Quick Minimization of Tardy Processing Time on a Single Machine

Baruch Schieber

Department of Computer Science, NJIT, NJ, USA

Joint work with

Pranav Sitaraman

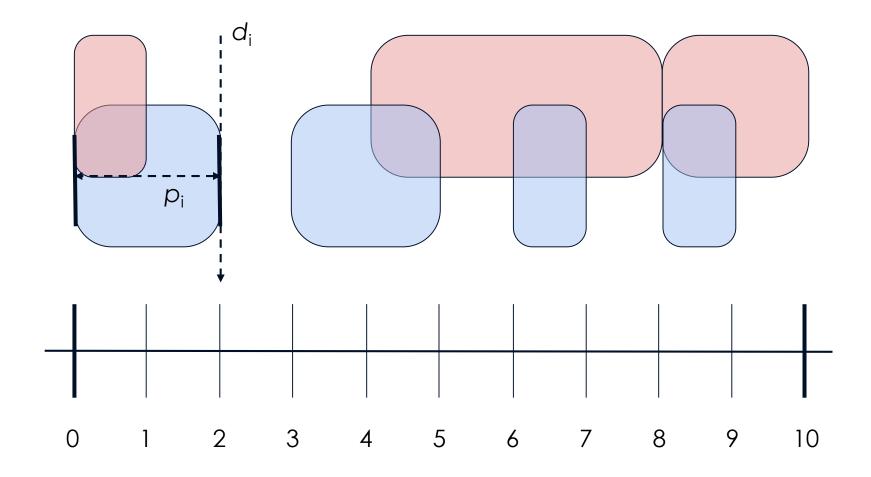
Edison Academy Magnet School, Edison, NJ

Minimum Tardy Processing Time (MTPT) Problem

- *n* jobs *j*₁, *j*₂, ..., *j*_n
- Each job j_i is associated with
 - processing time p_i
 - due date d_i

- A job is tardy if it terminates after its due date.
- Goal: Find a feasible schedule of the jobs that minimizes the total processing time of tardy jobs.
- Assume that the jobs are ordered by due dates $d_1 < d_2 < \cdots < d_{D^{\#}}$

Example



MTPT when all jobs have the same due date

- Let *d* be the due date and *P* be the sum of all processing times
- P-d is a lower bound on the tardy processing time
- This lower bound can be achieved iff there is a subset of jobs whose total processing time is exactly d
- The Subset Sum problem (problem Weakly NP-Hard)

A pseudo polynomial time algorithm for MTPT

- [Lawler Moore 1969]
 - Any instance of the problem has an optimal Earliest Due Date (EDD) schedule.
 - In such a schedule:
 - 1. any early job precedes all late jobs
 - 2. any early job precedes all early jobs with later due dates
 - Dynamic programming: scan the jobs in order of due dates and at each stage maintain all the feasible "prefixes" of the EDD schedules
 - O(*nP*) time

Is there a faster algorithm for MTPT?

- [Bringmann et al. 2020]
 - Defined (max,min)-skewed-convolution
 - Showed an Õ(P^{\alpha}) time algorithm for MTPT, where Õ(P^{\alpha}) is the running time of a (max,min)-skewed-convolution of 2 vectors of size P
 - gave an Õ(P^{7/4}) time algorithm for a (max,min)-skewed convolution and thus also for MTPT
- [Klein et al. 2022]
 - gave an Õ(P^{5/3}) time algorithm for a generalized (max,min)-skewed convolution and thus for the MTPT problem

Our result

- An Õ(P^{2-1/α}) time algorithm for MTPT, where Õ(P^α) is the running time of a (max,min)-skewed-convolution of vectors of size P
- Results in an $\tilde{O}(P^{7/5})$ time algorithm for MTPT
- Breaks the $\tilde{O}(P^{3/2})$ time barrier of the previous approach
 - this is the running time of the best known and decades old algorithm of a (max,min)-convolution [Kosaraju 1989]
- Faster than [Lawler Moore 1969] when $n = \widetilde{\omega}(P^{2/5})$

(max,min)-skewed-convolution

- Given two vectors with n+1 entries:
 - *A*[*0*], ..., *A*[*n*] and *B*[*0*], ..., *B*[*n*]
- The (max,min)-skewed-convolution of A and B is a the 2n+1 vector C[0], ..., A[2n] defined as
 - $C[k] = \max_{i+j=k} \min\{A[i], B[j] + k\}$
- We use a slight (equivalent) variation in which

• $C[k] = \max_{i+j=k} \min\{A[i], B[j] - i\}$

Sumsets and set of subset sums

- Let *A* and *B* be two vectors of integers in the range [0..*P*]
- The sumset $A \oplus B = \{a + b | a \in A, b \in B\}$
 - Can be computed in Õ(P) time via (+,x)-convolution of vector of size P
- The set of subset sums $S(A) = \{\sum_{a \in Z} a | Z \subseteq A\}$
 - Can be computed in $\tilde{O}(\sum_{a \in A} a)$ time by successive sumset computations

An Õ(P•D#) algorithm [Bringmann et al. 2020]

1: Let $d_1 < \cdots < d_{D_{\#}}$ denote the different due dates of jobs in \mathcal{J} . 2: for $i = 1, \ldots, D_{\#}$ do 3: Compute $X_i = \{p_j : J_j \in \mathcal{J}_i\}$ 4: Compute $\mathcal{S}(X_i)$ 5: Let $S_0 = \emptyset$. 6: for $i = 1, \ldots, D_{\#}$ do \triangleright compute the sumsets and exclude infeasible sums 7: Compute $S_i = S_{i-1} \oplus \mathcal{S}(X_i)$. 8: Remove any $x \in S_i$ with $x > d_i$. 9: Return P - x, where x is the maximum value in $S_{D_{\#}}$.

Job bundles

- Parameter $\delta \in (0,1)$
- Red due dates d_i all due dates such that the sum of processing time of jobs with this due date > $P^{1-\delta}$
- Group the jobs with the rest of the due dates into bundles
 - bundle: defined by maximal consecutive subsequences of due dates, none of which are red, such that the sum of processing time of jobs with these due dates $\leq P^{1-\delta}$
- The number of red due dates and the number of bundles is $O(P^{\delta})$

The improved algorithm: outline

- Follows the structure of Algorithm 1 with additional processing of entire bundles that avoids processing each due date in a bundle individually
- The bundles are processed using a (max, min)-skewed-convolution
- Computing the bundles and red due dates takes $\tilde{O}(P)$ time
- Processing each bundle takes Õ(P^{(1-δ)α}+P) time, where Õ(P^α) is the running time of a (max,min)-skewed-convolution of vectors of size P
- Processing each red due date takes Õ(P) time
- Total running time $\tilde{O}(P^{\delta}P^{(1-\delta)\alpha} + P^{\delta}P)$
- Substituting $1 \delta = 1/\alpha$ we get $\tilde{O}(P^{2-1/\alpha})$ time

Processing job bundles

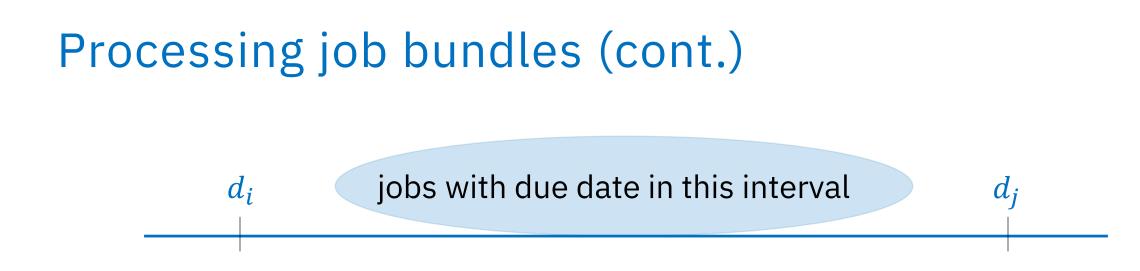
jobs with due date in this interval

- J the set of jobs in the bundle
- P_I the total processing time of the jobs in J
- Compute the vector M

 d_i

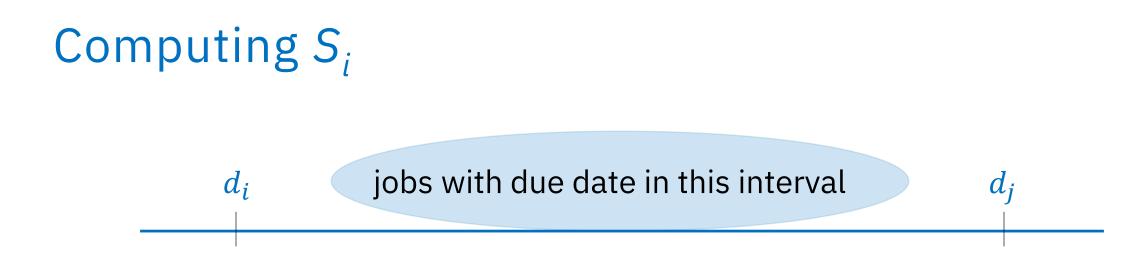
- M[x]: the latest time t starting at which a subset of jobs in J with total processing time x can be scheduled feasibly , -∞ otherwise
- Can be done in $\tilde{O}(P_I)$ time via a (max,min)-skewed-convolution

 d_i



- Input: S_i the processing times of all feasible schedules of jobs with due date up to (and including) d_i
- Output: S_j the processing times of all feasible schedules of jobs with due date up to (and including) d_j

• Initially, $S_i \leftarrow S_i$



- $T_2 = \{x | M[x] > -\infty\}$ and $T_1 = S_i \cap [0..d_i P_J]$
- $S_j \leftarrow S_j \cup (T_1 \oplus T_2)$
- We are left with feasible schedules in which jobs with due date up to (and including) d_i end in (d_i-P_J, d_i]
- To find these schedules we compute a (max,min)-skewed-convolution

Computing the rest of the feasible schedules

jobs with due date in this interval

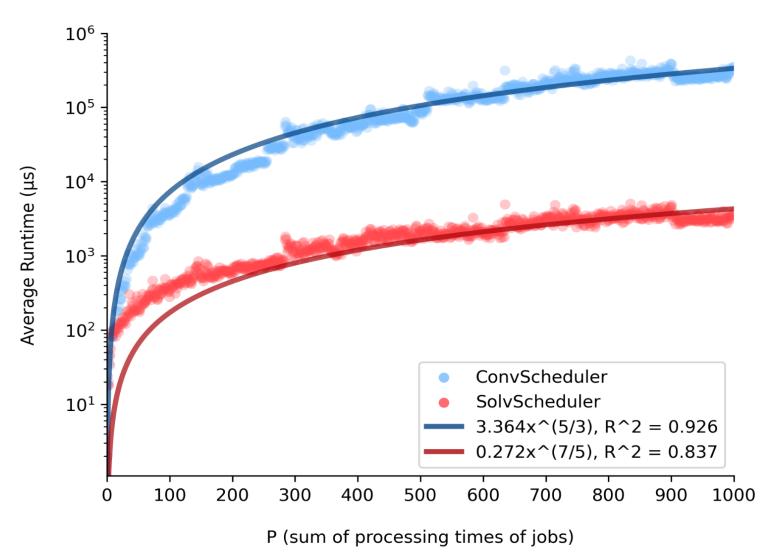
Two vectors of size P_I:

 d_i

- A[x] = 0 if $x + d_i P_j + 1 \in S_i$, $-\infty$ otherwise
- $B[x] = M[x] d_i + P_j 1$
- $C[k] = \max_{x+y=k} \min\{A[x], B[y] x\}$
- $C[k] = 0 \Longrightarrow k + d_i P_j + 1 \in S_j$

 d_i

Runtime



Open problems

- Since it is reasonable to assume that computing a (max, min)-skewedconvolution requires $\tilde{\omega}(P^{3/2})$ time our technique is unlikely to yield a $\tilde{o}(P^{4/3})$ running time
- It will be interesting to see whether this running time barrier can be broken, and whether the MTPT problem can be solved without computing a (max, min)-skewed-convolution
- Faster algorithms for (max, min)-skewed-convolution

