Tight Analysis of the Lazy Algorithm for Open Online Dial-a-Ride

Júlia Baligács, Yann Disser, Farehe Soheil, David Weckbecker TU Darmstadt, Germany

We acknowledge funding by DFG through grant DI 2041/2.

our solution: completed after 7 time units

our solution: completed after 7 time units

- our solution: completed after 7 time units
- optimal solution: completed after 5 time units

setting:

• metric space (M, d) with origin \mathcal{O}

setting:

- metric space (M, d) with origin \mathcal{O}
- ▶ single server with capacity $c \in \mathbb{N}$
 - can move with speed ≤ 1
 - ▶ initially located at *O*

setting:

- metric space (M, d) with origin \mathcal{O}
- ▶ single server with capacity $c \in \mathbb{N}$
 - \blacktriangleright can move with speed ≤ 1
 - ▶ initially located at *O*

over time:

▶ requests
$$r_i = (a_i, b_i; t_i)$$
 are revealed

- pick up at a_i after time t_i
- deliver at b_i

setting:

- metric space (M, d) with origin \mathcal{O}
- ▶ single server with capacity $c \in \mathbb{N}$
 - \blacktriangleright can move with speed ≤ 1
 - ▶ initially located at *O*

over time:

• requests
$$r_i = (a_i, b_i; t_i)$$
 are revealed

pick up at a_i after time t_i

deliver at b_i

objective:

minimize completion time (without returning to origin)

setting:

- metric space (M, d) with origin \mathcal{O}
- single server with capacity $c \in \mathbb{N}$
 - \blacktriangleright can move with speed ≤ 1
 - ▶ initially located at *O*

over time:

• requests
$$r_i = (a_i, b_i; t_i)$$
 are revealed

pick up at a_i after time t_i

deliver at b_i

objective:

minimize completion time (without returning to origin)

online algorithm: learns r_i at time t_i offline optimum: knows all requests in advance

 $Definition: \ \text{for an online algorithm Alg}$

a) $ALG(\sigma)$: completion time on request sequence σ

Definition: for an online algorithm ALG

- a) ALG(σ): completion time on request sequence σ
- b) $OPT(\sigma)$: completion time of offline optimum on σ

Definition: for an online algorithm ALG

- a) ALG(σ): completion time on request sequence σ
- b) $OPT(\sigma)$: completion time of offline optimum on σ
- c) ALG is ρ -competitive if ALG(σ) $\leq \rho \cdot \operatorname{OPT}(\sigma)$ for all σ .

Definition: for an online algorithm ALG

- a) ALG(σ): completion time on request sequence σ
- b) $OPT(\sigma)$: completion time of offline optimum on σ
- c) ALG is ρ -competitive if ALG(σ) $\leq \rho \cdot \operatorname{OPT}(\sigma)$ for all σ .
- d) The competitive ratio of ALG is $\inf\{\rho : ALG \text{ is } \rho\text{-competitive}\}$.

Definition: for an online algorithm ALG

- a) ALG(σ): completion time on request sequence σ
- b) $OPT(\sigma)$: completion time of offline optimum on σ
- c) ALG is ρ -competitive if ALG(σ) $\leq \rho \cdot \operatorname{OPT}(\sigma)$ for all σ .
- d) The **competitive ratio** of ALG is $\inf\{\rho : ALG \text{ is } \rho\text{-competitive}\}$.

Question: What is the best possible competitive ratio for the online dial-a-ride problem?

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Theorem. The competitive ratio of IGNORE is 4. [Birx'20][Krumke'01]

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Theorem. The competitive ratio of IGNORE is 4. [Birx'20][Krumke'01]

 $\operatorname{Replan:}$ start optimal schedule whenever a request appears

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Theorem. The competitive ratio of IGNORE is 4. [Birx'20][Krumke'01]

$\operatorname{Replan:}$ start optimal schedule whenever a request appears

Theorem. The competitive ratio of REPLAN is in [2.5,4].

[Aussiello et al.'01][Birx'20]

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Theorem. The competitive ratio of IGNORE is 4. [Birx'20][Krumke'01]

$\operatorname{Replan:}$ start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].

[Aussiello et al.'01][Birx'20]

 \rightarrow "interpolate" between IGNORE and Replan

$LAZY_{\alpha}$

new request revealed:

▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:

• start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$

• OPT(t): offline optimum of requests revealed before time t

RESET: deliver loaded requests and return to origin

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - ▶ start schedule at time $t \ge \alpha \cdot OPT(t)$

OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin
 Example (α = 1.5):

Júlia Baligács, TU Darmstadt

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$

OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin
 Example (α = 1.5):

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - ▶ start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$

OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin
 Example (α = 1.5):

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$

OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin

Example ($\alpha = 1.5$):

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$

OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin
 Example (α = 1.5):

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$

OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin
 Example (α = 1.5):

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - ▶ start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$

OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - ▶ start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$
- OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin

$LAZY_{\alpha}$

new request revealed:

- ▶ if possible before time $\alpha \cdot OPT(t)$: RESET when idle:
 - start schedule at time $t \ge \alpha \cdot \operatorname{OPT}(t)$

OPT(t): offline optimum of requests revealed before time t
 RESET: deliver loaded requests and return to origin
 Example (α = 1.5):

$$LAZY_{\alpha} = \alpha \cdot (\alpha + \varepsilon + 1) + 1$$
$$OPT = \alpha + \varepsilon + 1$$

State of the art and our results

Theorem. $LAZY_{\alpha}$ is

- a) 2.457-competitive on every metric space, for $\alpha = 1.457$.
- b) 2.366-competitive on the half-line, for $\alpha = 1.366$.
- c) There are no better choices for α .

State of the art and our results

Theorem. $LAZY_{\alpha}$ is

- a) 2.457-competitive on every metric space, for $\alpha = 1.457$.
- b) 2.366-competitive on the half-line, for $\alpha = 1.366$.
- c) There are no better choices for α .

metric space	lower bound	old upper bound	new upper bound
general	2.05	2.618 [1]	2.457
line	2.05 [2]	2.618	2.457
half-line	1.9 [3]	2.618	2.366

[1] B., Disser, Mosis, Weckbecker (2022)

- [2] Birx, Disser, Schewior (2022)
- [3] Lipmann (2003)

Júlia Baligács, TU Darmstadt

State of the art and our results

Theorem. $LAZY_{\alpha}$ is

- a) 2.457-competitive on every metric space, for $\alpha = 1.457$.
- b) 2.366-competitive on the half-line, for $\alpha = 1.366$.
- c) There are no better choices for α .

metric space	lower bound	old upper bound	new upper bound
general	2.05	2.618 [1]	2.457
line	2.05 [2]	2.618	2.457
half-line	1.9 [3]	2.618	2.366

 \rightarrow key to analysis of $\rm LAZY:$ factor-revealing approach

[1] B., Disser, Mosis, Weckbecker (2022)

[2] Birx, Disser, Schewior (2022)

[3] Lipmann (2003)

Júlia Baligács, TU Darmstadt

Analysis of LAZY

$\overline{L}AZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

▶ start schedule at $t \ge \alpha \cdot OPT(t)$

Analysis of LAZY

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

▶ start schedule at $t \ge \alpha \cdot OPT(t)$

Analysis of ${\rm LAZY}$

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables

 $LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables

- t*: start time of last schedule
- s: duration of last schedule

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables

- t*: start time of last schedule
- s: duration of last schedule

 $\Rightarrow LAZY_{\alpha}(\sigma) = t^* + s$

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables

- t*: start time of last schedule
- s: duration of last schedule

 $\Rightarrow LAZY_{\alpha}(\sigma) = t^* + s$

2nd step: find inequalities

► $t^* \ge \alpha \cdot \text{Opt}, \dots$

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables

- t*: start time of last schedule
- s: duration of last schedule

 $\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma) = t^* + s$

2nd step: find inequalities $t^* \ge \alpha \cdot \text{OPT}, \dots$

Question: Is Thm implied?

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables

- t*: start time of last schedule
- s: duration of last schedule

 $\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma) = t^* + s$

2nd step: find inequalities $t^* \ge \alpha \cdot \text{Opt}, \dots$

Question: Is Thm implied?

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

• start schedule at $t \ge \alpha \cdot \operatorname{OPT}(t)$

solve "adversary problem"

 $\max \frac{t^* + s}{\text{OPT}}$ s.t. $t^* \ge \alpha \cdot \text{OPT}$

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables *t**: start time of last schedule *s*: duration of last schedule
⇒ LAZY_α(σ) = t* + s

2nd step: find inequalities $t^* \ge \alpha \cdot \text{OPT}, \dots$

Question: Is Thm implied?

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

• start schedule at $t \ge \alpha \cdot \operatorname{OPT}(t)$

solve "adversary problem"

 $\max \frac{t^* + s}{OPT}$ s.t. $t^* \ge \alpha \cdot OPT$: rescaling σ gives
(ALP) max $t^* + s$ s.t. OPT = 1 $t^* \ge \alpha \cdot OPT$

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables
t*: start time of last schedule
s: duration of last schedule
⇒ LAZY_α(σ) = t* + s

2nd step: find inequalities $t^* \ge \alpha \cdot \text{OPT}, \dots$

Question: Is Thm implied?

▶ solution of (ALP):
$$\alpha + 5$$
 ($t^* = \alpha, s = 5$)

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

• start schedule at $t \ge \alpha \cdot \operatorname{OPT}(t)$

solve "adversary problem"

 $\max \frac{t^* + s}{OPT}$ s.t. $t^* \ge \alpha \cdot OPT$: rescaling σ gives (ALP) max $t^* + s$ s.t. OPT = 1 $t^* \ge \alpha \cdot OPT$

Thm. For $\alpha = 1.457$, LAZY $_{\alpha}(\sigma) \leq (1 + \alpha) \text{Opt}(\sigma) \ \forall \sigma$

1st step: define suitable variables
t*: start time of last schedule
s: duration of last schedule
⇒ LAZY_α(σ) = t* + s

2nd step: find inequalities $t^* \ge \alpha \cdot \text{OPT}, \dots$

Question: Is Thm implied?

▶ solution of (ALP):
$$\alpha + 5$$
 ($t^* = \alpha, s = 5$)
→ add inequality $s \le 2 \cdot \text{OPT}$

$LAZY_{\alpha}$

new request revealed:

• if possible before $\alpha OPT(t)$: RESET when idle:

• start schedule at $t \ge \alpha \cdot \operatorname{OPT}(t)$

solve "adversary problem"

 $\max \frac{t^* + s}{OPT}$ s.t. $t^* \ge \alpha \cdot OPT$: rescaling σ gives (ALP) max $t^* + s$ s.t. OPT = 1 $t^* \ge \alpha \cdot OPT$

useful to assemble linear inequalities (for analysis of a fixed algorithm)

useful to assemble linear inequalities (for analysis of a fixed algorithm)

useful to assemble linear inequalities (for analysis of a fixed algorithm)

our solution requires discrete variables

useful to assemble linear inequalities (for analysis of a fixed algorithm)

 \blacktriangleright our solution requires discrete variables \rightarrow need dual solution for every Branch & Bound node

useful to assemble linear inequalities (for analysis of a fixed algorithm)

our solution requires discrete variables
 → need dual solution for every Branch & Bound node

our work: purely analytic proof informed by factor-revealing

- dial-a-ride problem: serve transportation requests appearing over time
 - minimize completion time

- dial-a-ride problem: serve transportation requests appearing over time
 - minimize completion time
- competitive analysis: compare performance to offline optimum

- dial-a-ride problem: serve transportation requests appearing over time
 - minimize completion time
- competitive analysis: compare performance to offline optimum
- ▶ IGNORE is 4-competitive and REPLAN is \geq 2.5-competitive

- dial-a-ride problem: serve transportation requests appearing over time
 - minimize completion time
- competitive analysis: compare performance to offline optimum
- ▶ IGNORE is 4-competitive and REPLAN is \geq 2.5-competitive

Theorem. LAZY is

- 2.457-competitive on general metric spaces,
- 2.366-competitive on the half-line.

- dial-a-ride problem: serve transportation requests appearing over time
 - minimize completion time
- competitive analysis: compare performance to offline optimum
- ▶ IGNORE is 4-competitive and REPLAN is \geq 2.5-competitive

Theorem. LAZY is

- 2.457-competitive on general metric spaces,
- 2.366-competitive on the half-line.

key to analysis: factor-revealing approach

method to assemble linear inequalities