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Range Query

. Givenaset X = {x,...,x, | and a query function, range query qf(X, I, ]) returns
f(X[la,]]) zf(xia R x')

» Geometric range query: (i, ]) is the range of a geometric shape
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Example: line Example: Square
* Query function f = X * Query function f = max

. qf(X,2,3) = Xy + Xy = 3 . qf(X’ S) — maX(XZ, X3,X4) =3



Range Query on Graphs

 Range Query has been widely studied with geometric ranges

What if the range is non-geometric”?

* Motivating scenario

Example: graph

« G = (V,E,X) where X is the set of
edge attributes

* Query function f = X
o q]f(X, VI,VB) = Xq + Xy = 3

« Note: Throughout, we have notation | V| =n, |E| = m



Range Query on Graphs

 Range Query has been widely studied with geometric ranges

What if the range is non-geometric?

* Motivating scenario

Example: shortest paths

. For qf(X, Vv, vj), take the edges along

the shortest path between (v, vj)

e Query function f = X
o Qf(X, Vl, V4) — x6 + x7 — 5

If the edge attribute is the edge weight, then g«(X, v;, v;)

returns the shortest distance between (v, vj)



All Sets Range Query on Shortest Paths

» Given G = (V, E, X) and a query function f, the on G
returns g« X, v;, v;) for all pairs of (v;,v;)) € VXV

. It X(v;,v;) = d(v;,v;), then ASRQ is equivalent to

Application
* Financial security in trading networks: combat fraud

* Analysis in supply chain networks: end-to-end resilience, etc.

Our goal: Protect the sensitive information in networks via differential privacy, with the



Differential Privacy

 Key idea: Protect the data such that for neighboring datasets differed by only one
iInstance, the adversary cannot distinguish the outcome.
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« Compromise: some error in reported answers

Next: define neighboring graphs for our setting



Differential Privacy for Graph

* Three notions of neighboring graphs have been proposed:

 Node-level privacy

G G’



Differential Privacy for Graph

* Three notions of neighboring graphs have been proposed:
 Node-level privacy

 Edge-level privacy




Differential Privacy for Graph

* Three notions of neighboring graphs have been proposed:
 Node-level privacy
 Edge-level privacy

* Weight-level privacy [Sealfon '16]




Differential Privacy for Graph

 We choose weight-level privacy on attributes as our privacy model
* The edge attribute is the sensitive information we want to protect

* The weight-level privacy is proposed to study the DP-APSD problem

» Definition: let w,w' : X — | >0 pe functions that map each element in X to a non-
negative real number, we say w, w’ are neighboring if Z lw(x) —w'x)| < 1.
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Formalize the Problem — DP-ASRQ

* We consider two query functions:
e Counting query: =2
« Bottleneck query: f = max/min

* Differentially Private All Sets Range Query

Let (R(X,S),/) be a range query system and w, w’ be any neighboring attribute
functions. An algorithm & is (&, 0)-DP if for all sets of possible outputs C, we have:

Prld(R,f,w) e C|] <e®-Prld(R,f,w) e C]+0.

0=0— e-DP

e (Goal: minimize the additive error

min max | & (f(u,v) — f(u,v) |
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Our results

Pure DP

Approximate DP

Lower bound

. n'*log'?1/6
0,

Counting O( ) ané(nlm)
E E
Bottleneck 0( log n ) 0 ( \/log n log e ) N.A.
€ €

* Counting queries are harder to privatize




DP-ASRQ VS DP-APSD

Privacy

Upper bound

Lower bound

DP-ASRQ . . ~ ~ ~
(Counting query) (Un)Weighted Attribute 0. (n'?) O, s(n''h Q, S(n'7%)
DP-APSD Weighted Edge weight 0,n*?) 0,n'? Q, 5(n'"°)
(Stronger) € € &

 [wo problems share the same lower bound

 DP-APSD is a strictly harder problem than DP-ASRQ




Standard Notions and Tools

» Differential Privacy
e Sensitivity
 [aplace Mechanism
* Gaussian Mechanism

* Basic and Strong Composition Theorem

* Probability Theory
 Sum of Laplace and Gaussian random variables

 Concentration of Laplace and Gaussian random variables



e-DP Algorithm for Counting Query

Two simple solutions:

* Input perturbation.
 Add Laplace noise of to each attribute and return the counting.
* |f the path is long, then the error can be large.

e Qutput perturbation.

 Compute the counting first, and add noise of to the query output.
» The sensitivity is n°
. Both solutions lead to additive error of O(n)

Can we balance two regimes to reduce the error?



e-DP Algorithm for Counting Query

Key idea: Carefully combine Input and Output perturbation

» Sample a set of shortcut vertices S, | S| = s .“\ S
P

» |f the path is long, there will be vertices in §

« Decompose the path into paths in S and paths outside S

* flu,v) = fu, x) + fx,2) + f(z,v)

» Apply Input perturbation on f(u, x) and f(z, v), output perturbation on f(x, z)

Towards our goal
* For input perturbation, shortcut set reduce the length of paths

* For output perturbation, we need to reduce the sensitivity




e-DP Algorithm for Counting Query

Reduce the sensitivity of S: Canonical segments

* Canonical segments are sub-paths that no other shortest paths pass through

z &Vz Wj ° Consider Path(u, v) where u, v € §, the canonical segments are:
f)vl ‘% v (l/t, W1)9 (Wl’ W2)9 (W29 W3)9 (W39 W4)9 (W4, V)

* Properties of canonical segments
* They are disjoint
 Each canonical segment has sensitivity of 1

e For shortcut set §, there are at most s> canonical segments, call the set Canon(\S)



e-DP Algorithm for Counting Query

Algorithm
4 N
« Sample shortcut set $, compute Canon($). U S f.
. .D oP P Y
» Add Independent Lap(2/¢) to all edge attributes. @ a

Add Independent Lap(2/€) to each canonical segment attribute
Report the counting query for u, v € V-

o |f Path(u, v) does not have a vertex in S, return f(u, V)

o |f Path(u, v) has one vertex z in S, return f(u, 7) + f(z, V)

» Else, take the first and last vertex x, z in S, return f(u,v) = f(u, x) + f(x, 2) + f(z, V)



e-DP Algorithm for Counting Query

Theorem 1

There exists an e-differentially private algorithm for DP-ARSQ with additive error at most
O(n'"”/¢) with high probability. That is, the algorithm outputs f such that

A n>log>*n |
Pr( max | f(u,v) — f(u,v)| = O( )) > 1 ——

uyvey E n

* Analysis sketch

. Input perturbation (Step 2) has at most O(n/s) additive error
o Qutput perturbation (Step 3) has at most 5(52) additive error

. Total error: O(\/ n/s + s%) -- s = n'’3 balances two terms



e, 0-DP Algorithm for Counting Query

Key idea: Strong composition on single-source shortest path tree

(When the graph is a tree, the problem is a lot easier!)

Result (e, 0-DP algorithm tree graphs)

There exists an (&, 0)-differentially private algorithm for tree graphs with additive error at
most O(log'~ n\/log 1/0/¢) with high probability.

« Sample a set of shortcut vertices §

 Build single-source shortest path tree rooted at each vertex in S

* Privatize each tree and use strong composition.

An analog of output
perturbation



e, 0-DP Algorithm for Counting Query

Algorithm
« Sample shortcut set S, compute 7(v) forv € S

» Run PrivateTree algorithm for each 7(v)

* Apply strong composition on all private trees

. Add Gaussian noise of Gauss(0,4/¢” In(2.5/8)log n) to all edge attributes
» Report the counting query for u, v € V:

e Ifoneofu,v € §, return fT(u, V)
e Ifu,v & S but Path(u, v) has one vertex z in S, return fT(u, 7) + fT(Z, V)

o Else, return f(u, V)



e, 0-DP Algorithm for Counting Query

Theorem 2

There exists an (&, 0)-differentially private algorithm for DP-ARSQ with additive error at most
On'*. log” > 1/6/€) with high probability. That is, the algorithm outputs f such that

A 1/41 1.25 1 1/5
or( max | ) — flu, ) | = 0ot VIO 1
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* Analysis sketch

* |nput perturbation (Step 4) has at most é(S) additive error

. Private tree outputs (Step 3) have at most O(n/s) additive error

« Total error: 5(\/ nls + s) -- s = n'’? balances two terms



Private Algorithms for Bottleneck Query
Apply input perturbation suffices!
 For &-DP, use Laplace mechanism

e For g, 0-DP, use Gaussian mechanism

Result 4 (Private algorithms for bottleneck query)

There exists an e-differentially private algorithm for DP-ARSQ with additive error at most
O(log n/e) with high probability; For (&, 0)-DP the additive error is 0(\/log nlog(1/0)/¢)




Open Problems

* Close the gap for both DP-APSD and DP-ASRQ
. DP-APSD: n!/® ~ pnl!/?
. DP-ASRQ: n'* ~ nl’?

* Single-pair shortest distance and One-set range query



Thank you!



