
Tight Analysis of the Lazy Algorithm
for Open Online Dial-a-Ride

Júlia Baligács, Yann Disser, Farehe Soheil, David Weckbecker

TU Darmstadt, Germany

We acknowledge funding by DFG through grant DI 2041/2.



Example: taxi driver

→ A

→ B

→ C
→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

A

B
→ A

→ B

→ C
→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

A

B

→ A

→ B

→ C
→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

A

B

C

→ A

→ B

→ C

→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

B

C

→ A

→ B

→ C

→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

B

C

→ A

→ B

→ C

→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

C

→ A

→ B

→ C

→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

C

→ A

→ B

→ C
→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

→ A

→ B

→ C
→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

→ A

→ B

→ C
→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

A

B

C

→ A

→ B

→ C

→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



Example: taxi driver

A

B

C

→ A

→ B

→ C

→ C
t = 2

1 time unit

▶ our solution: completed after 7 time units

▶ optimal solution: completed after 5 time units

Júlia Baligács, TU Darmstadt 1/9



The online dial-a-ride problem

setting:

▶ metric space (M, d) with origin O

▶ single server with capacity c ∈ N
▶ can move with speed ≤ 1
▶ initially located at O

O

→ bi

bi

over time:
▶ requests ri = (ai , bi ; ti ) are revealed

▶ pick up at ai after time ti
▶ deliver at bi

objective:

▶ minimize completion time (without returning to origin)

online algorithm:
learns ri at time ti

offline optimum:
knows all requests in advance

Júlia Baligács, TU Darmstadt 2/9



The online dial-a-ride problem

setting:

▶ metric space (M, d) with origin O
▶ single server with capacity c ∈ N

▶ can move with speed ≤ 1
▶ initially located at O

O

→ bi

bi

over time:
▶ requests ri = (ai , bi ; ti ) are revealed

▶ pick up at ai after time ti
▶ deliver at bi

objective:

▶ minimize completion time (without returning to origin)

online algorithm:
learns ri at time ti

offline optimum:
knows all requests in advance

Júlia Baligács, TU Darmstadt 2/9



The online dial-a-ride problem

setting:

▶ metric space (M, d) with origin O
▶ single server with capacity c ∈ N

▶ can move with speed ≤ 1
▶ initially located at O

O

→ bi

bi

over time:
▶ requests ri = (ai , bi ; ti ) are revealed

▶ pick up at ai after time ti
▶ deliver at bi

objective:

▶ minimize completion time (without returning to origin)

online algorithm:
learns ri at time ti

offline optimum:
knows all requests in advance

Júlia Baligács, TU Darmstadt 2/9



The online dial-a-ride problem

setting:

▶ metric space (M, d) with origin O
▶ single server with capacity c ∈ N

▶ can move with speed ≤ 1
▶ initially located at O

O

→ bi

bi

over time:
▶ requests ri = (ai , bi ; ti ) are revealed

▶ pick up at ai after time ti
▶ deliver at bi

objective:

▶ minimize completion time (without returning to origin)

online algorithm:
learns ri at time ti

offline optimum:
knows all requests in advance

Júlia Baligács, TU Darmstadt 2/9



The online dial-a-ride problem

setting:

▶ metric space (M, d) with origin O
▶ single server with capacity c ∈ N

▶ can move with speed ≤ 1
▶ initially located at O

O

→ bi

bi

over time:
▶ requests ri = (ai , bi ; ti ) are revealed

▶ pick up at ai after time ti
▶ deliver at bi

objective:

▶ minimize completion time (without returning to origin)

online algorithm:
learns ri at time ti

offline optimum:
knows all requests in advance

Júlia Baligács, TU Darmstadt 2/9



Competitive analysis

Definition: for an online algorithm Alg

a) Alg(σ): completion time on request sequence σ

b) Opt(σ): completion time of offline optimum on σ

c) Alg is ρ-competitive if Alg(σ) ≤ ρ ·Opt(σ) for all σ.

d) The competitive ratio of Alg is inf{ρ : Alg is ρ-competitive}.

Question: What is the best possible competitive ratio for the
online dial-a-ride problem?

Júlia Baligács, TU Darmstadt 3/9



Competitive analysis

Definition: for an online algorithm Alg

a) Alg(σ): completion time on request sequence σ

b) Opt(σ): completion time of offline optimum on σ

c) Alg is ρ-competitive if Alg(σ) ≤ ρ ·Opt(σ) for all σ.

d) The competitive ratio of Alg is inf{ρ : Alg is ρ-competitive}.

Question: What is the best possible competitive ratio for the
online dial-a-ride problem?

Júlia Baligács, TU Darmstadt 3/9



Competitive analysis

Definition: for an online algorithm Alg

a) Alg(σ): completion time on request sequence σ

b) Opt(σ): completion time of offline optimum on σ

c) Alg is ρ-competitive if Alg(σ) ≤ ρ ·Opt(σ) for all σ.

d) The competitive ratio of Alg is inf{ρ : Alg is ρ-competitive}.

Question: What is the best possible competitive ratio for the
online dial-a-ride problem?

Júlia Baligács, TU Darmstadt 3/9



Competitive analysis

Definition: for an online algorithm Alg

a) Alg(σ): completion time on request sequence σ

b) Opt(σ): completion time of offline optimum on σ

c) Alg is ρ-competitive if Alg(σ) ≤ ρ ·Opt(σ) for all σ.

d) The competitive ratio of Alg is inf{ρ : Alg is ρ-competitive}.

Question: What is the best possible competitive ratio for the
online dial-a-ride problem?

Júlia Baligács, TU Darmstadt 3/9



Competitive analysis

Definition: for an online algorithm Alg

a) Alg(σ): completion time on request sequence σ

b) Opt(σ): completion time of offline optimum on σ

c) Alg is ρ-competitive if Alg(σ) ≤ ρ ·Opt(σ) for all σ.

d) The competitive ratio of Alg is inf{ρ : Alg is ρ-competitive}.

Question: What is the best possible competitive ratio for the
online dial-a-ride problem?

Júlia Baligács, TU Darmstadt 3/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1

→ 1 ⇒ Ignore = 3
Opt = 1 + ε

⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1

→ 1 ⇒ Ignore = 3
Opt = 1 + ε

⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1→ 1

⇒ Ignore = 3
Opt = 1 + ε

⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1→ 1 ⇒ Ignore = 3

Opt = 1 + ε
⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1→ 1 ⇒ Ignore = 3
Opt = 1 + ε

⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1→ 1 ⇒ Ignore = 3
Opt = 1 + ε

⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1→ 1 ⇒ Ignore = 3
Opt = 1 + ε

⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1→ 1 ⇒ Ignore = 3
Opt = 1 + ε

⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



Some simple algorithms
Ignore:

▶ when idle: start optimal schedule over unserved requests
▶ never interrupt a schedule

Example:

0 ε 1

→ 1→ 1 ⇒ Ignore = 3
Opt = 1 + ε

⇒ competitive ratio ≥ 3

Theorem. The competitive ratio of Ignore is 4. [Birx’20][Krumke’01]

Replan: start optimal schedule whenever a request appears

Theorem. The competitive ratio of Replan is in [2.5,4].
[Aussiello et al.’01][Birx’20]

→ “interpolate” between Ignore and Replan

Júlia Baligács, TU Darmstadt 4/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

t = 0

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

t = 0

0 ε 1

→ 1
t1 = 0Opt(t) = 1

→ wait until time α

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



The Lazy-algorithm

Lazyα

new request revealed:
▶ if possible before time α ·Opt(t): reset

when idle:
▶ start schedule at time t ≥ α ·Opt(t)

▶ Opt(t): offline optimum of requests revealed before time t

▶ reset: deliver loaded requests and return to origin

Example (α = 1.5):

0 ε 1

→ 1
t1 = 0

t = α

Opt(t) = 1

→ start schedule

t = α+ ε→ 1
t2 = α+ ε

→ 1
t2 = α+ ε

Opt(t) = α+ ε+ 1

reset possible by α+ 2ε

< α ·Opt(t)

t = α+ 2ε

Opt(t) = α+ ε+ 1

→ wait until α ·Opt(t)

t = α · (α+ ε+ 1)

Opt(t) = α+ ε+ 1

→ start schedule

Lazyα = α · (α+ ε+ 1) + 1

Opt = α+ ε+ 1

Júlia Baligács, TU Darmstadt 5/9



State of the art and our results

Theorem. Lazyα is

a) 2.457-competitive on every metric space, for α = 1.457.
b) 2.366-competitive on the half-line, for α = 1.366.
c) There are no better choices for α.

metric space lower bound old upper bound new upper bound

general 2.05 2.618 [1] 2.457
line 2.05 [2] 2.618 2.457

half-line 1.9 [3] 2.618 2.366

→ key to analysis of Lazy: factor-revealing approach

[1] B., Disser, Mosis, Weckbecker (2022)
[2] Birx, Disser, Schewior (2022)
[3] Lipmann (2003)

Júlia Baligács, TU Darmstadt 6/9



State of the art and our results

Theorem. Lazyα is

a) 2.457-competitive on every metric space, for α = 1.457.
b) 2.366-competitive on the half-line, for α = 1.366.
c) There are no better choices for α.

metric space lower bound old upper bound new upper bound

general 2.05 2.618 [1] 2.457
line 2.05 [2] 2.618 2.457

half-line 1.9 [3] 2.618 2.366

→ key to analysis of Lazy: factor-revealing approach

[1] B., Disser, Mosis, Weckbecker (2022)
[2] Birx, Disser, Schewior (2022)
[3] Lipmann (2003)

Júlia Baligács, TU Darmstadt 6/9



State of the art and our results

Theorem. Lazyα is

a) 2.457-competitive on every metric space, for α = 1.457.
b) 2.366-competitive on the half-line, for α = 1.366.
c) There are no better choices for α.

metric space lower bound old upper bound new upper bound

general 2.05 2.618 [1] 2.457
line 2.05 [2] 2.618 2.457

half-line 1.9 [3] 2.618 2.366

→ key to analysis of Lazy: factor-revealing approach

[1] B., Disser, Mosis, Weckbecker (2022)
[2] Birx, Disser, Schewior (2022)
[3] Lipmann (2003)

Júlia Baligács, TU Darmstadt 6/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Analysis of Lazy

Thm. For α = 1.457,
Lazyα(σ) ≤ (1 + α)Opt(σ) ∀σ

1st step: define suitable variables

▶ t∗: start time of last schedule

▶ s: duration of last schedule

⇒ Lazyα(σ) = t∗ + s

2nd step: find inequalities

▶ t∗ ≥ α ·Opt, ...

Question: Is Thm implied?

▶ solution of (ALP): α+ 5 (t∗ = α, s = 5)

→ add inequality s ≤ 2 ·Opt

Lazyα

new request revealed:
▶ if possible before αOpt(t): reset

when idle:
▶ start schedule at t ≥ α ·Opt(t)

▶ solve “adversary problem”

max
t∗ + s

Opt

s.t. t∗ ≥ α ·Opt

...

▶ rescaling σ gives

(ALP) max t∗ + s

s.t. Opt = 1

t∗ ≥ α ·Opt

...

Júlia Baligács, TU Darmstadt 7/9



Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

▶ useful to assemble linear inequalities (for analysis of a fixed algorithm)

define variables

find linear inequalities

solve LP

Is worst-case solution
realizable?

solution

realization gives

lower bound proof

dual optimal solution gives

upper bound proof

no yes

▶ our solution requires discrete variables
→ need dual solution for every Branch & Bound node

▶ our work: purely analytic proof informed by factor-revealing

Júlia Baligács, TU Darmstadt 8/9



Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

▶ useful to assemble linear inequalities (for analysis of a fixed algorithm)

define variables

find linear inequalities

solve LP

Is worst-case solution
realizable?

solution

realization gives

lower bound proof

dual optimal solution gives

upper bound proof

no yes

▶ our solution requires discrete variables
→ need dual solution for every Branch & Bound node

▶ our work: purely analytic proof informed by factor-revealing

Júlia Baligács, TU Darmstadt 8/9



Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

▶ useful to assemble linear inequalities (for analysis of a fixed algorithm)

define variables

find linear inequalities

solve LP

Is worst-case solution
realizable?

solution

realization gives

lower bound proof

dual optimal solution gives

upper bound proof

no yes

▶ our solution requires discrete variables

→ need dual solution for every Branch & Bound node

▶ our work: purely analytic proof informed by factor-revealing

Júlia Baligács, TU Darmstadt 8/9



Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

▶ useful to assemble linear inequalities (for analysis of a fixed algorithm)

define variables

find linear inequalities

solve LP

Is worst-case solution
realizable?

solution

realization gives

lower bound proof

dual optimal solution gives

upper bound proof

no yes

▶ our solution requires discrete variables
→ need dual solution for every Branch & Bound node

▶ our work: purely analytic proof informed by factor-revealing

Júlia Baligács, TU Darmstadt 8/9



Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

▶ useful to assemble linear inequalities (for analysis of a fixed algorithm)

define variables

find linear inequalities

solve LP

Is worst-case solution
realizable?

solution

realization gives

lower bound proof

dual optimal solution gives

upper bound proof

no yes

▶ our solution requires discrete variables
→ need dual solution for every Branch & Bound node

▶ our work: purely analytic proof informed by factor-revealing

Júlia Baligács, TU Darmstadt 8/9



Takeaways

▶ dial-a-ride problem: serve transportation requests appearing over time

▶ minimize completion time

▶ competitive analysis: compare performance to offline optimum

▶ Ignore is 4-competitive and Replan is ≥ 2.5-competitive

Theorem. Lazy is

▶ 2.457-competitive on general metric spaces,

▶ 2.366-competitive on the half-line.

▶ key to analysis: factor-revealing approach

▶ method to assemble linear inequalities

Júlia Baligács, TU Darmstadt 9/9



Takeaways

▶ dial-a-ride problem: serve transportation requests appearing over time

▶ minimize completion time

▶ competitive analysis: compare performance to offline optimum

▶ Ignore is 4-competitive and Replan is ≥ 2.5-competitive

Theorem. Lazy is

▶ 2.457-competitive on general metric spaces,

▶ 2.366-competitive on the half-line.

▶ key to analysis: factor-revealing approach

▶ method to assemble linear inequalities

Júlia Baligács, TU Darmstadt 9/9



Takeaways

▶ dial-a-ride problem: serve transportation requests appearing over time

▶ minimize completion time

▶ competitive analysis: compare performance to offline optimum

▶ Ignore is 4-competitive and Replan is ≥ 2.5-competitive

Theorem. Lazy is

▶ 2.457-competitive on general metric spaces,

▶ 2.366-competitive on the half-line.

▶ key to analysis: factor-revealing approach

▶ method to assemble linear inequalities

Júlia Baligács, TU Darmstadt 9/9



Takeaways

▶ dial-a-ride problem: serve transportation requests appearing over time

▶ minimize completion time

▶ competitive analysis: compare performance to offline optimum

▶ Ignore is 4-competitive and Replan is ≥ 2.5-competitive

Theorem. Lazy is

▶ 2.457-competitive on general metric spaces,

▶ 2.366-competitive on the half-line.

▶ key to analysis: factor-revealing approach

▶ method to assemble linear inequalities

Júlia Baligács, TU Darmstadt 9/9



Takeaways

▶ dial-a-ride problem: serve transportation requests appearing over time

▶ minimize completion time

▶ competitive analysis: compare performance to offline optimum

▶ Ignore is 4-competitive and Replan is ≥ 2.5-competitive

Theorem. Lazy is

▶ 2.457-competitive on general metric spaces,

▶ 2.366-competitive on the half-line.

▶ key to analysis: factor-revealing approach

▶ method to assemble linear inequalities

Júlia Baligács, TU Darmstadt 9/9


