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Range Query
• Given a set  and a query function,  range query  returns X = {x1, …, xn} qf(X, i, j)

f(X[i, j]) = f(xi, …, xj)

x3 = 5

x2 = 3

x1 = 1

x4 = 7

Example: line


• Query function 


•

f = Σ

qf(X,2,3) = x2 + x3 = 8

Example: Square


• Query function 


•

f = max

qf(X, S) = max(x2, x3, x4) = 3

• Geometric range query:  is the range of a geometric shape(i, j)

x2 = 1

x3 = 2
x4 = 3

S



Range Query on Graphs
• Range Query has been widely studied with geometric ranges

What if the range is non-geometric?

• Motivating scenario

x1 = 1

x2 = 2

x3 = 5

x4 = 3

x5 = 1x6 = 3 x7 = 2
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v4

v5 v6

Example: graph


•  where  is the set of 
edge attributes


• Query function 


•

G = (V, E, X) X

f = Σ

qf(X, v1, v3) = x1 + x2 = 3

• Note: Throughout, we have notation |V | = n, |E | = m



Range Query on Graphs
• Range Query has been widely studied with geometric ranges

What if the range is non-geometric?

• Motivating scenario

Example: shortest paths


• For ,  take the edges along 
the shortest path between 


• Query function 


•

qf(X, vi, vj)
(vi, vj)

f = Σ

qf(X, v1, v4) = x6 + x7 = 5

If the edge attribute is the edge weight, then  
returns the shortest distance between 

qf(X, vi, vj)
(vi, vj)

x1 = 1

x2 = 2

x3 = 5

x4 = 3

x5 = 1x6 = 3 x7 = 2
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All Sets Range Query on Shortest Paths
• Given  and a query function , the All Sets Range Query (ASRQ) on  

returns  for all pairs of 
G = (V, E, X) f G
qf(X, vi, vj) (vi, vj) ∈ V × V

• If , then ASRQ is equivalent to All pairs shortest distances (APSD)X(vi, vj) = d(vi, vj)

Application


• Financial security in trading networks: combat fraud


• Analysis in supply chain networks: end-to-end resilience, etc.

Our goal: Protect the sensitive information in networks via differential privacy, with the 
smallest possible error.



Differential Privacy
• Key idea: Protect the data such that for neighboring datasets differed by only one 

instance, the adversary cannot distinguish the outcome. 

Private mechanism

• Compromise: some error in reported answers

Next: define neighboring graphs for our setting



Differential Privacy for Graph
• Three notions of neighboring graphs have been proposed:


• Node-level privacy
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Differential Privacy for Graph
• Three notions of neighboring graphs have been proposed:


• Node-level privacy


• Edge-level privacy
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Differential Privacy for Graph
• Three notions of neighboring graphs have been proposed:


• Node-level privacy


• Edge-level privacy


• Weight-level privacy [Sealfon ’16]
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Differential Privacy for Graph
• We choose weight-level privacy on attributes as our privacy model


• The edge attribute is the sensitive information we want to protect


• The weight-level privacy is proposed to study the DP-APSD problem
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• Definition: let  be functions that map each element in  to a non-
negative real number, we say  are neighboring if .

w, w′ : X → ℝ≥0 X
w, w′ ∑

x∈X

|w(x) − w′ (x) | ≤ 1



Formalize the Problem — DP-ASRQ
• We consider two query functions:


• Counting query： 


• Bottleneck query： 

f = Σ

f = max / min

• Differentially Private All Sets Range Query


Let  be a range query system and  be any neighboring attribute 
functions. An algorithm  is -DP if for all sets of possible outputs , we have:


(R(X, S), f ) w, w′ 

𝒜 (ε, δ) C

Pr[𝒜(R, f, w) ∈ C] ≤ eε ⋅ Pr[𝒜(R, f, w′ ) ∈ C] + δ .
-DPδ = 0 ⟶ ε

• Goal: minimize the additive error


min max
u,v∈V

|𝒜( f(u, v) − f(u, v) |



Our results

Pure DP Approximate DP Lower bound

Counting 

Bottleneck N.A.

Õ(
n1/3

ε
) Õ(

n1/4 log1/2 1/δ
ε

)

Õ(
log n

ε
) Õ(

log n log 1/δ
ε

)

Ω̃ε,δ(n1/6)

• Counting queries are harder to privatize



DP-ASRQ VS DP-APSD

Graph Privacy Upper bound Lower bound

DP-ASRQ 
(Counting query) (Un)Weighted Attribute

DP-APSD Weighted Edge weight 
(Stronger)

Õε(n1/3) Õε,δ(n1/4) Ω̃ε,δ(n1/6)

Õε(n2/3) Õε(n1/2) Ω̃ε,δ(n1/6)

• Two problems share the same lower bound


• DP-APSD is a strictly harder problem than DP-ASRQ



Standard Notions and Tools
• Differential Privacy


• Sensitivity


• Laplace Mechanism


• Gaussian Mechanism


• Basic and Strong Composition Theorem

• Probability Theory


• Sum of Laplace and Gaussian random variables


• Concentration of Laplace and Gaussian random variables



 -DP Algorithm for Counting Queryε
Two simple solutions:

Can we balance two regimes to reduce the error?

• Input perturbation.


• Add Laplace noise of  to each attribute and return the counting.


• If the path is long, then the error can be large.
Lap(1/ε)

• Output perturbation.


• Compute the counting first, and add noise of  to the query output.


• The sensitivity is 

Lap(n2/ε)
n2

• Both solutions lead to additive error of Õ(n)



 -DP Algorithm for Counting Queryε
Key idea: Carefully combine Input and Output perturbation


• Sample a set of shortcut vertices , 


• If the path is long, there will be vertices in 


• Decompose the path into paths in  and paths outside 


• 


• Apply Input perturbation on , output perturbation on 

S |S | = s

S

S S

f(u, v) = f(u, x) + f(x, z) + f(z, v)
f(u, x) and f(z, v) f(x, z)

Towards our goal


• For input perturbation, shortcut set reduce the length of paths


• For output perturbation, we need to reduce the sensitivity



 -DP Algorithm for Counting Queryε
Reduce the sensitivity of : Canonical segments


• Canonical segments are sub-paths that no other shortest paths pass through


• Properties of canonical segments


• They are disjoint


• Each canonical segment has sensitivity of 1


• For shortcut set , there are at most  canonical segments, call the set 

S

S s2 Canon(S)

(u, w1), (w1, w2), (w2, w3), (w3, w4), (w4, v)

Consider  where , the canonical segments are: Path(u, v) u, v ∈ S



 -DP Algorithm for Counting Queryε
Algorithm


• Sample shortcut set , compute .


• Add Independent  to all edge attributes.


• Add Independent  to each canonical segment attribute


• Report the counting query for :


• If  does not have a vertex in , return 


• If  has one vertex  in , return 


• Else, take the first and last vertex  in , return 

S Canon(S)
Lap(2/ε)
Lap(2/ε)

u, v ∈ V

Path(u, v) S ̂f(u, v)
Path(u, v) z S ̂f(u, z) + ̂f(z, v)

x, z S ̂f(u, v) = ̂f(u, x) + ̂f(x, z) + ̂f(z, v)



 -DP Algorithm for Counting Queryε

• Analysis sketch


• Input perturbation (Step 2) has at most  additive error


• Output perturbation (Step 3) has at most  additive error

• Total error:  --  balances two terms
•

Õ(n/s)
Õ(s2)

Õ( n/s + s2) s = n1/3

Theorem 1

There exists an -differentially private algorithm for DP-ARSQ with additive error at most 

 with high probability. That is, the algorithm outputs  such that

ε

Õ(n1/3/ε) ̂f

Pr( max
u,v∈V

| ̂f(u, v) − f(u, v) | = O(
n1/3 log5/6 n

ε
)) ≥ 1 −

1
n



 -DP Algorithm for Counting Queryε, δ
Key idea: Strong composition on single-source shortest path tree

(When the graph is a tree, the problem is a lot easier!)

• Sample a set of shortcut vertices 


• Build single-source shortest path tree rooted at each vertex in 


• Privatize each tree and use strong composition.

S

S

An analog of output 
perturbation

Result ( -DP algorithm tree graphs)


There exists an -differentially private algorithm for tree graphs with additive error at 
most  with high probability.

ε, δ
(ε, δ)

O(log1.5 n log 1/δ /ε)



 -DP Algorithm for Counting Queryε, δ
Algorithm


• Sample shortcut set , compute  for 


• Run  algorithm for each 


• Apply strong composition on all private trees


• Add Gaussian noise of  to all edge attributes


• Report the counting query for :


• If one of , return 


• If  but  has one vertex  in , return 


• Else, return 

S T(v) v ∈ S

PrivateTree T(v)

Gauss(0,4/ε2 ln(2.5/δ)log n)

u, v ∈ V

u, v ∈ S ̂fT(u, v)

u, v ∉ S Path(u, v) z S ̂fT(u, z) + ̂fT(z, v)
̂f(u, v)



 -DP Algorithm for Counting Queryε, δ

• Analysis sketch


• Input perturbation (Step 4) has at most  additive error


• Private tree outputs (Step 3) have at most  additive error

• Total error:  --  balances two terms
•

Õ(s)
Õ(n/s)

Õ( n/s + s) s = n1/2

Theorem 2


There exists an -differentially private algorithm for DP-ARSQ with additive error at most 
 with high probability. That is, the algorithm outputs  such that


(ε, δ)
Õ(n1/4 ⋅ log1/2 1/δ/ε) ̂f

Pr( max
u,v∈V

| ̂f(u, v) − f(u, v) | = O(
n1/4 log1.25 n log(1/δ)

ε
)) ≥ 1 −

1
n



 Private Algorithms for Bottleneck Query
Apply input perturbation suffices!


• For -DP, use Laplace mechanism


• For -DP, use Gaussian mechanism

ε

ε, δ

Result 4 (Private algorithms for bottleneck query)


There exists an -differentially private algorithm for DP-ARSQ with additive error at most 
 with high probability; For -DP the additive error is 

ε
Õ(log n/ε) (ε, δ) Õ( log n log(1/δ)/ε)



Open Problems
• Close the gap for both DP-APSD and DP-ASRQ


• DP-APSD: 


• DP-ASRQ: 


• Single-pair shortest distance and One-set range query


n1/6 ∼ n1/2

n1/4 ∼ n1/2



Thank you!


