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Spanning Tree, Matching, and TSP for Moving Points:
Complexity and Regret

Nathan Wachholz

Abstract

We explore the computational complexity, and regret,
of some geometric structures under the recently intro-
duced moving point model of Akitaya et al. [3]. Specif-
ically, we want to build a single geometric structure
(e.g. spanning tree, matching, or traveling salesman
path) whose maximum cost during the motion of the
input points is minimized. We call these structures,
whose cost (sum of edge lengths) changes with the mo-
tion of points but whose topology remains fixed, min-
imum moving point spanning tree (MMST), minimum
moving point matching (MMM), and minimum moving
point traveling salesman path (MMTSP), respectively.
We focus on linear motion of points in one dimension
and prove the following results: (1) each of these prob-
lems is (weakly) NP-hard in one dimension, (2) remains
NP-hard even under radial expansion where all points
are moving away from a center, (3) remains NP-hard
even if points are all moving with the same speed. A
fixed topology is attractive in that it avoids expensive
and continuous recomputation as input points move but
it is inevitably sub-optimal. To quantify this tradeoff,
we define the regret as the worst-case ratio between the
cost of an optimal moving point structure and the max-
imum cost for the same input when the structure is con-
tinuously updated. We show the following results: (4)
the regret ratio is Q(y/n) for all three problems even
in one dimension, but (5) has a tight bound of 2 for
MMST and MMTSP if all points are moving with the
same speed. We also point out some simple settings un-
der which optimal moving point structures are easy to
compute.

1 Introduction

Suppose we want to interconnect a collection of mo-
bile agents, modeled as points in d-dimensional space,
in one or more groups to enable a certain collabora-
tive task. For instance, a minimum spanning tree is
helpful if we want to form a single connected group, a
matching where we wish to pair each point with an-
other, or a traveling salesman path if we want a tour
of the points. These are natural problems arising in
applications such as multi-robot systems, mobile sensor

*UC Santa Barbara, {nmwachholz, suri}@cs.ucsb.edu

Subhash Suri*

networks, or a group of human and robotic agents per-
forming collaborative tasks. It is typically desirable that
these agents are able to communicate with others, which
can be abstracted as a problem of maintaining certain
graph structures among a set of moving points, with
edge lengths in the graph serving as a natural optimiza-
tion criterion. The minimum spanning tree, matching,
and TSP are classical graph optimization problems for
which polynomial time (exact or approximation) algo-
rithms have been known for several decades [7, 6].

When the underlying points are in motion, however,
the optimal (or near-optimal) graph structure must
be frequently recomputed, which is both inconvenient
and resource expensive. There is extensive research in
robotics, sensor networks, and computational geome-
try on how to efficiently detect when the underlying
graph structures must be updated and how to update
them [4, 9, 5, 1, 8, 2]. Our work is motivated by the
recent work of Akitaya et al [3], which explored an alter-
native approach to maintaining the spanning tree over
data in motion. Specifically, if we wanted to choose
a single spanning tree T for the entire motion, which
spanning tree would be the best? In other words, which
fixed spanning tree topology minimizes the mazimum
total length obtained during the course of the motion?
Akitaya et al [3] show that this problem is NP-Hard in
the plane and describe a 2-approximation for it.

Our Results

In this paper, we continue the line of research in [3] and
explore moving point versions of three classical prob-
lems: minimum spanning tree, matching and travel-
ing salesman tour. We show that all of them are NP-
hard even in one dimension, and even under highly con-
strained linear motions. Second, we establish bounds
on the regret ratio of these moving point structures as
a way to quantify the tradeoff between convenience of a
fixed topology and the maximum cost of the structure.
Finally, we also point out two natural instances of the
moving point structures for which an optimal is easy to
find. In the interest of simpler presentation, we focus
on the moving point MST in describing our main re-
sults, and summarize their extensions to matching and
TSP at the end. Our key results can be summarized as
follows.
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e The MMST problem is NP-hard even for unit speed
linear motion in one dimension.

e The problem remains NP-hard in 1D even if all
points linearly move away from the origin (radial
expansion).

o MMST regret ratio is Q(y/n) even for linear motion
in one dimension, but has a tight bound of 2 for unit
speed motion.

e The MMST problem can be solved in polynomial
time, in any fixed dimension d, if (1) all points are
moving away from the origin at uniform velocity
(uniform expansion), or (2) we want to minimize
the average cost of the MST during the motion.

e All the hardness results also hold for MMM and
MMTSP.

2 Preliminaries

Throughout this paper, we consider points under linear
motion, each moving along a straight line with constant
speed; different points can move with different speeds
unless otherwise specified. Thus, a moving point p is
a continuous function p : [0,1] — R¢, and the distance
between two moving points p and ¢ at time ¢ is ||p(t) —
a®)]l-

Given a set S = {pg,...,pn—1} of n moving points,
we call a spanning tree T of S a moving spanning
tree whose weight (or length) at time ¢ is wr(t) =
> pger IP(t) — a(t)||. We use w(T') = sup, wr(t) to de-
note the maximum weight of T' during the motion. A
minimum moving spanning tree (MMST) of S is one
with minimum weight, namely,

argmin w(T),

TET(S)
where T(S) is the set of all possible moving spanning
trees of S. Similar definitions hold for a minimum mov-
ing matching (MMM), where input is a set of 2n points
and the goal is to find a matching whose maximum
weight during the motion is minimized, or minimum
moving traveling salesman tour (MMTSP), where the
goal is to find a spanning path of the points with mini-
mum maximum weight during the motion.

A useful fact about linear motion, as observed in [3], is
that the Euclidean distance function d(t) = ||p(t) —q(t)]|
is convex, and so the maximum distance between any
two points p and ¢, denoted |pg|max, Occurs at an ex-
treme point of the interval [0,1]. That is, |pg|max =
max{[p(0) — (0)]|,[p(1) — a(D|[}. This in turn im-
plies that the weight function wr is also convex, and
so w(T') = max{wr(0), wr(1)}. We now argue that the
MMST is invariant under scaling, translation, and ve-
locity addition, a fact that will be crucial to some of our
proofs.

Let S = {po,...,pn—1} be a set of moving points in
d dimensions. Pick any constant scaling factor o € R,
velocity vector 3 € R? and offset v € R%. For each p;,
define the transformed moving point p/ : [0,1] — R? as
p(t) = ap;(t) + Bt + . Denote the transformed set as
S’ = {p, | pi € S}. Every spanning tree of S maps to
a corresponding spanning tree of S’ in the obvious way.
We then have the following claim.

Lemma 1 MMST is topologically invariant under scal-
ing, added velocity, and translation.

Proof. Let S be a set of moving points, and let S’
be the transformed set under scaling factor «, velocity
vector 8 and translation . We show that if 7" is an
MMST of S, then it is also an MMST of S’.

The distance between two points p,q € S at time ¢
is ||p(t) — q(t)]|, while the distance between their trans-
formed images p’ and ¢’ is ||(ap(t) + Bt +7) — (aq(t) +
Bt + )| = «a|lp(t) — ¢(t)|]. Since the weight of each
edge is simply scaled by «, for any spanning tree T
of S and its corresponding tree T for S’, we have
wrs(t) = awr(t), which implies w(T”) = aw(T), thus
proving the claim. O

The transform is invertible and so the previous lemma
also implies the following.

Corollary 2 An MMST of a transformed set S’ is also
an MMST of the original set S.

3 Hardness of MMST on the Line

In this section, we show that computing the MMST of
n linearly moving points on the line is NP-hard even if
all points have the same speed. We then show that a
number of other variations are also hard.

We adopt the convention that positive xz-axis is the
rightward direction, and so points with positive (resp.
negative) velocity are moving to the right (resp. left).
In particular, since all points have the same speed, the
velocity of each point is either +1 or —1.

Our reduction uses the well-known NP-hard prob-
lem PARTITION, where given n positive integers
ap,...,a,_1, we must decide if there is a subset I C
{0,...,n — 1} such that

1 n—1
a; = = a;.

Given an instance of PARTITION, we construct an in-
stance of MMST on the line with unit-speed moving
points. We simplify the presentation by assuming the
velocity of each point is either 0 or —2, which is then
easily transformed into unit speeds by adding +1 to
each velocity without changing its MMST by virtue of
Corollary 2. We construct a decision version of the unit
speed MMST problem as follows.
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Construction 1 Let { = maxa;. For each i €
{0,...,n — 1}, we add the following five moving points
to our set S. See Figure 1 for illustration.

o A; stationary at 10i.
e B; stationary at 10i + 2 — 5.

stationary at 10 + 2 + 4.

?

C
e D, stationary at 107 + 4.

o E; moving from 10i + 3 to 10i + 1.

For this input S, we ask if there is a moving spanning
tree T with w(T) < 1ln —6.

Theorem 3 The decision version of the MMST prob-
lem is NP-Hard for unit speed points on a line.

Proof. Let S; = {A;,B;,C;,D;,E;}, for each i €
{0,...,n — 1}. Let K be the set of edges D;A;1 for
1 < n—2, and define K; as K plus the edges joining
pairs of points within each S;, for each i < n — 1. Ob-
serve that all edges in K7 have length < 6 at all times,
and any edge not in K3 has length > 6 at all times.

We claim that there exists a moving minimum span-
ning tree 7" whose edges are all in K;. Assume the
contrary, and let 77 be an MMST containing an edge
e ¢ K;. Removing this edge from T’ disconnects the
tree into two components, which can be rejoined by an
edge in K, contradicting the minimality of 7”. There-
fore we can assume that there is an MMST T with all
edges in K;.

Each edge in Ky is a bridge of the graph (S, K;)
and therefore must be included in 7. FEach of these
bridges connects two components, where each compo-
nent is some moving spanning tree 7T; on .S;.

We argue that each T; has the following form: it con-
tains the path A; B;C;D;, with E; connected either to B;
(in which case wr, (0) = 5+a;/4¢ and w, (1) = 5—a;/4¢)
or connected to C; (which flips these weights). The
other trees are all easily seen to be sub-optimal; in par-
ticular, both A;E;B;C;D; and A;B;C;FE;D; have cost
at least 6 + a;/2¢ at either the start or the end, while
A;B;E;C;D; has cost at least 6 — a;/2¢ at both start
and end. All other trees are trivially suboptimal.

Ag KBO_CU\E‘O Dy
— 3
0 1 04 3 1

Figure 1: The points in Sy when ap = 8 and ¢ = 10.
The optimal trees include the path AqgByCoDy, with Ey
connecting to either By or Cj.

Define I = {i : E; connects to B;}, and let I' =
{0,...,n— 1} — I. This allows us to write the weights
of T as

wr(0) = w(Ko) + Y _wr,(0) + Y wr, (0)

iel iel’
=6n-1)+> (5+5) > (5-5)
el iel’
:11n—6+2%—2%
i€l iel’

and by symmetry

wT(1)=11n—6—Z%+Z%.

i€l iel’
The maximum weight of T is

Q; a;
PISTRPIpviE

i€l iel’

w(T)=11n—6 +

which achieves its minimum value of 11n — 6 when

i i 152

i€l iel’ i€l iel’

Thus, if w(T) < 11n — 6 holds, then the set I is also
a solution to PARTITION. This completes the proof. [

Naturally, the MMST problem is also NP-hard for
points moving on the line with arbitrary but constant
speeds. This can also be shown by a simple modification
of the construction in [3] used to show the hardness for
points moving in two dimensions. We omit that simple
construction, and simply state the result below, which
is then used to show additional hardness results.

Theorem 4 The decision version of the MMST prob-
lem is NP-Hard for points moving on a line with con-
stant but arbitrary speeds.

We next show that the problem remains NP-hard un-
der the bounded speed assumption, where the ratio be-
tween the maximum and the minimum speeds is upper
bounded by some constant ¢ > 1. In particular, let
v; = pi(1) — p;(0) be the velocity of p;, where as before
positive velocity means rightward motion. Let s; = |||
be the speed of p;, where we assume that s; > 0 for all
1, and that the ratio of max to min speeds is bounded:

max s;

mins; ~

Lemma 5 MMST problem on a line under bounded
speed linear motion is NP-hard.
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Proof. We reduce the MMST problem on the line with
arbitrary speeds to our bounded speed ratio problem.
First, let vmin = minwv; and let vy = maxwv;. We
transform the input set of moving points S into S’ by
first adding the velocity —vmi, to each point. This shift
makes the new minimum velocity 0 and the new maxi-
mum velocity Ymax — VUmin-

Next, we add (Vmax —Vmin)/(c—1) > 0 to each point’s
velocity, which ensures that the ratio between the max-
imum and the minimum speeds is

Umax — Umin + (Umax - 'Umin)/(C - 1)
= =c.

(Umax - Umin)/(c - ]-)

Thus the transformed input S’ has bounded speed
ratio, and yet by Corollary 2, the two instances S and
S’ have the same MMST. This completes the proof. [

max s

min s,

Finally, we consider another natural velocity-
constraint motion: radial erpansion, where all points
are linearly (with different speeds) moving away from
the origin. We show that even under this restricted big
bang expansion model of motion, the MMST problem
remains hard even on the line.

Lemma 6 MMST problem on a line under radial ex-
pansion linear motion is NP-hard.

Proof. We again reduce the MMST problem on the
line with arbitrary speeds to our problem. Given a set
of moving points S = {po, . . ., Pn—1} on the line, let v; =
pi(1) — p;(0) be the velocity of p;. Let v = min{v;,0}
equal the largest negative velocity (leftward speed) or
zero. Let o = min{p;(0)} denote the left-most position
in S at the start of the motion. We transform our input
instance S into S’ by adding velocity —v to all points
and translating their positions by —o.

We now claim that the moving points in S’ satisfy
radial expansion. This follows because all points in S’
have been shifted to the right of the origin, and none of
the points have negative velocity, meaning they are all
moving to the right. Because the transformation is addi-
tion of velocity and translation, by Corollary 2, MMST
remains invariant, which completes the proof. O

4 Regret Ratio of Moving Spanning Trees

The MMST problem is motivated by the attractiveness
of keeping a fixed topology throughout the motion, and
among all spanning trees, MMST is the one with the
smallest maximum weight during the motion. So, how
much worse is the MMST compared to a kinetic struc-
ture maintaining a minimum spanning tree throughout
the motion? We quantify this tradeoff using the worst-
case ratio between the two.

Given a set S of moving points, let 7(S) be the set
of all spanning trees on S. Let K be a kinetic minimum

spanning tree, meaning wg (t) = minp-c(s) wr-(t),
the weight of a minimum spanning tree at time ¢. Then
w(K) = sup, wi(t) is the maximum cost of a kinetic
minimum spanning tree during the motion of S.

For any fixed spanning tree 1" of S, we define its regret
ratio as r(T) = w(T)/w(K). Clearly, among all fixed
trees, an MMST has the minimum regret. We now show
bounds on MMST’s regret ratio for moving points in one
dimension.

4.1 Regret Ratio for Arbitrary Speed Linear Motion

Theorem 7 MMST regret is at least Q(y/n) for n mov-
ing points on the line.

Proof. For any b > 1, we can construct a set S of
O(b?) moving points on the line where r(T') > b for any
spanning tree T of S. Setting b = /n establishes the
claim. Our construction works as follows.

Let p;; denote a moving point such that p;;(0) = ¢ and
pi;(1) = j. That is, p;; moves from i to j. Let k = 2[b],
and choose S as the set of all p;;, where 0 < 1,5 < k.

We now show that any tree on S has regret at least
k/2 = [b] > b. To aid analysis, we interpret the set S
of 1D moving points as a set of 2D stationary points,
where a point p is placed at P = (p(0),p(1)). Thus,
in our construction, each p;; maps to P;; = (,). See
Figure 2 for illustration.

Now, consider any tree T on these points. At the
start, the weight of T' is the sum of the horizontal com-
ponents of the edges of T. At the end, the weight is
the sum of the vertical components. Suppose there are
h edges with a non-zero horizontal component, and v
edges with a non-zero vertical component. The weight
of each of these non-zero components is at least 1,
and so wp(0) > h and wp(l) > v. Furthermore,
h+v > (k+ 1)? — 1, the number of edges in T. Fi-
nally, because the moving points always lie between pgg
and pgi on the line, we have w(K) = k. This gives that

w(T) < max{v, h} < (k+1)2 -1
wK) S kK 2%

k
> - >b.
252b

O

4.2 Regret Ratio for Unit Speed

Complementing the previous lower bound on the regret
ratio, we show that for unit speed motion, the regret
ratio has a tight bound of 2.

Theorem 8 Regret ratio of an MMST for unit speed
moving points on a line is at most 2, and this bound is
tight.

Proof. Partition S into the set of leftwards-moving
points S; and rightwards-moving points .S,.. Let P, be a
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*r——o—0—0—0

Sohs

Figure 2: The 2D interpretation of the construction for
b = 2, along with two sample spanning trees. The tree
on the right results by connecting the points in the left-
to-right order of their initial positions.

t=20

t=1 ¢ . o . . . . o .

Figure 3: A set of unit speed moving points. Any
MMST on this construction will have regret approach-
ing 2 as the number of points increases. One possible
MMST is shown in blue.

path connecting S; in order and let P, be a path con-
necting S, in order. Let e be an edge between the right-
most point of P, and the right-most point of P.. Then
T* = P,U{e} U P, is a moving spanning tree on S. Let
¢ = w(K) be the maximum distance the points span
throughout the motion.

It’s easy to see that at all times either wp,ygey(t) < ¢
and wp, (t) < £, or wp,ugey(t) < £ and wp (t) < £
Thus wr-(t) = wp, (t) +wiey (1) +wp, (t) < 20, meaning
r(T*) < 2. The weight of an MMST is no greater,
so its regret is also bounded by 2. Figure 3 shows a
construction proving that this bound is tight. O

5 Some Tractable Cases of Moving Spanning Trees

In this section, we complement the negative (hardness)
results of the previous section with some natural models
of motion or cost for which optimal is easy to compute.

5.1 Motion with Uniform Expansion

Our first result complements Lemma 6: if the motion is
radial expansion (big bang model) but all points move
away from the origin at the same constant speed then
MMST is easy to compute. In fact, this holds for any
fixed dimension d > 1.

We say that a set S € R? of moving points is under
uniform expansion if all points in S move away from
the origin at a constant speed ¢ > 0. That is, if the
start position of a point p € S is at p(0) # 0, then its
end position is at p(1) = p(0) + c%. We have the
following easy result.

Lemma 9 Let S be a set of n moving points under uni-
form expansion in d dimensions. Then, a minimum
spanning tree of S at t =1 (end of the motion) is also
an MMST of S.

Proof. Consider any pair of points p,q € S, and let
0, where 0 < 6 < m, be the angle between p(0) and
q(0) with the respect to the origin. During the mo-
tion, the distance between the points will increase by
V2 +¢2 —2c2cos = ¢/2sin(0/2) > 0 (see Figure 4).
Since the distance monotonically increases, we must
have [pqlmax = [p(1) — g(1)]]

It follows that, for any moving spanning tree 7', the
weight of every edge in T" achieves its maximum at t = 1,
and so w(T) also achieves its maximum at that time.
Therefore, a minimum weight spanning tree at end of
the motion ¢t = 1 is also an MMST of the set S. O

Since the minimum
spanning tree of n
points in any fixed
dimension d can be
computed in polyno-
mial time, the MMST
problem for uniform

p(l)e-.
P(O)Tﬁ/j- \"'Q(l)
T~ e(0)

°
expansion is tractable. 0

In fact, Lemma 9
holds for any restric- Figure 4: The distance

tion that causes the
distance between any
two points to be non-
decreasing over the mo-
tion. For example, proportional expansion requires that
each point p move from p(0) to p(1) = ap(0) for some
constant @ > 1. An MMST of points under proportional
expansion can be found by calculating an MST at the
end of their motion, using the same reasoning as above.

between two points never
decreases if they are under
uniform expansion.

5.2  Minimum Average Weight

The MMST problem minimizes the mazimum weight of
the spanning tree at any time during the motion. A
different but also sensible objective might be the total
weight of a moving spanning tree, integrated over the
entire motion. For instance, if tree length is a measure
of resource consumption, then this reflects the total con-
sumption during the motion. Since we have normalized
the motion duration to unit interval [0, 1], this is also
equivalent to the average weight of the moving spanning
tree:

w(T) = /0 wr(t) dt.

Unlike MMST, computing a moving spanning tree
with minimum average weight (MAMST) is easy.
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Lemma 10 For a set S of n moving points in d dimen-
sions, an MAMST of S can be found in O(n?) time, for
any fized d.

Proof. Let S be a set of n moving points. For any
pair p,q € S, define |pglavg = fol lp(t) — q(t)]| dt. We
can then rewrite the average weight of a tree T on S
as w(T) = queT |pgqlave. Now construct a complete
graph G with S as the vertex set, and weight of each
edge pq set to |pglave. The graph G can be constructed
in O(n?) time because each |pq|ayvg can be calculated in
constant time.

It is now easy to see that the an MST of GG is an
MAMST of the moving points, and an MST of G can
be found in O(n?) time using Prim’s algorithm. O

In [3], it was shown that the minimum bottleneck
moving point spanning tree (MBMST) can be com-
puted efficiently, and our average weight spanning tree
adds another natural easy-to-compute variant for mov-
ing points. (Recently, Wang et al. [10] presented a sub-
quadratic algorithm for the MBMST, improving the
O(n?) bound of [3]. It is an interesting open ques-
tion whether a similar time bound is also possible for
MAMST.)

6 Moving Point Matching and TSP

In this section, we briefly sketch the constructions for
proving NP-hardness of matching and TSP, and state
without proof their regret bounds. Technical details
are similar to those in MMST, and omitted from this
extended abstract.

6.1 Minimum Moving Matching

Let S be a set of 2n moving points. A moving matching
M is a set of n edges such that each point is matched
with exactly one other. The weight of M is the maxi-
mum weight of M throughout the motion.

We show that the problem of finding a minimum mov-
ing matching (MMM) is NP-Hard even for unit speed
moving points on the line. The construction is similar
to the one from Theorem 3, and illustrated in Figure 5.

0 035 1 10 o' 14 20 0% 24

Figure 5: The matching instance corresponding to the
PARTITION input (ag,a1,a2) = (5,2,10). The PARTI-
TION problem has a solution if and only if there is an
MMM with weight at most n + 24 S21 ' a;.

The regret of an MMM is unbounded in general, using
a similar construction to Theorem 7. We do not have
a non-trivial upper bound for the MMM regret under

unit speed motion, but can show that it is strictly larger
than 2. Specifically, we show a construction (see the
Appendix) with regret ratio of 11/5.

6.2 Minimum Moving TSP

Let S be a set of n moving points. A moving trav-
eling salesman path P is a path of n — 1 edges that
visits every point in S. The weight of P is the mawi-
mum weight of the path throughout the motion. The
construction shown in Figure 6 is used to prove that the
problem of finding the minimum moving traveling sales-
man path (MMTSP) is NP-Hard even for unit speed
moving points on the line.

035 1 10 o' 14 20 05 24

Figure 6: The TSP instance corresponding to the PAR-
TITION input (ag,a1,a2) = (5,2,10). The PARTITION
problem has a solution if and only if there is an MMTSP
with weight at most 12n — 6.

We also can show that regret ratio of an MMTSP
is unbounded in general, but is bounded by 2 for unit
speed motion, using constructions similar to Theorem 7
and Theorem 8.

7 Concluding Remarks

We explored several classical geometric problems under
the moving point model of [3], and showed that they
remain NP-hard even in one dimension and even under
highly constrained motions. We did not discuss approx-
imation algorithms but a 2-approximation of MMST is
easily computed in O(nlogn) time using the approach
of [3], namely, map the 1D moving points into 2D sta-
tionary points and compute their MST under the L;
norm.

We also analyzed the regret ratio of these structures,
showing that even in one dimension this can be un-
bounded in general, but is modest for unit speed. Fi-
nally, we suggested two simple settings (uniform expan-
sion and minimum average weight) where the optimal
structures are easy to compute.

A number of open problems are suggested by our
work. First, it will be interesting to derive a non-trivial
upper bound on the regret ratio of these structures in
higher dimension under wunit speed motion. (Proving a
tight bound for the regret of moving point matching in
one dimension is also an interesting problem.) Second,
without the unit speed restriction, it will also be inter-
esting to bound the regret ratio if we are allowed to
update the structure k£ times. In particular, how large
must k& be to guarantee a constant regret ratio?
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Appendix

We provide an example where the regret ratio of a min-
imum moving point matching (MMM) is strictly larger
than 2 under unit speed motion on a line. For clarity,
our points are transformed with added velocity +5 us-
ing Corollary 2. Construct the following 6 points, which
are illustrated in Figure 7:

® Do, p1,p2 moving from 0, 1,2 to 10,11, 12; and

® qo, q1,q2 static at 3,6, 9.

Consider a kinetic minimal matching. In the ini-
tial positions, the matching (pop1,p29o,q1g2) is opti-
mal, having weight 5. With a few edge changes during
the motion, it can maintain this cost (or less), eventu-
ally ending as the matching (qoq1, ¢2po, p1p2). Therefore
w(K) =5.

On the other hand, consider the MMM
(Poqo, p1P2,q192)- It has initial cost 11, and final
cost 7. There is a similar MMM (pop1, p2g2, goq1) with
these costs reversed. But this is as good as we can do.
So the MMM regret is 11/5 = 2.2 > 2.

Po
0 P1 P2 qo 4 q1 8 42 12

Figure 7: A set of 6 unit speed moving points (trans-
formed for clarity to have velocities 0 and +10). An
MMM on these points has regret 11/5 = 2.2.
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Online Square Packing with Predictions*

Stephane Durocher!

Abstract

Square packing is a geometric variant of the classic
bin packing problem, which asks for the placement of
squares of various lengths into a minimum number of
unit squares. In this work, we study the online variant
of the problem in which the input squares appear se-
quentially, and each square must be packed before the
next square is revealed. We study the problem under
the prediction setting, where the online algorithm is en-
hanced with a potentially erroneous prediction about
the input sequence. We design an online algorithm that
receives predictions concerning the sizes of input squares
and analyze its consistency (the competitive ratio as-
suming no error in the predictions) and robustness (the
competitive ratio under adversarial error). In particu-
lar, our algorithm has consistency 1.779 and robustness
at most 5.89. These results show improvements over the
best previous algorithm [24], designed for perfect pre-
dictions, with a consistency of 1.84 and a robustness of
at least 21.

1 Introduction

Given a multiset of n square items, each with a fixed
sidelength in (0, 1], the square packing problem seeks
to assign each item to a unit square bin, such that the
number of bins is minimized. We consider orthogonal
packings, in which each item’s interior is contained in
the interior of its assigned bin, each item’s edges are
oriented parallel to its assigned bin’s edges (axis paral-
lel), and no two items’ interiors in the same bin inter-
sect (pairwise interior-disjoint). We refer to a square’s
sidelength as its size. This is a geometric variant of
the classic bin packing problem. Similarly to the bin
packing problem, square packing is NP-hard, but ad-
mits an Asymptotically Polynomial-Time Approxima-
tion Scheme (APTAS) [10].

We consider online square packing, in which input
square items are revealed one at a time in an online
sequence. Upon receiving each item, an algorithm must
assign it to a bin with sufficient space immediately, with-
out any knowledge about future items. Bin assignments

*This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

TUniversity of Manitoba, stephane.durocher@umanitoba.ca

#York University, kamalis@yorku.ca

$University of Manitoba, zamaninp@myumanitoba.ca

Shahin Kamalif

Pouria Zamani Nezhad®$

are irrevocable. The standard measure for evaluating
an online algorithm is the asymptotic competitive ratio,
which compares the cost of the online algorithm against
the optimal (offline) cost in the worst case. For the
online square packing problem, the asymptotic compet-
itive ratio of an online algorithm ALG is

|ALG(0)]

li —_
im sup Or(o)|’

n=90 5:lo|=n
where | ALG(0)| denotes the number of bins used by
ALG to pack the input sequence o, and | OpT(0)| de-
notes the minimum number of bins required by any (op-
timal) packing of o. We refer to asymptotic competi-
tive ratio simply as competitive ratio. No online square
packing algorithm can achieve a competitive ratio bet-
ter than 1.75 [8], while the best previous algorithm has
a competitive ratio of at most 2.0885 [20].

Square packing has been studied under the advice set-
ting, which relaxes the assumption that the algorithm
has no advance information about the input sequence,
and provides the online algorithm access to error-free in-
formation about the input sequence called advice before
packing the first item in the input sequence [18]. The
objective is to quantify trade-offs between the compet-
itive ratio and the number of bits of advice. For square
packing, there is an online algorithm that achieves a
competitive ratio of at most 1.84 with O(logn) bits of
advice [24]. Unfortunately, this result has little practi-
cal significance, partially because the advice is assumed
to be error-free.

In this paper, we study the online square packing prob-
lem under a recently developed and more practical
model, which seeks to leverage predictions about the
input sequence [28]. Specifically, the algorithm can ac-
cess some machine-learned information about the input
sequence. Unlike with advice, predictions may be erro-
neous. Moreover, the predictions should be efficiently
learnable (e.g., via sampling the input sequence). The
objective is to design an algorithm that performs well
if the prediction is accurate while maintaining a good
competitive ratio even when the prediction is highly er-
roneous (i.e., adversarial). We refer to the competi-
tive ratio of an online algorithm with an error-free pre-
diction as its consistency and to the competitive ratio
with an adversarial prediction as its robustness [28].
Several online optimization problems have been stud-
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ied under the prediction model, including bin pack-
ing [3, 4], scheduling [2, 12, 30, 32], knapsack [11, 23, 33],
caching [28, 31], matching [5, 25, 26], and various graph
problems [7, 9, 14, 15, 19]. See also the survey by
Mitzenmacher and Vassilvitskii [29] and the collection
at [1].

1.1 Contribution

We study the square packing problem under a set-
ting where the online algorithm exploits natural pre-
dictions concerning the frequency of item sizes. We
classify square items based on their sizes and con-
sider predictions on the number of items within cer-
tain classes. To be more precise, predictions specify
the number of items in the input sequence with side-
lengths in the ranges (2/3,4/5], (3/5,2/3], (11/20,3/5],
(1/2,11/20], and (1/3,2/5]. For an input sequence of n
items, these predictions can be encoded in O(logn) bits,
and they are Probably Approximately Correct (PAC)-
learnable [13]. We design an algorithm, named Reserve-
and-Pack (RAP), which makes use of the above predic-
tions. Our results can be summarized as follows:

e We show that RAP has a consistency of 1.779 (The-
orem 6). In other words, when predictions are
error-free (they are advice), the competitive ratio
of RAP is at most 1.779. This result is an improve-
ment over the algorithm of [24], Almost-Online-
Square-Packing (AospP), which has a consistency
of 1.84. Both algorithms use a prediction (advice)
of size O(logn).

e We show that the robustness of AOSP is at least 21
(Theorem 7). Moreover, we prove that the robust-
ness of RAP is at most 100/17  5.89 (Theorem 8).
In other words, RAP dominates AOSP regarding
both consistency and robustness. This is due to
its improved item classification and increased flex-
ibility in adapting to patterns in the input rather
than overly relying on the predicted patterns.

2 Reserve and Pack (RAP) Algorithm

In this section, we present our algorithm Reserve-And-
Pack (RaP). RAP works by classifying items based
on their sizes and receiving predictions about the fre-
quency (number) of items from certain classes with
larger sizes. The algorithm proceeds by reserving a
placeholder for each of these items in anticipation of
their arrival. We point out that AOSP receives sim-
ilar predictions and also uses placeholders [24]. RAP
improves over AOSP by refining the item classification,
which results in improved consistency. In addition, RAp
only reserves space for certain items of larger size, unlike
Aosp, which forms an offline packing of the predicted
input and reserves placeholders for all items (except for

Class Interval Class Interval

la (4/5, 1] 2a (2/5, 1/2]

1b (2/3, 4/5] 2b (1/3, 2/5]

1c (3/5, 2/3] 3-29  (1/i+1,1/i]

1d (11/20,3/5] 30 (0, 1/30]
]

le (1/2,11/20

Table 1: Item classification used by RAp

“tiny” items). In other words, RAP’s reliance on predic-
tion is minimal compared to AOSP. As a result, it has
superior robustness in the case of erroneous predictions.

Item Classification. RAP classifies items into 30
classes based on their sizes. For i € [1..29], items
with size in the range (Z_%l, 1] belong to class i. Items
with sizes in the (0,1/30] form the 30th class and are
called tiny items. Items of Class 1, which are larger
than 0.5, are called large items and are further divided
into 5 subclasses 1la, 1b, 1¢, 1d, and le with sizes corre-
sponding to the intervals (£,1], (2,2], (2, 2], (45, 2],
and (3, 35|, respectively. Similarly, items of Class 2
are called medium items and are further divided into
two subclasses 2a and 2b with respective associated in-
tervals (%, %} and (%, %} Table 1 summarizes defined
classes and their corresponding size intervals.

In addition to items, each bin of RAP has a type, which
is determined by the class of items it contains. Specif-
ically, LM-bins contain a large or a medium item, say
of type ¢, and smaller items of the same type t > 3,
in which case the bin is referred to as a (¢,¢) bin. For
example, when ¢ = 2b and ¢t = 10, the LM-bin is of type
(2b,10) and only contains medium items of type 2b and
small items of type 10 (see Figure 1c). When the large
item is of type ¢ = le and the small item is of type
t = 4, an LM-bin is called a critical bin and is allowed
to contain items of a third type t’, in which case it is
referred to as a (le, 4,t') bin. In addition to LM-bins,
RAP maintains harmonic bins that only include items
of the same type, say t, in which case the bin is said to
be a harmonic-t bin. A harmonic-¢ bin is said to be a
large harmonic bin if t is a large or medium type and
small harmonic bin otherwise. We note that large har-
monic bins may change their type to become LM-bins
(when a small or tiny item is placed in them).

Preprocessing. RAP relies on predictions about the
number of items belonging to large and medium
types. Specificly, RAP uses a frequency vector f =
(f1bs f1e, f1ds f1es fob), where f; is the predicted num-
ber of class t items in the input sequence o. Note that
the predictions do not concern la and 2a items as they
are “easy to pack”;i.e., they can be packed into almost

10
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full bins without involving other items, as will be clar-
ified later. Before packing the input sequence, for each
predicted frequency f;, RAP creates f; placeholders of
class t, that is, a reserved space of equal size to the
maximum size of class ¢t items. RAP assigns placehold-
ers of each class in separate bins, while groups of four 2b
placeholders share one bin. These bins are “virtually”
open, and they contribute to the cost of RAP only after
an item is placed into them. We assume placeholders
are positioned on the top-left of their respective bins.

Online Packing. When possible, RAP places large and
medium items in placeholders reserved in the prepro-
cessing step. This is done through a procedure called
AssiGNLM that we will describe shortly. Small and
tiny items, however, are packed into designated contain-
ers that are formed and placed in an online manner. A
container is a dedicated space that can accommodate
either a single small item or multiple tiny items. Upon
the arrival of a small or tiny item of class ¢, it is placed
in an available container of the same class using the cor-
responding ASSIGNSMALL or ASSIGNTINY procedures,
which will also be described later. If no such container
exists, RAP creates a new set of class ¢ containers using
a subroutine called RESERVE.

The RESERVE subroutine, for any given class ¢ > 3
(small or tiny), first attempts to place containers of class
¢ in a critical bin, and if not possible, a large harmonic
bins using the L-shape tiling of [24]. This involves plac-
ing containers of type ¢ in the non-reserved space of
the bin in a greedy manner in columns and rows that
collectively form an “L”-shape. If no critical or large
harmonic bin is available, it opens a new small har-
monic bin of type c¢. More precisely, RESERVE takes the
following steps to create new containers of type c:

1. If ¢ > 5 and there is a critical bin B (i.e., a bin of
type (le, 4)), add containers of type ¢ to B, using L-
shape tiling, and update the type of B to (le, 4, c).

2. If a large harmonic bin B of type ¢ with a reserved
space of r is available, and 1/¢ < 1—r, use L-shape
tiling to place containers of class ¢ to B, and update
the type of B to (¢, c). Here, “available” means that
B does not contain any other containers.

3. Otherwise, open a new harmonic bin of type ¢ and
place ¢? containers of class ¢ into it.

RAP consists of three main components: ASSIGNLM,
ASSIGNSMALL, and ASSIGNTINY, packing correspond-
ing items of large/medium, small, and tiny classes.

e ASSIGNLM assigns each la, or four 2a items into
a single bin. In addition, it packs an item of class
c € {1b,1¢, 1d, 1e, 2b} into any available placeholder
of class ¢. If no placeholder is available (due to a

11

prediction error), it opens a new bin and declares
it as a large harmonic bin of type c.

e ASSIGNSMALL packs small items of class ¢ into the
next empty container of size 1/¢. If no such con-
tainer is available, it creates a new set of containers
by invoking the RESERVE subroutine.

e ASSIGNTINY places tiny items into tiny containers.
A tiny container is of size 1/5 and is dedicated to
tiny items. As before, if no tiny container exists,
ASSIGNTINY first creates a new set of tiny con-
tainers by calling RESERVE. We borrow the algo-
rithm of [22] to pack tiny items into tiny containers.
The algorithm repeatedly splits tiny containers into
smaller sub-containers to pack a tiny item of size
s into a sub-container of size 1/2%, where k is the
largest integer such that s < 1/2F.

Figure 1 shows examples of bins packed by RaAp. In
particular, Figures la and le are bins that used to be
critical and had their types changed after receiving ad-
ditional small containers.

3 Consistency Analysis

Overview. In this section, we analyze the consistency
of RApr. First, we use the following lemma to show
that all tiny containers, except possibly the last one,
are almost full.

Lemma 1 [22] Consider the square packing problem
where all items are smaller than or equal to 1/M for
some integer M > 2. There is an online algorithm that
creates a packing in which all bins, except possibly a
constant number of them, have an occupied area of size

at least (M2 —1)/(M +1)°.

In our context, tiny items of size at most 1/30 are packed
into containers of size 1/5. With a scaling argument, the
above result applies with M = 6. Another ingredient in
our proof is a lower bound for the number of containers
of a given class placed into a bin using L-shape tiling.
In particular, we will use the following lemma:

Lemma 2 Consider a square space S of sidelength s €
{0.75,1}, from which a square space of size r < s is
reserved. It is possible to pack 2ki — k2 containers of
size ¢ in the remainng area of S, where i = |s/c] and

k= (s —r)/e].

Proof. Consider an empty bin of size s; it fits i?> con-
tainers of size ¢, where i = |s/c|. However, (i — k)2 of
these containers overlap with the reserved space, where
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Figure 1: FExamples of possible bin types of RAP.

[
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[m[m=

(d) small harmonic-4

(g) (16,9)

(h) large harmonic-2a

The light-colored areas represent reserved spaces, while

dark-colored areas show the minimum occupied area by items of each specified type. Blue areas are placeholders,
while green and purple areas are containers. Purple containers are extra containers added to critical bins.

k= |(s—1r)/c|. It implies that there is room to add

Ls/e)® = (ls/c) = (s = )/c))?
=i?— (i — k)
= k(2i — k)
= 2ki — k?

containers to this bin which completes the proof. O

When using L-shape tiling to place containers in large
harmonic bins (packing green containers in Figure 1), we
have s = 1. When using L-shape tiling to place small
containers in critical bins (packing purple containers in
the figure), we have s = 0.75. Table 2 in Appendix
presents the minimum occupied area of all LM bins by
applying Lemmas 1 and 2.

To prove an upper bound of 1.779 for the consistency of
RAP, we consider three possibilities for the final pack-
ings of RAP. The first case is when all bins in the final
packing contain a large or medium item. In other words,
no small harmonic bin is opened. In this case, we use
a standard weighting technique [6] to prove the upper
bound for the competitive ratio (Lemma 3). The sec-
ond case is when the final packing has a harmonic bin
of class ¢ > 5. In this case, we show that all bins are
sufficiently full to prove the upper bound (Lemma 4).
Finally, the third case concerns situations in which there
is no harmonic bin of class ¢ > 5 in the final packing.
In this case, we use a more complicated weighting argu-

ment that involves solving an integer program to prove
the upper bound (Lemma 5).

Case I: No small harmonic bin. Suppose no bin is
opened for containers of tiny or small items. We assign
a weight of w(z) to an item of size x, and prove that
(i) the total weight of items in any bin of RAP, except
possibly a constant number of them, is at least 1, while
(i) the weight of items in any bin of OPT is at most
«. Therefore, if W denotes the total weight of all items
in the input, we can write RAp(c) < W + ¢, for some
constant ¢, while OPT(0) > [W/a], which yields to a
competitive ratio of at most a.

Lemma 3 Suppose there is no small harmonic bin of
class ¢ > 3, in the final packing of Rap. Then, the
competitive ratio of RAP is at most 1.75.

Proof. We assign to all items of class ¢ > 3 a weight of
0. Large items have a weight of 1, and medium items
have a weight of 1/4. All bins in the final packing of
RAP, except possibly two of them, either contain a large
item or four medium items. Therefore, all bins opened
by RAP have a total weight of at least 1. It follows
that |RAP(0)] < W, where W is the total weight of
all items in o. On the other hand, a bin of OPT(0)
may contain three medium and one large item, e.g.,
an item of size 0.5 + € and three items of size 0.5 — e.
Moreover, no more than one large item and four medium
items fit into the same bin, giving a maximum total

12
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weight of 1.75 for items in any bin of OpT. Therefore,
| OpT(0)| > W/1.75, resulting in a competitive ratio of
at most 1.75 for RAP. O

Case IlI: There is a small harmonic bin of type ¢ > 5.
Suppose there is at least one small harmonic bin of type
t > 5 in the final packing. We show that all opened bins,
except possibly a constant number of them, have an
occupied area of at least 9/16, which indeed guarantees
a competitive ratio of at most 16/9.

Lemma 4 Assume there is a harmonic-t bin in the fi-
nal packing of RAP, for somet > 5. Then, the occupied
area in all bins, except possibly a constant number of
them, is at least 9/16.

Proof. We begin by observing that large harmonic bins
with an item of Class 1a or four items of Class 2a have an
occupied area of at least 16/25 = 0.64. Next, we show
that the final packing of RAP contains no large harmonic
or critical bins. For the sake of contradiction, suppose
there is a large harmonic or critical bin B of type ¢, and
note that B receives a placeholder in the preprocessing
step. Therefore, before opening small harmonic bins,
specifically t-harmonic bins, RESERVE must use L-shape
tiling to place containers of class ¢ in B. This would
change the type of B to ({,t), contradicting its final
type being a large harmonic bin of type ¢. We conclude
that the final packing of RAP only contains LM bins
and small harmonic bins.

Note that RESERVE procedure adds new containers to
one bin upon each call, and it is only invoked once there
are no empty containers left for an arrived item. It
implies there is at most a constant number of empty
containers at any time during the execution of the algo-
rithm. Therefore, harmonic bins of type ' > 3, except
possibly a constant number of them (which have empty
containers), each contains t'? items of class t and a min-
imum occupied area of at least t'2/(t' + 1)2 > 9/16.
Similarly, by Lemma 1, each tiny bin has a minimum
occupied area of 35/49 > 9/16. Finally, Lemmas 1 and
2 show that all LM-bins, except those with empty con-
tainers, each has a minimum occupied area of at least
9/16, as reported in Table 2 [Appendix]. Therefore, all
bins in the final packing of RAP, except possibly a con-
stant number of them, have a minimum occupied area
of at least 9/16. O

Case IlI: All small harmonic bins are of Class 3 or 4.
We consider the case where there is no small harmonic
bin of type ¢ > 5 in the final packing of RAP, while there
is a small harmonic of Type 3 or 4. In this case, there
are critical bins in the packing, and not enough small
items of class t > 5 were revealed to cover the “wasted”
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space in these critical bins. Similar to Case I, we use a
weighting argument to prove the following lemma.

Lemma 5 Assume there is no small harmonic bin of
type t > 5 in the final packing, while there is a small
harmonic-t' bin, where t' < 5. Then, the competitive
ratio of RAP is at most 1.779.

Proof. We assign a fixed weight to all items of the same
class except for tiny items, which receive a weight pro-
portional to their sizes. We define w = (wy, ..., ws4),
where w; is the weight assigned to items of (sub)class
i < 34. Additionally, we assign a weight of w(z) =
d x s(x)? to a tiny item x, where s(x) is the size of x
and d is a fixed constant called the density of tiny items.
The specific weights are specified in Table 3 [Appendix].
These weights are defined in a way to guarantee a to-
tal weight of at least 1 for all bins in the final packing,
except possibly a constant number of them. We use an
integer program to prove an upper bound on the weight
of bins in OPT. Let t = (t1,...,t35) denote the max-
imum size of items in each class, in decreasing order;
that is, for i« < 7, t; denotes the maximum size of large
or medium items of subclass ¢ and, for j > 7, t; denote
the maximum size of items of class j — 5. Let z; denote
the number of items of class 7 in a bin, say B, packed
by OPT. To maximize the weight of the items in B, we
can write the following integer program:

maximize:
34 34
! :Zwi-xi—l-d- (1 —Zmi-t?+1>
i=1 i=1
subject to:
34
D mitf, <1 (1)
i=1
34

D ltivr - (w+1))* 2 <w?, Vue{l,...,60} (2)
=1
r; >0and z; € Z ,

Vie{l,...,34}

The first component of the objective function is the total
weight of all non-tiny items, and the second is an upper
bound on the weight of all tiny items in B. Constraint 1
ensures the total area of non-tiny items of B does not
exceed 1, and Constraint 2 ensures all items fit into B
without overlap. This constraint must hold because,
for any integer v > 1, a bin cannot contain more than
u? squares of size above %H Figure 2 represents the
optimal solution to the integer program resulting in a
1.779 upper bound on « which completes the proof. O
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Figure 2: The packing that maximizes the total weight
of items in a bin of OPT, as discussed in Lemma 5

Wrapping up. Our results imply the following upper
bound for the consistency of RAP.

Theorem 6 RAP has a consistency of at most 1.779.

Proof. Lemmas 3 and 4 show that the competitive
ratio is at most 1.779 in Cases I and III. In case II,
Lemma 5 shows that RAP opens at most 16W/9 + ¢
bins, where W is the total area of all items, and c is
a constant. Given that OPT opens at least W bins,
the competitive ratio, in this case, is at most 16/9 <
1.779. O

4 Robustnes Analysis

In this section, we study the robustness of online square-
packing algorithms. We first present a lower bound on
the robustness of the previously proposed algorithm,
Aosp of [24]. AosP forms an offline packing of predicted
frequency to reserve a placeholder for all non-tiny items.
Therefore, AOSP is overly reliant on the correctness of
the predictions. In particular, one can generate adver-
sarial inputs, formed only by tiny items, in which all
placeholders of AOSP remain empty.

Theorem 7 The AOSP algorithm of [24] has a robust-
ness of at least 21.

Proof. We show that AOSP has a competitive ratio of
841/40 =~ 21 on an input sequence o and adversarial
frequency predictions f, which implies a lower bound of
21 on its robustness.

AospP forms an offline packing of predicted frequency to
reserve a placeholder for all expected items, except for
“tiny” items. In the context of the AOsP algorithm, tiny
items have a size of at most 1/15. As a result, AOSP is
overly reliant on the correctness of the predictions. e. g.,
all placeholders of some class ¢ remain empty if items of
that type never arrive.

Given a frequency prediction f , encoded by an adver-
sarial oracle, predicting 7n small items of size at most
1/4 and n large items of size at most 3/5, Aosp forms
an offline packing of n bins, where each bin contains

one placeholder for a large item, seven placeholders for
small items, and forty containers of size at most 1/15
to pack tiny items online.

Consider an input sequence o, consist of 40n tiny items
of size 1/30 + e. Given the prediction f, Aosp(o,f)
has n bins that are partially filled by tiny items. OPT,
however, fits each 292 = 841 of these tiny items into
a one bin; therefore, OpT(c) = 40n/841. It follows,
AospP(o, f) has a competitive ratio of 841 /40 ~ 21 which
completes the proof. O

We now show that RAP has a robustness of at most
5.89. For that, we prove a lower bound for the minimum
occupied area of the bins that RAP opens.

Theorem 8 RAP has a robustness of at most 5.89.

Proof. The final packing of RAP consists of harmonic,
LM, and critical bins. A small harmonic bin of class
i has a minimum occupied area of i2/(i + 1)2, which
implies a minimum occupied area of 9/16 for all small
harmonic bins. Moreover, the occupied area in bins that
include large or medium items is at least 1/4.

Next, we consider bins with an empty placeholder.
Placeholders for these items were reserved during the
preprocessing step and remained empty due to predic-
tion errors. We note that these bins have received non-
empty containers with small or tiny items; otherwise,
they would be virtually open (do not contain any items),
and do not contribute to the final cost. Therefore, the
occupied area of LM-bins is at least the minimum total
occupied area of the small or tiny items they contain.
Table 4 in Appendix shows lower bounds for the occu-
pied area. In particular, the worst-case scenario is real-
ized by the (1b,9) bins, as shown in Figure 1g, when the
placeholder for 1b-items stays empty and the occupied
area is at least 0.17. We can conclude that all bins in the
final packing of RAP, except possibly a constant num-
ber of them, have a minimum occupied area of at least
0.17, regardless of the quality of predictions. It follows,
RAP has a robustness of at most 100/17 < 5.89. 0

5 Concluding Remarks

In this paper, we introduced RAP, an online square-
packing algorithm that leverages frequency predictions
and has superior consistency and robustness over an
existing algorithm of [24], Aosp, which overly relies
on predictions. The techniques we used for the de-
sign of RAP, e.g., differentiating between placeholders
and containers, and its analysis, e.g., solving the inte-
ger program in Lemma 5, are likely helpful in studying
other geometric packing problems under the prediction
model such as 2-dimensional box packing [16, 27] and
d-dimensional cube packing [17, 21] problems.
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Appendix (Omitted Tables)

reserved types Class t;41 weight
small 1b 1le 1d le le,4 — la 4/5 1.0
type 1b 2/3 0.765625
3 — 0.67 0.61 056 — 0.56 le 3/5 0.6785570840932904
4 — 0.64 0.58 0.53% — 0.64 1d 11/20 0.4650876739816575
5 0.69 060 074 0.69 066 0.69 le 1/2 0.4650876739816575
6 0.66 076 071 0.65 067 0.73 2a 2/5 0.25
7 0.64 073 067 076 067 0.76 2b 1/3 0.19140625
8 0.62 070 0.8 0.73 066 0.79 3 1/4 0.1111111111111111
9 061 081 075 081 0.64 0.81 4 1/5 0.0764160465740489
10 0.74 078 083 077 0.72 0.82 5 1/6 0.04
11 072 075 080 0.75 072 0.84 6 1/7 0.02777777TITTIITT
12 0.70 083 077 081 0.71 0.85 7 1/8 0.0222880135840976
13 0.68 080 083 0.78 0.69 0.86 8 1/9 0.015625
14 0.67 0.78 081 0.83 0.68 0.87 9 1/10 0.0137867647058823
15 0.76 084 086 0.81 075 0.87 10 1/11 0.01
16 074 082 084 085 074 0.88 11 1/12 0.0082644628099173
17 073 080 082 0.83 072 0.89 12 1/13 0.0069444444444444
18 071 08 08 087 072 0.89 13 1/14 0.0059171597633136
19 0.70 0.83 084 084 0.71 0.90 14 1/15 0.0051020408163265
20 0.77 0.82 088 0.88 0.76 0.90 15 1/16 0.0044444444444444
21 0.75 08 086 086 074 091 16 1/17 0.00390625
22 0.74 084 084 084 0.74 0091 17 1/18 0.0034602076124567
23 073 083 088 087 073 091 18 1/19 0.0030864197530864
24 072 087 0.8 085 0.73 0.92 19 1/20 0.002770083102493
25 0.77 085 0.89 088 0.75 0.92 20 1/21 0.0025
26 0.76 084 087 086 0.75 0.92 21 1/22 0.0022675736961451
27 0.75 087 0.8 089 0.75 0.92 22 1/23 0.0020661157024793
28 074 08 089 087 074 093 23 1/24 0.0018903591682419
29 073 084 087 090 073 093 24 1/25 0.0017361111111111
tiny 070 0.61 075 0.70 0.67 0.71 25 1/26 0.0016
26 1/27 0.0014792899408284
Table 2: A summary of the minimum occupied area in 27 1/28 0.0013717421124828
each LM bin type with no empty containers, rounded 28 1/29 0.0012755102040816
to 2 decimal places. For each large type, the minimum 29 1/30 0.0011890606420927
occupied area is highlighted. The entry marked with * tiny density 1.2500557840816486

shows the minimum occupied area of critical bins in the
final packing.

Table 3: Weights of items of different classes, as used in
Lemma 5
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reserved types

small 1b 1lc 1d le

types containers total area containers total area containers total area containers total area
3 — — 5 0.3125 5 0.3125 5 0.3125
4 — — 7 0.2800 7 0.2800 7 0.2800
5 9 0.2500 9 0.2500 16 0.4444 16 0.4444
6 11 0.2244 20 0.4081 20 0.4081 20 0.4081
7 13 0.2031 24 0.3750 24 0.3750 33  0.5156
8 15 0.1851 28  0.3456 39 0.4814 39 0.4814
9 17 0.1700 45  0.4500 45 0.4500 56 0.5600
10 36 0.2975 51 0.4214 64 0.5289 64 0.5289
11 40 0.2777 57  0.3958 72 0.5000 72 0.5000
12 44 0.2603 80 0.4733 80 0.4733 95 0.5621
13 48  0.2448 88  0.4489 105  0.5357 105  0.5357
14 52 0.2311 96 0.4266 115 0.5111 132 0.5866
15 81 0.3164 125 0.4882 144 0.5625 144 0.5625
16 87 0.3010 135 0.4671 156 0.5397 175  0.6055
17 93 0.2870 145 0.4475 168 0.5185 189  0.5833
18 99  0.2742 180  0.4986 203  0.5623 224 0.6204
19 105 0.2625 192 0.4799 217 0.5424 240 0.5999
20 144 0.3265 204 0.4625 256  0.5804 279 0.6326
21 152 0.3140 245 0.5061 272 0.5619 297  0.6136
22 160 0.3024 259  0.4896 288 0.5444 315 0.5954
23 168  0.2916 273 04739 333 0.5781 360  0.6250
24 176 0.2816 320  0.5120 351 0.5615 380 0.6079
25 225  0.3328 336 0.4970 400  0.5917 429  0.6346
26 235 0.3223 352 0.4828 420  0.5761 451  0.6186
27 245  0.3125 405 0.5165 440  0.5612 504  0.6428
28 255  0.3032 423 0.5029 495  0.5885 528  0.6278
29 265 0.2944 441 0.4899 517 0.5744 585  0.6500
tiny 9 0.2571 9 0.2571 16 0.4571 16 0.4571

Table 4: Lower bounds for the area ccupied by tiny and small items in LM bins of RAP. The minimum occupied
area over all classes is highlighted.
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Minimum Ply Covering of Points with Unit Disks*

Stephane Durocher®

Abstract

Let P be a set of points and let U be a set of unit disks
in the Euclidean plane. A minimum ply cover of P with
U is a subset of U that covers P and minimizes the
number of disks that share a common intersection. The
size of a minimum ply cover is called the minimum ply
cover number. Biedl et al. [Comput. Geom., 94:101712,
2020] showed that determining the minimum ply cover
number for a set of points by a set of unit disks is NP-
hard, and asked whether there exists a polynomial-time
O(1)-approximation algorithm for this problem. They
showed the problem to be 2-approximable in polynomial
time for the special case when the minimum ply cover
number is constant. In this paper, we settle the ques-
tion posed by Biedl et al. by providing a polynomial-
time O(1)-approximation algorithm for the minimum
ply cover problem.

1 Introduction

The minimum set cover problem is a widely studied op-
timization problem. The input to the set cover problem
is a set P and a collection C' of subsets over P. The
goal is to identify a subset C’ of C' with minimum car-
dinality that contains all the elements of P. The mem-
bership of an element g in P with respect to a subset
C' of C' is the number of sets in C’ that contain g. The
minimum membership set cover problem is a variant in
which the goal is to find a subset C’ of C' that mini-
mizes the maximum membership of elements in P. A
rich body of literature studies the minimum membership
set cover problem [2, 10, 12, 13, 15, 16]. In this paper,
we consider a set cover scenario in which the given sets
of C' may contain elements outside P and membership
is evaluated for all elements covered by C’, including
those outside P. This concept appears in the literature
as ply cover, which is formalized below.

The ply of a collection S of sets, denoted ply(S), is
the maximum cardinality of any subset of S that has a
non-empty common intersection. The set S covers a set

*This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

TUniversity of Manitoba, Winnipeg, Canada,
stephane.durocher@umanitoba.ca

{University of  Saskatchewan, Saskatoon, Canada,
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§University of  Saskatchewan, Saskatoon, Canada,
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Pif P C Usies S;. Given a set P and a collection of
sets U, a subset S C U is a minimum ply cover of P if
S covers P and S minimizes ply(S) over all subsets of
U. Formally:
plycover(P,U) = argmin ply(S). (1)
SCcU
S covers P

The ply of such a set S is called the min-
imum ply cover number of P with U, denoted
ply* (P, U). For example, if P = {1,3,5,7,8}
and U = {{1,2,3,4},{8},{3,4,5},{4,5,7}}, then
plycover(P,U) = {{1,2,3,4},{8},{4,5,7}} and the
minimum ply cover number is two.

Motivated by applications in covering problems, in-
cluding interference minimization in wireless networks,
Biedl et al. [3] introduced the minimum ply cover prob-
lem in the geometric setting: given sets P and U, find
a subset S C U that minimizes (1). When U is a set of
unit disks representing transmission ranges of potential
locations for placing wireless transmitters and P repre-
sents locations of wireless clients, S C U corresponds to
locations to install transmitters that minimize interfer-
ence at any point in the plane.

Biedl et al. [3] showed that the problem is NP-hard
to solve exactly, and remains NP-hard to approximate
by a ratio less than two when P is a set of points in R?
and U is a set of axis-aligned unit squares or a set of
unit disks in R?. They also provided 2-approximation
algorithms parameterized in terms of ply™ (P, U) for unit
disks and unit squares in R2. Their algorithm for axis-
parallel unit squares runs in O((k + |P|)(2 - |U|)?¢*1)
time, where k = ply*(P,U), which is polynomial when
ply*(P,U) € O(1).

Biniaz and Lin [4] generalized this result for any fixed-
size convex shape and obtained a 2-approximation algo-
rithm when ply™(P,U) € O(1). The problem of finding
a polynomial-time approximation algorithm to the min-
imum ply cover problem remained open for both unit
squares and unit disks when the minimum ply cover
number, ply*(P,U), is not bounded by any constant.

Recently, Durocher et al. [11] settled this question
affirmatively for unit squares by designing a polynomial-
time (8 + £)-approximation algorithm for the problem,
where £ > 0. We refer the reader to [19] for subsequent
work that achieves faster algorithms, but with larger
approximation factors.

Our contribution: In this paper we consider the
minimum ply cover problem for a set P of points in R?
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Figure 1: (a) An input consisting of points and unit disks. (b) A covering of the points with ply 1, which is also the
minimum ply cover number for the given input. (c¢) A covering of the same instance with ply 3.

with a set U of unit disks in R2. We show that for
every £ > 0, the minimum ply cover number can be
approximated in polynomial time for unit disks within
a factor of (63+¢). This settles an open question posed
in [3] and [4].

Our idea is to leverage the minimum discrete unit
disk cover problem that seeks to cover a given point set
with a smallest cardinality subset of the given disks. We
show that there exist instances where the cardinality of
the minimum discrete unit disk cover is at least 9.24
times the minimum ply cover. Hence, obtaining an ap-
proximation factor of 10 would be interesting, and we
believe that achieving an approximation factor smaller
than 10 would require a different technique that does
not rely predominantly on a discrete unit disk cover.

Recent Developments: Recently, and indepen-
dently of our work, Bandyapadhyay et al. [1] have shown
that minimum ply cover can be approximated within a
constant factor in O(n-polylog(n)) time for fat objects,
which includes unit disks and unit squares. Their idea
is similar to the one that we used for disks. For unit
squares, the technique yields an approximation factor of
36. For disks, they only provide a high-level argument
for obtaining an O(1)-factor approximation rather than
aiming for an exact value.

2 Approximating Minimum Ply Covering by Dis-
crete Unit Disk Cover

Let P be a set of points in R? and let U be a set of
unit disks in R?2. We assume that no three disks in
U have boundaries that intersect at a common point.
In this section we give a polynomial-time algorithm to
approximate the minimum ply cover number for P with
U within a factor of O(1). We first give an overview of
the algorithm and then describe its details.

2.1 Overview

Consider an axis-aligned grid G over P, where each grid
cell is of size (1/v/2) x (1/4/2). We choose a grid that
is in general position relative to the disks in U, i.e., no
disk is tangent to a grid line. A grid cell is called non-
empty if it contains some point of P, otherwise, we call
it empty.

We leverage the minimum discrete unit disk cover
problem that, given a set of points and a set of unit disks
on the Euclidean plane, seeks a minimum-cardinality
subset of the input disks that covers the input points,
for which a PTAS exists [17]. We show that one can
first find an approximate solution to the minimum dis-
crete unit disk cover for each non-empty grid cell, and
then combine the solutions to obtain an approximate
solution to the minimum ply cover for P.

2.2 Details of the Algorithm

We first remove all the disks in U that do not contain
any point of P as they are not needed for covering P.
Let R be a non-empty grid cell of G. We first provide an
upper bound on the cardinality of the minimum discrete
unit disk cover in terms of the minimum ply cover num-
ber for the points and disks that overlap R (Lemma 1).
We then show how to combine the respective solutions
from each cell to obtain a cover of P by a subset of U
whose ply cover number is at most (63 + €) ply™ (P, U)
(Theorem 2).

Lemma 1 Let Q C P be the points that lie in R and let
W C U be the set of unit disks that intersect R. Let S
be a set of k points in the plane (i.e., not necessarily in
P) such that every disk in W includes at least one point
in S (points in S may lie outside R). The cardinality
of every minimum discrete unit disk cover of Q by W is
at most k times the minimum ply cover number for Q).

Proof. Let § be the cardinality of a minimum discrete
unit disk cover for covering @ by W. Let 8 be the
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Figure 2: Illustration for Corollary 1.1, where R is
shown in gray, @ is shown in black disks and S is shown
in orange. Any disk that intersects the center grid cell
must cover at least one orange point.

minimum ply cover number for covering @ by W. If
0 < kpB, then g > §/k.

Suppose for a contradiction that the minimum ply
cover number is less than §/k. Since every disk in the
minimum ply cover must hit at least one point in S, the
number of disks in the cover is strictly less than §. This
contradicts our initial assumption that § is the cardi-
nality of a minimum discrete unit disk cover of Q. 0O

It is straightforward to verify that for Lemma 1, it
suffices to choose the centers of the 8 neighbouring cells
of R as the point set S (Figure 2). Specifically, let D be
a unit disk that intersects R. The unit disks centered at
the points of S cover the entire region inside the convex
hull of S. Therefore, if the center of D lies inside the
convex hull of S, then D must include at least one point
from S. The remaining case is when the center of D lies
outside of S. If D does not include the points of S, then
it can intersect a segment of length at most 1/v/2 from
the convex hull boundary of S. However, this chord
length is too short for D to reach R, which contradicts
the assumption that D intersects R. Hence we obtain
the following corollary.

Corollary 1.1 Let @Q C P be the points that lie in R
and let W C U be set of unit disks that intersect R. The
cardinality of a minimum discrete unit disk cover for Q
by W is at most 8 times the minimum ply cover number

for @ by W.

In the following theorem we show how to combine
the approximate solutions for the cells of G to obtain an
O(1)-approximation for the minimum ply cover prob-
lem.

Theorem 2 Let P be a set of points and let U be a set
of unit disks, both in R?. Assume that for every Q C P
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1

Figure 3: The friend cells for C’. The red circles illus-
trate that for every friend cell, there is a unit disk that
intersects both that cell and C’.

and W C U, there exists a f(Q,W)-time algorithm A
that can approximate the cardinality of the minimum
discrete unit disk cover of Q with W within a factor of
~v. Then the minimum ply cover number for P using U
can be approzimated within o factor of 360y in O(| P -
f(P,U)) time.

Proof. Let U* be a minimum ply cover for covering
P with U. We consider a grid G over the point set P
where each grid cell is of size (1/v/2) x (1/+/2). Apply
the algorithm A iteratively to find a ~y-approximation
for the cardinality of the minimum discrete unit disk
cover for each grid cell. Let the maximum cardinality
that we attain for a cell be d,,.:. Let C be the cell
that attains d,,42, and let Q¢ and We be the points
and unit disks corresponding to C|, respectively. By
Corollary 1.1, the cardinality of the minimum discrete
unit disc cover is at most 8 times the minimum ply cover
number for covering Q¢ with We. Therefore, §,,4. at
most 8y times the minimum ply cover number for Q¢.
Since Q¢ € P and W C U, the minimum ply cover
number for covering Q¢ with W¢ is smaller than the
minimum ply cover number (ply(U*)) for covering P
with U. Therefore, we have 0,4, < 8y ply(U*).

Let O be the union of all the approximate discrete
unit disk covers obtained by applying the algorithm A
to cells of G, and let r be a point in the plane that does
not fall on any grid line of G. Let C’ be the cell of G
that contains r. In the following we show that r can
belong to at most 4594, disks in O.

We refer to a cell D to be a friend of C' if a solution
to the discrete unit disk cover for covering ) p intersects
C’. In other words, for every friend D, there is a unit
disk that intersects both D and C’. There are 45 friend
cells for C’ (see Figure 3). Therefore, the number of
disks that contains r in O is at most 450,,4,. Since
Omaz < 8y ply(U*), the number of unit disks in O that
may contain r is at most 360 ply(U*). Thus the ply of
O is at most 360 ply (U*). O

Since there exists a PTAS for the discrete unit disk
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cover problem [17], we obtain the following corollary.

Corollary 2.1 Given a set P of points and a set U of
unit disks, both in R?, a ply cover of P using U can
be computed in polynomial time whose ply is within a
constant factor of the minimum ply cover number of P
by U.

3 Further Improvements

Note that we have some freedom when choosing the set
S in Lemma 1 and the grid resolution in Theorem 2.
Therefore, it is natural to leverage such freedom to fur-
ther lower the approximation factor.

Note that there are several choices for S. For ex-
ample, consider a regular pentagon inscribed in a unit
circle centered at the center of R. Once can choose the
corners of the pentagon as the points of S, as illustrated
in Figure 4. Specifically, every unit disk with center ly-
ing inside the unit circle (shown in red) includes at least
one point from S, and every unit disk with center lying
outside the unit circle and avoiding .S is unable to reach
R, as illustrated in blue disks.

If we choose the corners of the pentagon as the points
of S, then the approximation factor 8 in Corollary 1.1
improves to 5 and the overall approximation factor in
Theorem 2 improves to 45-5 -y = 225v. The factor 225
is determined partly by the number of fried cells, which
is 45. To reduce this factor, we choose a hexagonal grid
instead of a square grid. This requires us to design a new
set of S, but it turns out that the overall approximation
factor reduces to 63y. We now give the details of the
construction.

Let H be a regular hexagon that inscribes a unit circle
with a side parallel to the x-axis (Figure 5(a)). Consider
now a hexagonal grid H on the point set P where each
hexagon is a copy of H. We compute the approximate
discrete unit disk cover for each cell of H. Let 0,4z

Figure 4: An alternative choice for S.

be the largest approximate discrete unit disk cover that
has appeared for a cell C.

Observe that each hexagonal cell can be partitioned
into 6 triangles by drawing a line segment between op-
posite corners of the hexagon (Figure 5(b)). While com-
bining the solutions, we consider each triangular region
instead of each hexagonal region, as follows.

Let T be a triangular region, as illustrated in Fig-
ure 5(c). We first use the idea of Lemma 1 to compute
an upper bound on the minimum discrete unit disk cover
for the points and unit disks corresponding to T'. To ob-
tain such an upper bound, we design a set S of 7 points
such that any unit disk intersecting 7" contains at least
one point from S. Let H' be the hexagonal cell that
contains 1" and let o be the center of T. Then S in-
cludes the point o and the 6 points obtained from the
intersection of the hexagonal grid and the circle of ra-
dius 1.5 centered at o. Figure 5(c) illustrates the circle
of radius 1.5 in dashed lines and the points of S in or-
ange. To verify that any unit disk D that intersects
T contains a point from S, consider two cases. If the
center c of D lies inside the hexagon H"” determined by
S\ {0}, then c lies in an equilateral triangle with side
length 1.5, which is determined by three points of S.
Figure 5(c) illustrates the equilateral triangle in green.
The radius of the circumscribed circle of this equilat-
eral triangle is 1.5/ V3 <1, Therefore, D must contain
a point from S. If the center ¢ of D lies outside H”,
then it can reach T only when D passes through two
points of S, as illustrated in Figure 5(d).

We now compute the approximation factor using the
same proof technique as in Theorem 2. Let O be the
union of all the approximate discrete unit disk covers
obtained by applying the algorithm A to the hexagonal
cells of H, and let r be a point in the plane that does
not fall on any grid line of H. Let C’ be a triangular
region that contains r. We now count the hexagonal
cells that are within unit distance to the C’. In other
words, the discrete unit disk cover solution for only these
cells may contain r. There are 9 friend cells for C’
(see Figure 5(e)). Therefore, the number of disks that
contains r in O is at most 99,,4,. Since |S| = 7, we
have 040 < 7yply(U*), where v is the approximation
factor for the minimum discrete unit disk cover and U*
is the minimum ply cover. Consequently, the number
of unit disks in O that may contain r is at most 9-7 -
~vply(U*). Thus the ply of O is at most 63~ ply(U*).
Since there is a polynomial-time (1 + ¢’)-approximation
for the minimum discrete unit disk cover [17], we obtain
a (63 + e)-approximation for the minimum ply cover
number where we choose €’ to be £/63.

The following theorem summarizes the result of this
section.

Theorem 3 Given a set P of points and a set U of unit
disks, both in R?, and a constant e > 0, a ply cover of P
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Figure 5: Improving the approximation factor by choosing a hexagonal grid.

using U can be computed in polynomial time whose ply
is at most (63+¢) times the minimum ply cover number

of PbyU.

The bottleneck of the running time of our algorithm
is the time to compute the discrete unit disk cover.
In 1995, Bronnimann and Goodrich gave an O(1)-
approximation algorithm for minimum discrete unit
disk cover [5]. A rich body of research attempted to
lower the approximation factor since then [6, 18, 7, §].
The (1 + e)-approximation result for the minimum
discrete unit disk cover [17] has a running time of
O(?TLQ(C/E)Q"’ln)7 where m and n are the numbers of
disks and points, respectively, and ¢ is a constant.
This running time is large, i.e., the fastest achievable
running time is O(m%n) by setting ¢ = 2, which
gives a 3-approximation [14]. Das et al. [9] gave an
18-approximation algorithm that runs in O(nlogn +
mlog m 4+ mn) time, which may be used to compute an
approximate solution to the minimum ply cover prob-
lem faster, but the approximation factor would increase
to 1134.

4 Lower Bound

Our approximation algorithm for the minimum ply
cover problem relies heavily on finding a discrete unit
disk cover. In this section, we construct instances where
the cardinality of the minimum discrete unit disk cover
is at least 9.2444 times the minimum ply cover num-
ber. The bound 9.24 is constructed to complement our
approach, i.e., in general, the number of disks in a dis-
crete unit disk cover could be unbounded compared to
the minimum ply cover number. This 9.24 lower bound
indicates that achieving an approximation factor less
than 10 may be unlikely using our approach.

Choose any n > 2. We construct a set {Dy,...,D,}
of n unit disks such that the boundary of each disk is
tangent to a common point o (each disk center is a unit
distance from o), and the disks are positioned uniformly
around o. Figure 6 shows these disks in gray. Consider
a circle C' of radius 2 centered at o (shown in orange

23

in Figure 6). For each i € {1,...,n}, we add a point
p; (shown in red in Figure 6) at the intersection of the
boundaries of C' and D;, and place a unit disk D/ (shown
in black in Figure 6) such that p; is the midpoint of the
centers of D; and D..

Figure 6: Hlustration for the construction of a ply cover
instance (P, U) when n = 12. The points of P are shown
in red, and U consists of the black and gray disks.

Consider an instance of the minimum ply cover
problem (P,U), where P = {p1,...,pn} and U =
{D1,...,Dy,,D1,...,D,}. Foreach i € {1,...,n}, the
point p; € P is covered by exactly two disks in U, D; and
Dj; furthermore, D; and D) cover no points in P\ {p;}.
Therefore, any disk cover of P by U must contain at
least n disks and must contain either D; or D} for each
ie{l,...,n}.

The set U' = {D},...,D,} covers P and |U’| = n.
Therefore, U’ is a minimum discrete unit disk cover of
P. Similarly, the set U” = {Dy,...,D,} covers P,
|[U”| = n, and U” is also a minimum discrete unit disk
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cover of P. U" has ply n. We now calculate the ply of
U'.

See Figure 7, illustrating the point o and disks D;
and D}, for some i € {1,...,n}. The segment o¢; is the
diameter of D; plus the radius of D}; therefore it has
length 3. Consequently, # = 2sin~!(1/3), and the ply

Of U/ is |—n2sin2_ (1/5)'|

s

Figure 7: The sector rooted at o with boundary tangent
to the disk D} forms an angle = 2sin~'(1/3) at o.

An adversarial choice of minimum discrete unit disk
cover of P by U selects U’. Consequently, no minimum
discrete unit disk cover can guarantee to approximate
the minimum ply by less than

ply(U") _ .. n
m ———= = lim —
n—oo ply(U’)  n—oo [2nsin~'(1/3)]/(2n)
™
~ sinT1(1/3)
> 9.2444.

The following theorem summarizes the result of this
section.

Theorem 4 For sufficiently large n, there exists a set
of n points and 2n disks for which the ply of a mini-
mum discrete unit disk cover is at least 9.24 times the
minimum ply cover.

5 Conclusion

We have shown that given a set of points and a set of
unit disks in the Euclidean plane, one can compute a
ply cover whose ply is within a constant factor of the
minimum ply cover number. The approximation fac-
tor we obtain is large (i.e., 63 + €), whereas only a 2-
inapproximability result is known [3]. Therefore, a nat-
ural direction of future research is to narrow down this
gap.

Our approximation algorithm relies on finding an ap-
proximate discrete unit disk cover and we have con-
structed instances where a minimum discrete unit disk
cover is at least 9.24 times the minimum ply cover num-
ber. This raises the question of whether the approx-
imation factor could be brought down closer to 10, or
whether the existing 2-inapproximability result could be
strengthened further using the disk configurations that
we used in this paper.
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Overlapping of Lattice Unfolding for Cuboids

Takumi Shiota*

Abstract

A polygon obtained by cutting the surface of a poly-
hedron is called an unfolding of the polyhedron. An
unfolding obtained by cutting along only edges is called
an edge unfolding. An unfolding may have overlapping,
which are self-intersections on its boundary. It is a fa-
mous open problem in computational origami whether
or not every convex polyhedron has a non-overlapping
edge unfolding. Recently, to get a foothold on the open
problem, an overlapping of unfolding by other cutting
restrictions was studied. Lattice unfoldings of a cuboid
made by unit cubes are a specific example. A lattice
unfolding of a cuboid is a polygon obtained by cutting
the faces along the edges of unit squares. An unfolding
may have overlapping, even in the case of small cuboids.
In particular, Uno showed that a (1,1, 3)-cuboid has an
overlapping lattice unfolding, while Mitani and Uehara
showed the same for three faces of a (1,2, 3)-cuboid. In
contrast, it is known that some cuboids have no overlap-
ping lattice unfolding. Hearn showed it for a (1,1,2)-
cuboid, and Sugihara showed the same for a (2,2,2)-
cuboid. In this study, we completely determine the ex-
istence of overlapping lattice unfoldings which also con-
tains the case where the sizes are non-integers.

1 Introduction

To represent a polyhedron, we sometimes use a planer
layout of arranged faces according to their adjacency re-
lations. The origin of this method can be traced back
to Albrecht Diirer’s 1525 book “Underweysung der mes-
sung mit dem zirckel un richt scheyt” [4]. He repre-
sented several polyhedra using flat polygons (edge un-
foldings) obtained by cutting along the edges. All edge
unfoldings of convex polyhedra in this book are drawn
so that “no two faces overlap or in touch.” However,
edge unfoldings of polyhedra do not always satisfy this
condition (e.g., Namiki and Fukuda’s overlapping edge
unfolding as shown in Figure 1 [11]). The following
problem is open:

Open Problem 1 ([5], Open Problem 21.1) Does
every convex polyhedron have a non-overlapping edge
unfolding?

*Kyushu Institute of Technology,
shiota.takumi779@mail.kyutech. jp

tJapan Advanced Institute of Science and Technology,
{kamata,uehara}@jaist.ac.jp
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Tonan Kamatal

Ryuhei Ueharal

Figure 1: An overlapping edge unfolding of a cube with
cut-off corners [11]. Cut along thick lines to get
the figure on the right.

Table 1: Overlapping edge unfoldings for convex regular-
faced polyhedra

Convex regular-faced
polyhedra

Is there an overlapping
edge unfolding?

Platonic solids

(Total 5 types) No [9]

Archimedean solids
(Total 13 types)

No (7 types) [8, 14]
Yes (6 types) [3, 9, 14]

n-gonal Archimedean

No (3 <n <23)

prisms (n > 3) Yes (n > 24) 14
n-gonal Archimedean No (3<n<11) [14]
antiprisms (n > 3) Yes (n > 12)

Johnson solids
(Total 92 types)

No (48 types) [13]
Yes (44 types)

Research on the existence of unfolding with overlap
for polyhedra has been conducted under several differ-
ent conditions. Biedl et al. discovered concave poly-
hedra where all edge unfoldings overlap in 1998, and
Griinbaum found another instance in 2003 [2, 6]. For the
class of polyhedra whose faces are all regular polygons,
referred to as convex regular-faced polyhedra, it has
been completely determined whether they have over-
lapping edge unfoldings (see Table 1).

There are also studies on general unfoldings that allow
cutting the faces of the polyhedron, not just its edges.
Sharir and Schorr showed that any convex polyhedron
could unfold without overlapping when allowed to cut
its faces [12, 1].

In our study, we consider another restriction of un-
folding called lattice unfolding, which can be applied to
cuboids of specific sizes.

2 Preliminaries

2.1 Definition of cuboids

We consider a square lattice where each square has an
area of 1 x 1. Let A and B be a pair of lattice points
and a and b be the differences in x coordinates and y
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Figure 2: Determining the length L of one edge of a cube.

(a) The cube with length (b) A (3v10,210, 1v/10)-cuboid
/10 on a side. obtained by connecting six
units of (a).

(¢) An example of the lattice unfolding of (b).

Figure 3: Examples of cube, cuboid, and lattice unfolding

SRS
Yoo

(a) A (2v2 x 2v/2 x 2v/2)-
cuboid (L = v/2,
r=y=2z=2).

(b) A (2v2 x 2v2 x 2V2)-
cuboid (L = 2v/2,
r=y=z=1).

Figure 4: Two cuboids which can be regarded as the same
shape.

coordinates between them (Figure 2). We assume a > b
without loss of generality. Here, we consider a square
with a side AB, whose length is L = va? +b%2. We
construct a cube with length L on a side by assembling
the squares as its faces (Figure 3(a)).

We also define a (xL,yL,zL)-cuboid by a box
with edge lengths zL, yL, and zL along x-axis, y-
axis, and z-axis, respectively for some positive inte-
gers z, y, and z (Figure 3(b)). We assume 2 <
y < z without loss of generality. We only consider
the cuboids that satisfy ged(a,b) = 1 because the
(c(zL),c(yL),c(zL))-cuboid (multiplied (zL,yL,zL)-
cuboid by ¢) and the (x(cL),y(cL), z(cL))-cuboid (mul-
tiplied (cL, cL, cL)-cuboid by z,y, z) can be regarded as
the same shape (Figure 4).

FEDO8 [FEDO - [FEDO-

HI]J[= H T[> HIIJ
G & G & G &
FIEIDIC FEIDIC F|E[DIC

(a) Faces-in-touch (b) Edges-in-touch (c) Vertices-in-touch

Figure 5: Overlapping lattice unfoldings in the (1,2,3)-
cuboid [10].
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Figure 6: A faces-in-touch unfolding (1,1,3)-

cuboid [16].

2.2 Definition of overlapping lattice unfoldings

A lattice unfolding of a cuboid is an unfolding obtained
by cutting the face of the cuboid along the edges of unit
squares (Figure 3(c)). As we will mention in Lemma 7,
the cutting line of the lattice unfolding forms a tree
structure.

On a lattice unfolding, the original cuboid’s unit
squares are arranged planarly so that their edges are
glued together. Any pair of unit squares not adjacent
to each other on the surface can be classified into posi-
tional relationships as follows:

(1) Overlap in the same position (Figure 5(a)).
(2) Share one edge (Figure 5(b)).

(3) Share one vertex (Figure 5(c)).

(4)

4) Without sharing any edges or vertices.

Herein, we say that an unfolding is faces-in-touch if
it has a pair of unit squares satisfying (1). Sim-
ilarly, we define edges-in-touch and vertices-in-touch
for (2) and (3), respectively. When all pairs of unit
squares not adjacent on the surface satisfy (4), it is
called non-overlapping. When any of the conditions
(1), (2), or (3) are satisfied, it is termed overlapping.
Note that the inclusion relationship {faces-in-touch
unfoldings}C {edges-in-touch unfoldings}C{vertices-in-
touch unfoldings} holds for any cuboid.

2.3 Background on overlapping lattice unfoldings

The overlapping of lattice unfoldings has been mainly
researched in the case of L = 1, which is the size of unit
cubes.

In 2008, Uno showed that the (1,1, 3)-cuboid has a
faces-in-touch lattice unfolding (Figure 6) [16]. Fur-
thermore, in 2008, Mitani and Uehara showed that
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the (1,2,3)-cuboid has a faces-in-touch lattice unfold-
ing (Figure 5(a)) [10].

Each of these cutting methods can be extended to
the cases of (1,1,z), where z > 3 and (1,y, z), where
y > 2,z > 3, respectively, and the following theorems
are obtained:

Theorem 2 (

[16]) A faces-in-touch lattice unfolding
exists for any (1
[

, 1, z)-cuboid, where z € N,z > 3.

Theorem 3 ([10]) A faces-in-touch lattice unfolding
exists for any (1,y, z)-cuboid, where y,z € Nyy > 2,2 >
3.

On the other hand, the following results are known
for the non-existence of overlapping unfolding:

Theorem 4 ([7]) A faces-in-touch lattice unfolding
does not exist for the (1,1, 2)-cuboid.

Theorem 5 ([15]) A faces-in-touch lattice unfolding
does not ezist for the (2,2,2)-cuboid.

We have revisited the classes described above and com-
piled an extended list that applies to a wider range of
classes.

2.4 Representation of polyhedra using graphs

Let @ be a polyhedron, and let Gg = (Vg, Eq) be the
graph such that V{ is the set of the vertices of  and Eq
is the set of the edges of ). We call this graph an edge
representation graph of (). An edge unfolding of () can
be regarded as an unfolding obtained from a subgraph
of Gg. The following lemma holds:

Lemma 6 (See e.g., [5], Lemma 22.1.1) A  sub-
graph G C G yields an unfolding if and only if G is a
spanning tree of Gq.

Now, we introduce a new graph representation for lat-
tice unfoldings. Let C' be a cuboid. We define the lattice
representation graph Go = (Vo, E¢) such that Vi is the
set of vertices of unit squares on the face of C, and F¢ is
the set of edges of the unit squares. The lattice unfold-
ing is one of the general unfolding, which allows cutting
the surface across faces. Thus, we can apply the follow-
ing lemma, which holds for the general unfolding (see
Figure 7):

Lemma 7 ([10], Theorem 1, Theorem 3) Let

Geo = (Vo,Ec) be the lattice representation graph of
a cuboid C, and let S(Vo) C Ve be the set of lattice
points located at the vertices of C. Then, the following
are equivalent for a subgraph G C G¢:

1. G yields a lattice unfolding.

2. G is a tree that satisfies S(Vo) C G, and for any
vertezv in G, if deg(v) = 1, thenv € S(Vi) (where
deg(v) is the degree of vertex v).
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Figure 7: The thick lines form a tree that includes all the
lattice cube’s vertices (the starred ones).
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(a) Confirm all pairs. (b) Use rotational

unfolding.

Figure 8: Pairs of squares must be checked for overlap in
a certain edge unfolding.

2.5 Methods for checking the overlap

Herein, we introduce a method for verifying the non-
existence of overlapping edge unfoldings used in the pre-
vious research [14].

To prove that there is no edge unfolding with over-
lap for a given polyhedron, we must check the overlap-
ping for all pairs of faces of all edge unfoldings. For
example, a cube has 11 edge unfoldings, and each un-
folding has ¢Cy = 15 pairs of squares that need to be
checked for overlap (see Figure 8(a)). However, focus-
ing on the symmetry of relative positions, the number of
pairs that actually need to be checked is six, as shown in
Figure 8(b). In other words, if we confirm that none of
them overlap, we can conclude that all edge unfoldings
do not overlap.

An algorithm called rotational unfolding has been de-
veloped with a focus on this point [14]. The method
of rotational unfolding enumerates minimum unfoldings
containing two faces for each pair of faces of the poly-
hedron. In the method, each unfolding is drawn by
“Rolling the polyhedron on a plane from the state that
one face is bottom to the state that another is bottom.”
This method greatly reduces the number of checking
patterns for overlap. For details on rotational unfold-
ing, refer to [14].

3 Results

This study presents the following theorem for cuboids:
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(b) A desired path.

(a) An unnecessary path in rota-
tion unfolding.

Figure 9: The pair of gray faces of the path (a) do not
need to be considered because they have already
checked in the path (b).

Theorem 8

o For the (1,1,1)-cuboid or (v/2,v/2,v/2)-cuboid,
there is mo overlapping lattice unfolding.

e For the (1,1,2)-cuboid, there are no faces-in-touch
lattice unfoldings and no edges-in-touch lattice un-
foldings, but a wvertices-in-touch lattice unfolding
exrists.

e For the (1,2,2)-cuboid or (2,2,2)-cuboid, there is
no faces-in-touch lattice unfoldings, but edges-in-
touch lattice unfolding and vertices-in-touch lattice
unfolding exist.

e For any other cases, faces-in-touch lattice unfold-
ings, edges-in-touch lattice unfoldings, and vertices-
in-touch lattice unfoldings exist.

First, we show the method to check the overlapping
of lattice unfoldings by computational experiment. By
implementing the following method, we check the non-
existence side of the statements of Theorem 8. This
experiment includes the verification of the previous re-
sults [7] and [15].

3.1 The method to check the overlapping of lattice
unfoldings by computational experiment

The method of rotational unfolding in Section 2.5 is
used to enumerate edge unfoldings, but cannot be di-
rectly used for lattice unfolding. This section shows the
method of extending rotational unfolding to lattice un-
folding.

In the rotational unfolding, the dual graph D(Gp)
of its edge representation graph Gp is used for tech-
nical reasons. According to this, we consider the dual
graph D(G¢) of the lattice representation graph G¢ for
the lattice unfolding of a cuboid C. Lemma 7 implies
that G¢ has no leaf nodes other than the vertices of
the cuboid. When enumerating D(G¢), it is necessary
to remove redundant parts of the path, such as the one
shown in Figure 9(a). Therefore, we introduce the fol-
lowing characters for information about the “direction
of rolling when viewed from one step before”:

R : Roll to the right from one step before.
C : Roll straight from one step before.

—>e |-

A
i

1
jan

1] i

(a) “CCRCL”

(b) “CLRRCRLLC”

Figure 10: Strings of paths obtained by rotational unfold-

ing.
r’. .‘—z
{ i
(a) “CR” (b) “CC” (C) “CL”
»—-»T x—-)o
! 1(-—.
4
i
(d) “CRRR” (e) “CCRR” (f) “CLRR”

Figure 11: (a)-(c): Paths for steps 2. (d)-(f):
steps 3 and 4 when rolling “RR”.

Paths for

L : Roll to the left from one step before.

In addition, the path obtained using the rotational un-
folding will be represented as a string (Figure 10 shows
examples). In the rotational unfolding, the first step is
to roll straight ahead, so the path obtained in the first
step is “C”. We can state the following lemma:

Lemma 9 When representing the path obtained by ro-
tational unfolding as a string, it includes redundant
parts if it contains “RR” or “LL”.

Proof. In the second step of the rotational unfolding,
we have three cases: (1) rolling to the right (string:
“CR”, Figure 11(a)), (2) rolling straight (string: “CC”,
Figure 11(b)), and (3) rolling to the left (string: “CL”,
Figure 11(c)). If we repeat the action of rolling right, or
“RR”, twice after the second step, we get (1) “CRRR”
(Figure 11(d)), (2) “CCRR” (Figure 11(e)), and (3)
“CLRR” (Figure 11(f)). For case (1), this situation
cannot occur because we have already used the face
as part of the constructed path. For cases (2) and
(3), the paths represented by “CR” and “CC” (Figures
11(a) and 11(b)) have already been checked for overlap.
Therefore, if “RR” is included in the path, it contains
redundant parts. Similarly, we can show this in the case
of “LL”. U

When a cuboid has an overlapping lattice unfolding,
we can determine how they overlap using the following
observation:

Observation 10 In rotational unfolding, compute the
center coordinates of the face at one endpoint, assuming
its center coordinates are (0,0). Then, while rolling the
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N Tar

(a) The coordinates of  (b) The coordinates of the
the center of each center of the face at the
face. other endpoint.

Figure 12: The method to check for overlap in rotational
unfoldings, including their type.

path sequentially, compute the center coordinates of the
face at the other endpoint (see Figure 12(a)). We can
determine the type of unfolding based on the coordinates
of the center of the face at the other endpoint:

o If the coordinate is (0,0), it is a faces-in-touch un-
folding (a red face W in Figure 12(b)).

o If the coordinates are (0,1), (—1,0), or (0,—1), it
is an edges-in-touching unfolding (blue faces Il in
Figure 12(b)).

o If the coordinates are (1,1), (1,-1), (=1,-1), or
(—1,1), it is a vertices-in-touch unfolding (green
faces — in Figure 12(b)).

3.2 Construction of specific overlapping unfoldings

Hereafter, we prove the existence side of the statements
of Theorem 8 by showing specific overlapping unfold-
ings.

3.2.1 Caseof L =1

From Theorem 2 and Theorem 3, a faces-in-touch, an
edges-in-touch, and vertices-in-touch unfoldings exist
for the (z,y, z)-cuboid, where z > 3. For the remaining
cases for the case of L = 1, we provide specific examples
of unfoldings as follows:

Lemma 11
o A vertices-in-touch unfolding exists for the (1,1,2)-
cuboid, as shown in Figure 13(a).

o An edges-in-touch unfolding and a vertices-in-touch
unfolding exist for the (1,2,2)-cuboid, as shown in
Figure 13(b), and Figure 13(c) respectively.

e An edges-in-touch unfolding and a vertices-in-touch
unfolding exist for the (2,2,2)-cuboid, as shown in
Figure 13(d), and Figure 13(e) respectively.

3.2.2 Caseof L =2, L =+/5, and L = /10

From the inclusion relationship between the edges-in-
touch and vertices-in-touch unfolding, we have only to
show the existence of the faces-in-touch unfolding.
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Figure 13: Overlapping lattice unfolding by cutting along
the red lines.

x: w

(%

Figure 14: The lattice unfolding Q..

Y

Figure 15: The lattice unfolding @1 can be embedded in
the three faces in front of the (\/57 \/5,2\/5)—
cuboid.

A faces-in-touch  unfolding exist for the
(\/5, \/5,2\@)—cuboid, as shown in the lower part
of Figure 13(f). From now on, we will refer to this
lattice unfolding as @ (Figure 14). Moreover, the
(\/ﬁ, V2,2v/2)-cuboid can be unfolded to partially
include the lattice unfolding @, because @ can
be embedded on the three faces in front of the
(\/5, ﬂ,2\/§)—cuboid. Note that we have to fold the
three triangular faces indicated in pink (M), light blue
(), and light green colors () in the positive direction
of the y-axis, the positive direction of the z-axis, and
the positive direction of the x-axis, respectively (see
Figure 15). This embedding method can also be applied
to the (zv2,yv/2,2v/2)-cuboid, where z,y,2z > 2, as
shown in Figure 16.
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Figure 16: The lattice unfolding @1, can be embedded in the
(22,92, 2+/2)-cuboid, where z < 2-cuboid.

*

) The

(©) The  (VI3,VI3,vVi3)- (d
cuboid.

(L, L, L)-cuboid,
where L > +/13.

Figure 17: The lattice unfolding @, can be embedded in
each cuboid.

The same embedding can be performed for cases
where L = /5 and L = /10 (refer to Figure 17).

3.2.3 Case of L > /13

The lattice unfolding @ can be embedded in the
(v/13,4/13,4/13)-cuboid, as shown in Figure 17(c).
Here, we present the following lemma:

Lemma 12 The lattice unfolding Q1 can be embedded
in the (L, L, L)-cuboid, where L > /13.

Proof. Consider three unit squares with vertex v in
common (Figure 17(d)). The three-unit squares en-
closed in blue in Figure 14 can be embedded in this
point. Let S be the side face of a cone with the length of
the axis v/13 and central angle 270° (Figure 18). Here-
after S is called the cone. Since the central angle of
the cone S is 270°, the three unit squares enclosed in
blue in Figure 14 can be embedded with vertex v coin-
ciding. Additionally, due to the Euclidean distance be-
tween the point v and the furthest point w in Figure 14
being v/22 + 32 = /13, the remaining faces except for
the three faces enclosed in blue can be embedded as
shown in Figure 18 (right). The cone S can be embed-
ded in the three front faces of a (L, L, L)-cuboid where

Figure 18: The side face of a cone with the length of the
axis v/13 and central angle 270°. By rounding
the left fan shape, the right solid is obtained.
We can embed a lattice unfolding @y, in this.

Figure 19: A cone S can be embedded in the three faces in
front of the (L, L, L)-cuboid, where L > v/13.

L > /13, as shown in Figure 19. From the fact that
the cone S can be embedded on a (L, L, L)-cuboid and
that the lattice unfolding Q)7 can be embedded on top
of the cone S, it can be concluded that the lattice un-
folding 1, can be embedded on the three front faces of
a (L, L, L)-cuboid. O

From this lemma, a faces-in-touch unfolding exists for
the (zL,yL,zL)-cuboid in any of the z,y,z, where
L > +/13. The same can be said for edges-in-touch
and vertices-in-touch unfolding due to the inclusion re-
lationship.

4 Conclusion

In this paper, we completely clarified the condition for
an unfolding to have an overlapping when we unfold a
cuboid into a polyomino. This result gives us a bound-
ary condition for whether the unfolding of a polyhedron
has overlap, depending on the fineness of the cut lines.
This result could be immediately extended to the trian-
gular lattice unfolding of an octahedron or icosahedron.

Moreover, our technique in Section 3.1 would be use-
ful for more general ways of unfolding; for example, the
case to allow cutting diagonals of the faces of convex
regular-faced polyhedra. This approach would also be
important, as it would provide more information than
Table 1 about the conditions that an unfolding has over-
laps.
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A Parameterized Algorithm for Flat Folding

David Eppstein*

Abstract

We prove that testing the flat foldability of an origami
crease pattern (either labeled with mountain and valley
folds, or unlabeled) is fixed-parameter tractable when
parameterized by the ply of the flat-folded state and
by the treewidth of an associated planar graph, the cell
adjacency graph of an arrangement of polygons formed
by the flat-folded state. For flat foldings of bounded
ply, our algorithm is single-exponential in the treewidth;
this dependence on treewidth is necessary under the
exponential time hypothesis.

1 Introduction

In a foundational result in the computational complexity
of mathematical paper folding, Bern and Hayes proved
in 1996 that it is NP-complete to determine whether a
crease pattern, described as a set of straight fold lines on
a flat piece of paper, can be folded to lie flat again after
exactly the prescribed folds have been made [5]. This
result holds regardless of whether the folds are given
purely as line segments, or whether they additionally
specify whether each fold is to be a mountain fold or a
valley fold. It assumes a general model of folding where
only the existence of the desired folded state is to be
determined, and not a sequence of motions that reach it,
but subsequent work has also proved similar hardness
results for other models such as box pleating, where the
folds are aligned with the axes and diagonals of a square
grid [2], and the simple folding typical of sheet-metal
manufacturing in which this motion must only be made
on one fold line at a time [3,4].

On the positive side, not much is known about classes
of crease patterns for which foldability is easier to deter-
mine. One such class, but a very limited one, is the class
of patterns where the folds meet in a single vertex (or as
a degenerate case, where they all lie on parallel lines). In
this case, a linear-time greedy algorithm follows from the
big-little-big lemma, in which creases forming a sharp
angle between two wider angles must fold in a fixed way,
allowing a reduction to a simpler configuration [5]. Two
more polynomial cases are simple folding of rectangles
subdivided into congruent rectangles (“map folding”) [4],
and general map folding of 2 x n grids of rectangles [21].

*Department of Computer Science, University of California,
Irvine. Research supported in part by NSF grant CCF-2212129.

35

In this work, we provide the first algorithmic upper
bounds on testing flat foldability of arbitrary crease pat-
terns, not restricted to special cases such as map folding.
Our work analyzes this problem using tools from pa-
rameterized complexity. We show that flat-foldability
is fized-parameter tractable when parameterized by two
values: the ply of the crease pattern (how many layers of
paper can overlap at any point of the flat-folded result),
and the treewidth of an associated cell adjacency graph
constructed by overlaying the flat polygons of the crease
pattern in the positions they would take in their folded
state. The pattern may either be labeled with mountain
and valley folds or unlabeled. We identify a wide class
of patterns for which flat foldability is easy: those with
bounded ply and bounded treewidth. For flat foldings
of bounded ply, our algorithm is single-exponential in
the treewidth. As we show in an appendix, this expo-
nential dependence is necessary under the exponential
time hypothesis, both for unlabeled and labeled crease
patterns. We do not have as strong an argument for
why the dependence on ply is necessary, but if it could
be eliminated, we could solve map folding in polynomial
time, a major open problem in this area.

Bounded ply is natural in paper folding, as large ply
can lead to difficulty in the physical realization of a
folding [12]. The treewidth parameter is intended to
capture the notion of a crease pattern that is complicated
only in one dimension, and simple in a perpendicular
dimension, as occurs (with large ply) for 2 x n map
folding. Single-vertex crease patterns also automatically
have low treewidth (their cell adjacency graph is just
a cycle; see Section 2.3) but may again have high ply.
Fixed-parameter tractability of an algorithm means that
its worst-case time bound has the form of a polynomial in
the input size, multiplied by a non-polynomial function
of the parameters; in our case this function is factorial in
the ply and exponential in the treewidth. On inputs for
which the parameters are bounded, this function value
is also bounded and the time bound simplifies to being
purely a polynomial of the input size.

Another class of example patterns for which the param-
eters of our algorithm are naturally bounded comes from
the origami font of Demaine, Demaine, and Ku [8-10].
Rendering text in this font converts it into an origami
crease pattern (Fig. 1). When folded, this pattern
produces a three-dimensional structure consisting of
letterform-shaped vertical walls on a flat background
surface (Fig. 2). The resulting structures are not ac-
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Figure 1: A crease pattern for the origami font of Demaine, Demaine, and Ku, produced by http://erikdemaine.

org/fonts/maze/7text=origami.

Figure 2: The 3d folded form of the pattern from
Fig. 1, as produced by http://erikdemaine.org/
fonts/maze/7text=origami.

tually flat foldings (because of the vertical walls) but
can easily be modified to be. The resulting crease pat-
tern, for a line of text, has bounded ply, high complexity
along any horizontal line through the pattern, and low
complexity along any vertical line. Its cell adjacency
graph has bounded bandwidth, but for a modified ver-
sion of the font that included ascenders and descenders
it would instead have bounded pathwidth, both of which
are special cases of our bounded treewidth assumption.

2 Preliminaries

2.1 Flat folding

Following our previous work [15], we base our definition
of flat folding on a local flat folding, a simplified model
of folding which describes only how the folding maps a
flat surface to itself, and does not describe the spatial
arrangement of the layers of paper as a flat-folded sur-
face. We will then augment this model to include layer
ordering, to define a flat folding.

Thus, we define a local flat folding of a planar polygon
P to be a continuous piecewise isometry o from P to the
plane. That is, it is a continuous function that acts as
a distance-preserving mapping of the plane within each
of a system of finitely many interior-disjoint polygons

whose union is P. The points at which ¢ is not locally
an isometry lie on the boundaries of these polygons,
forming creases (line segments between two polygons
mapped differently by ¢) and vertices (points where
multiple creases meet). We may choose the polygons of
o so that each polygon is bounded by creases and by
the boundary of P. The crease pattern of a local flat
folding is this system of creases and vertices. At this
level of detail, there is no distinction between mountain
folds and valley folds.

Observation 1. Given a decomposition of a polygon P
into smaller polygons, we can determine in linear time
whether this decomposition forms the crease pattern of
a local flat folding, and if so reconstruct a function ¢
having that decomposition as its crease pattern.

Proof. We choose an arbitrary starting polygon, set ¢
to be the identity within this polygon, and then traverse
the adjacencies between polygons of the decomposition.
When we traverse the edge between a polygon whose
mapping under ¢ has been determined to another poly-
gon whose mapping has not, we set the mapping for the
new polygon to be the mapping for the old polygon, re-
flected across the line through the traversed edge. When
we traverse an edge to a polygon whose mapping has
already been determined, we check that its mapping is
consistent with this reflection. O

The function ¢, constructed in this way, is unique up
to rigid transformations of the plane.

We define the arrangement of a local flat folding to
be the result of overlaying the transformed copies of
each of its polygons. It partitions the plane into cells,
polygons that are not crossed by the image of any crease.
Within each cell, all points have preimages coming from
the same set of polygons of the crease pattern. The ply
of a cell is the number of these preimages, and the ply
of the crease pattern is the maximum ply of any cell.
See Fig. 3. Using standard methods from computational
geometry, an arrangement of a local flat folding with n
creases has complexity O(n?) and can be constructed
(including the calculation of its ply) in time O(n?).

Our previous work [15] defined a global flat folding
to be “a local flat folding that, for every € > 0, is e-
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Figure 3: The crease pattern of a local flat folding (left)
and the arrangement of the folding (right), with shading
indicating the ply of each arrangement cell. The ply of
the overall pattern is four, equal to the maximum ply in
the small triangular cell.

Figure 4: Cyclically-ordered box-top flaps

Figure 5: A crease pattern with two valley folds that,
when flat-folded, causes its two L-shaped polygons to
have two different above-below orderings in the two cells
of the arrangement where they overlap.

close to a topological embedding of the plane into three-
dimensional space”, but for our purposes we need to
actually describe the three-dimensional embedding com-
binatorially, not merely to assert its existence. Instead,
we define a layering of a local flat folding to be an as-
signment, for each cell of the arrangement of the folding,
of a vertical ordering on the preimage polygons of the
cell. We allow different cells to have different and in-
consistent vertical orderings. This may be necessary to
model real-world foldings in which the vertical order-
ing of polygon has cycles, as happens for instance in
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flexagons [17] and in a common method for folding the
four flaps of a box top (Fig. 4). It is even possible for
the same two polygons of a crease pattern to have two
different above-below orderings in two different cells of
the arrangement in which they overlap (Fig. 5).

We define a flat folding to be a local flat folding to-
gether with a layering that, for every € > 0, is consistent
with the layering coming from a topological embedding
of the crease pattern into three-dimensional space that
is e-close to the local flat folding. Here, “close” means
there exists a local flat folding into a plane in space so
that, for every point of the crease pattern, its images
under the topological embedding and under the local
flat folding have distance at most ¢ from each other. To
avoid topological difficulties we additionally require that
a line perpendicular to the plane, through a point of the
plane farther than ¢ from any crease, has exactly one
point of intersection with each polygon in the topological
embedding: the embedding cannot be “crumpled” far
from its creases. With this restriction, the polygons that
map to each cell have a consistent layering, the ordering
in which they meet any such perpendicular line.

If we look at a cross-section of such a topological
embedding, across any crease of the embedding, we will
see the layers in two adjacent cells of the arrangement.
Two layers in the same cell can be paired up to form a
crease, two layers from the two cells can be paired up
to form parts of a polygon that span the cell without
forming a crease, and it is also possible to have an
unpaired layer whose boundary at the crease coincides
with a boundary of the overall crease pattern (Fig. 6,
left). These layers and pairs of layers must meet certain
obvious conditions:

e If two polygons span the two cells without being
creased, they must be consistently ordered in both
cells instead of crossing at the crease (Fig. 6, top
right).

e If two layers of the same cell meet in a crease, and
another polygon spans the two cells without being
creased, the polygon cannot lie between the two
creased layers of the first polygon, as their crease
would block it from extending into the second cell
(Fig. 6, middle right).

e If two pairs of layers in the same cell meet in the
same crease, then their layers cannot alternate, as
this would again form a crossing (Fig. 6, bottom
right). However, it may be possible to have alter-
nating pairs of layers that meet in different creases,
along different edges of the same cell.

o If two layers of the same cell meet in a crease, and are
labeled as being a mountain fold or valley fold in the
crease pattern, then the ordering of the layers must
be consistent with that type of fold (not shown).
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Figure 6: Left: cross-section through a crease (shaded
region) of a uncrossed layering. Right: Three ways
that a layering can be inconsistent across a crease: two
uncreased polygons cross (top), an uncreased polygon
is blocked by two layers that connect to form a crease
(middle), or two pairs of creased layers cross (bottom).

We define a layering for a local flat folding to be uncrossed
when, at each crease, it meets all of these conditions.

Lemma 2. A local flat folding comes from a flat folding
if and only if it has an uncrossed layering.

Proof. In one direction, if a flat folding exists, it can-
not violate any of the conditions above, because each
describes a certain type of crossing, and topological em-
beddings forbid crossings. In the other direction, every
uncrossed layering comes from a flat folding: one can
form a 3d embedding from it, by shrinking each cell a
small distance from its boundary, making parallel copies
of the cell in 3d in the order given by the layering, all
separated from each other but within distance € of the
plane of the local flat folding, and connecting them with
curved patches of surface near each crease.

It is unnecessary to add more case analysis for the
way layerings can interact at a vertex, instead of across
a crease. Two surfaces in 3d cannot cross each other at
a single point, without crossing along a curve touching
that point, so if a system of surfaces in 3d defined from
a uncrossed layering avoids crossings except at points e-
close to the vertices, it can be converted into a topological
embedding for the same layering that avoids crossing
everywhere. O

2.2 Treewidth

A tree decomposition of a graph G consists of an un-
rooted tree T, and an assignment to each tree vertex t;
of a set B; of vertices from G (called a bag), such that
each vertex of G belongs to the bags from a connected
subtree of T, and each edge of G has endpoints that
belong together in at least one bag. Its width is the
maximum size of a bag, minus one, and the treewidth of
G is the minimum width of any tree decomposition of G.
Many optimization problems that are hard on arbitrary
graphs can be solved in linear time on graphs of bounded
treewidth, using dynamic programming over their tree
decompositions. Although finding the treewidth is itself
a hard optimization problem, it can be solved in linear
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Figure 7: The arrangement from Fig. 3, its cell adjacency
graph, and a nice tree decomposition of the cell adjacency
graph.

time for graphs of bounded treewidth, with a time bound
that is exponential in the cube of the width [6]. In our ap-
plication we will be using the treewidth of planar graphs,
derived from the arrangement of a crease pattern. It is
unknown whether planar treewidth is hard, but it can
be approximated in (unparameterized) polynomial time
with an approximation ratio of 3/2 by an algorithm for a
closely related width parameter called branchwidth [23].

It will simplify the description of our algorithm to use
a tree decomposition of a special form, called a nice tree
decomposition. This differs from a tree decomposition
in being a rooted tree. The tree vertices and their bags
have four types:

e Leaf bags, leaves of the rooted tree, have exactly
one graph vertex in the bag.

e Introduce bags have exactly one child vertex in the
tree, and their bag differs from that of the child by
the addition of exactly one graph vertex.

e Forget bags have exactly one child vertex in the tree,
and their bag differs from that of the child by the
removal of exactly one graph vertex.

e Join bags have exactly two children, whose bags are
both equal to the join bag.

A nice tree decomposition can be constructed in lin-
ear time from an arbitrary tree decomposition, without
increasing the width, and it has size linear in the size of
the input tree decomposition [20].

2.3 Cell adjacency graphs and their treewidth

Recall that our definition of flat folding involves con-
structing an arrangement of polygons, the images of the
polygons in the crease pattern under the mapping that
defines a local flat folding. The usual notion of an ar-
rangement graph is a planar graph with a vertex for each
crossing or endpoint of a line segment in this arrange-
ment, and an edge for each piece of polygon boundary
connecting two of these vertices [7]. Instead, we use its
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dual graph, which we call the cell adjacency graph. This
has a vertex for each cell of the arrangement, and an
edge between each two neighboring cells. It has been
used before in computational geometry (e.g. [14]), but
appears to lack a standard name.

Even when a cell has ply zero, we include it in this
graph, in order to check for crossings along the creases
between this cell and its neighbors. For example, in the
map folding problem, a square grid crease pattern is
folded down to a single square, but the arrangement has
two cells, the inside of the square and the outside, so
the cell adjacency graph is Ks. In the case of a single-
vertex crease pattern, the local flat folding produces an
arrangement consisting of wedges all having this vertex
as their apex, and its cell adjacency graph is a cycle.

The two main parameters for the analysis of our al-
gorithm will be the ply of the local flat folding, and the
treewidth of the cell adjacency graph. Fig. 7 depicts an
example of a cell adjacency graph of treewidth 2, and a
nice tree decomposition with a join bag at its root.

3 The algorithm

We will test the flat foldability of a crease pattern by
first attempting to construct its local flat folding. If this
step fails, a flat folding does not exist, and our algorithm
exits with a negative answer. Next, we construct its
arrangement and its cell adjacency graph, find an optimal
or near-optimal tree decomposition of the cell adjacency
graph using any of the various algorithms known for this
problem, and convert the tree decomposition to a nice
tree decomposition of the same width.

Finally, we reach the main part of our algorithm: a
bottom-up dynamic program on the bags of the tree
decomposition. If B is any bag (that is, a set of cells of
the arrangement, associated with a vertex of the nice tree
decomposition), we define a state of B to be a layering
of each cell in B.

Observation 3. In a tree decomposition of width w for
a crease pattern of ply p, every bag has at most (p!)“*+!
states.

If B has a child C in the tree decomposition, then
we say that a state of B is consistent with a state of
C if they have the same layering in all of the cells that
belong to both bags. We say that a state of bag B is
locally uncrossed if, for all pairs of adjacent cells that
both belong to B, the layerings of these two cells in
this state meet the same conditions that we used earlier
to define a global layering as being uncrossed. We say
that a state is valid when it is locally uncrossed and is
consistent with (recursively defined) valid states for all
child bags.

Lemma 4. For any bag B of the tree decomposition,
there exists a valid state for B if and only if there exists
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a layering for the entire local flat folding that meets the
conditions of being uncrossed at all creases between pairs
of cells that occur together in B or one of its descendants
in the tree decomposition.

Proof. If such a layering exists, its restriction to the
cells in B and its descendant bags produces a valid
state. If a valid state exists, coming from a recursively
constructed set of valid states among its descendant
bags, then each of these states must consistently layer
the cells that they have in common, by the requirement
of tree-decompositions that each graph vertex belong
to bags in a connected subtree. Form a global layering
by choosing arbitrarily a layering for each cell that is
not included among these descendants. Then it must
be uncrossed at all creases between pairs of cells that
occur together in B or one of its descendants, because
any crossing would cause the state to be invalid at that
bag, violating the assumption that we have a recursively
constructed set of valid states. O

Lemma 5. If we have already computed the valid states
of each child of a given bag B of a nice tree decomposition,
we can compute the valid states for B itself in time

O(pw(ph)“+1).

Proof. We apply a case analysis according to the type
of B in the decomposition.

e At a leaf bag, all states are valid, because there are
no creases between pairs of cells to cause crossings.

e At an introduce bag, we must add a layering for
the introduced cell to all valid layerings of the other
cells from the child node. For each child layering,
and each layering of the introduced cell, we check
at most w previously-unrepresented creases, each
in time O(p), to determine whether it forms any of
the forbidden crossing types.

e At a forget bag, all valid states of the child node
determine a valid state of the bag, by forgetting the
layering on the cell that is not included.

e At a join bag, a state is valid when it is valid in
both child states. We can intersect the sets of valid
states in both children, in time linear in the number
of possible states, using a bit array. O

Putting these pieces together gives our main result:

Theorem 6. Testing flat foldability of a crease pattern
with n creases and ply p, with a cell adjacency graph
of treewidth w, can be performed in time that is fixed-
parameter tractable in p and w, and quadratic in n.

Proof. We construct the nice tree decomposition as de-
scribed above, and traverse it in bottom-to-top order,
using Lemma 5 to determine the valid states in each



35" Canadian Conference on Computational Geometry, 2023

bag. A folding exists if and only if there is a valid state
at the root bag, by Lemma 4. The quadratic depen-
dence on n comes from the size of the arrangement of
the local flat folding, and the size of the tree decompo-
sition of its cell adjacency graph. The dependence on
ply and width comes from the time bound per bag in
Lemma 5, the time to construct a tree decomposition
using known algorithms, and the relation between the
width of the cell adjacency graph and the width of the
constructed decomposition coming from the choice of
these algorithms. 0

4 Conclusions

We have shown that flat foldability, in a general model
allowing cyclic overlaps between polygons, can be tested
in fixed-parameter tractable time when parameterized
both by ply and by the treewidth of an associated cell
adjacency graph. Both parameters appear necessary
for this result: the known NP-hardness reductions for
flat foldability can be made to have bounded ply (but
unbounded treewidth), while the still-open map fold-
ing problem has bounded treewidth and more strongly
bounded cell adjacency graph size (but unbounded ply).
It would be of interest to extend our algorithms to
other forms of flat folding, such as the simple folding
models [3,4]. Another direction for possible future work
concerns models of folding that require the existence
of a three-dimensional continuous motion respecting
the given fold lines (rigid origami [1,22,24]), as well as
inputs where the desired folded state is in some way three-
dimensional (such as the raised ridges in the origami fonts
of Demaine, Demaine, and Ku [8-10]. Although there
has been extensive study of types of instance that can or
cannot be guaranteed to have a continuous motion taking
them between their unfolded and folded states [11,13,16],
there is little work on algorithmic time bounds for testing
the existence of this sort of motion. Whether these
three-dimensional models of origami can be reduced to
a combinatorial problem to which the sort of methods
described here can apply remains a challenge.
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A ETH-hardness

In our parameterized algorithm for flat folding, the de-
pendence on ply comes from Lemma 5, which provides
a time bound of O(pw(p!)“T1) for computing the valid
states of a single bag in a nice tree decomposition. The
overall time bound is then this same bound, multiplied
by the O(n) bags of the decomposition. When p = O(1),
this bound reduces to single-exponential in w: the total
time is O(n20®)).

As we now show, a bound of this form is necessary
under the exponential-time hypothesis [18], which for our
purposes is most conveniently phrased as the assumption
that there does not exist an algorithm for the 3SAT
(satisfiability of 3-CNF Boolean formulae with n variables
and m clauses) that has a sublinear running time bound
of the form 2°("+™) Our proof uses NAE3SAT (not-all-
equal-3-satisfiability), a variant of 3SAT in which there
are again n Boolean variables, and in which certain
triples of variables and their negations are not allowed
to be equal. Standard NP-completeness reductions from
3SAT to NAE3SAT produce instances with O(n + m)
variables and clauses, from which it follows that under
the exponential time hypothesis it is not possible to
solve NAE3SAT instances in time subexponential in their
numbers of variables or clauses. The same is known to be
true more generally for a wide class of satisfiability-like
problems including both 3SAT and NAE3SAT [19].

We base our hardness result on the proof by Bern and
Hayes that flat foldability is NP-complete [5]. Bern and
Hayes actually provide two proofs, one for unlabeled
crease patterns and one for crease patterns labeled with
mountain folds and valley folds, but both follow the same
outline. They are reductions from NAE3SAT, and they
produce crease patterns in the shape of a rectangle, where
each variable of a NAE3SAT instance is represented by
two closely spaced parallel zigzag paths of creases from
the left side of the rectangle to the right side; none
of these paths cross each other. Each clause of the
NAE3SAT instance is represented by a small folded area
near the top of the rectangle. Pairs of closely-spaced
vertical fold lines connect the clauses to the variables,
passing through the zigzag paths of variables that they
do not interact with. Additional “noise” pairs of closely-
spaced vertical fold lines are necessary to produce the
zigzag pattern of the variable creases, but otherwise pass
through the other variables without interacting with
them. Each variable path, and each vertical pair of fold
lines, have two locally-consistent folded states (used in
the proof to represent the true and false truth assignment
to each variable). The clause regions can only be flat-
folded for truth assignments that satisfy the given clause.
When a flat folding exists, and the construction is flat-
folded, most of the paper has ply 1, with ply 3 along
the folded regions near each variable gadget and vertical
fold line, ply 5 at the points where two of these folded

A A A

Figure 8: Schematic view of the crease patterns pro-
duced by the hardness reductions of Bern and Hayes [5].
The red regions at top are clause gadgets and the blue
zigzag paths from left to right are variable gadgets. The
variable gadgets are connected to the clause gadgets
by vertical creases (light green) and additional “noise”
vertical creases (yellow) connect to bends (“reflector gad-
gets”) in the paths of the variable gadgets. Not shown:
the additional reflectors needed to complement variables.
Tllustration modeled after Fig. 10 of Bern and Hayes.

regions cross, and somewhat larger ply within the clause
gadgets. Fig. 8 provides a schematic view of the crease
patterns produced by these two reductions.

Observation 7. The local flat foldings of the crease
patterns of Bern and Hayes have ply O(1). For a
NAE3SAT instance with n vertices and m clauses, they
have treewidth O(n), obtained by a path decomposition
whose bags are the subsets of cells of the local flat folding
intersected by vertical lines, in left-to-right order.

Theorem 8. If the exponential time hypothesis is true,
it is not possible to test flat foldability of crease patterns
of ply O(1) and treewidth w in time 2°(*) | regardless of
whether the pattern is labeled with mountain and valley

folds or unlabeled.

Proof. If such a fast test existed, then applying it to the
crease patterns produced by the hardness reductions of
Bern and Hayes would give an algorithm for NAE3SAT
with time 2°(") | contradicting the exponential time hy-
pothesis. ]
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Piercing Unit Geodesic Disks*

Ahmad Biniaz!

Abstract

We prove that at most 3 points are always sufficient
to pierce a set of m pairwise-intersecting unit geodesic
disks inside a simple polygon P with n vertices of which
n, are reflex. We provide an O(n + mlogn,) time algo-
rithm to compute these at most 3 piercing points. Our
bound is tight since it is known that in certain cases, 3
points are necessary.

1 Introduction

The study of problems related to piercing a collection
of convex sets has a rich history in Computational Ge-
ometry [10]. One of the most famous results in this
area is Helly’s theorem [15, 16] which states the fol-
lowing: Given n convex sets in R¢, with n > d, if
every d 4+ 1 convex sets have a nonempty intersection,
then all n sets have a nonempty intersection. In other
words, if a point pierces every d + 1 sets, then a point
pierces all n sets. For Helly’s theorem to hold, it is
critical that every d + 1 sets have a point in common.
Helly’s theorem no longer holds if only d sets have a
point in common. For example, given n lines in the
plane, i.e. d = 2, where every pair of lines intersects
but no three have a point in common, then Q(n) points
are required to pierce every line. On the other hand,
given a set of n pairwise-intersecting disks in the plane,
Danzer and Staché independently showed that 4 points
pierce all the disks [9, 22, 23]. Griinbaum [11] showed
that 4 points are sometimes necessary thereby prov-
ing optimality. Neither the proof by Danzer nor the
proof by Staché lends itself to an efficient algorithm
to actually compute these 4 points. From the compu-
tational perspective, Har-Peled et al. [14] presented a
linear time algorithm to compute 5 points that pierce a
set of pairwise-intersecting disks. Biniaz et al. [6] pre-
sented a simple linear time algorithm to find 5 piercing
points using elementary geometric observations. Carmi
et al. [8] presented a fairly involved linear time algo-
rithm to compute 4 piercing points. In the case of a
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set of pairwise-intersecting unit disks, Hadwiger and
Debrunner [13] showed that 3 points are sufficient to
pierce the set. Biniaz et al. [6] showed that 3 points
are sometimes necessary and presented a simple linear
time algorithm to compute the piercing points. It is the
fact that disks are fat, as opposed to lines which are
thin, that allows a constant number of points to pierce
pairwise-intersecting disks. This relationship between
the number of points needed to pierce a family of planar
pairwise-intersecting convex sets and the fatness of these
sets has been explored in the literature [2, 5, 18, 20].
The most recent result we are aware of is by Bazarghani
et al. [5] who show that O(«) points can pierce a set of
pairwise-intersecting a-fat convex sets. Although there
are several definitions of fatness in the literature, the
definition that is used in [5] is the following: a convex
set C' is deemed o-fat if the ratio of the radius of the
smallest disk that contains C and the largest disk that
is contained in C' is at most «.

In this paper, we focus on piercing problems in the
geodesic setting. Specifically, we explore the following
question: given a set of pairwise-intersecting geodesic
disks inside a simple polygon, can a constant number
of points pierce every disk? Given a simple polygon P,
a geodesic disk centered on a point z € P is the set
of points y € P such that the length of the shortest
path from z to y in P is at most a constant r, the
radius. This setting is more general than the setting
in the Euclidean plane. In this setting, Bose et al. [7]
showed that 14 points suffice to pierce a set of pairwise-
intersecting geodesic disks inside a simple polygon and
gave an O(n+mlogn,) time algorithm to compute these
at most 14 piercing points where n is the number of
vertices of P, n,. is the number of reflex vertices and m is
the number of geodesic disks. Subsequently, Abu-Affash
et al. [1] showed that 5 points suffice in this setting and
provide an O((n—+m) logn,.) time algorithm to find these
5 piercing points. This upper bound may not be tight
since the best known lower bound on the number of
points required to pierce a set of pairwise-intersecting
geodesic disks is 4. Our main result is the following: we
show that 3 points are always sufficient to pierce a set of
pairwise-intersecting unit geodesic disks inside a simple
polygon and provide an O(n+mlogn,) time algorithm
to compute these 3 piercing points. Our bound is tight
since the lower bound of 3 points in the plane also holds
in the more general geodesic setting.
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2 Notation and Preliminaries

Before presenting our main results, we first introduce
some notation and preliminary lemmas. Let P =
Vg, ---,Un_1 be a simple n-vertex polygon. We use the
convention that the interior of P lies to the right of the
edge directed from v; to v;11, i.e. the polygon is de-
scribed in a clockwise fashion. In what follows, index
manipulation is modulo the size of the set. In the case
of the polygon, it is modulo n.

A segment between two points a,b is denoted as ab
and its length is denoted as |ab|. Given two points z,y €
P, the geodesic (or shortest) path from x to y in P is
denoted II(z,y). The length of this path, referred to as
the geodesic distance, is the sum of the lengths of its
edges and is denoted by |I(x,y)|. The geodesic metric
refers to P together with the geodesic distance function.
A subset S of P is geodesically convez if, for all pairs of
points x,y € S, the geodesic path in P between = and
y (le. II(z,y)) is in S. Pollack et al. [21] proved the
following lemma about distances between a point and a
geodesic path.

Lemma 1 [21] Let a,b, ¢ be 3 distinct points in P. De-
fine the function g : T(b,c) — R, as g(x) = |U(a, x)|.
Then g is a convex function with its maximum occurring
either at b or c.

Informally, a polygon P is weakly simple provided
that a slight perturbation of the points on the boundary
results in a simple polygon. See Akitaya et al. [4] for
a formal definition of weakly-simple polygons as well
as an algorithm to quickly recognize such polygons.
A pseudo-triangle is a simple polygon with 3 convex
vertices (the shaded region in Figure 1 is a pseudo-
triangle). A geodesic triangle on points a,b,c € P,
denoted A(a,b,c), is a weakly-simple polygon whose
boundary consists of II(a, b), II(b, ¢) and II(c, a). In Fig-
ure 1, A(cp,c1,c2) consists of the red paths and the
shaded region. A geodesic hexagon is defined in a similar
fashion but on six points in P. Let X = {xg,21,..., s}
be a set of at least 3 points in P. The set X is geodesi-
cally collinear if Ix;,x; € X such that X C II(x;, z;).
Given points a, b, and ¢ in P that are not geodesically
collinear, the shortest paths II(a,b) and Il(a,c) follow
a common path from a until they diverge at a point a’
(note that a’ could be a). Similarly, let b’ be the point
where II(b,a) and II(b, ¢) diverge, and ¢’ be the point
where II(c, a) and II(c, b) diverge. The geodesic triangle
A(d’, b, ') is simple (not weakly simple), has o', b, and
¢ as its convex vertices, and is a pseudo-triangle. We
refer to A(a’, V', ¢') as the geodesic core of A(a,b,c) and
denote it as V(a, b, ¢); the shaded region in Figure 1 is
the geodesic core of A(co, ¢1,¢z). These properties were
also observed in Pollack et al. [21].

This leads to a natural generalization of the notions of
orientation, angles, and sidedness for geodesics. Given

two distinct points a,b € P, the orientation of a point
a with respect to b in P is the counter-clockwise an-
gle that the first edge of II(a,b) makes with the posi-
tive z-axis. Orientations are between 0 (inclusive) and
27 (exclusive). Given 3 points a,b,c € P that are not
geodesically collinear, we denote by Zabc the convex an-
gle at b in the geodesic core V(a, b, c). When a, b, ¢ are
geodesically collinear then Zabe is 7 if b € I(a, ¢), and
0 otherwise. We say that b is to the left of II(a, ¢) if the
convex vertices in V(a, b, c) appear in the order a’, V', ¢
when traversing the boundary in clockwise order start-
ing at a’; otherwise, b is to the right. When referring to
points of P to the left or right of an edge ab of P, we
consider ab to be II(a, b).

Figure 1: Basic definitions.

A geodesic disk centered at ¢ € P with radius r > 0
is the set {y € P : |lI(c,y)| < r}. A geodesic disk is
geodesically convex and its boundary may be composed
of several arcs of different curvature [21]. Two geodesic
disks are tangent when the geodesic distance between
the centers of the disks is exactly the sum of the radii.
A unit geodesic disk is a geodesic disk with radius 1.

3 Upper bound on number of piercing points

In this section, we prove that 3 points suffice to
pierce any set of pairwise-intersecting geodesic unit
disks. Throughout this paper, we will be working
with a collection D = {Dg, D1,...,Dy—1} of pairwise-
intersecting unit geodesic disks whose respective centers
€o,C1,...Cm—1 are in P. We define D* as the smallest
geodesic disk that intersects each member of D, with ¢*
and r* being the center and radius of D*, respectively.
The set D is called Helly if there is one point that pierces
all the disks. Every disk in D, by definition, intersects
D*. We use D* to compute the 3 points that suffice to
pierce D, when D is not Helly. The following lemma
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about properties of D* when D is not Helly, proven in
[7], will be useful in the sequel.

P1
Dy

Figure 2: Close-up of po, p1, p2.

Lemma 2 [7] If D is not Helly, then the disk D* has
the following properties:

1. the radius v* > 0, where r* is the radius of D*,

2. D* is tangent to at least 3 geodesic disks Dy, D1, Do
in D at 8 distinct points tg,t1 and to, respectively,

3. D* does not intersect the boundary of the geodesic
core V(cg, c1,¢2), where ¢; is the center of disk D;,
forie{0,1,2},

4. The boundary of D* is a circle,

5. ¢* is contained in the interior of A(to,t1,t2).

The properties of D* that are important to note are
the following. First, even though D* is a geodesic disk
in P, its boundary is actually a circle that does not
intersect the boundary of P; see Figure 1. Second, the
fact that D consists of pairwise-intersecting unit disks
implies that D* must be tangent to 3 disks in D as
opposed to 2, which can be the case when the disks are
not pairwise-intersecting. In the remainder of the paper,
we use the notation in Lemma 2 to refer to the three
disks tangent to D*, their tangency points, and centers.
We begin by giving an upper bound on the radius r* of
D*.

Lemma 3 The radius r* of D* is at most (2/+/3) — 1.

Proof. If D is Helly, then r* = 0, thus, we only
need to consider the case when D is not Helly. Since
Z?:o Zeic*ci1 = 2w, we can assume without loss of
generality that Zejc*cy > 27/3. Denote by ray(a,b)
the half-line with initial point a containing b. Let c¢*b;
be the first edge of II(c¢*,¢1), as in Figure 4. Define
b} as the first point along ray(c*, by) where it intersects
with II(cy, c2). This intersection must exist by the Jor-
dan Curve Theorem [24] since c¢* is inside V(cpeies).
Note that it may be the case that b} is by. Let ¢} be
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the point on ray(c*,b}) such that |c¢*c¢}| = |H(c*, 1)l
Define b, and ¢, analogously. The segment c*c| can
be viewed as an unfolding of II(c*, ¢;) onto ray(c*, b}).
Thus, since D* and D; are tangent, we have that
II(c*,c1)| = |e*ci| = |e*by| + [bicy] = 1+ r*. Sim-
ilarly, |II(c*,c2)] = |c*by] + |bhey] = 1+ r*.  Since
Lie*cy, > 2mw/3, by the cosine law, we have that
|chch| > V3(1+r7).

By the triangle inequality of the geodesic metric,
(e en)] < eB] + [T(b,cr)|. - Since [T(e*,ep)| =
|c*b) | + b)) |, we have that |b)c}| < |TI(V],¢1)|- By the
same argument, |bych| < |TI(b5, c2)|. Therefore, we have
that [T1(cy, ca)| = [T(ey, )| + [T1(b], )| + [T1(b), )| >
A Bh] + [TI(b7, B5)[ + [bacy| > [ ch|-

Since D; and D> have unit radius and intersect, we
have that 2 > |TI(c1, c2)| > |cych] > V3(1 +r*). We
conclude that 7* < (2/v/3) — 1.

Figure 4: Hlustration of the proof of Lemma 3.

For i € {0,1,2}, let p; be the point of D; N D;_;
closest to ¢* (Figure 2). These points must exist because
the disks in D are pairwise-intersecting. Moreover, in
our main theorem, we will prove that these three points
pierce the set D.

Lemma 4 The points pg, p1 and pa are in the geodesic
core V(cg, c1,C2).

Proof. We show that ps € V(cp,c1,c2). The same ar-
gument shows that both p; and pg are in V(co, c1, ¢2).
Consider A(b], b}, c*) where b} and b}, are defined as in
the proof of Lemma 3 and illustrated in Figure 4. Recall
that [TI(¢*,c1)| = 1 4 r* since D is tangent to D*. By
construction, we have that |II(c*, c1)| = |¢*b]| + |b}c)].
Since |c¢*bj| > r*, we have that |bjc]| = |II(eq, b)) < 1.
Note that by construction of b, we have that II(c1, ¢ca) =
I(cy, b)) +101(b], c2). Given that |TI(cq,b))| < 1, we have
that the boundary of Dy intersects II(cq,c2) at a point
x on II(V), ¢z). Similarly, the boundary of Dy intersects
II(cy, c2) at a point y on TI(b), ¢1).

By construction, we have that ¢* is a convex vertex
of the geodesic triangle A(b}, b5, c*). Since D; and Do
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P2

b2

Figure 3: Points, arcs, and angles.

intersect, we have that |TI(cy, c2)| < 2. If [TI(cy, c2)| = 2,
in other words, the point x and y coincide, then ps is
on II(cy, c2) and therefore py € V(co, 1, c2). Otherwise,
we consider the case when |II(c1,¢2)| < 2. In this case,
notice that as we traverse II(cy, ca) from c; to ca, we
must encounter y before z.

Consider the arc By to be the portion of the boundary
of Dy from t1, the point of tangency between D; and
D*, to x. Since this arc at ¢; enters A(b], b}, ¢*), by the
Jordan curve theorem [24], it intersects either II(b],b5)
or the segment ¢*b,. Let us consider the latter case first.
Assume that B; intersects ¢*b5 at a point z. Let Bj
be the portion of By from t; to z. Consider the closed
region R consisting of the segment zc*, the segment c*t;
and Bj. We now define the arc By to be the portion of
the boundary of D5 from t5 to y. At o, the arc By enters
the region R. Since y is outside of R, by the Jordan
curve theorem, By must intersect the boundary of R.
This intersection point, which is ps, must be on Bj since
Bs cannot intersect ¢*t; as every point on that segment
is farther than 1 from cy. Thus, py is in A(b], b}, ¢*)
since B is.

For the case where B; intersects TI(b], b3), we use the
same argument except that the boundary of the region
R consists of By, I(x,b}), bhe* and ¢*t;. Since we en-
counter y before x when we traverse II(cq, ¢2) from ¢; to
cs, the point y is outside R. Thus By must intersect the
boundary of R, and similar to previous case this inter-
section which is ps must be through Bj in the triangle
A(by,bh, ¢*). Therefore, we have that ps € V(cg, ¢1,¢2).

O

By the proof of Lemma 4, ps lies in A(b], b, ¢*) which
is essentially a star shaped polygon with center ¢*. Thus
the segment ¢*py lies in A(b], by, ¢*) which is a subset
of V(cg,c1,c2). Applying a similar argument to py and
p1 we have the following corollaries.

Corollary 5 The line segment ¢*p; is in V(co, c1,¢2).

Recall ¢, ¢}, and ¢} as the convex vertices of the
geodesic core V(cg, c1, ¢2).

Corollary 6 The geodesic hexagon cipicipachpo is a
subset of the geodesic triangle Acocics.

Refer to Figure 3(a) for the following. For ¢ €
{0,1,2}, let A; be the arc on the boundary of D, from
pi to pi+1. Let 6; be the clockwise angle from A;_; to
A; at p;. If ; = 0 then the disks D;_; and D; are tan-
gent at p;. If 6; > 0 then D;_; and D; have a positive
area of overlap, starting at p;. The case when 6, < 0
cannot happen since p; is the intersection point closest
to ¢*. Note this in Figure 3(b) where po should be at
the other intersection of arcs Ay and As.

For i € {0,1,2}, let a; be the angle from A; to the
line segment p;p;+1 at p;, and B; be the angle from A;
to the line segment p;p;+1 at p;11; see Figure 3(a).

Lemma 7 Foric {0,1,2}, |pipit1| < 1.

Proof. Consider a parameter s that denotes the dis-
tance we have moved as we move from p; to p;+1 along
A;. The coordinates of a point z € A; as well as the tan-
gent t to A; at point z can be expressed as a function of
this parameter s. See Figure 5, where the tangents are
shown as red arrows. Let At denote the change in angle
of this tangent from p; to p;11. Then At = «;+ ;. This
can be seen in the figure, letting ¢ be the point where
the tangent is parallel to the segment p;p; 1. Then the
tangent sweeps out «; as it moves from p; to ¢, and then
sweeps out f3; as it moves from ¢ to p;.

Figure 5: Tangents to A;.

Let (s) denote the curvature of A; with respect to
parameter s. Then, by definition of the integral of cur-
vature taken along A;, we have that At = [, x(s)ds.
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Since D; is a unit geodesic disk, it has curvature at least
1 on all of its boundary arcs. This is because every
boundary arc of D; comes from a circle whose radius is
at most 1. Since x(s) > 1, we have At > fAi 1ds. But
the latter integral is simply the length of the arc A;.
Since «; + B; = At, we have that o; + 8; > |A;|.

Because of the lower bound of 1 on the curvature,
the length of A; will be at least as large as the length
of a (uniformly) curvature-1 curve from p; to p;+1 This
uniform curve is a circular arc A} of radius 1 with some
center which we denote as ¢}; see Figure 6. Denote by
C/ the unit circle centered at ¢j. We have A} C C/.

Di Pi+1

Figure 6: A curvature-1 curve A;.

Claim 1 For i € {0,1,2},|pipi+1| is mazimized when
C{, C1, and CY are pairwise tangent.

Proof. By definition, C] and Cj ; have a non-empty
intersection. Define L as the line through ¢ and cj ;.
For sake of a contradiction, we first consider the case
where none of the disks are tangent to each other but
|pipi+1] is maximized. Move ¢ in the direction perpen-
dicular to L} away from L] until C{; becomes tangent
to either C] or C%. During this process, py remains
fixed and pop2, p1p2, Pop1 increase in length, which is a
contradiction. Now, without loss of generality, assume
that only C, and C] are tangent. By moving ¢, in the
direction perpendicular to Lj away from Lj until CY
becomes tangent to either C(’) or C], once again, p; re-
mained fixed and pgp1, p1p2, Pope increase in length,
which is a contradiction. Finally, without loss of gen-
erality, assume that only C} and C) are not tangent.
Rotate C{ around ¢}, while keeping it tangent to Cf,
until C{ is tangent to C%. Here we note that ps remains
fixed, and pop2, p1p2, pop1 increase in length. There-
fore, we conclude that each |p;p;+1| is maximized when
C{, C1, and C4 are pairwise tangent. This finishes our
proof of Claim 1.

By Claim 1, each |p;p;+1]| is maximized when C{, C1,
and C} are pairwise tangent, in which case A(po, p1,p2)
must be an equilateral triangle with side length 1.

O

Corollary 8 Fori e {0,1,2},

|c*pi| < V/r*(2+7*) < 0.578.
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Proof. Using the same transformation as in the proof
of Claim 1, we can see that for ¢ € {0,1,2}, |c*p;| is
maximized when the circles C] are pairwise tangent and
the points pg, p1, p2 form an equilateral triangle. This
means that ¢}, c* and p; form a right triangle with side
lengths 1,14 7* and |¢*p;|. Pythagoras’ theorem gives
the bound on |¢*p;| and the numerical upper bound we
get from the upper bound on r* in Lemma 3. (]

Theorem 9 Let D be a collection of pairwise-
intersecting unit geodesic disks inside a simple polygon
P. Then there are three points inside P such that each
disk of D contains at least one of the points.

Proof. Let DT be the radius-1 + r* geodesic disk cen-
tered at ¢*, and C* be the geodesic circle that is the
boundary of DT. The circle C* contains arcs at dis-
tance 1 4+ r* from ¢* and segments of the boundary of
P at distances less than that. If we extend the line seg-
ment c*p; in a straight line from p;, we will hit CT at
some point ¢; (which could be the same as p;). The ¢;’s
(the centers of the three disks tangent to D*) and ¢;’s
divide the circle CT into six sections; we concentrate on
the section between c¢; and ¢1; a symmetric argument
applies to the other five sections.

Since both ends of T(cy,¢y) are at geodesic distance
1+ r* from ¢*, any point on II(cy, ¢g) is at distance no
more than 1+ r* from ¢* (by Lemma 1). This implies
that the arcs of C* (which are at distance 1+4r* from ¢*)
do not intersect the interior of the geodesic core of the
geodesic triangle Acgcics. Since there is no boundary
of P in the interior of any geodesic core, the segments
of CF also do not intersect the interior of the geodesic
core of Acgerca. Because this is true for all six sections
of CF, C" does not intersect the interior of the geodesic
core.

Let cr be a point on CF non-strictly between ¢; and
q1- Because cr is not in the interior of the geodesic core
of Acpcice, H(er, c®) intersects II(cy, ¢p). This implies
that II(cp, ¢*) also intersects II(cq,pl), as the geodesic
hexagon c(p;cipachpy (which contains ¢*) must be in-
side the geodesic core of Acycyca, by Corollary 6. Let u
be the intersection point of II(cr, ¢*) and (¢, pl), and
let t7 be the point where II(cr, ¢*) crosses the boundary
of D*. See Figure 7.

The distance d(c1,p1) is equal to d(c1,u) +d(u,p1) =
1 since p; is on the boundary of D;. The distance
d(cr,u) + d(u,tr) > 1, since D is tangent to D*. So
d(u,tr) > d(u,p1) and therefore d(cp,u) + d(u,tr) >
d(cr,u) 4+ d(u,p1). The left-hand side of that last in-
equality is simply 1, and the right-hand side is an upper
bound on the distance d(cr, p1), so we get 1 > d(cr, p1),
or that p; pierces the disk of radius one centered at cyp.

Now consider a unit disk D in our collection of disks
D. The center ¢ of D lies inside the radius 1+ r* disk
around c¢*, and without loss of generality, it lies in a
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Figure 7: H(er, ¢*) intersects II(cy,p1) at u.

direction between c¢; and p; from c¢*. We extend the
last segment of TI(c¢*, ¢) until it reaches the radius 14 r*
circle at a point ¢p. The center ¢ lies on I(ep, c*),
the distance d(cp,p1) < 1 as discussed above, and the
distance d(c*,p1) <1 (by Corollary 8). Thus d(c,p1) <
1 by Lemma 1, and hence p; pierces D.

Therefore, the three points pg, p1, and po pierce the
entire collection D. g

4 Algorithmic Considerations

In this section, we describe an algorithm to compute the
piercing points. The input to the algorithm is D. First,
compute D* in O(n+mlogn,) time using the algorithm
described in [7]. This is achieved since it was shown in
[7] that computing D* is an LP-type problem.

The reason that the run-time has a logn, term as
opposed to a logn term is that given a polygon P, we
first apply a geodesic-preserving simplification of P in
O(n) time to get a polygon P’ D P of size O(n,) where
n, is the number of reflex vertices in P, such that the
shortest path from x to y in P is identical to the shortest
path from = to y in P’ [3]. Then, we preprocess P’ in
O(n.) time to answer in O(logn,) time the length of the
shortest path from x to y and O(logn, + k) to report
the k edges on the shortest path [12, 17]. With these
tools in hand, Bose et al. [7] apply Matousek et al.’s [19]
general framework for solving LP-type problems to find
D* within the stated amount of time.

If r* = 0, then ¢* is returned as the point that pierces
D. If r* > 0, then in O(n) time, compute V(cyc1c2) with
3 queries to the shortest path data structure constructed
above. Now all that remains is to compute pg, p1 and ps.
We show how to compute pg in O(n) time. The other
two points are computed in a similar manner. Recall
t; as the point of tangency between D* and D,;. To
compute py, we need to intersect the arc Ay with the
arc As. Each arc A; consists of at most n, pieces of

circular arcs inside V(cperca). Essentially, to find pg, we
walk along A from to towards II(cg, c2), and along As
from to towards I(cg, c2). By always advancing on the
arc that is furthest away from II(cg, ca), we eventually
find pg in O(n) time.

The cost of finding pg, p1, p2 is dominated by the cost
of finding D*. We conclude with the following:

Theorem 10 Given a set D of m pairwise-intersecting
disks in a simple polygon P on n vertices and n, reflex
vertices, we can compute the at most 3 points that pierce
D in O(n + mlogn,) time.

5 Conclusion

Theorem 10 settles the question of how many points are
sufficient to pierce a set of pairwise-intersecting unit
disks in the geodesic setting. It would be interesting
to prove that the runtime of our algorithm is optimal.
We leave as an open question to determine whether 4
or 5 points are necessary to pierce pairwise-intersecting
geodesic disks of arbitrary radius. When the radii are
arbitrary, 4 points are sometimes necessary and always
sufficient in the Euclidean setting. In the geodesic set-
ting, the best known lower bound is 4 (from the lower
bound example in the Euclidean setting) and the upper
bound is 5 piercing points [1]. It would be interesting
to close this gap.
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Abstract

We explore an Art Gallery variant where each point of
a polygon must be seen by k guards, and guards cannot
see through other guards. Surprisingly, even covering
convex polygons under this variant is not straightfor-
ward. For example, covering every point in a triangle
k=4 times (a 4-cover) requires 5 guards, and achieving
a 10-cover requires 12 guards. Our main result is tight
bounds on k-covering a convex polygon of n vertices, for
all k£ and n. The proofs of both upper and lower bounds
are nontrivial. We also obtain bounds for simple poly-
gons, leaving tight bounds an open problem.

1 Introduction

The original Art Gallery Theorem showed that |n/3]
guards are sometimes necessary and always sufficient
to guard a simple polygon P of n vertices [O’R8T7].
(Throughout, P includes its boundary P.) There have
been many interesting variants explored since then. In
this paper we explore two variants that are interesting
in combination, although not individually.

(1) Guards blocking guards: Suppose guards cannot see
through other guards.! More precisely, if g1 and go
are guards, and g1, g2, p are on a line in that order,
then point p is not visible from g;. Still the original
bound [n/3] holds, because go can continue g;’s
line-of-sight to p, picking it up where that line-of-
sight terminates at go.

(2) Multiple coverage: Suppose every point in the
closed polygon must be seen by k guards i.e., the
guards must k-cover the polygon. The problem of
k-guarding has been explored under various restric-
tions on guard location [BBCT94, Sal09, BEK13].

*Artificial first author to highlight that the other authors (in
alphabetical order) worked as an equal group. Please include all
authors (including this one) in your bibliography, and refer to the
authors as “MIT CompGeom Group” (without “et al.”).

tU. Mass. Lowell, hugo_akitaya@uml.edu

fMIT, edemaine@mit.edu

$Harvard U., achesterberg@gmail . com

9U. Waterloo, alubiw@uwaterloo.ca

IMIT, jaysonl@mit.edu

**Smith College, jorourke@smith.edu
t1U. Mass. Lowell, fbs9594@rit.edu
IThis was posed as an exercise in [DO11], Exercise 1.28, p. 14.
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If multiple guards can be co-located at the same
point, then this is trivial. If co-location is disal-
lowed, but guards can see through other guards,
then this still reduces to the case k = 1 since we
can replace a single guard by a cluster of k guards.
(We detail the argument in Section 4.)

So neither of these variations is “interesting” by itself
in the sense that easy arguments lead to |n/3] bounds.
However, consider now mixing these two variants:

Q: How many guards are necessary and suffi-
cient to cover a simple polygon P of n vertices
so that every point of P is seen by at least
k guards, where guards cannot be co-located,
and each guard blocks lines-of-sight through
it?

To our surprise, answering Q is not straightforward,
even for convex polygons, even for triangles. For exam-
ple, to cover a triangle to depth k = 3, one guard at
each vertex suffices. Note here we consider a guard to
see itself. But to cover to depth k = 4 requires g = 5
guards; see Fig. 9. And covering to depth & = 10 re-
quires g = 12 guards.

The main result of this paper is the following theorem.
We use n for the number of vertices, k for the depth of
cover, and ¢ for the number of guards.

Theorem 1 For a closed convexr n-gon, coverage to
depth k requires g € {k,k + 1,k + 2} guards:

(1) For k <n: g =k guards are necessary and suffi-
cient.

(2) Forn <k <4n—2: g = k+1 guards are necessary
and sufficient.

(3) For 4n —2 < k: g = k + 2 guards are necessary
and sufficient.

Thus there are three regimes depending on the relation-
ship between n and k. For triangles, n = 3, the following
table details those regimes:

Ej1]2(3]4]|5|6|7|8| 9 10|11

gl|l1]2|35|6|7|8|9|101| 12|13
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Another example: For n = 4, g = 14 guards 13-cover,
but a 14-cover requires ¢ = 16 guards. See ahead to
Fig. 10.

Our primary focus is proving Theorem 1. We also
obtain in Lemma 8 tight bounds for a convex wedge,
which can be viewed as a 2-sided unbounded convex
polygon. Finally, we briefly address simple polygons in
Theorem 7, which we do not consider as natural a fit as
the question for convex polygons.

1.1 Dark Rays and Dark Points

With some abuse of notation, we will identify both a
guard and that guard’s location as g;. Let g; and go
be two guards visible to one another. We say that g
generates a dark ray at g;, which is a ray contained
in the line through g; and g,, incident to and rooted
at g; and invisible to go. And similarly, g; generates a
dark ray at gs.

A point is called dark if it is contained in a dark ray,
and d-dark if it is contained in at least d dark rays.

Because a d-dark point is hidden from d guards, we
obtain an immediate relationship between dark rays and
multiple guarding for convex polygons.

Observation 1

(1) k-guarding with g = k guards is possible if and only
if there is no dark point inside P, i.e., all dark rays
are strictly exterior to P.

(2) k-guarding with g = k + 1 guards is possible if and
only if there is no 2-dark point inside P.

(3) k-guarding with g = k+ 2 guards is always possible
because we can perturb the guards to avoid 3-dark
points, as justified in Appendiz A.4.

1.2 Outline of Proof of Theorem 1

Most steps of the proof follow directly from Observa-
tion 1, with the exception of the following non-trivial
result.

Theorem 2 The mazimum number of guards that can
be placed in a convex n-gon P without creating 2-dark
points in P is dn — 2.

We prove the upper bound (at most 4n — 2 guards)
in Section 2 and the lower bound (4n — 2 is possible)
by a direct construction in Section 3. Both directions
are non-trivial, and their proofs constitute the main fo-
cus of the paper. Assuming these results, the proof of
Theorem 1 proceeds as follows:

To k-cover when k < n (regime (1)) it is clear that k
guards are necessary. For sufficiency, place k guards at
vertices of polygon P. Then all dark rays are exterior
to P, so by Observation 1(1), this is a k-cover.

To k-cover when n < k < 4n — 2 (regime (2)) the
necessity of k + 1 guards follows from Lemma 9 (Ap-
pendix A.2) where we show that any placement of n+ 1
guards in a convex P results in a dark point inside P.
Sufficiency is proved by Observation 1(2) (that we only
need to avoid 2-dark points) and the lower bound of
Theorem 2 (that we can place k + 1 points without cre-
ating 2-dark points), since k + 1 < 4n — 2.

To k-cover when 4n — 2 < k (regime (3)) the suffi-
ciency of k + 2 guards follows from Observation 1(3).
Necessity is proved by the upper bound of Theorem 2.

2 4n — 2 Upper Bound

In this section we prove that at most 4n — 2 guards can
be placed in a convex n-gon P without creating 2-dark
points in P.

2.1 Triangle Lemma

The following lemma is a key tool in the proof of the
upper bound. It establishes that, excluding the excep-
tional case, any triangle of guards in P may only contain
one additional guard if we are to avoid 2-dark points in
T.

Lemma 3 (Triangle) Suppose some guards are placed
i P without creating 2-dark points. Let T be a closed
triangle in P with guards g1, g2, g3 at its corners. Then,
with one exception, T contains at most one more guard.

The exceptional case allows two guards, gs4,¢gs, in T
when (up to relabelling) g1gs is an edge of P, g4 lies on
that edge, and gs, g5, g4 are collinear.

Proof. Refer to Fig. 1(a,b) throughout. We first dis-
cuss the non-exceptional case. First suppose that there
is an extra guard g4 strictly interior to T'. Then g1, g2, g3
generate 3 dark rays at g4, each of which crosses a dif-
ferent edge of T'. The same would be true for a second
strictly interior guard gs. So a dark ray at g5 must cross
a dark ray at g4 to reach an edge of T. The result is a
2-dark point, marked x in (a) of the figure. Since we as-
sumed no 2-dark points in P, there cannot be two extra
guards interior to 7.

Suppose now that g4 lies on edge e = g1g3 of T'. Then
left and right of g4 on e are dark rays generated by ¢;
and gs. Placing g5 at any point not collinear with g4 and
g2 leads to a dark ray at g5, generated by g, crossing e
to form a 2-dark point there.

We are left with the exceptional case, illustrated in
(b) of the figure: g4 lies on an edge of T, and g5 is
collinear with g4 and the opposite corner of the triangle,
go in the case illustrated. There are no 2-dark points
inside T. The dark ray at g5 generated by g» contains
the dark ray at g4 generated by g5 so, to avoid 2-dark
points inside P, g4 must be on the boundary of P. By
the same argument, g; and g3 must be vertices of P. [
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gl/ 4 (a) \:\gz

Figure 1: In this and following figures, guards are indi-
cated by hollow circles. (a) Generic placements of g4, g5
produce a 2-dark point x. (b) The exceptional case,
with dark rays exterior to P.

We now sketch the main idea of the 4n — 2 upper
bound. Consider a placement of guards in P such that
there are no 2-dark points in P. Our goal is to prove
that there are at most 4n — 2 guards. Let C' be the
convex hull of the guards. We will show in Lemma 4
that the number of guards on dC, not counting collinear
guards interior to P, is at most 2n. Triangulating C
leads to at most 2n — 2 triangles. Lemma 3 then shows
that there is at most one extra guard inside each trian-
gle, which leads to the 4n — 2 upper bound. To make
this rigorous, we must take into account collinear guards
and the exceptional case of Lemma 3.

We first shrink P so that it maximally touches C', as
follows. Move each edge of P parallel to itself toward
the interior until it hits a guard. If an edge e only
has a guard at one endpoint, then rotate e about that
endpoint toward the interior until it hits another guard.
The reduced polygon contains all the guards, has no
2-dark point, and has at most n vertices, so it suffices
to prove the bound on the number of guards for the
reduced polygon. Henceforth we assume every edge of
P has either one or more guards in its interior, or a
guard at its endpoint (or at both endpoints).

The proof requires careful handling of collinear
guards: a guard is called collinear if it lies on a line
between two other guards.

Define G* as the set of guards on dC, but exclud-
ing those guards that are collinear and not on dP. So
collinear guards on 9P are in G*, but collinear guards
on JC and internal to P are excluded from G*. See
Fig. 2. Equivalently, G* consists of the guards on 0P
together with any guard that is a corner of C in the
interior of P. Define g* = |G™*|. This is the key count
that is needed to complete the upper-bound proof.

Lemma 4 The number of guards g* as defined above is
at most 2n.

Proof. Let g” be the number of guards on OP and let
¢ be the number of guards that are corners of C in the
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(b) \

Figure 2: (a) The two pink guards are not included in
g* = |G*|. (b) v1,vy are darkened but have no guard;
Ja, gs are both guards and darkened vertices. So d = 4
anng:n—i—%d:S.

interior of P. As noted above, ¢g* = ¢g” +c. We will
bound g and c separately. Both bounds are in terms
of the number of darkened vertices, where a vertex v
of P is darkened if guards on 0P generate a dark ray
through v.

We first bound g”. The constraint that limits g% is
that a vertex v cannot be darkened from both incident
edges, as that would render v a 2-dark point.

The idea is to count guards and darkened vertices
per edge. A guard internal to an edge counts towards
the edge, and a vertex guard counts half towards each
incident edge. More precisely, for an edge e, let g(e) be
the number of guards internal to e plus half the number
of vertex guards on e. Then g© = >"_g(e).

Fig. 3 shows the possibilities: g(e) = 2, either from
two internal guards, or one internal guard and two end-
point guards; g(e) = 1% from one endpoint guard and
one internal guard; or g(e) = 1 from one internal guard
or two endpoint guards.

These are the only possibilities: (a) An edge cannot
have four or more guards, as then the extreme points
would be at least 2-dark. (b) And an edge can only
have three guards when two are at the endpoints of the
edge: an endpoint without a guard would be rendered
2-dark by the three guards on the edge. (c) An edge
cannot have just a guard at one endpoint, because the
shrinking procedure would rotate that edge about the
endpoint until it hit another guard.

Next we observe from Fig. 3 a relationship between
g(e) and d(e), the number of dark rays on edge e gen-
erated by guards on e: if g(e) = 2 then d(e) = 2; if
g(e) =13 then d(e) = 1; and if g(e) = 1 then d(e) = 0.
Equivalently, d(e) = 2(g(e) — 1).

Finally, we note that d, the number of darkened ver-
tices, is ), d(e), since each dark ray on e darkens an
endpoint of e, and no vertex can be darkened from both
incident edges.
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Putting these together,

d= Zd(e) = Z 2(g(e)-1) = 229(6)—2n =2¢"-2n

€

which gives ¢¥ = n+ %d. For example, for even n, plac-
ing a guard at every vertex and a guard in the interior

of every other edge darkens every vertex, so g©’ = %n

/ gle)=2 \/ ge)=2 \ gle=1% \
/ gle)=1 \/ gle)=1 \

Figure 3: Edge counts. Arrows indicate darkened ver-
tices.

We next bound ¢, the number of guards strictly inter-
nal to P that are corners of C. Let go be such a corner
guard. Moving left and right on C, let g1 and go be
the first guards that are on 0P, say on edges e; and es.
Note that there cannot be another vertex of C internal
to P between g; and g, as then two dark rays would
cross inside P: see Fig. 4(a). Also note that gg is not
collinear with g; and go, because we are counting g*,
which excludes collinear guards on C'. Since every edge
has a guard, edges e; and e; must be incident at a vertex
v of P, and v has no guard (because otherwise gy would
be internal to C). The dark rays incident to g from
g1 and go cross e; and ez as shown in Fig. 4(b). So v
cannot be darkened by the guards on e; or e; otherwise
again two dark rays would cross.

Thus each guard gy counted in ¢ corresponds to a
non-darkened vertex, so ¢ <n —d.

In total,

1 1

Equality is achieved when there is one guard inter-
nal to each edge, and one guard inside P between each
consecutive pair, and no collinear guards nor darkened
vertices of P. See Fig. 4(c). O

Theorem 5 The number of guards g that can be placed
i a conver n-gon so that no two dark rays intersect
inside is at most g = 4n — 2.

Proof. Consider a placement of guards inside P that
avoids 2-dark points. We use G* and g* as defined
above. By Lemma 4, g* < 2n. Triangulate the guards
in G*. By definition of G*, this includes collinear guards
on JP but excludes collinear guards internal to P.

&1 &2

el b)) e

(©)

Figure 4: (a) go and g, create intersecting dark rays in
P. (b) v cannot be a darkened vertex. (¢) The upper
bound ¢g* = 2n can be achieved.

There are at most 2n — 2 triangles in this triangula-
tion. By Lemma 3, there is at most one extra guard in
each triangle, for a total of at most 2n+(2n—2) = 4n—2
guards, so long as we rule out the exceptional case of
Lemma 3 where a triangle of guards can contain two
extra guards. But that exception only happens when
one of the extra guards is on dP, and all the guards on
OP were already included in G*. O

3 Lower Bound

The challenge is to locate g = 4n — 2 guards so that
there are no 2-dark points in P, thus proving the lower
bound of Theorem 2.

We first illustrate a placement in a triangle of g = 10
guards without 2-dark points, i.e., so that no two dark
rays intersect inside the triangle. We then introduce
the general strategy for the triangle, and hint at the
strategy for convex m-gons, but proofs are deferred to
Appendix A.3.

3.1 g = 4n — 2 guards achievable for triangle

Fig. 5 illustrates a placement of 10 guards in a triangle
P such that all dark-ray intersections are strictly exte-
rior to P. Although it is difficult to verify visually, even
enlarged, a calculation described in the Appendix veri-
fies that all dark-ray intersections lie strictly exterior to
the triangle. This demonstrates g = 4n — 2 is achievable
for triangles.
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Figure 5: g = 10 guards 9-covering a triangle. Apex
enlargement below. Indexing follows Fig. 6.

Several features of this construction will repeat for
general n-gons:

(1) n guards are on edges of P.

(2) 2n guards are on the hull 9C (the maximum by
Lemma 4).

(3) Three guards are placed near each vertex,

(4) Two of the three guards near a vertex are nearly
co-located.

(5) There is one extra guard in each triangle of a tri-
angulation of P (this is g10 in Fig. 5).

This construction leads to 3 guards near each of P’s n
vertices, plus n — 2 guards in the triangles of a triangu-
lation, yielding g = 4n — 2. Note that the triangulation
is of the n-gon P, not the 2n-gon convex hull C' used in
the proof of Theorem 5.

Idea of the construction in Fig. 5. Before turning
to the general construction, we first provide intuition
for the triangle construction, illustrated in Fig. 6. The
triangle is partitioned into six sectors with gio in the
center. Three guards are placed in the yellow sectors
near each vertex, so that the dark rays they generate
at g1o exit through the empty white sectors. First, two
of three guards are placed as illustrated: g2, 94,96 on
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triangle edges, and g1, g3, g5 slightly inside the adja-
cent edges. The final three guards will be placed in-
side the convex hull of g¢1,...,g6, but their locations
are tightly constrained. The guards placed so far define
three dark wedges apexed at guards g1, g3, g5, where the
wedge apexed at g; contains all the dark rays at g;. The
last three guards g7, gs, g9 are placed quite close to the
even-index guards gs, g4, g¢ so that none of their dark
rays enter the dark wedges. For further explanation, see
Section A.3. The construction works for any triangle:
there are no shape assumptions.

Figure 6: Dark rays from g1 exit through empty white
sectors. Dark wedges apexed at g1, g3, g5 contain the
dark rays from all other guards, illustrated for the g¢;
wedge.

The conclusion of the lower bound construction in the
Appendix (Section A.3) is this theorem:

Theorem 6 It is possible to place 4n — 2 guards in a
convex n-gon P so that all dark-ray intersections lie
strictly exterior to P.

Theorems 5 and 6 establish the tight bounds in Theo-
rem 2.

4 Simple Polygon

We mentioned in the Introduction that the variant we
are exploring—multiple coverage and guards-blocking-
guards—is not a natural fit for arbitrary simple poly-
gons. In a convex polygon P, each pair of guards sees all
of P except for their dark rays, whereas in an arbitrary
polygon, guard visibility is also blocked by reflexivities
of OP.
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4.1 Necessity

The comb example that establishes necessity of |n/3]
guards to cover a simple polygon of n vertices, also
shows the necessity of k|n/3] guards to cover to depth
k—since no guard can see into more than one spike of
the comb, each of the [n/3] spikes needs at least k dis-
tinct guards. In fact, if the comb has at least two spikes,
then k|n/3| guards also suffice. The general construc-
tion for k > 2 is illustrated in Fig. 7 for depth k = 4
and n =9.

Figure 7: 4 -3 = 12 guards suffice to 4-cover the comb
of 9 vertices.

Place k guards in a convex arc below each spike of
the comb so that none of the dark rays generated by
these guards enters any spike. Points in a spike are
covered to depth k by the k£ guards below it. Although
many dark rays cross in the base corridor of the comb,
slight vertical staggering of the convex arcs of k guards
ensures that no corridor point is at the intersection of
three dark rays, which ensures coverage to depth k for
k > 2 and at least two spikes.

4.2 Sufficiency

For sufficiency, we have not obtained a tight bound:
To cover a simple polygon P of n vertices to depth k,
we show that ¢ = (k + 2)|n/3] guards suffice. First
triangulate P, 3-color, and choose the smallest color
class, which has cardinality at most |n/3] [Fis78]. In
Fig. 8, say we select color 1. If a color-1 vertex v is
convex, then define a cone C' apexed at v bounded by
the edges incident to v. If a color-1 vertex v is reflex,
then define C' to be the “anticone” at v: the cone apexed
at v and bound by the extensions of the incident edges
into the interior.

To cover P to depth k, place k + 2 guards along a
convex arc near a color-1 vertex v, and inside v’s cone.
In the figure, we aim to 3-cover and so place 5 guards in
each cone. Now it is clear that the k42 guards at color-
1 vertex v see into all the triangles incident to v. These
guards generate crossing dark rays, but by perturbing
the locations of the guards we can avoid three dark rays
meeting in P. The result is coverage to depth 2 less
than the number of guards at each color-1 vertex:

2 3
Figure 8: Cones at the color-1 reflex vertices each con-
tain k 4 2 guards. Here the 5 guards achieve a 3-cover.

Theorem 7 To cover a simple polygon of n vertices to
depth k, g = k|n/3| guards are sometimes necessary,
and g = (k+2)|n/3] guards always suffice.

5 10 Guards in a Wedge

Finally, in Appendix A.5 we establish a tight bound for
a wedge, which can be viewed as an unbounded 2-sided
convex polygon with one vertex and two rays:

Lemma 8 Covering a wedge to depth k requires the
same number of guards as it does to cover a triangle
to depth k, except that to 3-cover requires 4 guards. In
particular, g = 10 guards can cover to depth 9.

The surprising part of this result is that 10 guards can
be placed in a wedge without creating 2-dark points—
despite the fact that our triangle construction (see
Fig. 6) fails for a wedge because it has 2-dark points
just outside each triangle edge.

6 Open Problems

1. Investigate bounds or the complexity (NP-hard?)
of placing points in a simple polygon so that no
two dark rays intersect. (As noted in Section 4, the
connection between this problem and k-guarding
fails for non-convex polygons.)

2. Close the simple polygon gap in Theorem 7.

3. Can the tight bound for a wedge in Lemma 8 be
generalized to tight bounds for unbounded convex
polygons with two rays joined by a chain of n — 1
vertices and n — 2 edges?
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A Appendix

A.1 4-guarding a Triangle
(a) & (b)

&3 &2

84 85

)

81 84 &2 81

Figure 9: Five guards needed to 4-cover. (a) All strictly
interior points are 4-covered, but the blue segments to
either side of g4 are only 3-covered. (b) Points on the
dark rays (blue segments) incident to g4 and g5 are 4-
covered; all other points are 5-covered.
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A.2 Regime (2) Lemma

Lemma 9 Any placement of n + 1 guards in a convex
n-gon P results in a dark point in P.

Proof. If a guard gy is strictly internal to P, then there
is a dark ray at gy generated by every other guard. So
it must be that all guards are on JP.

View each edge of P as half-open, including its clock-
wise endpoint but not its counterclockwise endpoint. So
the edges are disjoint and their union is 0P. Every edge
e can contain at most one guard: If e contains two or
more, one, gi, is interior to e and so there is a dark ray
at g1 along e. So there can be at most n guards while
avoiding dark points. O

A.3 General Lower Bound Construction

Example: Square. Before commencing with the gen-
eral construction, we illustrate it with a square. Plac-
ing 4n — 2 = 14 guards in a square without any 2-dark
points follows the same construction as with the triangle
in Fig. 5: 3 guards near each vertex, and n —2 = 2 “el-
bow” guards ¢; determined by a special triangulation, in
this case just a diagonal of the square. See Fig. 10. Co-
ordinates may be found in the Appendix (Section A.6).

V4

Figure 10: Trian-

14 guards covering to depth 13.
gulation diagonal is vyvs. Elbow guards ¢1,¢5. Vertex
guards x;, y;, z; near the four corners.

Overall Construction. The overall plan of the con-
struction is the same as for a triangle and a square:
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3n guards, 3 near each vertex, plus one guard per tri-
angle in a triangulation of P of n — 2 triangles. The
three guards to be placed near v; will be called vertex
guards. The triangulation is a serpentine triangula-
tion formed by a zigzag path that visits all the vertices,
as illustrated in Fig. 11. The single guard in each tri-
angle will be called an elbow guard.

€j~|—1\>o
y Vit1
i OC=~— ().
; o

li —= v,

O

Vit

Figure 11: Zigzag triangulation and elbow guards /;.

Notation. We label the vertices in counterclockwise
(ccw) order: wvg,...,v,—1 with index arithmetic mod-
ulo n. Thus “before” means clockwise (cw) and “after”
means ccw. Let v; be one of the n — 2 internal vertices
of the zigzag path. Then v; is the apex of a triangle T;
bounded by two edges of the zigzag path plus a base
that is an edge of the polygon. The elbow guard of T;,
which we denote ¢;, will be placed close to vertex v;.
For ease of notation, we will focus on one triangle with
apex v; and base v;v;11. In each edge of P we place
two “dividing points” that are used to separate wedges
of dark rays. The dividing points adjacent to v; are la-
beled m; (on the minus (cw) side) and p; (on the plus
(cew) side). See Fig. 12.

Note that there are two vertices of P with no el-
bow guard, and consequently either £; or £;1 (or both)
might not exist. For example, in Fig. 10, neither ¢, nor
{4 exist.

Dark-ray Wedges. The elbow guard ¢; will be located
close to v;, and v;’s three vertex guards even closer to
v;. We first place the elbow guards and define “safe
regions” for vertex guards so that the dark rays incident
to elbow guards lie in disjoint “dark ray wedges.” Exact
placement of vertex guards will be described later.

Let e be the base edge of T;, e = vjvj41. Then the
three portions of e demarcated by p;,m;y1 each are
crossed by wedges of dark rays incident to elbow guards.
The central portion of e is crossed by rays generated by

v;’s vertex guards through ¢; (blue). The v;p; segment
of e is crossed by the rays at ¢;, generated by all the
vertex guards and elbow guards associated with vertices
ccw from v;41 to vj_1, and symmetrically the m;1vj41
segment of e is crossed by dark rays at £;41, generated
by all the vertex guards and elbow guards associated
with vertices ccw from vj42 to vi—1.

From the viewpoint of ¢;, there are three dark wedges
emanating from it, one crossing p;m;4+1 and two (shown
in pink) crossing v;m; and v;p;, before and after v;.

Figure 12: The dark-ray wedges that cross e = v;v;41
and the dark-ray wedges emanating from /;.

Locating ¢;. 'We now describe how to place each ¢; so
that the dark-ray wedges illustrated in Fig. 12 indeed
contain the claimed rays, and create a “safe region” for
v;’s vertex guards.

Place ¢; at the intersection of two lines: the line m;p;,
and the line through v; and the midpoint of p;m ;1.

Let b; be the point where the line through p; and ¢;
exits P. Observe that b; lies in the segment v;m;. Our
mnemonic is that b; is just “before” v;. Let a; be the
point where the line through m;; and ¢; exits P. Then
a; lies in the segment v;p;, just after v;.

For a vertex v; that has an elbow guard, define its
safe region R; to be the convex quadrilateral b;v;a;¢;,
which is contained in the triangle m;v;p;. For a vertex
v; without an elbow guard (the first and last vertices of
the zigzag path), its safe region is the triangle m;v;p;.
Observe that the safe regions are pairwise disjoint.

Claim 1 If vertex guards for v; are placed in R; then

the dark rays incident with elbow guards lie in the wedges
as specified above and do not enter the safe regions.
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Proof. Consider the dark rays incident to ¢;. Since v;’s
vertex guards lie in the wedge a;£;b;, they generate dark
rays at £; that lie in the complementary wedge m;14;p;.
Vertex guards and elbow guards associated with vertices
ccw from v; 11 to vj lie in the wedge p;¢;p; so they gener-
ate dark rays at ¢; that lie in the complementary wedge
m;¢;b; (yellow wedges in Fig. 13). Similarly vertex and
elbow guards associated with vertices ccw from v;11 to
v;—1 lie in the wedge m;1f;m; so they generate dark
rays at £; that lie in the complementary wedge a;¥;p;.
(green wedges in Fig. 13). O

Vi1

Vj+1

mji

Vit

Figure 13: Constraints on locating ¢;, and for locating
vertex guards in a safe region R; = b;v;a;¥;.

Locating 3 vertex guards. Call the three v; vertex
guards x;, ¥;, 2;- We will place them in that order, inside
the safe region R;. x; will be placed on an edge of P,
and z; and y; will be on the convex hull C of the guards,
with z; strictly inside C.

The following construction references a; and b; so it
applies to the case when ¢; exists. But for a vertex v;
without an elbow guard, the same construction works
with m; and p; in place of b; and a;.

Construct a triangle with apex v; and two points on
OP strictly inside the safe region R;. Place x; at the
corner of this triangle on edge v;v;_1, and place y; on
the base of the triangle and on the p; side of the line
vi;. Observe that all the elbow guards are inside the
resulting hull C'. Because z; is the only guard on its
edge, there are no dark rays incident to z; inside P.
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Xitl

Vi+1

Figure 14: (a) Locating z; and y;. Wedge of dark rays
apexed at y; shaded. (b) Locating z; so that dark rays
incident to z; exit P safely.

Because y; lies on C with neighbours x; and z;11, all the
dark rays incident to y; lie in the complementary wedge
bounded by the lines y;z; and y;x;41, and including
v; (gray in Fig. 14(a)). Note that no other dark rays
intersect this wedge because it lies inside the safe region.

We now place z;. Let ¢ be the point where the line
Z;+1Y; intersects the edge v;v;—1. See Fig. 14(a).

We will ensure that the dark rays incident to z;—
except for the one generated by x;—Ilie in the wedge
cz;b; (yellow in Fig. 14(b)). This implies that these
rays do not intersect any other dark rays.

We place z;:

1. inside C,
2. on the z; side of lines y;b; and y;_1c,

3. on the y; side of line z;a;.

Observe that these constraints determine a non-
empty region for z;.

Conditions 1 and 3 ensure that the dark ray incident
to z; generated by x; hits the edge v;v;41 in the segment
between y;’s dark wedge and a;, so it intersects no other
dark ray.

Conditions 1 and 2 ensure that, if we ignore z;, then z;
lies on the convex hull C” of the guards, with neighbours
y; and y;_1. Therefore the dark rays incident to z; lie
in the complementary wedge—apexed at z; and exterior
to C'—which lies inside the wedge b;z;c, as required.

We note that, although our construction places
guards quite close together, the coordinates have
polynomially-bounded bit complexity, since we used a
finite sequence of linear constraints. By contrast, irra-
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tional coordinates may be required for the conventional
art gallery problem in a simple polygon [AAM21].

Note that at no point do we rely on the metrical prop-
erties of P, so the construction works for all convex
polygons:

Theorem 6 It is possible to place 4n — 2 guards in a
convex n-gon P so that all dark-ray intersections lie
strictly exterior to P.

To repeat our earlier claim, Theorems 5 and 6 estab-
lish the tight bounds in Theorem 1.

A.4 General Position Guards

At several junctures we claimed we can avoid 3-dark
points inside P by perturbing the guard locations to be
in “general position.” Although this follows from general
perturbation results, we give a straightforward inductive
construction.

We show how to place g guards in a specified open
region of the plane (a convex polygon in regime (3),
or near the vertex of a vertex cone in the situation of
Section 4) while avoiding 3-dark points anywhere in the
plane.

Place the guards sequentially. After placing i guards,
let A; be the arrangement of lines determined by:
(a) pairs of guard points; and (b) a guard point and
a 2-dark point at the intersection of two dark rays. (For
i < 3 noncollinear guards, there are no 2-dark points.)
Place the (i41)-st guard at any point in the open region
not on a line of A;. This is possible since the region is
open. Note that this avoids three collinear guards and
also avoids three dark rays crossing. Now update the
arrangement to 4;41 and repeat.

A.5 10 Guards in a Wedge

Define a wedge as the region of the plane bounded by
two rays from a convex vertex a, i.e., a cone with apex
a. The connection between k-guarding and dark points
(Observation 1) still holds, and the main issue is the
analogue of Theorem 2—what is the maximum number
of guards that can be placed in a wedge without creating
2-dark points? For a triangle, the bound is 4n — 2 = 10.
In this section we prove that the same bound holds for
a wedge.

The upper bound of 10 is easy: If we could place
11 guards in a wedge without 2-dark points, then we
could simply cut off the empty part of the wedge to
create a triangle with 11 guards and no 2-dark points,
a contradiction to the Theorem 5 upperbound.

However, the lower bound of 10, i.e., a placement of 10
guards without 2-dark points, does not carry over from
our triangle construction, because there were dark ray
intersections beyond every edge of the triangle. Nev-
ertheless, we now show this bound is tight, with the

example illustrated in Figs. 15 and 16. We number the
guards from bottom to top. Here is a description of the
construction:

e ¢ is directly below the apex a, and far below.

e g is slightly left of g1, so that the upward dark ray
at go exits the wedge at a particular “safe” spot
between g7 and g1¢.

e Guard pairs g3, g4, 95,96, g7,9gs are symmetrically
placed with respect to a vertical line L through a.

e Guards g7, gs are located on the two edges of the
wedge.

® gi0 is on L near a, while gg is right of L.

e There are six guards on the convex hull C' of the
guards: {g1, g3, 97, 910, gs, g }-

® g5, ge are just slightly inside C.

We provide coordinates for the guards in Appendix A.6,
and have verified that there are no 2-dark points in the
wedge.

Note that this construction provides an alternative
arrangement of guards for a triangle: Introduce a trian-
gle edge bc below g1, and apply an affine transformation
to Aabe to match Fig. 15.

We summarize the implications for k-guarding a
wedge in this lemma.

Lemma 8 Covering a wedge to depth k requires the
same number of guards as it does to cover a triangle
to depth k, except that to 3-cover requires 4 guards. In
particular, g = 10 guards can cover to depth 9.

Proof. If £ < 2, a guard at the one vertex, or one
guard on the interior of each edge, suffices. However,
any placement of 3 guards creates a dark point in the
wedge, so for k > 3, at least k41 guards are needed to k-
guard. For k < 9, the configuration just described shows
that k+1 guards suffice—this covers the middle regime.
For k£ > 10, g = k + 2 guards are needed and sulffice,
from Observation (3) in Section 1.1 and its explanation
in Section A.4. O

A.6 Guard Coordinates

We include here explicit coordinates for guards in a tri-
angle, a square, and a wedge. In all cases, Mathematica
code has verified that dark-ray intersections are strictly
exterior.

Coordinates for 10 guards in an equilateral triangle,
Fig. 5. Triangle corners are (0,200), (+100v/3, —100).
Guard locations for the other g; are symmetrical place-
ments following Fig. 6.
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Figure 15: Wedge apex a, 10 guards with no 2-dark
points.
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Figure 16: Closeup of upper portion of Fig.15.
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| gi | x, y |
5 | —102.57, 96
6 | —102.6, —100
7 118, 49
10 0, 0

Coordinates for 14 guards in a square, Fig. 10. Square
corner coordinates (£200,4200). Guard locations

Je, - - -, g14 are symmetrical placements of g3, g4, g5.
lgi| = y |
1 —65, —120
2 65, 120
3 | —180, —180
4 | —198, —137.7
5 | —200, —135

Coordinates for 10 guards in a wedge, Figs. 15 and 16.
Apex at (0,200), apex angle w/3. Guard locations
g4, ge, gs are symmetrical placements of gs, g5, g7.

| 9 | x, y |
1 0, —600
2 —9,  —270
3| —70, 50
4 70, 50
5 | —41, 120
6 41, 120
7 | —381, 134
8 | 381, 134
9 8, 150
10 0, 180
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Abstract

In conflict-free chromatic guarding of a polygon, every
guard is assigned a color such that every point in the
polygon, including the points on the boundaries, must
see at least one unique color. The goal of this prob-
lem is to minimize the number of colors needed. In
this paper, we study the conflict-free chromatic guard-
ing of simple orthogonal polygons with sliding cameras,
where cameras are allowed to slide along the length of
the corresponding edge. We investigate two versions of
the Conflict-free Sliding Camera problem: for orthogo-
nal polygons without holes (CFSC), and for orthogonal
polygons with holes (CFSC-H), we show that two col-
ors are always sufficient and sometimes necessary for a
CFSC, and give an O(nlogn) time algorithm to com-
pute a CFSC using two colors, where n is the number
of vertices of the polygon. We give an O(nlogn) time
algorithm to obtain a CFSC-H using three colors. We
also show that for a special case of CFSC-H two colors
suffice.

1 Introduction

The polygon guarding problem is a well-studied prob-
lem in the field of computational geometry, which is
also known as the art gallery problem [7,18]. Given a
polygon P, the goal of the polygon guarding problem is
to find the minimum number of guards needed so that
any point in P is visible to at least one guard. Two
points p and ¢ are wisible to each other when the line
segment pq, also known as line-of-sight visibility, does
not intersect any edges of P. This problem has been
studied in many different settings, such as for general
polygons [10,11,17], for weak-visibility polygons [2, 3],
and for orthogonal polygons [15,16].

The very first version of this problem, introduced by
Victor Klee [18] considered line-of-sight visibility. Later,
variations of the problem were studied while assuming
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tan University, Toronto, ON, Canada, {bahoo, cagirici,
kody.a.manastyrski, ckolios, roni.sherman}@torontomu.ca
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different visibility models, such as a-visibility [14], and
m-visibility [19].

B il

(a) (b)

Figure 1: (a) An assignment with conflicts: the yel-
low region is covered by two blue guards and no green
guards; the blue-green region has a blue and a green
guard and causes no conflict. (b) A conflict-free assign-
ment.

Although Fisk applied graph coloring in the proof of
bounds in art gallery problems [13], chromatic guard-
ing of polygons is a more recent topic. In chromatic
guarding problem, we look for a set of guards such that
each point of the polygon is visible to a subset of the
guards and assign a color to each guard from a set of
available colors. The set of guards along with the color
assignment is conflict-free if for each point of the poly-
gon, there is at least one guard with a unique color [1].
Conflict-free chromatic guarding has applications in the
assignment of radio frequencies to sensors placed on the
vertices of the polygon to guide mobile robots in trian-
gulating their positions in the polygon [1,5].

Conflict-free chromatic guarding has been studied in
the context of orthogonal polygons, and bounds have
been given on chromatic numbers xp of an orthogo-
nal polygon P, i.e., the minimum number of colors re-
quired to guard P without conflict. Given a polygon P,
Bértschi and Suri [1] showed that xp € O(logn), where
n refers to the number of vertices of the polygon, by sub-
dividing P into “weak-visibility suppolygons”. Erickson
and LaValle [12] showed that for orthogonal staircase
polygons, the bound is xp < 3.

In this work, we use sliding cameras as guards [4,8,
9,16], where a guard or camera is directional (i.e. it
has directional view oriented towards the interior of the
given polygon) and can travel along a boundary edge
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of the polygon. See Figure 1(b) for an example, where
sliding cameras or guards are assigned (only to horizon-
tal) edges of the polygon. Note that two consecutive
horizontal edges on the polygon have not been assigned
cameras of the same color as that would create conflict
at the boundary of the two guarded regions. Through-
out the paper, the terms sliding camera and guard are
used interchangeably.

Our contributions. We give upper and lower bounds
on xp for both CFSC and CFSC-H. In Section 3, we
prove that two colors are sometimes necessary and al-
ways sufficient for a conflict-free chromatic guarding
of an orthogonal polygon without holes. Our bound
on the chromatic number is tight. We also give an
O(nlogn) time algorithm that solves CSFO with two
colors, where n refers to the number of vertices of P. In
Section 4.1, we propose an O(nlogn) time algorithm to
solve a CSFO-H, using three colors (xp < 3). Finally, in
Section 4.2, we study a special case of CFSC-H, where
each hole has a rectangular boundary and the order of
the holes inside the polygon is X-monotone. In this
case, we show that two colors are sufficient (yp = 2).
In all our algorithms, the outer boundary of the polygon
and the boundaries of the holes are axis-parallel.

2 Preliminaries

We define the terminology used throughout the paper.
A simple polygon P is an enclosed area in the Eu-
clidean plane bounded by a finite number of straight
line segments that form a polygonal chain; each such
straight line segment is called an edge of P, and a pair
of edges meet in a vertex. In this paper, first we consider
simple polygons; i.e. no pair of edges intersect except at
their common endpoints (vertices). Starting from Sec-
tion 4, we suppose that a polygon with holes is given. A
polygon with holes is a polygon enclosing several other
polygons; the inner polygons are known as holes.

The boundary of P is the closed polygonal chain
formed by the edges of P. We assume that the bound-
ary is directed clockwise, i.e., while walking along the
boundary of the polygon the interior would always be
on the right. The vertices of a polygon are denoted by
V1, V2, . .., U, in clockwise order. The edge that connects
the pair of vertices v; and v; 1 is denoted by e;, where
1 < ¢ < n, and the edge from v,, to vy is denoted by e,,.

The polygon P is called an orthogonal polygon, if ev-
ery pair of consecutive edges are perpendicular to each
other. Throughout this manuscript, we assume that a
given orthogonal polygon is oriented in a way such that
each edge is parallel to either z-axis (horizontal), or y-
axis (vertical). We classify the edges as north-facing,
south-facing, east-facing and west-facing depending on
the orientation of the perpendicular ray towards the in-
terior of the polygon.

An X-monotone polygon is an orthogonal polygon
that intersects any vertical line ¢ at most twice, where
an intersection is either a point on a horizontal edge of
the polygon, or an entire vertical edge.

Definition 1 A maximal monotonous south-facing
chain is a mazimal set of south-facing edges ey, ..., e
such that the x-coordinates of the starting points of the
edges are in increasing order, and e; and e;y1, for each
i < k, are connected by a vertical edge.

Let S be the set of all maximal monotonous south-
facing chains S1, 55, ..., in P. For any chain S; € S,
we denote the edges of S; by el eb,.. '7621- from left
to right. The wvisibility region of a chain S of S is the
region of P, including the boundary of P, that is visible
to the guards assigned to the edges of S. We observe
the following property of the set S.

Lemma 1 A sliding camera at each edge of S collec-
tively guards the entire polygon P.

Proof. From any point p € P, if we draw a vertical line
upward, the first edge e that the line intersects must be
south-facing; hence, e must belong to a chain in S. [

Lemma 1 forms the basis of our algorithms in this
paper, where we find efficient ways to put a camera on
each of the edges of S such that the number of colors
needed for a conflict-free guarding of P is minimized.

We use blue, red and green for the three colors as-
signed to guards or cameras. When a guard is assigned
a color, say red, we write red guard or red camera.

3 Orthogonal polygons without holes

In this section, we discuss the CFSC problem (for or-
thogonal polygons without holes) and give tight upper
and lower bounds on the conflict-free chromatic number
xp for them. We show that two colors are sometimes
necessary and always sufficient to guard an orthogonal
polygon with sliding cameras, thus giving a lower and
an upper bound on the number of colors required to
guard any orthogonal polygons. The lower bound holds
for polygons with holes as well.
We first prove the lower bound on xp.

Theorem 2 There exists an orthogonal polygon that
requires sliding cameras of at least two colors for CFSC.

Proof. Let P be the orthogonal polygon in Figure 2.
By exhaustive search, we conclude that a sliding camera
on any of the 8 edges of P cannot guard the whole poly-
gon. If there exists only one color of gaurds, any com-
bination of guards in this figure will result in a conflict
as no consecutive edges of P can be assigned the same
color. Therefore, we need at least two cameras. The
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visibility regions of any two cameras guarding P will in-
tersect at least at the boundaries. Therefore, we must
need at least two different colors for the cameras. O

e

(b)

Figure 2: (a) Two black guards guarding the whole poly-
gon; the patterned regions are visible to a single guard,
and the solid region to both guards. (b) A conflict-
free guarding by a black (patterned regions) and a gray
guards. The dark solid region is covered by both guards.

We now show that two colors are always sufficient
for a CFSC of any given orthogonal polygon. First,
we describe an algorithm to obtain a CFSC for an X-
monotone polygon, and then we generalize the idea to
non-monotone polygons.

By definition, an X-monotone polygon P has exactly
one maximal monotonous south-facing chain S. We
place a blue camera on all the edges e; of S, where
1 is odd, and a red camera on the edges e;, where i
is even; see Figure 3 for an example. We name this

€6

€4

€1

VAN N
L i\

Figure 3: Two colors are sufficient to guard a monotone
orthogonal polygon.

algorithm CFSC-MONOTONE. The following theorem
proves the correctness and running time of the above
algorithm. The proof is in the appendix.

Theorem 3 Algorithm CFSC-MONOTONE computes a
CFSC of an X-monotone polygon P without holes in
O(n) time using only two colors, which is optimal.

Now consider the case where the input polygon P is
not X-monotone. 