Let Y be the set of
unit segments that can be contained in P by translation.
Consider the smallest angle interval I such that for each
segment of orientation θ in Y , θ ∈ I or θ + π ∈ I.
Observe that I has length at least π

2k . If the length
of I is smaller than π

2k , the set of orientations of the
segments in Y under Hk-action is a proper subset of
[0, π) since the Dk-orbit of a segment s′ of Y has at
most 2k elements. This contradicts that P is an Hk-
covering of Sseg. So there are two segments in Y such
that their intersection angle θ̄ (the one not larger than
π
2) is not smaller than π

2k . The convex hull P ′ of the
two segments has area |P ′| = 1

2 sin θ̄ ≥ 1
2 sin π

2k , and
|P | ≥ |P ′|. Thus, the smallest area of Hk-coverings is
at least 1

2 sin π
2k .

If k is even, each orbit of Zk action has exactly k
2 ele-

ments. Thus, each orbit of Dk has at most k elements.
The rest is analogous to the odd k case, and the smallest
area of Hk-coverings is at least 1

2 sin π
k .

Observe that the triangles given in the theorem are
coverings with areas 1

2 sin π
2k for odd k and 1

2 sin π
k for

even k. □

The triangles obtained by acting elements h ∈ Hk

and g ∈ G2 on the triangles given in Theorem 3 are
also Hk-coverings, since a line segment is invariant with
respect to the action of G2 and the covering condition
is invariant with respect to the action of Hk.

Let us compare Theorem 3 with the Gk-coverings of
Sseg given in [14]. If k ≥ 2, the smallest area of Hk-
coverings is the same as that of the smallest area of G2k-
coverings. The smallest area of H1-coverings is 1

2 , which
is the same as the smallest area of G4-coverings. In
contrast, the smallest-areaG2-covering (that is the same
as the smallest-area T -covering) of Sseg is the equilateral
triangle of area 1√

3
.

3 Universal convex H1-coverings of Sc

In this section, we consider H1-coverings of the set Sc

of all closed curves of length 2. First, we recall known
results mentioned in the introduction.

3.1 The smallest-area covering and related results

Theorem 4 (Pal’s theorem) The equilateral triangle
of height 1 is the smallest-area (convex) T -covering of
the set of all unit line segments.

Corollary 5 The area of a G2-covering of Sc is at least
1/
√

3.

Proof. Observe that all unit line segments are in Sc,
and line segments are stable under the action of rotation

301

35th Canadian Conference on Computational Geometry, 2023

by π. Thus, any convex G2-covering of Sc must be a
T -covering of all unit line segments, and the corollary
follows from Theorem 4 (Pal’s theorem). □

It is known that the above lower bound is tight.

Theorem 6 (Jung et al. [14]) The equilateral trian-
gle of height 1 is the smallest-area G2-covering of Sc.

Lemma 7 Suppose that a region P is symmetric with
respect to the y-axis. Then the following holds.

• For an odd k, P is an Hk-covering of Sc if and only
if it is a G2k-covering of Sc.

• For an even k, P is an Hk-covering of Sc if and
only if it is a Gk-covering of Sc.

Proof. Let h be the reflection with respect to the x-
axis, and let g be the rotation of angle π about the
origin. From the assumption that P is symmetric with
respect to the y-axis, h · P is a translation of g · P . If
k is even, Gk contains g. Hence the Hk-orbit of P is
the same as the Gk-orbit of P , and we have the second
statement. If k is odd, the group generated by Gk and
g is G2k, and we have the first statement. □

3.2 H1-coverings of Sc

Let △1 be an equilateral triangle of height 1 whose bot-
tom side is horizontal.

Theorem 8 The equilateral triangle △1 is an H1-
covering of Sc. Moreover, it is the smallest-area H1-
covering among all H1-coverings of Sc that are convex
and symmetric to the y-axis.

Proof. The first statement follows immediately from
Theorem 6 and Lemma 7. Consider a H1-covering P
that is convex and symmetric with respect to the y-
axis. By Lemma 7, P is G2-covering. By Theorem 6,
|△1| ≤ |P |. Thus, the second statement also holds. □

Corollary 9 Any closed curve of length 2 that is sym-
metric with respect to a line of orientation 0, π/3 or
2π/3 is contained in △1 by translation.

This corollary complements the fact that any
centrally-symmetric closed curve of length 2 can be con-
tained in△1 by translation [14]. However, △1 is not the
smallest-area T -covering of the set of the closed curves
of length 2 that are symmetric about the x-axis, since
a square with a unit length horizontal diagonal is a T -
covering of the set. The area of the square is 1

2 , and thus
smaller than that of △1. Thus, the H1-covering prob-
lem and the T -covering problem of D1-invariant objects
have different solutions.

Theorem 10 Let TL be an equilateral triangle of
perimeter 2 such that it has a vertical side and its oppo-
site corner lies to the right. Let TR be a copy of TL ro-
tated by π. The equilateral triangle △1 and its reflected
image about the x-axis are the only convex H1-coverings
of TL and TR among the rotated copies of △1 about the
origin.

△1

TL TR

TL TR TL TR

(a) (b) (c)

Figure 1: (a) Translates of TL and TR that are contained
in △1. (b) No translate of TR can be contained in a
rotated copy of △1 by θ with 0 < θ < π/3. (c) No
translate of TL can be contained in a rotated copy of
△1 by θ with −π/3 < θ < 0.

Proof. Observe that there are translates of TL and TR
that are contained in △1. See Figure 1 (a). Observe
that both TL and TR are symmetric with respect to a
horizontal line. If a rotated copy △θ of △1 by θ is a H1-
covering of TL and TR, there are translates of TL and TR
that are contained in △θ. Observe that no translate of
TR is contained in△θ with 0 < θ < π/3 and no translate
of TL is contained in △θ with −π/3 < θ < 0, as shown
in Figure 1 (b) and (c). △1 is invariant under rotation
by 2π/3. The rotation by π/3 of △1 is equivalent to
g·△1, where g is the reflection with respect to the x-axis.
Thus, △1 and g · △1 are the only convex H1-coverings
of TL and TR among the rotated copies of △1. □

3.3 The minimality of the H1-covering △1

One may wonder whether we may remove some part
of △1 to obtain a smaller H1-covering of Sc. In this
section, we prove the minimality of the H1-covering △1.

Theorem 11 The equilateral triangle △1 is a minimal
convex H1-covering of Sc.

Proof. Assume to the contrary that there is a proper
subset T of△1 that is a convex H1-covering of Sc. Since
△1 is the convex hull of the corners of △1, T must be
obtained by clipping some portions around some corners
of △1. Since a vertical unit segment must be contained
in T , no portion around the top corner of △1 can be cut
off.

Let In be an isosceles triangle with perimeter 2 whose
legs are of 1 − 1/3n each, base is parallel to x-axis,
and apex is the top corner of In. Let I ′n be a copy of

302

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

In

I ′n

Īn
T

△1

Figure 2: No proper subset T of △1 is a convex H1-
covering of Sc. The isosceles triangle In, a rotated copy
I ′n of In by π/3, and a reflected copy Īn of I ′n along the
x-axis.

In rotated by π/3. Observe that no translate of I ′n is
contained in△1 for any positive integer n. See Figure 2.
Since T is a proper subset of △1, no translate of I ′n
is contained in T for any positive integer n. Thus, a
reflected copy of I ′n along the x-axis is contained in T
under translation for every n.

Let Īn be the reflection copy of I ′n such that Īn is
contained in T . Since T is compact, there is a subse-
quence {Īni} that converges to a unit line segment with
orientation π/6 contained in T . Observe that △1 con-
tains a unit line segment with orientation π/6 only when
the left endpoint of the segment lies at the bottom-left
corner of △1. Thus, no portion around the bottom-
left corner of △1 can be cut off. Similarly, no portion
around the bottom-right corner of △1 can be cut off.
Therefore, we conclude that that T is △1, contradicting
that T is a proper subset of △1. Thus, △1 is a minimal
H1-covering of Sc. □

3.4 The smallest area triangle H1-covering of Sc

Now we show that △1 has the smallest area among all
triangle H1-coverings of Sc. The following two lemmas
describe geometric properties of a triangle that circum-
scribes a convex polygon P .

Lemma 12 ([16]) If a triangle T has a local minimum
in area among all triangles enclosing a convex polygon
P , the midpoint of each side of T touches P .

Following [19], we say that a side s of a triangle is
flush with an edge e of P if e ⊆ s. Also, we say that a
circumscribing triangle △ is P -anchored if a side of △
is flush with an edge of P and the other two sides of △
touch vertices of P at their midpoints.

Lemma 13 (Lemma 1 of [19]) For any P -anchored
triangle △, there always exists some P -anchored trian-
gle △′ such that |△| = |△′|, △ and △′ share one side,
and at least two sides of △′ are flush with edges of P .

Recall that TL given in Theorem 10 is an equilateral
triangle of perimeter 2 such that it has a vertical side
and its opposite corner lies to the right and TR is a copy
of TL rotated by π.

Lemma 14 Let Q be the convex hull of TL and a trans-
lated copy of TR. Then |Q| ≥ |TL|+ |TR|.

The following lemma can be shown by Lemmas 12, 13,
and 14.

Lemma 15 The equilateral triangle △1 is the smallest
triangle T -covering of TL and TR.

Theorem 16 The equilateral triangle △1 is the
smallest-area triangle H1-covering of Sc.

Proof. Let △ be a smallest-area triangle H1-covering
of Sc. Since △ is H1-covering, it is a covering of TL
and TR under translation. By Lemma 15, △1 is the
smallest-area triangle H1-covering of Sc. □

A major open problem is whether △1 is a smallest-
area H1-covering of Sc. As Theorem 6 says, △1 is the
smallest-area G2-covering of Sc, and it is because △1 is
the smallest-area G2-covering of Sseg. However, as we
have seen in Theorem 3, the smallest-area H1-covering
of Sseg is smaller, and has area 1/2. This is because
a line segment (located so that its midpoint is at the
origin) is stable under the rotation by π, but not stable
under the reflection with respect to the x-axis unless it
is horizontal or vertical.

4 Universal convex H2-coverings of Sc

The dihedral group D2 is generated by the reflection ρ
with respect to the x-axis and the π-rotation g. Note
that gρ is the reflection with respect to the y-axis.

The following result was given by Jung et al. [14]:

Theorem 17 An equilateral triangle of height β =
cos(π/12) ≈ 0.966 is a G4-covering of Sc.

1
1

(a) (b)

Figure 3: (a) An equilateral triangle △β of height β
containing horizontal and vertical unit line segments.
(b) The triangle △β and three triangles forming the
D2-orbit of △β .

Now, we consider△β that is the equilateral triangle of
height β located such that one of its sides has orientation
π/4. Then, we have the following:

303

35th Canadian Conference on Computational Geometry, 2023

Theorem 18 The equilateral triangle △β is an H2-
covering of Sc. Moreover, it is minimal.

Proof. Consider the D2-orbit of △β . Then, as ob-
served in Figure 3, they are exactly the same as the ro-
tated copies of △β with kπ/2-rotations for k = 0, 1, 2, 3.
Thus, it follows from Theorem 17 that △β is an H2-
covering.

Consider the set A of unit length segments (regarded
as degenerate closed curves of length 2) that are con-
tained in △β . It is observed that A′ = A \ B has at
most one element of each D2-orbit of Sseg, where B
is the set of six segments with orientations kπ/6 for
k = 0, 1, . . . , 5. Thus, each segment in A′ must be con-
tained in any H2-covering Q ⊆ △β under translation.
By Theorem 1, there is a smallest-area T -covering of A′

that is a triangle, and the algorithm given in [1] shows
that △β is the triangle. Thus, Q = △β , and hence △β

is minimal. □

We say that an object is θ-orthogonal symmetric if
it has a pair of symmetry axes with orientations θ and
θ + π/2.

Corollary 19 Any curve in Sc that is θ-orthogonal
symmetric for either θ = 0, π/3, or 2π/3 can be con-
tained in △β by translation. In particular, any rectangle
of perimeter 2 that has an edge with orientation either
0, π/3, or 2π/3 can be contained in △β by translation.

Note that △1 is the smallest-area T -covering of the
family of all rotated rectangles of perimeter 2 [14].

5 Universal convex H3-coverings of Sc

1

2
3 Γ3

A B

CD

Figure 4: Construction of a convex H3-covering Γ3 of
Sc. It is the trapezoid obtained from △1 after clipping
a top part (an equilateral triangle) of height 1/3.

Let Γ3 be the trapezoid obtained from △1 after clip-
ping a top part (an equilateral triangle) of height 1/3.
See Figure 4. Let A,B,C,D be the corners of Γ3 in
counterclockwise order, with A being the bottom-left
corner. We show that Γ3 is a convex H3-covering of Sc.

A slab is the region bounded by two parallel lines in
the plane, and its width is the distance between the

lines. Let Lθ denote a slab of orientation θ, and let
w(Lθ) be the width of Lθ.

Lemma 20 For a closed curve β, let Lθ be the
minimum-width slab of orientation θ that contains β.
The length of β is at least w(L0) +w(Lπ/3) +w(L2π/3).

By Lemma 20, we have the following result.

Theorem 21 The trapezoid Γ3 is a convex H3-covering
of Sc.

The area of Γ3 is strictly smaller than that of the equi-
lateral triangle of height β = cos(π/12).

6 Conclusion

This research is about how the mirror (i.e., reflection)
effects on Moser’s worm problems. Compared to the
discrete rotation case given in [14], the positioning of the
covering matters if we introduce the reflection, which
requires delicate mathematical handling.

The research status of Moser’s worm problems on Sc

for T and TR remains rather static, and it is awkward
to conjecture that the known small-area coverings are
the optimal ones. In contrast to it, if we consider the
affine dihedral groups such as H1 and H2, we can give
clear conjectures that suitable equilateral triangles are
the smallest-area coverings. The authors think they are
mathematically clean and curious conjectures, and hope
novel mathematical tools will be developed in the course
of challenging to prove or disprove them.

Finally, although the Hk-coverings for k ≥ 4 of Sseg

have been classified, those for Sc have not been investi-
gated, and it would be curious to find a unified approach
to study them.

References

[1] H.-K. Ahn, S.-W. Bae, O. Cheong, J. Gudmundsson, T.
Tokuyama, A. Vigneron, A Generalization of the Con-
vex Kakeya Problem, Algorithmica, 70:152-170, 2014.

[2] H.-K. Ahn, O. Cheong, Aligning Two Convex Figures
to Minimize Area or Perimeter, Algorithmica, 62:464-
479, 2012.

[3] S. W. Bae, S. Cabello, O. Cheong, Y. Choi, F. Stehn,
S. D. Yoon: The reverse Kakeya problem, Advances in
Geometry, 21(1):75-84, 2021.

[4] J. Baez, K. Bagdasaryan, P. Gibbs, The Lebesgue uni-
versal covering problem, Journal of Computational Ge-
ometry, 6(1):288-299, 2015.

[5] A. Besicovitch, On Kakeya’s problem and a similar one,
Mathematische Zeitschrift, 27:312-320, 1928.

[6] K. Bezdek, R. Connelly, Covering Curves by Translates
of a Convex Set, The American Mathematical Monthly,
96(9):789-806, 1989.

304

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[7] P. Brass, W. Moser, J. Pach, Research Problems in Dis-
crete Geometry, Springer Verlag, 2005.

[8] H. T. Croft, K.J. Falconer, R.K. Guy, Unsolved Prob-
lems in Geometry, Springer-Verlag, 1991.

[9] Z. Dvir, On the size of Kakeya sets in finite fields. J.
Amer. Math. Soc. 22(4): 1093-1097, 2009.

[10] Z. Fürdi, J. W. Wetzel, Covers for Closed Curves of
Length Two, Periodia Mathematica Hungaria, 63(1):1-
17, 2011.

[11] P. Gibbs, An Upper Bound for Lebesgue’s Covering
Problem, arXiv:1810.10089, 2018.

[12] B. Grechuk, S. Som-am, A convex cover for closed unit
curves has area at least 0.0975, International Journal
of Computational Geometry & Applications, 30(2):121-
139, 2020.

[13] B. Grechuk, S. Som-am, A convex cover for closed unit
curves has area at least 0.1, Discrete Optimization, 38,
article 100608: 1-15, 2020.

[14] M. K. Jung, S. D. Yoon, H.-K. Ahn, T. Tokuyama,
Universal convex covering problems under translation
and discrete rotations, arXiv:2211.14807 [cs.CG] , 2022.

[15] S. Kakeya, Some problems on maximum and minimum
regarding ovals, Tohoku Science Report, 6:71-88, 1917.

[16] V. Klee, Facet-centroids and volume minimization, Stu-
dia Scientiarum Mathematicarum Hungarica, 21:143-
147 1986.

[17] L. Moser, Poorly formulated unsolved problems of com-
binatorial geometry, Mimeographed, 1966.

[18] W. O. J. Moser, Problems, problems, problems, Dis-
crete Applied Mathematics, 31:201-225, 1991.

[19] J. O’Rourke, A. Aggarwal, S. Maddila, M. Baldwin,
An Optimal Algorithm for Finding Minimal Enclosing
Triangles, Journal of Algorithms, 7:258-269, 1986.

[20] R. Norwood, G. Poole, An improved upper bound for
Leo Moser’s worm problem, Discrete Computational
Geometry, 29:409-417, 2003.

[21] J. Pal, Ein Minimumproblem für Ovale, Mathematische
Annalen, 83:311-319, 1921.

[22] C. Panraksa, W. Wichiramala, Wetzel’s sector covers
unit arcs, Periodica Mathematica Hungarica, 82:213-
222, 2021.

[23] J. Park, O. Cheong, Smallest universal covers for fami-
lies of triangles. Computational Geometry, 92: 101686,
2021.

[24] T. Tao, From Rotating Needles to Stability of Waves:
Emerging Connections between Combinatorics, Analy-
sis, and PDE, Notice of American Mathematical Soci-
ety, 48(3): 294-303, 2001.

[25] J. E. Wetzel, Triangular covers of closed curves of con-
stant length, Elemente der Mathematik, 25(4):78-82,
1970.

[26] J. E. Wetzel, On Moser’s problem of accommodating
closed curves in triangle, Elemente der Mathematik,
27(2):35-36, 1972.

[27] J. E. Wetzel, Sectorial covers for curves of constant
length, Canadian Mathematical Bulletin, 16:367-375,
1973.

[28] J. E. Wetzel, Fits and covers. Mathematics Magazine,
76:349-363, 2003.

[29] W. Wichiramala, A smaller cover for closed unit curves,
Miskolc Mathematical Notes, 19(1):691-698, 2018.

305

306

On the FPT Status of Monotone Convex Chain Cover

Qizheng He∗

Abstract

Given a set of points P in the plane, the monotone
convex cover number κ(P) is the minimum number of
x-monotone convex chains that can together cover P .
We show the problem of deciding whether κ(P) ≤ k is
NP-hard and does not have a polynomial kernel, unless
NP ⊆ coNP/poly.

1 Introduction

The parameterized complexity of various geometric cov-
ering problems is a fundamental question related to clus-
tering, and quite a bit of attention is attracted in recent
years [9, 29, 2, 24, 25, 30, 7]. A typical formulation of
the geometric covering problem is as follows: given a
set of points P in Rd and a set of geometric objects S,
find the smallest subset of objects from S that together
cover all points in P .

We say a problem is Fixed-Parameter Tractable (F-
PT), if there exists an algorithm with running time
f(k) · |x|O(1), where x is a string encoding a given prob-
lem instance, and k is the parameter.

For simple geometric objects, Langerman and Morin
[28] presented an FPT algorithm framework to solve ab-
stract geometric covering problems, with running time
depending exponentially on the combinatorial dimen-
sion of the problem. This abstract setting models a
number of concrete problems, e.g. covering points in R2

by k lines, or more generally covering points by k hyper-
planes in Rd for constant dimension d. In this case, the
combinatorial dimension equals to the geometric dimen-
sion d, and a simple bounded search tree and kerneliza-
tion algorithm works [19, 28, 21, 38]. The problem can
be solved in deterministic O(kdkn) time, or randomized
O(kd(k+1) + 2dkd(d+1)/2eb(d+1)/2cn log n) time.

The covering problem becomes more interesting for
geometric objects with non-constant complexity, where
less results were known in the literature. In this paper,
we study the parameterized complexity of the problem
of covering points in R2 by monotone convex chains.

The problem is defined as follows. Let Q =
(q1, . . . , qm) be a sequence of points in the plane. The
sequence Q is a convex chain, if ∀ 1 ≤ i ≤ m, qi is the i-
th vertex of the convex hull CH(Q) of Q. Furthermore,

∗Department of Computer Science, University of Illinois at
Urbana-Champaign, qizheng6@illinois.edu

Q is an x-monotone convex chain, if ∀ 1 ≤ i ≤ m, qi is
the i-th vertex of the lower hull LH(Q) of Q (i.e., Q is
a downward-convex point set, and the x-coordinates of
the points qi are monotonically increasing).

The convex cover number of a set of points P , denoted
as κc(P), is the minimum number of convex chains using
only points in P that together cover all points in P
[4]. The monotone convex cover number κ(P) is defined
similarly, further requiring that the convex chains would
also be x-monotone. See Fig. 1 for an example.

Our goal is to determine the monotone convex cover
number of a given point set P .

Problem 1 (Monotone Convex Chain Cover) Given a
set of points P in the plane and a parameter k, decide
whether the monotone convex cover number κ(P) of P
is at most k.

Arkin et al. proved that determining the convex cover
number is NP-complete, and also presented an O(log n)-
approximation algorithm [4]. In this work, we similarly
prove that computing the monotone convex chain cover
number is also NP-complete.

A somewhat related problem is monotone subsequence
cover, which asks for deciding whether a permutation π
can be partitioned into k monotone subsequences. If we
require all subsequences to be monotonically increasing,
then the problem can be solved in polynomial time by
finding the longest antichain, using Dilworth’s theorem
[13]. The problem becomes NP-hard when each subse-
quence is allowed to be either (monotonically) increas-
ing or decreasing [37]. Heggernes et al. showed that this
problem is FPT, by giving an algorithm that solves the
problem in 2O(k2 log k)nO(1) time [23]. They reduced the
monotone subsequence cover problem to the cochromat-
ic number problem, and provided an FPT algorithm to
compute the cochromatic number on perfect graphs.

The convex cover number is also related to other
mathematical concepts, such as the convex partition
number κp(P), which asks for the minimum number
of convex chains covering P , where the convex chain-
s are required to be pairwise-disjoint convex hulls [4].
Computing the convex partition number exactly is also
NP-complete, and an O(log n)-approximation algorithm
is known [4]. Another related concept is the reflexivi-
ty ρ(P), which is the minimum number of reflex ver-
tices (i.e., having interior angle > π) in a simple polyg-
onalization of P [4, 1]. One more similar problem is

307

35th Canadian Conference on Computational Geometry, 2023

(a) P has convex cover number κc(P) = 2: P can be
covered by two convex chains as shown, and easy to verify
that κc(P) > 1, because CH(P) (P .

(b) P has monotone convex cover number κ(P) = 3.

Figure 1: The convex cover number and monotone convex cover number of a point set P .

to compute a planar subdivision of the input point set
P , where each bounded interior face is a convex poly-
gon, and minimizing the number of such convex polygon
faces. Polynomial-time constant factor approximation
algorithm exists [26], but the best known exact algorith-
m runs in nO(k) time for deciding whether this number
is at most k [18]. If we parameterize by the number of
inner points k′ in P , this problem is known to be FPT
[20, 34].

Despite the extensive studies for related problems,
there are only few previous works focusing on the com-
plexity of monotone convex chain cover. A natural con-
jecture is that the monotone convex chain cover prob-
lem we study here is harder than the monotone sub-
sequence cover problem, due to the additional convexi-
ty constraint (constraints on triples instead of pairs of
points). One particular open question asked by Epp-
stein is whether convex chain cover is FPT [15, Open
Problem 11.16], and the same question can also be asked
for monotone convex chain cover. Here we provide a
conditional hardness result showing that monotone con-
vex chain cover does not have a polynomial kernel, un-
less NP ⊆ coNP/poly, taking a step towards resolving
the parameterized complexity of the problem.

Worst-case convex cover number. There are previ-
ous results on bounding the convex cover number in
the worst case. Erdős and Szekeres proved that any
point set with size n contains a convex subset with size
Ω(log n) [16, 17]. This is related to the famous hap-
py ending problem [16], which had been recently (n-
early) resolved by Suk [35]. As a consequence, Urabe
showed that κc(n) = Θ(n

logn) [36], where κc(n) denotes
the worst-case convex cover number of a set of n points.
The hidden constant in the Θ-notation is also of interest
to some researchers, see e.g. [33].

For the monotone convex cover number, the trivial
Θ(n) bound is tight: consider the input points forming a
concave set as shown in Fig. 2, in this case the monotone
convex cover number and the convex cover number are
far apart. In the random case and the grid case, better

bounds are known [22, 12].

Figure 2: A concave point set P with even size n has
convex cover number κc(P) = 1 (green chain) and
monotone convex cover number κ(P) = n/2 (blue chain-
s).

Approximation algorithms. It is not hard to get a
polynomial time approximation algorithm for com-
puting the convex cover number, with an O(log n)-
approximation factor [4]. The idea is to use the greedy
algorithm for general set cover, where in each iteration
we greedily choose the convex chain with the largest
number of points in the remaining set of points. Note
that we can compute the largest convex chain in poly-
nomial time, by dynamic programming [32]. This al-
gorithm readily leads to an O(log n)-approximation for
the monotone convex cover number. An open question
is whether getting constant factor approximation is pos-
sible for either of the problems.

XP algorithm. A simple observation is the convex
chain cover problem can be solved in nO(k) time, us-
ing dynamic programming [15, Section 11.5]. The same
algorithm works for monotone convex chain cover, and
for completeness we briefly redescribe it here. Suppose
we want to decide whether κ(P) ≤ k. In each state of
dynamic programming, we maintain k x-monotone con-
vex chains (may be empty), and keep track of the last
two points of each monotone convex chain. Sort the in-
put points according to their x-coordinates in increasing
order, and attach them one by one to the tails of the
convex chains, enumerating each combination. We can

308

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

verify whether the current point can be added to a par-
ticular convex chain while maintaining convexity, using
its relative position with the stored last two points of the
chain. There are nO(k) states, and computing the value
of each state takes polynomial time, thus this problem
is in XP. This is still the fastest algorithm known to the
best of our knowledge.

2 Our Results

2.1 NP-hardness for Monotone Convex Chain Cover

We first show that the monotone convex chain cover
problem is NP-hard, which serves as a building block
for proving nonexistence of polynomial kernels later.

It is known that computing the convex cover number
κc(P) for a given point set P is NP-hard, as shown by
Arkin et al. [4] (which turns out to be inspired by the
hardness proof for Angular Metric TSP by Aggarwal et
al. [3]). Since convex chain cover and monotone convex
chain cover are closely related, by slightly modifying
their proof, we are able to prove a similar hardness result
for monotone convex chain cover.

Theorem 1 Given a set of points P in the plane and
an integer k, it is NP-hard to decide whether the mono-
tone convex cover number κ(P) of a point set P is at
most k.

We first sketch the argument of Arkin et al.’s NP-
hardness proof, then highlight the modifications we
made for proving NP-hardness for monotone convex
chain cover.

Proof. Arkin et al.’s NP-hardness proof for convex cov-
er number is via a reduction from the 1-in-3 SAT prob-
lem, i.e. deciding whether there exists a satisfying as-
signment of the given formula, such that exactly one
literal in each clause is true. In their reduction, for each
clause they created three columns, where each colum-
n corresponds to a variable, and for each variable they
created two rows, corresponding to the true and false
assignments. Then they added “pivot” points to en-
code the variable-clause incidence information. Finally,
they added “staple” gadgets to the rows and column-
s each containing sufficiently large number of points
which are in convex position, one staple for each vari-
able and two staples for each clause, and the aim is to
use those gadgets as convex chains to cover all the “piv-
ot” points. The 1-in-3 SAT instance I is satisfiable iff
κc(PI) ≤ n + 2m, where n is the number of variables
and m is the number of clauses.

Our modifications for monotone convex chain cover
are as follows. Here one can only use x-monotone con-
vex chains to cover the points, therefore one needs to
replace each “staple” gadget with a pair of x-monotone
convex chains (the red curves illustrated in Fig. 3), each

is slightly perturbed from a straight line segment and
contains Ω(n4) points, which is sufficiently large to en-
sure each pair of such monotone convex chains will be
selected as a whole. Each “staple” can be linked as a
single x-monotone convex chain that is able to cover all
the pivot points in one row or one column, but cannot
cover any other pivot point. We carefully set the po-
sitions and the slopes of the monotone convex chains
to ensure each pair of convex chains that is created will
be contained in a single x-monotone convex chain in the
optimal solution. One need to also slightly rotate the w-
hole point set SI counterclockwise by a negligibly small
angle, in order to ensure x-monotonicity of the (nearly
vertical) chains that we want to appear in the optimal
solution. The rest of the correctness proof follows from
Arkin et al.’s work.

An example of our modified reduction construction is
shown in Fig. 3. �

Remark. Intuitively, the monotone convex chain cover
problem is hard to solve, since it is known that covering
points by lines is NP-hard [31, 14] and even APX-hard
[8, 27], and monotone convex chains are more compli-
cated geometric objects than lines. However, we are not
aware of a direct reduction between these two problems.

x1

xn

x2

Figure 3: The point set PI we create for a 1-in-3 SAT
instance I for reducing to the monotone convex chain
cover problem. Each red curve illustrates a “staple”
gadget, which is in fact a sufficiently long x-monotone
convex chain. The pivot points for the clause (x1 ∨xi ∨
xn) are shown in green.

2.2 No Polynomial Kernel

Next, we show that the monotone convex chain cover
problem does not have a polynomial sized kernel, unless
NP ⊆ coNP/poly, which is believed to be unlikely, as it
will imply that the polynomial hierarchy collapses [39,
10].

Kernelization. A kernel for a parameterized problem
Q ⊆ Σ∗ × N is an algorithm A that, given an instance
(I, k) of Q, returns an equivalent instance (I ′, k′) of Q

309

35th Canadian Conference on Computational Geometry, 2023

in polynomial time such that (I, k) ∈ Q iff (I ′, k′) ∈ Q.
The size of the kernel |I ′| + k′ is required to be upper
bounded by f(k) for some computable function f [11].
We say the problem Q has a polynomial kernel, if there
exists a polynomial such function f .

It is well-known that a parameterized problem is FPT
iff it admits a kernelization algorithm [11].

Composing problem instances. The key observation
is that given t point sets P1, . . . , Pt, we can create a
new point set P̂ such that its monotone convex cover
number κ(P̂) ≤ k iff κ(Pi) ≤ k for all 1 ≤ i ≤ t.

The detailed construction is as follows. Note that
convexity is preserved under affine transformations, in
particular translation, rotation and scaling. The idea
is to apply an affine transformation on each point set
Pi to get a new point set P̂i, and let P̂ be the dis-
joint union of all P̂i’s. We first scale each point set
Pi to ensure that P̂i is contained in an axis-aligned
bounding box which is wide and narrow. In particu-
lar, after applying appropriate horizontal and vertical
scaling, we can w.l.o.g. assume the width of the bound-
ing box is 1, and the absolute value of the slope be-
tween each pair of points in P̂i is bounded by ε, where
ε = ε(t) is a sufficiently small value depending only on
t. As a consequence, the height of the bounding box is
bounded by 2ε. Next, we rotate the bounding box of
P̂i by i

t radians counterclockwise, and finally translate
the bounding box to let its lower left corner lie on co-
ordinate (

∑2i−3
j=0 cos j

2t ,
∑2i−3

j=0 sin j
2t), specifically (0, 0)

for P̂1. See Fig. 4 for an example.

^

^

^

P2

P1

P3

Figure 4: The point set P̂ created from composing P1,
P2 and P3. Each transformed point set P̂i is contained
in a bounding box shown in blue.

The above construction ensures that an x-monotone
convex chain in Pi is still an x-monotone convex chain
in P̂ after applying the corresponding affine transfor-
mation. Moreover, for any pair i < j, we can con-
catenate any x-monotone convex chain in P̂i with any
other x-monotone convex chain in P̂j , to get a single x-

monotone convex chain in P̂ after the transformation.
Therefore κ(P̂i ∪ P̂j) ≤ max{κ(P̂i), κ(P̂j)} by greedi-

ly concatenating the chains in P̂i with the chains in
P̂j . On the other hand, clearly κ(P̂i) ≤ κ(P̂i ∪ P̂j) as

P̂i ⊆ P̂i ∪ P̂j , and similarly κ(P̂j) ≤ κ(P̂i ∪ P̂j). Thus,

κ(P̂i ∪ P̂j) = max{κ(P̂i), κ(P̂j)}.
As a result, P̂ can be covered by at most k x-

monotone convex chains iff each part Pi can be covered
by at most k x-monotone convex chains.

AND-composition. The above seemingly simple con-
struction implies we can compose multiple instances
of monotone convex chain cover into a single instance,
where the answer for the combined instance equals to
the Boolean AND of the answers for those instances.
The next step is to use the framework of Bodlaender
et al. [5, 6] to prove that the monotone convex chain
cover problem does not have a polynomial kernel, un-
less NP ⊆ coNP/poly. To begin with, we introduce the
concept of AND-composition.

Definition 2 (AND-composition [5]) Let L ⊆ Σ∗×
N be a parameterized problem. An AND-composition
algorithm for L is an algorithm that takes as input a
sequence ((x1, k), . . . , (xt, k)) where (xi, k) ∈ Σ∗ × N+

∀ 1 ≤ i ≤ t, runs in time polynomial in
∑t

i=1 |xi| + k,
and outputs (y, k′) ∈ Σ∗ × N+ such that:
(a) (y, k′) ∈ L iff (xi, k) ∈ L ∀ 1 ≤ i ≤ t, and
(b) k′ = poly(k).

We claim that our above construction gives an AND-
composition algorithm for the parameterized language
of the monotone convex chain cover problem. One can
encode a point set P containing n points using poly(n)
bits, because one only need the information about the
rank of the x-coordinates of the points, and the convex-
ity of each triple of points. Namely, the input can be
encoded using O(n3) bits. It is easy to verify that the
definitions of AND-composition are met.

Bodlaender et al. [5] showed that if an AND-
compositional parameterized language L has a poly-
nomial kernel, and if its unparameterized version L̃ is
NP-complete, then NP ⊆ coNP/poly. Combining our
AND-composition construction in this section with the
NP-hardness result in Sec. 2.1, we obtain the following
theorem:

Theorem 2 The monotone convex chain cover problem
parameterized by k does not admit a polynomial kernel,
unless NP ⊆ coNP/poly.

Open problems. We conclude with a number of open
problems to explore for future work:

• Our results exclude the existence of a polynomi-
al kernel for monotone convex chain cover, unless
NP ⊆ coNP/poly. But whether this problem is
FPT remains open.

• Since monotone convex chain cover and convex
chain cover seem to be closely related, it would

310

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

be interesting to see whether we can prove simi-
lar kernelization hardness results for convex chain
cover. Our current technique does not obviously
generalize, because in our construction for AND-
composition, x-monotonicity is crucial for combin-
ing multiple monotone convex chains into a sin-
gle one. Another direction is to directly relate the
hardness between monotone convex/concave chain
cover and convex chain cover.

• The current best polynomial time approxima-
tion algorithms for convex chain cover and mono-
tone convex chain cover only achieve O(log n)-
approximation. It is not known whether polynomi-
al time constant factor approximation algorithms
exist for these two problems, or whether the prob-
lems are APX-hard.

Acknowledgement. We thank Sariel Har-Peled for
helpful discussions and, in particular, for bringing the
convex chain cover problem to our attention.

References

[1] Eyal Ackerman, Oswin Aichholzer, and Balázs
Keszegh. Improved upper bounds on the reflex-
ivity of point sets. Comput. Geom., 42(3):241–249,
2009.

[2] Pankaj K. Agarwal and Cecilia Magdalena Pro-
copiuc. Exact and approximation algorithms for
clustering. Algorithmica, 33(2):201–226, 2002.

[3] Alok Aggarwal, Don Coppersmith, Sanjeev Khan-
na, Rajeev Motwani, and Baruch Schieber. The
angular-metric traveling salesman problem. SIAM
Journal on Computing, 29(3):697–711, 2000.

[4] Esther M Arkin, Joseph SB Mitchell, Sándor P
Fekete, Ferran Hurtado, Marc Noy, Vera Sacristán,
and Saurabh Sethia. On the reflexivity of point
sets. Discrete and Computational Geometry, pages
139–156, 2003.

[5] Hans L Bodlaender, Rodney G Downey, Michael R
Fellows, and Danny Hermelin. On problems with-
out polynomial kernels. In International Colloqui-
um on Automata, Languages, and Programming (I-
CALP), pages 563–574, 2008.

[6] Hans L Bodlaender, Bart MP Jansen, and Ste-
fan Kratsch. Kernelization lower bounds by cross-
composition. SIAM Journal on Discrete Mathe-
matics, 28(1):277–305, 2014.

[7] Karl Bringmann, Sándor Kisfaludi-Bak, Michal
Pilipczuk, and Erik Jan van Leeuwen. On geo-
metric set cover for orthants. In Proceedings of the

27th Annual European Symposium on Algorithms
(ESA), pages 26:1–26:18, 2019.

[8] Björn Brodén, Mikael Hammar, and Bengt J. Nils-
son. Guarding lines and 2-link polygons is APX-
hard. In Proceedings of the 13th Canadian Confer-
ence on Computational Geometry (CCCG), pages
45–48, 2001.

[9] Sergio Cabello, Panos Giannopoulos, Christian K-
nauer, Dániel Marx, and Günter Rote. Geometric
clustering: Fixed-parameter tractability and lower
bounds with respect to the dimension. ACM Tran-
s. Algorithms, 7(4):43:1–43:27, 2011. Preliminary
version in SODA’08.

[10] Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A.
Hemaspaandra, and Mitsunori Ogihara. Compet-
ing provers yield improved Karp-Lipton collapse re-
sults. Inf. Comput., 198(1):1–23, 2005.

[11] Marek Cygan, Fedor V Fomin, Lukasz Kowa-
lik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Micha l Pilipczuk, and Saket Saurabh.
Parameterized algorithms, volume 5. 2015.

[12] Ketan Dalal. Counting the onion. Random Struc-
tures & Algorithms, 24(2):155–165, 2004.

[13] Robert P Dilworth. A decomposition theorem for
partially ordered sets. Annals of Mathematics,
51:161–166, 1950.

[14] Adrian Dumitrescu and Minghui Jiang. On the ap-
proximability of covering points by lines and relat-
ed problems. Comput. Geom., 48(9):703–717, 2015.

[15] David Eppstein. Forbidden configurations in dis-
crete geometry. Cambridge University Press, 2018.

[16] Paul Erdős and George Szekeres. A combinatori-
al problem in geometry. Compositio mathematica,
2:463–470, 1935.

[17] Paul Erdős and George Szekeres. On some ex-
tremum problems in elementary geometry. In An-
nales Univ. Sci. Budapest, pages 3–4, 1960.

[18] Thomas Fevens, Henk Meijer, and David Rappa-
port. Minimum convex partition of a constrained
point set. Discrete Applied Mathematics, 109(1-
2):95–107, 2001.

[19] Panos Giannopoulos, Christian Knauer, and Sue
Whitesides. Parameterized complexity of geometric
problems. The Computer Journal, 51(3):372–384,
2008.

311

35th Canadian Conference on Computational Geometry, 2023

[20] Magdalene Grantson and Christos Levcopoulos.
A fixed parameter algorithm for the minimum
number convex partition problem. In Discrete
and Computational Geometry, Japanese Confer-
ence (JCDCG), Revised Selected Papers, volume
3742 of Lecture Notes in Computer Science, pages
83–94, 2004.

[21] Magdalene Grantson and Christos Levcopoulos.
Covering a set of points with a minimum number
of lines. In Tiziana Calamoneri, Irene Finocchi,
and Giuseppe F. Italiano, editors, Algorithms and
Complexity, 6th Italian Conference (CIAC), vol-
ume 3998 of Lecture Notes in Computer Science,
pages 6–17, 2006.

[22] Sariel Har-Peled and Bernard Lidicky. Peeling
the grid. SIAM Journal on Discrete Mathematics,
27(2):650–655, 2013.

[23] Pinar Heggernes, Dieter Kratsch, Daniel Loksh-
tanov, Venkatesh Raman, and Saket Saurabh.
Fixed-parameter algorithms for cochromatic num-
ber and disjoint rectangle stabbing via iterative lo-
calization. Information and Computation, 231:109–
116, 2013.

[24] R. Z. Hwang, R. C. Chang, and Richard C. T.
Lee. The searching over separators strategy to solve
some NP-hard problems in subexponential time.
Algorithmica, 9(4):398–423, 1993.

[25] R. Z. Hwang, Richard C. T. Lee, and R. C. Chang.
The slab dividing approach to solve the Euclidean
p-center problem. Algorithmica, 9(1):1–22, 1993.

[26] Christian Knauer and Andreas Spillner. Approxi-
mation algorithms for the minimum convex parti-
tion problem. In Lars Arge and Rusins Freivalds,
editors, 10th Scandinavian Workshop on Algorithm
Theory (SWAT), volume 4059 of Lecture Notes in
Computer Science, pages 232–241, 2006.

[27] V. S. Anil Kumar, Sunil Arya, and H. Ramesh.
Hardness of set cover with intersection 1. In U-
go Montanari, José D. P. Rolim, and Emo Welzl,
editors, Proceedings of the 27th International Col-
loquium on Automata, Languages, and Program-
ming (ICALP), volume 1853 of Lecture Notes in
Computer Science, pages 624–635. Springer, 2000.

[28] Stefan Langerman and Pat Morin. Covering things
with things. In European Symposium on Algorithm-
s (ESA), pages 662–674, 2002.

[29] Dániel Marx. Efficient approximation schemes for
geometric problems? In Gerth Stølting Brodal and
Stefano Leonardi, editors, Proceedings of the 13th
Annual European Symposium (ESA), volume 3669

of Lecture Notes in Computer Science, pages 448–
459, 2005.

[30] Dániel Marx and Michal Pilipczuk. Optimal pa-
rameterized algorithms for planar facility location
problems using voronoi diagrams. In Proceedings
of the 23rd Annual European Symposium on Algo-
rithms (ESA), pages 865–877, 2015.

[31] Nimrod Megiddo and Arie Tamir. On the complex-
ity of locating linear facilities in the plane. Oper.
Res. Lett., 1(5):194–197, 1982.

[32] Joseph SB Mitchell, Günter Rote, Gopalakrishnan
Sundaram, and Gerhard J Woeginger. Counting
convex polygons in planar point sets. Inf. Process.
Lett., 56(1):45–49, 1995.

[33] J Pach. Discrete and computational geometry, 19.
Special issue dedicated to Paul Erdös, 1998.

[34] Andreas Spillner. Optimal convex partitions of
point sets with few inner points. In Proceedings
of the 17th Canadian Conference on Computation-
al Geometry (CCCG), pages 39–42, 2005.

[35] Andrew Suk. On the Erdős-Szekeres convex poly-
gon problem. Journal of the American Mathemat-
ical Society, 30(4):1047–1053, 2017.

[36] Masatsugu Urabe. On a partition of point sets into
convex polygons. In Proceedings of the 9th Cana-
dian Conference on Computational Geometry (C-
CCG), 1997.

[37] Klaus W. Wagner. Monotonic coverings of finite
sets. J. Inf. Process. Cybern., 20(12):633–639,
1984.

[38] Jianxin Wang, Wenjun Li, and Jianer Chen. A
parameterized algorithm for the hyperplane-cover
problem. Theor. Comput. Sci., 411(44-46):4005–
4009, 2010.

[39] Chee-Keng Yap. Some consequences of non-
uniform conditions on uniform classes. Theor.
Comput. Sci., 26:287–300, 1983.

312

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

On Density Extrema for `1-Balls in 2D and 3D Integer Space

Nilanjana G. Basu∗ Subhashis Majumder∗ Partha Bhowmick†

Abstract

Digital balls are made of integer points and defined in a
particular finite-dimensional metric space. By their very
definition, they indeed have a drastic difference from the
real-space balls because their elements are countable.
The countability offers the scope for their unique charac-
terization and related applications in discrete-geometric
computation in various domains such as computer vi-
sion and combinatorial image analysis. Density is one
of the unique characteristics of digital balls, and since
this measure varies with the position and the size of a
ball in any metric space, a natural inquisition lies with
its extremum values. This paper presents some notable
results on these extrema for `1-balls in 2D and 3D space.
Further possible investigations related to this are also
mentioned at the end.

1 Introduction

Characterization of integer points for various compu-
tational purposes is one of the prevalent problems in
computer graphics, computer vision, and image anal-
ysis. It helps us understand various facts and figures
that are intuitively not apparent. Opposed to points in
the real space, points in the integer space are countable,
equipped with certain classes of neighborhood relations
that are different from those in the real space, and can
be used to constitute specialized topological spaces with
appropriate metrics. Counting and density measure of
integer points are two related concepts that are needed
to characterize specific metric-defined balls or simple
geometric shapes. One such classic example is Pick’s
Theorem for triangles on the 2D plane, given that the
vertices are all integer points. The scenario, however,
becomes quite complex when the vertices are not bound
to be integer points, especially for polygons (or polyhe-
dra) with four or more vertices. The proof technique
for one class of polygons may not be handy for another
class, and hence exclusive proofs are needed for them.
In this paper, we present some novel findings on mini-
mum and maximum densities of `1-balls in 2D and 3D
integer space.

∗Department of Computer Science & Engineer-
ing, Heritage Institute of Technology, Kolkata, India.
{nilanjanag.basu,subhashis.majumder}@heritageit.edu

†Department of Computer Science & Engineering, Indian In-
stitute of Technology, Kharagpur, India. pb@cse.iitkgp.ac.in

Table 1: Summary of results. (ε is a real number tending

to 0. The entries marked by ? are not yet found by us.)

max density min density

Center λ ρ λ ρ λ

2-diamond

Z2 Z+ 5
2

2 1 ∞
Z2 R+ 5

2
2 1

2
2− |ε|

R2 Z+ 4 1 ? ?

R2 R+ 4 1 4
9

3− |ε|

3-diamond

Z3 Z+ 21
4

2 1 ∞
Z3 R+ 21

4
2 21

32
4− |ε|

R3 Z+ 12 1 ? ?

R3 R+ 12 1 3
8

4− |ε|

1.1 Related work

Density, as a measure, provides a notion of the rela-
tive concentration of points within a given shape or
region [13]. Hence, it finds numerous applications in
different branches of physical science; some of the inter-
esting ones can be found in [6, 7, 10, 11, 16, 17, 18] and
in the references therein.

Quite a handful of work has been done related to dig-
ital discs and digital balls defined on square or non-
square grid [8, 5, 14]. There are also some research
works on different algorithmic techniques and analyses
related to their constructions [1, 2, 4, 15]. Regarding 2-
dimensional digital `2-balls (i.e., Euclidean discs), cer-
tain interesting results on minimum and maximum den-
sities can be seen in a recent paper [3].

1.2 Our work

An `1-ball can be conceived as a diamond in 2D and
a regular octahedron in 3D. Its density is defined as
the number of integer points per unit of its area or vol-
ume. (Mathematical definitions follow shortly in §1.3.)
We have characterized the density functions of `1-balls
in 2D and 3D with all possible specifications and have
thereby deduced the definite values of maximum and
minimum densities. Interestingly, these extremum val-
ues are found to depend on whether the diagonal-lengths
or/and the centers are real- or integer-valued. The main
results are summarized in Table 1.2. We denote by R
the set of real numbers, by Z the set of integers, and by
Z+ the set of positive integers.

313

35th Canadian Conference on Computational Geometry, 2023

1.3 Conventions and Terminologies

We consider uniform rectilinear grids in 2D and 3D. The
points under consideration are essentially grid points,
i.e., points of intersection among the grid lines or the
grid planes. Consequently, the set of grid points in 2D
(3D) are in bijection with the points in Z2 (Z3). Hence,
the points are assumed to have integer coordinates and
referred to as integer points for brevity. For definiteness,
these integer points are also called pixels in 2D and vox-
els in 3D.1 An `1-ball is essentially a diamond in 2D, i.e.,
a square with two axes-parallel diagonals. Similarly, in
3D, it is a regular octahedron with three axes-parallel
diagonals. For simplicity, we call them 2-diamond and
3-diamond, respectively; and we specify either of them
by the center and the length of a diagonal. Further,
by the term “real diagonal” or “integer diagonal”, we
mean a diagonal of real or integer length, respectively.
Examples of 2-diamonds and 3-diamonds are shown in
Figure 1.

For n = 2 and 3, we denote by D
(n)
λ an n-diamond

having a diagonal of length λ. We do not include its
center in this notation to keep it simple, but mention it
whenever needed.

Considering the center as the origin in the local co-
ordinate system in Rn, and denoting the `1 norm of a
point p by ‖p‖1, an n-diamond is thus defined as

D
(n)
λ :=

{
p ∈ Rn : 2 · ‖p‖1 ≤ λ

}

and its boundary is given by

bdy
(

D
(n)
λ

)
:=
{
p ∈ Rn : 2 · ‖p‖1 = λ

}
.

The set of integer points contained in D
(n)
λ is referred

to as a digital n-diamond, and it is given by

D(n)
λ := D

(n)
λ ∩ Zn =

{
p ∈ Zn : 2 · ‖p‖1 ≤ λ

}
.

The cardinality of D(n)
λ is denoted by |D(n)

λ |, and the

area (if n = 2) or volume (if n = 3) of D
(n)
λ by vol

(
D

(n)
λ

)
.

The density of integer points in D(n)
λ is given by

ρ
(n)
λ =

∣∣∣D(n)
λ

∣∣∣

vol
(

D
(n)
λ

) .

2 Maximum density

For characterization of maximum-density diamonds in
2D and 3D, we consider those containing more than one

1In the literature of computer graphics and digital image pro-
cessing, integer points in 2D are referred to as pixels, and those
in 3D are referred to voxels. This is mathematically well-founded
because 2D/3D integer points are isomorphic to pixels/voxels [12].

Figure 1: 2-diamonds (left) and 3-diamonds (right) with
integer center and diagonal-length λ ∈ {0, 2, 4, . . . , 10}.

integer point, because containment of just one integer
point is trivial and degenerates to the limiting case of
infinite density.

In order to deduce the maximum density for 2-
diamonds and 3-diamonds with real-valued diagonals,
we now make an important observation that comes to
use in narrowing down our attention to a countable col-

lection of diamonds. For n = 2, 3, let D
(n)
λ be a diamond

that does not contain any integer point on its boundary.
Then we can always shrink it uniformly, keeping its cen-
ter fixed, without missing any of its integer points, until

some integer point p ∈ D(n)
λ touches its boundary. Let

D
(n)
µ be the diamond after shrinking, such that p lies on

its boundary. Clearly, D
(n)
µ $ D

(n)
λ and D(n)

µ = D(n)
λ ,

which implies that ρ
(n)
µ > ρ

(n)
λ , whence the following

observation.

Observation 1 Any 2-diamond or any 3-diamond of
maximum density must contain an integer point on its
boundary.

2.1 Integer center

Observe that a 2-diamond or a 3-diamond having an
integer center and a diagonal of length λ doesn’t con-
tain any integer point on its boundary if λ is an odd
integer. So, by Observation 1, it cannot not have the

maximum density. In fact, such a diamond D
(n)
λ always

contains within itself a higher-density diamond D
(n)
λ−1

whose diagonal-length (i.e., λ − 1) is an even integer.
Thus, we make the following observation.

Observation 2 A 2-diamond or a 3-diamond centered
at an integer point can have the maximum density only
if its diagonal-length is an even integer.

Based on the above observation, we deduce the max-
imum densities for integer-centered 2-diamonds and 3-
diamonds, as stated in the following two theorems.

Theorem 1 (2-diamonds: integer center) In the
collection of all 2-diamonds with integer centers, those
with maximum density have diagonals of length 2 and
density 5

2 .

314

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Proof. Consider a 2-diamond with integer center and
of diagonal-length λ = 2k, where k is a positive integer,
as shown in Figure 1. By a simple counting, we get

|D(2)
2k | = (2k + 1) + 2

k∑

i=1

(2i− 1) = 2k2 + 2k + 1. (1)

Hence,

ρ
(2)
2k =

|D(2)
2k |

vol(D
(2)
2k)

=
2k2 + 2k + 1

2k2
= 1 +

1

k
+

1

2k2
. (2)

Since arg max
k

{
ρ
(2)
2k

}
= 1 is unique, the maximum den-

sity occurs if and only if λ = 2, whence the result. �

Theorem 1 can be extended to derive a similar result
for 3-diamonds having integer center, as stated next.

Theorem 2 (3-diamonds: integer center) In the
collection of all 3-diamonds with integer centers, those
with maximum density have diagonals of length 2 and
density 21

4 .

Proof. By Observation 2, a 3-diamond D
(3)
λ has maxi-

mum density only if λ = 2k, where k is a positive inte-

ger. The corresponding digital 3-diamond, i.e., D(3)
λ , is

given by the union of the central 2-diamond, i.e., D(2)
λ ,

and its upper and lower 2-diamonds of diagonal-lengths
2(k − 1), 2(k − 2), . . . , 0. Thus,

∣∣∣D(3)
2k

∣∣∣ =
∣∣∣D(2)

2k

∣∣∣+ 2
k−1∑
i=0

∣∣∣D(2)
2i

∣∣∣

= 4
3k

3 + 2k2 + 8
3k + 1.

(3)

As vol
(

D
(3)
2k

)
=
√
2
3 (k
√

2)3 = 4k3

3 , we get

ρ
(3)
2k =

|D(3)
2k |

vol(D
(3)
2k)

= 1 +
3

2k
+

2

k2
+

3

4k3
. (4)

The inference now is similar to the proof of Theorem 1:

arg max
k

{
ρ
(2)
2k

}
= 1 is unique, which implies that the

maximum density is for a unique value of k, which gives
λ = 2, and the corresponding density is 21

4 . �

2.2 Real center

By Observation 1, to achieve maximum density, any 2-

diamond D
(2)
λ must have at least one integer point on

its boundary. We characterize its center c based on
this. Let f be a function that maps c to a nearest

point f(c) in 2D for which there exists a 2-diamond D
(2)
µ

centered at f(c) such that
∣∣∣D(2)
µ

∣∣∣ =
∣∣∣D(2)
λ

∣∣∣ and µ ≤ λ.

Let c = (cx, cy) and f(c) = (fx(c), fy(c)). W.l.o.g.,

f(c) : (Z,Z) 7→ (Z,Z) f(c) : (Z/2,Z/2) 7→ (Z/2,Z/2)

Case 1

f(c) : (Z/2,R) 7→ (Z/2,Z) f(c) : (Z,R) 7→ (Z,Z/2)

Case 2

Case 3

f(c) : (R,R) 7→ (Z,Z) f(c) : (R,R) 7→ (Z/2,Z/2)

Case 4

f(c) : (R,R) 7→ (Z,Z) f(c) : (R,R) 7→ (R,R)

Figure 2: Result of applying f on the center c of a 2-
diamond—four exhaustive cases, each with a couple of

sub-cases. D
(2)
λ are shown with black diagonals, and

D
(2)
µ shown in gray with white diagonals.

we take fx(c) = cx + δx and fy(c) = cy + δy, where

(δx, δy) ∈
[
− 1

2 ,
1
2

]2
. Clearly, D

(2)
λ cannot have maxi-

mum density if µ < λ. We analyze with four exhaus-
tive cases given below, which are also illustrated in Fig-
ure 2. We denote by Z/2 the set of half-integers, i.e.,

Z/2 =
{
a+ 1

2 : a ∈ Z
}

.

[1] All four sides of D
(2)
λ contain integer points: c ∈

Z2] Z2
/2 =⇒ f(c) = c =⇒ λ ∈ Z.

[2] Only two adjacent sides of D
(2)
λ contain integer

points: c ∈ ((R × Z/2) ∪ (Z/2 × R)) ∪ ((R × Z) ∪
(Z×R)) =⇒ f(c) ∈ Z×Z/2 =⇒ µ < λ. So, D

(2)
λ

cannot have maximum density.

[3] Only two opposite sides of D
(2)
λ contain integer

points: A careful observation shows that f(c) ∈
Z2] Z2

/2 and µ = λ, which implies λ is an integer.

315

35th Canadian Conference on Computational Geometry, 2023

D
(2)
λ1

D
(2)
λ2

D
(2)
λ3

p ∈ Z3

Figure 3: Three 2-diamonds in D
(3)
λ such that the inte-

ger point p on the boundary of D
(3)
λ lies on their bound-

aries as well.

[4] Only one side of D
(2)
λ contain integer points: We

get µ < λ by shrinking, which implies D
(2)
λ cannot

have maximum density.

We extend the above analysis to 3-diamonds with

real centers. By Observation 1, any 3-diamond D
(3)
λ

has maximum density only if at least one of its eight
faces contains an integer point p. As shown in Figure 3,
this point p will lie on the boundaries of exactly three

2-diamonds, namely D
(2)
λi

, where i = 1, 2, 3. Each of
them is parallel to one of the principal planes. Con-

sider any of them—w.l.o.g., say it is D
(2)
λ1

. We refer
back to Figure 2. If its boundary admits Case 1 or

Case 3, then λ1 ∈ Z =⇒ λ ∈ Z; otherwise, D
(2)
λ1

can be

shrunk to a smaller 2-diamond D
(2)
µ1 so that µ1 < λ1 and∣∣∣D(2)

µ1

∣∣∣ =
∣∣∣D(2)
λ1

∣∣∣. Each other 2-diamond in D
(3)
λ , which is

parallel to D
(2)
λ1

and of the form D
(2)
λ1+k

, where k ∈ Z,

admits this shrinking. So, D
(3)
λ cannot have maximum

density. This gives the following observation.

Observation 3 Any 2-diamond or any 3-diamond with
a real center can have the maximum density only if the
length of its diagonal is an integer, and then its respec-
tive center will be in (Z] Z/2)2 or in (Z] Z/2)3.

By Observation 3, if the center c of a 2-diamond or
of a 3-diamond is in Z2 or in Z3, then the results are
already known (Theorems 1 and 2). So, we now find
the results if c is in (Z]Z/2)2rZ2 or in (Z]Z/2)3rZ3.

Theorem 3 (2-diamonds: real center) In the col-
lection of all 2-diamonds with centers in R2rZ2 and
with integer diagonals, the ones with maximum density
have centers in (Z]Z/2)2rZ2, diagonals of unit length,
and density 4.

Proof. We prove in two parts—one for odd and one for
an even value of λ (Figure 4). Let c be the center of a

2-diamond D
(2)
λ .

Figure 4: Two possible cases of D
(2)
λ with the centers in

(Z] Z/2)2rZ2: odd λ (left) and even λ (right).

Part i. Let λ = 2k − 1, where k ∈ Z+. By Observa-
tion 3, c ∈ (Z× Z/2)] (Z/2 × Z). We have

∣∣∣D(2)
2k−1

∣∣∣ = 2k + 2

k−1∑

i=1

2i = 2k2 (5)

=⇒ ρ
(2)
2k−1 =

∣∣∣D(2)
2k−1

∣∣∣
vol(D(2)

2k−1)
=

2k2

1
2 (2k − 1)2

=

(
1

1− 1
2k

)2

. (6)

As ρ
(2)
2k−1 decreases monotonically with k, the maximum

density occurs at k = 1, and its value is 4.

Part ii. Let λ = 2k, where k ∈ Z+. By Observation 3,
c ∈ Z/2 × Z/2. We have

∣∣∣D(2)
2k

∣∣∣ = 2

k∑

i=1

2i = 2k(k + 1) (7)

=⇒ ρ
(2)
2k =

∣∣∣D(2)
2k

∣∣∣
vol(D(2)

2k)
=

2k(k + 1)
1
2 (2k)2

= 1 +
1

k
. (8)

As in Part i, arg max
k

ρ
(2)
2k = 1, and so max ρ

(2)
2k = 2.

Combining Part i and Part ii, we get the result. �

The above theorem can be extended to obtain the re-
sults for 3-diamonds, as stated in the following theorem.

Theorem 4 (3-diamonds: real center) In the col-
lection of all 3-diamonds with centers in R3rZ3 and
with integer diagonals, the ones with maximum density
have centers in (Z]Z/2)3rZ3, diagonals of unit length,
and density 12.

Proof. We prove in three parts depending on the loca-
tion of the center c.

Part i. c ∈ (Z×Z×Z/2)](Z×Z/2×Z)](Z/2×Z×Z),
λ = 2k − 1, where k ∈ Z+.

316

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

∣∣∣D(3)
2k−1

∣∣∣ = 2k2 + 2

k−1∑

i=1

2i2

by union of the central digital

2-diamond D(2)
2k−1 and the dig-

ital 2-diamonds on its either

sides

=
4

3
k3 +

2

3
k. (9)

As vol
(
D(3)

2k−1

)
=

23
(
2k−1

2

)3

3!
=

(2k − 1)3

6
, we get

ρ
(3)
2k−1 =

4
3k

3 + 2
3k

(2k−1)3
6

=
8k3 + 4k

(2k − 1)3
=

1 + 1
2k2(

1− 1
2k

)3 (10)

which decreases monotonically with k and maximizes at
k = 1, with the value 12.

Part ii. c ∈ (Z×Z/2×Z/2)] (Z/2×Z×Z/2)] (Z/2×
Z/2 × Z), λ = 2k, where k ∈ Z+.

∣∣∣D(3)
2k

∣∣∣ = 2k(k + 1) + 2

k−1∑

i=1

2i(i+ 1)

=
4

3
k3 + 2k2 +

2

3
k. (11)

As vol
(
D(3)

2k

)
=

23k3

3!
=

4

3
k3, we get

ρ
(3)
2k =

4
3k

3 + 2k2 + 2
3k

4
3k

3
= 1 +

3

2k
+

1

2k2
(12)

which decreases monotonically with k and maximizes at
k = 1, with the value 3.

Part iii. c ∈ Z/2 × Z/2 × Z/2, λ = 2k + 1, k ∈ Z+.

∣∣∣D(3)
2k+1

∣∣∣ = 2

k∑

i=1

2i(i+ 1)

}no central digital 2-diamond;

digital 2-diamonds are only

on two sides of D
(3)
2k+1

=
4

3
k(k + 1)(k + 2). (13)

As vol
(
D(3)

2k+1

)
=

23
(
2k+1

2

)3

3!
=

(2k + 1)3

6
, we get

ρ
(3)
2k+1 =

(
2k

2k + 1

)(
2k + 2

2k + 1

)(
2k + 4

2k + 1

)
(14)

which also decreases monotonically with k (derivative
always negative) and maximizes at k = 1, with the
value 16

9 . Combining the three parts, we get the re-
sult. �

3 Minimum density

We present here some results on the characteristics of
minimum-density diamonds in 2D and 3D. A diamond

without any integer point has zero density and is dis-
regarded from our consideration. Our deductions are
based on a generic fact that a diamond with minimal
density will be maximal in size with no integer point on
its boundary. In particular, we use the following obser-
vation.

Observation 4 For a fixed center c, if D
(n)
λ0

is a dia-

mond with center c and with bdy
(

D
(n)
λ0

)
∩Zn 6= ∅, then

the minimal-density diamond that has center c and con-

tains all and only the integer points of D
(n)
λ0

, will have
the maximal-length diagonal, and that length is

arg sup
λ

{
vol
(
D

(n)
λ

)
:
(

bdy
(

D
(n)
λ

)
∩ Zn = ∅

)}
.

3.1 Integer center and integer diagonal

As shown in §2, for integer center and integer diagonal,
a diamond always has even-length diagonals, i.e., it is

of the form D(n)
2k , where n = 2, 3 and k ∈ Z+. From

(2) and (4), it can be noticed that the density func-

tion of D(n)
2k decreases monotonically with k. Further,

inf
k∈Z+

{
ρ
(n)
2k

}
= 1. Hence, a minimum-density diamond

has infinite diagonal-length and density 1 in both 2D
and 3D.

3.2 Integer center and real diagonal

Unlike §3.1, the result for 2-diamond and that for 3-
diamond are different in this setting. We present them
exclusively in the following two theorems.

Theorem 5 (2-diamond: integer-real) In the col-
lection of all 2-diamonds with integer center and real
diagonal, the diagonal-length of the ones with minimum
density is the largest real number less than 2.

Proof. We refer back to (2). For a maximal-size real
diamond containing a single pixel, the density is

lim
ε→0

(
ρ
(2)
2−|ε|

)
= lim
ε→0

 1

vol
(

D
(2)
2−|ε|

)

 =

1

2
.

For k ≥ 2, we have

lim
ε→0

(
ρ
(2)
2k−|ε|

)
=

2k2 − 2k + 1

2k2
= 1− 1

k

(
1− 1

2k

)
>

1

2
,

whence the result. �

Theorem 6 (3-diamond: integer-real) In the col-
lection of all 3-diamonds with integer center and real
diagonal, the diagonal-length of the ones with minimum
density is the largest real number less than 4.

317

35th Canadian Conference on Computational Geometry, 2023

Proof. We refer back to (4). Let λ denote the diagonal-
length. There is a maximal-size 3-diamond containing
7 voxels having λ just less than 4. The supremum of
its density is 7

4
3 ·23

= 21
32 . For λ < 2, there exists only a

unique case of maximal-size diamond containing a single
voxel, and its density is

lim
ε→0

ρ
(3)
2−|ε| =

1
4
3 · 13

=
3

4
>

21

32
. (15)

For k ≥ 1, we have

lim
ε→0

ρ
(3)
2k−|ε| =

∣∣D(3)
2k−1

∣∣

vol
(
D

(3)
2k−|ε|

)

=
4
3 (k − 1)3 + 2(k − 1)2 + 8

3 (k − 1) + 1
4
3k

3

= 1− 3

2k
+

2

k2
− 3

4k3
≥ 21

32
. (16)

Note that k ≥ 1 =⇒ (k − 1)2(11k − 26) + (k + 2) ≥
0 =⇒ 11k3 − 48k2 + 64k − 24 ≥ 0, which gives 21

32 as
the lower bound in (16). Now, from (15) and (16), the
result follows. �

3.3 Real center and real diagonal

As per Observation 4, we need to consider only the fol-

lowing cases. We denote the center of D
(2)
λ by c.

1. c ∈ Z2: tackled in §3.2.
2. c ∈ (Z× Z/2)] (Z/2 × Z): λ will be just less than

an odd integer.
3. c ∈ Z/2 × Z/2: λ will be just less than an even

integer.

We have the following result for the last two cases.

Theorem 7 (2-diamond: real-real) In the collec-
tion of all 2-diamonds with real center and real diagonal,
the diagonal-length of the ones with minimum density is
the largest real number less than 3.

Proof. By Observation 4, the minimum density corre-
spond to some λ just less than an integer. We consider
the odd and the even lengths separately. Let k ∈ Z+.
For the odd case, λ = 2k − 1. For k ≤ 2, there ex-
ists a unique case of maximal diamond containing two

pixels, and its density is lim
ε→0

ρ
(2)
3−|ε| = 2

1
2 ·32

= 4
9 . Now,

k > 2 =⇒ (k − 4
5)(k − 2) ≥ 0 =⇒ lim

ε→0
ρ
(2)
2k−1−|ε| =

4(k−1)2
(2k−1)2 ≤ 4

9 . For the even case, λ = 2k. We have

lim
ε→0

ρ
(2)
4−|ε| = 4

1
2 ·42

= 1
2 , which is less than lim

ε→0
ρ
(2)
2k−|ε| =

k−1
k = 1− 1

k for all k > 2, whence the proof. �

The above result for 2-diamonds and the one in The-
orem 4 can be combined to get the following theorem.
As the proof is similar to those done in Theorem 7 and
Theorem 4, we give here a brief sketch of the proof.

Theorem 8 (3-diamond: real-real) In the collec-
tion of all 3-diamonds with real center and real diagonal,
the diagonal-length of the ones with minimum density is
the largest real number less than 4.

Proof. As per Observation 4 and as explained in The-
orem 4, we have three possible cases for the location of
center c, as each of its three coordinates can be in Z/2
or Z. After analyzing these cases, we find that the min-
imum density occurs when c is in Z × Z/2 × Z/2 or an
equivalent 3D space. We get

ρ
(3)
2k =

4
3 (k − 1)3 + 2(k − 1)2 + 2

3 (k − 1)
4
3k

3
= 1− 3

2k
+

1

2k2

which is 0 if k = 1 (notice that such a 3-diamond ex-
ists). For k = 2, its value is 3

8 , and thereon it increases
monotonically. �

4 Conclusion and future work

In this work, we have introduced an interesting prob-
lem of defining and characterizing density measure for
`1-balls in 2D and 3D integer space. We have found the
solutions for most of the possible configurations related
to real and integer specifications except the minimum
density cases for arbitrary centers and integer diago-
nals. Note that the diamonds (both 2D and 3D) with
integer diagonals become minimal whenever the centers
are aligned with a grid line along any direction, i.e., they
have pixels on their boundary. So, these diamonds are
natural candidates for maximum density. The maximal
diamonds on the other hand are the natural candidates
to compete for minimum density and with integer di-
agonals they stand at a disadvantage for being maxi-
mal under any circumstances. So to find the minimum
density diamonds one has to consider a number of non-
maximal diamonds also and that makes the search space
somewhat different from the other cases and hence may
require different techniques for their solutions. Such a
difficulty was observed for `2-balls also and those cases
are still open [3].

For `∞-balls, the solutions are rather easier, as we
observed [9]. For `2-balls, we have already cited [3] in
§1.1. However, for other metrics `p with p > 2, the
characterization seems more elusive and likely to involve
deeper mathematical analysis, even in 2D and 3D.

We have used uniform rectilinear grid to define the
digital `1-balls. As a result, the discrete set of points
are mapped to integer space. For other classes of grids
and lattices, the problem is also definable and demands
similar characterization of density measure. This is par-
ticularly interesting when we consider a vector space
and the balls therein.

Last but not the least, the work reported in this paper
will have stronger impact if it can be extended to higher

318

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

dimensions, as higher-dimensional norms and metrics
are inherently related to information theory and signal
processing.

References

[1] E. Andres and T. Roussillon. Analytical description of
digital circles. In I. Debled-Rennesson, E. Domenjoud,
B. Kerautret, and P. Even, editors, Discrete Geometry
for Computer Imagery - 16th IAPR International Con-
ference, DGCI 2011, Nancy, France, April 6-8, 2011.
Proceedings, volume 6607 of Lecture Notes in Computer
Science, pages 235–246. Springer, 2011.

[2] T. Barrera, A. Hast, and E. Bengtsson. A chronological
and mathematical overview of digital circle generation
algorithms introducing efficient 4- and 8-connected cir-
cles. International Journal of Computer Mathematics,
93(8):1241–1253, 2016.

[3] N. G. Basu, P. Bhowmick, and S. Majumder. On den-
sity extrema for digital discs. In R. P. Barneva, V. E.
Brimkov, and G. Nordo, editors, Combinatorial Image
Analysis - 21st International Workshop, IWCIA 2022,
Messina, Italy, July 13-15, 2022, Proceedings, volume
13348 of Lecture Notes in Computer Science, pages 56–
70. Springer, 2022.

[4] P. Bhowmick and B. B. Bhattacharya. Number-
theoretic interpretation and construction of a digital
circle. Discret. Appl. Math., 156(12):2381–2399, 2008.

[5] P. Bhowmick and B. B. Bhattacharya. Real polygonal
covers of digital discs – some theories and experiments.
Fundam. Informaticae, 91(3-4):487–505, 2009.

[6] G. R. Blake and K. Hartge. Particle density. Meth-
ods of soil analysis: Part 1 physical and mineralogical
methods, 5:377–382, 1986.

[7] V. Cheng. Understanding density and high density. In
Designing high-density cities, pages 37–51. Routledge,
2009.

[8] S. Fisk. Separating point sets by circles, and the recog-
nition of digital disks. IEEE Trans. Pattern Anal.
Mach. Intell., 8(4):554–556, 1986.

[9] N. G. Basu, P. Bhowmick, and S. Majumder. On den-
sity of grid points in l∞-balls. In Proceedings of 3rd In-
ternational Conference on Mathematical Modeling and
Computational Science(ICMMCS 2023), February, 24-
25, 2023, Tamilnadu, India. Springer Singapore, 2023.

[10] G. Hammarhjelm. The density and minimal gap of visi-
ble points in some planar quasicrystals. Discret. Math.,
345(12):113074, 2022.

[11] P. J. Hasnip, K. Refson, M. I. J. Probert, J. R. Yates,
S. J. Clark, and C. J. Pickard. Density functional theory
in the solid state. In Phil. Trans. R. Soc. A. Royal
Society, 2014.

[12] R. Klette and A. Rosenfeld. Digital Geometry: Ge-
ometric Methods for Digital Picture Analysis. Morgan
Kaufmann Series in Computer Graphics and Geometric
Modeling. Morgan Kaufmann, San Francisco, 2004.

[13] S. Majumder and B. B. Bhattacharya. On the den-
sity and discrepancy of a 2d point set with applications
to thermal analysis of vlsi chips. Inf. Process. Lett.,
107(5):177–182, 2008.

[14] B. Nagy. Number of words characterizing digital balls
on the triangular tiling. In N. Normand, J. V. Guédon,
and F. Autrusseau, editors, Discrete Geometry for
Computer Imagery - 19th IAPR International Confer-
ence, DGCI 2016, Nantes, France, April 18-20, 2016.
Proceedings, volume 9647 of Lecture Notes in Computer
Science, pages 31–44. Springer, 2016.

[15] S. Pham. Digital circles with non-lattice point centers.
Vis. Comput., 9(1):1–24, 1992.

[16] J. Rakun, D. Stajnko, and D. Zazula. Plant size esti-
mation based on the construction of high-density cor-
responding points using image registration. Comput.
Electron. Agric., 157:288–304, 2019.

[17] S. Wang, Q. Li, C. Zhao, X. Zhu, H. Yuan, and T. Dai.
Extreme clustering - A clustering method via density
extreme points. Inf. Sci., 542:24–39, 2021.

[18] Y. Wang, D. Wang, W. Pang, C. Miao, A. Tan, and
Y. Zhou. A systematic density-based clustering method
using anchor points. Neurocomputing, 400:352–370,
2020.

319

320

List of Authors

——/ A /——
Ahn, Hee-Kap 153, 299
Ahn, Taehoon 153
Akitaya, Hugo 51
Alaniz, Robert 265

——/ B /——
Bae, Sang Won 153
Bahoo, Yeganeh 63
Bekos, Michael A. 89
Bhore, Sujoy 97
Bhowmick, Partha Bhowmick . 313
Biedl, Therese 77
Biniaz, Ahmad 43, 71
Bose, Prosenjit 43, 97, 129
Bumpus, Madeline 249

——/ C /——
Cagirici, Onur.63
Cano, Pilar 97
Cardinal, Jean 97
Chambers, Erin 213
Chubarian, Karine 105
Chubet, Oliver 175
Chung, Chaeyoon 153
Coulombe, Michael 265

——/ D /——
D’Angelo, Anthony 129
Daescu, Ovidiu 291
Dai, Xufeng 249
Demaine, Erik 51, 265
Downing, Emily 273
Durocher, Stephane 9, 19, 129

——/ E /——
Einstein, Stephanie 273
Eppstein, David 35, 77, 197

——/ F /——
Fan, Bohan 105
Fasy, Brittany T 213
Fu, Bin . 265

——/ G /——
G. Basu, Nilanjana 313
Gezalyan, Auguste 249
Gomez, Timothy 265
Grizzell, Elise.265

——/ H /——
Har-Peled, Sariel 169
Hartung, Elizabeth 273

Hashemi, Mohammad 71
He, Qizheng 307
Hesterberg, Adam 51
Higashikawa, Yuya 191
Holmgren, Benjamin A 213
Horiyama, Takashi 191

——/ I /——
Iacono, John 97
Ihara, Diego 105

——/ J /——
Jansson, Jesper 183
Jung, Mook Kwon.299

——/ K /——
Kamali, Shahin 9, 161
Kamata, Tonan 27
Katoh, Naoki 191
Kaufmann, Michael 89
Kawakami, Yuki 191
Keil, J. Mark 19
Klimenko, Georgiy 123
Knobel, Ryan 265
Kobayashi, Yuki 191
Kolios, Christopher 63

——/ L /——
Levcopoulos, Christos 183
Lingas, Andrzej J 183
Lubiw, Anna 51
Lynch, Jayson 51

——/ M /——
Majhi, Sushovan 207, 213
Majumder, Subhashis 313
Manastyrski, Kody 63
McCarty, Rose 197
Mondal, Debajyoti 19
Mount, David M 249
Munoz, Samuel 249

——/ N /——
Nishat, Rahnuma Islam 63

——/ O /——
O’Rourke, Joseph 51, 257

——/ P /——
Parikh, Parth 175
Park, Kyuseo 239
Pavlidi, Maria Eleni 89
Pham, Tuyen 283

——/ R /——
Raichel, Benjamin 123, 169
Rieger, Xenia 89
Rodriguez, Andrew 265
Rohrer, Josiah 113

——/ S /——
S Radhakrishnan, Thiruvenkadam

105
Santhoshkumar, Renita 249
Schneider, Markus 239
Schweller, Robert 265
Schäfer, Peter 225
Seto, Kazuhisa 191
Sgherzi, Francesco 105
Shabanijou, Mohammadmasoud

161
Sheehy, Donald R 175
Sherman, Roni 63
Shermer, Thomas C 43
Sheth, Siddharth S.175
Shiota, Takumi 27
Sidiropoulos, Anastasios 105
Stock, Frederick 51
Storandt, Sabine 225
Straight, Angelo P 105
Suri, Subhash 1

——/ T /——
Takahashi, Shun.191
Teo, Ka Yaw 291
Tokuyama, Takeshi 299

——/ U /——
Ueckerdt, Torsten 77
Uehara, Ryuhei 27

——/ W /——
Wachholz, Nathan 1
Wagner, Hubert 283
Weber, Simon 113
Wenk, Carola 213
Williams, Aaron M 273
Wylie, Timothy 265

——/ Y /——
Ye, Songyu 249
Yoon, Sang Duk.299

——/ Z /——
Zamani Nezhad, Pouria 9
Zink, Johannes 225

	Preamble
	Cover
	Copyright information
	Welcome from Denis Pankratov
	Sponsors
	Program Committee
	Invited Speakers

	Conference Program
	Day 1 - August 2, 2023
	Session 1C
	Spanning Tree, Matching, and TSP for Moving Points: Complexity and Regret
	Nathan Wachholz
	Subhash Suri

	Online Square Packing with Predictions
	Stephane Durocher
	Shahin Kamali
	Pouria Zamani Nezhad

	Minimum Ply Covering of Points with Unit Disks
	Stephane Durocher
	J. Mark Keil
	Debajyoti Mondal

	Session 1D
	Overlapping of Lattice Unfolding for Cuboids
	Takumi Shiota
	Tonan Kamata
	Ryuhei Uehara

	A Parameterized Algorithm for Flat Folding
	David Eppstein

	Piercing Unit Geodesic Disks
	Ahmad Biniaz
	Prosenjit Bose
	Thomas C Shermer

	Session 2C
	Super Guarding and Dark Rays in Art Galleries
	Joseph O'Rourke
	Hugo Akitaya
	Erik Demaine
	Adam Hesterberg
	Anna Lubiw
	Jayson Lynch
	Frederick Stock

	Conflict-Free Chromatic Guarding of Orthogonal Polygons with Sliding Cameras
	Yeganeh Bahoo
	Onur Cagirici
	Kody Manastyrski
	Rahnuma Islam Nishat
	Christopher Kolios
	Roni Sherman

	City Guarding with Cameras of Bounded Field of View
	Ahmad Biniaz
	Mohammad Hashemi

	Session 2D
	On the complexity of embedding in graph products
	Therese Biedl
	David Eppstein
	Torsten Ueckerdt

	On the Deque and Rique Numbers of Complete and Complete Bipartite Graphs
	Michael A. Bekos
	Michael Kaufmann
	Maria Eleni Pavlidi
	Xenia Rieger

	Dynamic Schnyder woods
	Pilar Cano
	Sujoy Bhore
	Prosenjit Bose
	Jean Cardinal
	John Iacono

	Day 2 - August 3, 2023
	Session 3C
	Geometric Algorithms for k-NN Poisoning
	Diego Ihara
	Karine Chubarian
	Bohan Fan
	Francesco Sgherzi
	Thiruvenkadam S Radhakrishnan
	Anastasios Sidiropoulos
	Angelo P Straight

	Reducing Nearest Neighbor Training Sets Optimally and Exactly
	Simon Weber
	Josiah Rohrer

	Square Hardness for Clustering with Neighborhoods
	Georgiy Klimenko
	Benjamin Raichel

	Session 3D
	CCOSKEG Discs in Simple Polygons
	Prosenjit Bose
	Anthony D'Angelo
	Stephane Durocher

	Parallel Line Centers with Guaranteed Separation
	Chaeyoon Chung
	Taehoon Ahn
	Sang Won Bae
	Hee-Kap Ahn

	Improved Algorithms for Burning Planar Point Sets
	Shahin Kamali
	Mohammadmasoud Shabanijou

	Session 4C
	On the Budgeted Hausdorff Distance Problem
	Sariel Har-Peled
	Benjamin Raichel

	Approximating the Directed Hausdorff Distance
	Oliver Chubet
	Parth Parikh
	Donald R Sheehy
	Siddharth S Sheth

	Convex Hulls and Triangulations of Planar Point Sets on the Congested Clique
	Jesper Jansson
	Christos Levcopoulos
	Andrzej J Lingas

	Session 4D
	Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs
	Yuki Kawakami
	Shun Takahashi
	Kazuhisa Seto
	Takashi Horiyama
	Yuki Kobayashi
	Yuya Higashikawa
	Naoki Katoh

	Geometric Graphs with Unbounded Flip-Width
	David Eppstein
	Rose McCarty

	Graph Mover's Distance: An Efficiently Computable Distance Measure for Geometric Graphs
	Sushovan Majhi

	Session 5C
	Metric and Path-Connectedness Properties of the Fréchet Distance for Paths and Graphs
	Benjamin A Holmgren
	Brittany T Fasy
	Erin Chambers
	Sushovan Majhi
	Carola Wenk

	Optimal Polyline Simplification under the Local Fréchet Distance in 2D in (Near-)Quadratic Time
	Peter Schäfer
	Sabine Storandt
	Johannes Zink

	Session 5D
	Partition, Reduction, and Conquer: A Geometric Feature-Based Approach to Convex Hull Computation
	Kyuseo Park
	Markus Schneider

	Software and Analysis for Dynamic Voronoi Diagrams in the Hilbert Metric
	Auguste Gezalyan
	Madeline Bumpus
	Xufeng Dai
	Samuel Munoz
	Renita Santhoshkumar
	Songyu Ye
	David M Mount

	Best Paper Award
	Every Combinatorial Polyhedron Can Unfold with Overlap
	Joseph O'Rourke

	Day 3 - August 4, 2023
	Session 6C
	Reconfiguration of Linear Surface Chemical Reaction Networks with Bounded State Change
	Robert Alaniz
	Michael Coulombe
	Erik Demaine
	Bin Fu
	Ryan Knobel
	Timothy Gomez
	Elise Grizzell
	Andrew Rodriguez
	Robert Schweller
	Timothy Wylie

	Catalan Squares and Staircases: Relayering and Repositioning Gray Codes
	Emily Downing
	Stephanie Einstein
	Elizabeth Hartung
	Aaron M Williams

	Computing Representatives of Persistent Homology Generators with a Double Twist
	Tuyen Pham
	Hubert Wagner

	Approximate Line Segment Nearest Neighbor Search amid Polyhedra in 3-Space
	Ovidiu Daescu
	Ka Yaw Teo

	Session 6D
	Universal convex covering problems under affine dihedral group actions
	Mook Kwon Jung
	Sang Duk Yoon
	Hee-Kap Ahn
	Takeshi Tokuyama

	On the FPT Status of Monotone Convex Chain Cover
	Qizheng He

	On Density Extrema for Digital 1-Balls in 2D and 3D
	Nilanjana G. Basu
	Subhashis Majumder
	Partha Bhowmick Bhowmick

	List of Authors

