Differentially Private Range Query on Shortest Paths

Chengyuan Deng
Rutgers University

Joint work with Jie Gao, Jalaj Upadhyay, Chen Wang

Range Query

- Given a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and a query function, range query $q_{f}(X, i, j)$ returns $f(X[i, j])=f\left(x_{i}, \ldots, x_{j}\right)$
- Geometric range query: (i, j) is the range of a geometric shape

Example: line

- Query function $f=\Sigma$
- $q_{f}(X, 2,3)=x_{2}+x_{3}=8$

Example: Square

- Query function $f=\max$
- $q_{f}(X, S)=\max \left(x_{2}, x_{3}, x_{4}\right)=3$

Range Query on Graphs

- Range Query has been widely studied with geometric ranges

What if the range is non-geometric?

- Motivating scenario

Example: graph

- $G=(V, E, X)$ where X is the set of edge attributes
- Query function $f=\Sigma$
- $q_{f}\left(X, v_{1}, v_{3}\right)=x_{1}+x_{2}=3$
- Note: Throughout, we have notation $|V|=n,|E|=m$

Range Query on Graphs

- Range Query has been widely studied with geometric ranges

What if the range is non-geometric?

- Motivating scenario

Example: shortest paths

- For $q_{f}\left(X, v_{i}, v_{j}\right)$, take the edges along the shortest path between $\left(v_{i}, v_{j}\right)$
- Query function $f=\Sigma$
- $q_{f}\left(X, v_{1}, v_{4}\right)=x_{6}+x_{7}=5$

If the edge attribute is the edge weight, then $q_{f}\left(X, v_{i}, v_{j}\right)$ returns the shortest distance between $\left(v_{i}, v_{j}\right)$

All Sets Range Query on Shortest Paths

- Given $G=(V, E, X)$ and a query function f, the All Sets Range Query (ASRQ) on G returns $q_{f}\left(X, v_{i}, v_{j}\right)$ for all pairs of $\left(v_{i}, v_{j}\right) \in V \times V$
- If $X\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{j}\right)$, then ASRQ is equivalent to All pairs shortest distances (APSD)

Application

- Financial security in trading networks: combat fraud
- Analysis in supply chain networks: end-to-end resilience, etc.

Our goal: Protect the sensitive information in networks via differential privacy, with the smallest possible error.

Differential Privacy

- Key idea: Protect the data such that for neighboring datasets differed by only one instance, the adversary cannot distinguish the outcome.

- Compromise: some error in reported answers

Next: define neighboring graphs for our setting

Differential Privacy for Graph

- Three notions of neighboring graphs have been proposed:
- Node-level privacy

G

G^{\prime}

Differential Privacy for Graph

- Three notions of neighboring graphs have been proposed:
- Node-level privacy
- Edge-level privacy

G

G^{\prime}

Differential Privacy for Graph

- Three notions of neighboring graphs have been proposed:
- Node-level privacy
- Edge-level privacy
- Weight-level privacy [Sealfon '16]

G

G^{\prime}

Differential Privacy for Graph

- We choose weight-level privacy on attributes as our privacy model
- The edge attribute is the sensitive information we want to protect
- The weight-level privacy is proposed to study the DP-APSD problem
- Definition: let $w, w^{\prime}: X \rightarrow \mathbb{R}^{\geq 0}$ be functions that map each element in X to a nonnegative real number, we say w, w^{\prime} are neighboring if $\sum_{x \in X}\left|w(x)-w^{\prime}(x)\right| \leq 1$.

G

G^{\prime}

Formalize the Problem - DP-ASRQ

- We consider two query functions:
- Counting query: $f=\Sigma$
- Bottleneck query: $f=$ max/min
- Differentially Private All Sets Range Query

Let $(R(X, S), f)$ be a range query system and w, w^{\prime} be any neighboring attribute functions. An algorithm \mathscr{A} is (ε, δ)-DP if for all sets of possible outputs C, we have:

$$
\begin{aligned}
\operatorname{Pr}[\mathscr{A}(R, f, w) \in C] \leq e^{\varepsilon} \cdot \operatorname{Pr}\left[\mathscr{A}\left(R, f, w^{\prime}\right) \in C\right]+ & \delta \\
& \delta=0 \longrightarrow \varepsilon-\mathrm{DP}
\end{aligned}
$$

- Goal: minimize the additive error

$$
\min \max _{u, v \in V} \mid \mathscr{A}(f(u, v)-f(u, v) \mid
$$

Our results

	Pure DP	Approximate DP	Lower bound
Counting	$\tilde{O}\left(\frac{n^{1 / 3}}{\varepsilon}\right)$	$\tilde{O}\left(\frac{n^{1 / 4} \log ^{1 / 2} 1 / \delta}{\varepsilon}\right)$	$\tilde{\Omega}_{\varepsilon, \delta}\left(n^{1 / 6}\right)$
Bottleneck	$\tilde{O}\left(\frac{\log n}{\varepsilon}\right)$	$\tilde{O}\left(\frac{\sqrt{\log n \log 1 / \delta}}{\varepsilon}\right)$	N.A.

- Counting queries are harder to privatize

DP-ASRQ VS DP-APSD

	Graph	Privacy	Upper bound	Lower bound
DP-ASRQ (Counting query)	(Un)Weighted	Attribute	$\tilde{O}_{\varepsilon}\left(n^{1 / 3}\right) \quad \tilde{O}_{\varepsilon, \delta}\left(n^{1 / 4}\right)$	$\tilde{\Omega}_{\varepsilon, \delta}\left(n^{1 / 6}\right)$
DP-APSD	Weighted	Edge weight (Stronger)	$\tilde{O}_{\varepsilon}\left(n^{2 / 3}\right) \quad \tilde{O}_{\varepsilon}\left(n^{1 / 2}\right)$	$\tilde{\Omega}_{\varepsilon, \delta}\left(n^{1 / 6}\right)$

- Two problems share the same lower bound
- DP-APSD is a strictly harder problem than DP-ASRQ

Standard Notions and Tools

- Differential Privacy
- Sensitivity
- Laplace Mechanism
- Gaussian Mechanism
- Basic and Strong Composition Theorem
- Probability Theory
- Sum of Laplace and Gaussian random variables
- Concentration of Laplace and Gaussian random variables

ε-DP Algorithm for Counting Query

Two simple solutions:

- Input perturbation.
- Add Laplace noise of $\operatorname{Lap}(1 / \varepsilon)$ to each attribute and return the counting.
- If the path is long, then the error can be large.
- Output perturbation.
- Compute the counting first, and add noise of $\operatorname{Lap}\left(n^{2} / \varepsilon\right)$ to the query output.
- The sensitivity is n^{2}
- Both solutions lead to additive error of $\tilde{O}(n)$

Can we balance two regimes to reduce the error?

ε-DP Algorithm for Counting Query

Key idea: Carefully combine Input and Output perturbation

- Sample a set of shortcut vertices $S,|S|=s$
- If the path is long, there will be vertices in S

- Decompose the path into paths in S and paths outside S
- $f(u, v)=f(u, x)+f(x, z)+f(z, v)$
- Apply Input perturbation on $f(u, x)$ and $f(z, v)$, output perturbation on $f(x, z)$

Towards our goal

- For input perturbation, shortcut set reduce the length of paths
- For output perturbation, we need to reduce the sensitivity

ε-DP Algorithm for Counting Query

Reduce the sensitivity of S : Canonical segments

- Canonical segments are sub-paths that no other shortest paths pass through

Consider Path (u, v) where $u, v \in S$, the canonical segments are: $\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right),\left(w_{3}, w_{4}\right),\left(w_{4}, v\right)$

- Properties of canonical segments
- They are disjoint
- Each canonical segment has sensitivity of 1
- For shortcut set S, there are at most s^{2} canonical segments, call the set Canon (S)

ε-DP Algorithm for Counting Query

Algorithm

- Sample shortcut set S, compute Canon (S).
- Add Independent $\operatorname{Lap}(2 / \varepsilon)$ to all edge attributes.

- Add Independent $\operatorname{Lap}(2 / \varepsilon)$ to each canonical segment attribute
- Report the counting query for $u, v \in V$:
- If Path (u, v) does not have a vertex in S, return $\hat{f}(u, v)$
- If Path (u, v) has one vertex z in S, return $\hat{f}(u, z)+\hat{f}(z, v)$
- Else, take the first and last vertex x, z in S, return $\hat{f}(u, v)=\hat{f}(u, x)+\hat{f}(x, z)+\hat{f}(z, v)$

ε-DP Algorithm for Counting Query

Theorem 1

There exists an ε-differentially private algorithm for DP-ARSQ with additive error at most
$\tilde{O}\left(n^{1 / 3} / \varepsilon\right)$ with high probability. That is, the algorithm outputs \hat{f} such that

$$
\operatorname{Pr}\left(\max _{u, v \in V}|\hat{f}(u, v)-f(u, v)|=O\left(\frac{n^{1 / 3} \log ^{5 / 6} n}{\varepsilon}\right)\right) \geq 1-\frac{1}{n}
$$

- Analysis sketch
- Input perturbation (Step 2) has at most $\tilde{O}(n / s)$ additive error
- Output perturbation (Step 3) has at most $\tilde{O}\left(s^{2}\right)$ additive error
- Total error: $\tilde{O}\left(\sqrt{n / s+s^{2}}\right)--s=n^{1 / 3}$ balances two terms

ε, δ-DP Algorithm for Counting Query

Key idea: Strong composition on single-source shortest path tree (When the graph is a tree, the problem is a lot easier!)

Result (ε, δ-DP algorithm tree graphs)
There exists an (ε, δ)-differentially private algorithm for tree graphs with additive error at most $O\left(\log ^{1.5} n \sqrt{\log 1 / \delta} / \varepsilon\right)$ with high probability.

- Sample a set of shortcut vertices S
- Build single-source shortest path tree rooted at each vertex in S
- Privatize each tree and use strong composition.

ε, δ-DP Algorithm for Counting Query

Algorithm

- Sample shortcut set S, compute $T(v)$ for $v \in S$
- Run PrivateTree algorithm for each $T(v)$
- Apply strong composition on all private trees
- Add Gaussian noise of Gauss $\left(0,4 / \varepsilon^{2} \ln (2.5 / \delta) \log n\right)$ to all edge attributes
- Report the counting query for $u, v \in V$:
- If one of $u, v \in S$, return $\hat{f}_{T}(u, v)$
- If $u, v \notin S$ but $\operatorname{Path}(u, v)$ has one vertex z in S, return $\hat{f}_{T}(u, z)+\hat{f}_{T}(z, v)$
- Else, return $\hat{f}(u, v)$

ε, δ-DP Algorithm for Counting Query

Theorem 2

There exists an (ε, δ)-differentially private algorithm for DP-ARSQ with additive error at most $\tilde{O}\left(n^{1 / 4} \cdot \log ^{1 / 2} 1 / \delta / \varepsilon\right)$ with high probability. That is, the algorithm outputs \hat{f} such that

$$
\operatorname{Pr}\left(\max _{u, v \in V}|\hat{f}(u, v)-f(u, v)|=O\left(\frac{n^{1 / 4} \log ^{1.25} n \sqrt{\log (1 / \delta)}}{\varepsilon}\right)\right) \geq 1-\frac{1}{n}
$$

- Analysis sketch
- Input perturbation (Step 4) has at most $\tilde{O}(s)$ additive error
- Private tree outputs (Step 3) have at most $\tilde{O}(n / s)$ additive error
- Total error: $\tilde{O}(\sqrt{n / s+s})--s=n^{1 / 2}$ balances two terms

Private Algorithms for Bottleneck Query

Apply input perturbation suffices!

- For ε-DP, use Laplace mechanism
- For ε, δ-DP, use Gaussian mechanism

Result 4 (Private algorithms for bottleneck query)
There exists an ε-differentially private algorithm for DP-ARSQ with additive error at most $\tilde{O}(\log n / \varepsilon)$ with high probability; For (ε, δ)-DP the additive error is $\tilde{O}(\sqrt{\log n} \log (1 / \delta) / \varepsilon)$

Open Problems

- Close the gap for both DP-APSD and DP-ASRQ
- DP-APSD: $n^{1 / 6} \sim n^{1 / 2}$
- DP-ASRQ: $n^{1 / 4} \sim n^{1 / 2}$
- Single-pair shortest distance and One-set range query

Thank you!

