Tight Analysis of the Lazy Algorithm for Open Online Dial-a-Ride

Júlia Baligács, Yann Disser, Farehe Soheil, David Weckbecker TU Darmstadt, Germany

We acknowledge funding by DFG through grant DI 2041/2.

Example: taxi driver

- our solution: completed after 7 time units

Example: taxi driver

- our solution: completed after 7 time units

Example: taxi driver

- our solution: completed after 7 time units
- optimal solution: completed after 5 time units

The online dial-a-ride problem

setting:

- metric space (M, d) with origin \mathcal{O}

The online dial-a-ride problem

setting:

- metric space (M, d) with origin \mathcal{O}
- single server with capacity $c \in \mathbb{N}$
- can move with speed ≤ 1
- initially located at \mathcal{O}

The online dial-a-ride problem

setting:
\rightarrow metric space (M, d) with origin \mathcal{O}

- single server with capacity $c \in \mathbb{N}$
- can move with speed ≤ 1
- initially located at \mathcal{O}

over time:
- requests $r_{i}=\left(a_{i}, b_{i} ; t_{i}\right)$ are revealed
- pick up at a_{i} after time t_{i}
- deliver at b_{i}

The online dial-a-ride problem

setting:
\rightarrow metric space (M, d) with origin \mathcal{O}

- single server with capacity $c \in \mathbb{N}$
- can move with speed ≤ 1
- initially located at \mathcal{O}

over time:
\rightarrow requests $r_{i}=\left(a_{i}, b_{i} ; t_{i}\right)$ are revealed
- pick up at a_{i} after time t_{i}
- deliver at b_{i}
objective:
- minimize completion time (without returning to origin)

The online dial-a-ride problem

setting:

- metric space (M, d) with origin \mathcal{O}
- single server with capacity $c \in \mathbb{N}$
- can move with speed ≤ 1
- initially located at \mathcal{O}

over time:
- requests $r_{i}=\left(a_{i}, b_{i} ; t_{i}\right)$ are revealed
- pick up at a_{i} after time t_{i}
- deliver at b_{i}
objective:
- minimize completion time (without returning to origin)
online algorithm:
learns r_{i} at time t_{i}
offline optimum:
knows all requests in advance

Competitive analysis

Definition: for an online algorithm Alg
a) $\operatorname{ALG}(\sigma)$: completion time on request sequence σ

Competitive analysis

Definition: for an online algorithm AlG
a) $\operatorname{AlG}(\sigma)$: completion time on request sequence σ
b) $\operatorname{Opt}(\sigma)$: completion time of offline optimum on σ

Competitive analysis

Definition: for an online algorithm AlG

a) $\operatorname{AlG}(\sigma)$: completion time on request sequence σ
b) $\operatorname{Opt}(\sigma)$: completion time of offline optimum on σ
c) AlG is ρ-competitive if $\operatorname{ALG}(\sigma) \leq \rho \cdot \operatorname{OPT}(\sigma)$ for all σ.

Competitive analysis

Definition: for an online algorithm AlG

a) $\operatorname{ALG}(\sigma)$: completion time on request sequence σ
b) $\operatorname{Opt}(\sigma)$: completion time of offline optimum on σ
c) AlG is ρ-competitive if $\operatorname{ALG}(\sigma) \leq \rho \cdot \operatorname{OPT}(\sigma)$ for all σ.
d) The competitive ratio of ALG is $\inf \{\rho$: ALG is ρ-competitive $\}$.

Competitive analysis

Definition: for an online algorithm AlG

a) $\operatorname{AlG}(\sigma)$: completion time on request sequence σ
b) $\operatorname{Opt}(\sigma)$: completion time of offline optimum on σ
c) AlG is ρ-competitive if $\operatorname{ALG}(\sigma) \leq \rho \cdot \operatorname{OPT}(\sigma)$ for all σ.
d) The competitive ratio of $A_{L G}$ is $\inf \{\rho$: ALG is ρ-competitive $\}$.

Question: What is the best possible competitive ratio for the online dial-a-ride problem?

Some simple algorithms

Ignore:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Some simple algorithms

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Some simple algorithms

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Some simple algorithms

IGNORE:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

$$
\Rightarrow \text { IGNORE }=3
$$

Some simple algorithms

Ignore:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

$$
\begin{gathered}
\Rightarrow \text { IGNORE }=3 \\
\text { OPT }=1+\varepsilon \\
\Rightarrow \text { competitive ratio } \geq 3
\end{gathered}
$$

Some simple algorithms

Ignore:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Theorem. The competitive ratio of IGNORE is 4.

Some simple algorithms

Ignore:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

$$
\begin{gathered}
\Rightarrow \text { IGNORE }=3 \\
\text { OPT }=1+\varepsilon \\
\Rightarrow \text { competitive ratio } \geq 3
\end{gathered}
$$

Theorem. The competitive ratio of Ignore is 4.
[Birx'20][Krumke'01]
REplan: start optimal schedule whenever a request appears

Some simple algorithms

Ignore:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Theorem. The competitive ratio of Ignore is 4.
[Birx'20][Krumke'01]
Replan: start optimal schedule whenever a request appears
Theorem. The competitive ratio of REPLAN is in [2.5,4].
[Aussiello et al.'01][Birx'20]

Some simple algorithms

Ignore:

- when idle: start optimal schedule over unserved requests
- never interrupt a schedule

Example:

Theorem. The competitive ratio of Ignore is 4.
[Birx'20][Krumke'01]
REplan: start optimal schedule whenever a request appears
Theorem. The competitive ratio of REPLAN is in [2.5,4].
[Aussiello et al.'01][Birx'20]
\rightarrow "interpolate" between Ignore and Replan

The LAZY-algorithm

> | LAZY_{α} |
| :--- |
| new request revealed: |
| - if possible before time $\alpha \cdot \operatorname{OPT}(t): \operatorname{RESET}$ |
| when idle: |
| \quad start schedule at time $t \geq \alpha \cdot \operatorname{OPT}(t)$ |

- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

The LAZY-algorithm

> | LAZY_{α} |
| :--- |
| new request revealed: |
| - if possible before time $\alpha \cdot \operatorname{OPT}(t): \operatorname{RESET}$ |
| when idle: |
| \quad start schedule at time $t \geq \alpha \cdot \operatorname{OPT}(t)$ |

- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

$$
t=0
$$

The LAZY-algorithm

LAZY_{α}
new request revealed:
- if possible before time $\alpha \cdot \mathrm{OPT}(t): \operatorname{RESET}$
when idle:
- start schedule at time $t \geq \alpha \cdot \mathrm{OPT}(t)$

- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

$$
\begin{gathered}
t=0 \\
\operatorname{Opt}(t)=1
\end{gathered}
$$

\rightarrow wait until time α

\rightarrow wait until time α

The LAZY-algorithm

LAZY_{α}
new request revealed:
- if possible before time $\alpha \cdot \mathrm{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at time $t \geq \alpha \cdot \mathrm{OPT}(t)$

- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

$$
\begin{gathered}
t=\alpha \\
\operatorname{Opt}(t)=1
\end{gathered}
$$

\rightarrow start schedule

The LAZY-algorithm

LAZY_{α}
new request revealed:

- if possible before time $\alpha \cdot \operatorname{OPT}(t)$: RESET when idle:
- start schedule at time $t \geq \alpha \cdot \operatorname{OpT}(t)$
- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

$$
t=\alpha+\varepsilon
$$

The LAZY-algorithm

LAZY_{α}
new request revealed:

- if possible before time $\alpha \cdot \operatorname{OPT}(t)$: RESET when idle:
- start schedule at time $t \geq \alpha \cdot \operatorname{OpT}(t)$
- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

The LAZY-algorithm

LAZY_{α}
new request revealed:

- if possible before time $\alpha \cdot \operatorname{OPT}(t)$: RESET when idle:
- start schedule at time $t \geq \alpha \cdot \operatorname{OpT}(t)$
- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

$$
\begin{gathered}
t=\alpha+\varepsilon \\
\operatorname{Opt}(t)=\alpha+\varepsilon+1 \\
\text { reset possible by } \alpha+2 \varepsilon \\
<\alpha \cdot \operatorname{OPT}(t)
\end{gathered}
$$

The LAZY-algorithm

LAZY_{α}
new request revealed:

- if possible before time $\alpha \cdot \operatorname{OPT}(t)$: RESET when idle:
- start schedule at time $t \geq \alpha \cdot \operatorname{OpT}(t)$
- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

$$
\begin{gathered}
t=\alpha+2 \varepsilon \\
\operatorname{OPT}(t)=\alpha+\varepsilon+1 \\
\rightarrow \text { wait until } \alpha \cdot \operatorname{OPT}(t)
\end{gathered}
$$

The LAZY-algorithm

LAZY_{α}
new request revealed:

- if possible before time $\alpha \cdot \operatorname{OPT}(t)$: RESET when idle:
- start schedule at time $t \geq \alpha \cdot \operatorname{OpT}(t)$
- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

$$
\begin{gathered}
t=\alpha \cdot(\alpha+\varepsilon+1) \\
\operatorname{OPT}(t)=\alpha+\varepsilon+1
\end{gathered}
$$

\rightarrow start schedule

The LAZY-algorithm

LAZY_{α}
new request revealed:

- if possible before time $\alpha \cdot \operatorname{OPT}(t)$: RESET when idle:
- start schedule at time $t \geq \alpha \cdot \operatorname{OpT}(t)$
- $\operatorname{Opt}(t)$: offline optimum of requests revealed before time t
- RESET: deliver loaded requests and return to origin

Example ($\alpha=1.5$):

$$
\begin{gathered}
\operatorname{LAZY}_{\alpha}=\alpha \cdot(\alpha+\varepsilon+1)+1 \\
\text { OPT }=\alpha+\varepsilon+1
\end{gathered}
$$

State of the art and our results

Theorem. LAZY_{α} is
a) 2.457-competitive on every metric space, for $\alpha=1.457$.
b) 2.366-competitive on the half-line, for $\alpha=1.366$.
c) There are no better choices for α.

State of the art and our results

Theorem. LAZY_{α} is
a) 2.457-competitive on every metric space, for $\alpha=1.457$.
b) 2.366-competitive on the half-line, for $\alpha=1.366$.
c) There are no better choices for α.

metric space	lower bound	old upper bound	new upper bound
general	2.05	$2.618[1]$	$\mathbf{2 . 4 5 7}$
line	$2.05[2]$	2.618	2.457
half-line	$1.9[3]$	2.618	$\mathbf{2 . 3 6 6}$

[1] B., Disser, Mosis, Weckbecker (2022)
[2] Birx, Disser, Schewior (2022)
[3] Lipmann (2003)

State of the art and our results

Theorem. LAZY_{α} is
a) 2.457-competitive on every metric space, for $\alpha=1.457$.
b) 2.366-competitive on the half-line, for $\alpha=1.366$.
c) There are no better choices for α.

metric space	lower bound	old upper bound	new upper bound
general	2.05	$2.618[1]$	$\mathbf{2 . 4 5 7}$
line	$2.05[2]$	2.618	2.457
half-line	$1.9[3]$	2.618	$\mathbf{2 . 3 6 6}$

\rightarrow key to analysis of LAZY: factor-revealing approach
[1] B., Disser, Mosis, Weckbecker (2022)
[2] Birx, Disser, Schewior (2022)
[3] Lipmann (2003)

Analysis of LAZY

Analysis of LAZY

$$
\begin{aligned}
& \text { Thm. For } \alpha=1.457 \text {, } \\
& \operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{Opt}(\sigma) \forall \sigma
\end{aligned}
$$

Analysis of LAZY

$$
\begin{aligned}
& \text { Thm. For } \alpha=1.457 \text {, } \\
& \operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{OPT}(\sigma) \forall \sigma
\end{aligned}
$$

LAZY_{α}
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

1st step: define suitable variables

Analysis of LAZY
Thm. For $\alpha=1.457$, $\operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{Opt}(\sigma) \forall \sigma$

LAZY $_{\alpha}$
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

1st step: define suitable variables

- t^{*} : start time of last schedule
- s : duration of last schedule

Analysis of LAZY
Thm. For $\alpha=1.457$,
$\operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{Opt}(\sigma) \forall \sigma$

LAZY $_{\alpha}$
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

1st step: define suitable variables

- t^{*} : start time of last schedule
- s : duration of last schedule
$\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma)=t^{*}+s$
.

[^0][^1]Analysis of LAZY
Thm. For $\alpha=1.457$,
$\operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{Opt}(\sigma) \forall \sigma$

LAZY_{α}
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

1st step: define suitable variables

- t^{*} : start time of last schedule
- s : duration of last schedule
$\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma)=t^{*}+s$
2nd step: find inequalities
- $t^{*} \geq \alpha \cdot$ Opt, \ldots

Analysis of LAZY
Thm. For $\alpha=1.457$, $\operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{Opt}(\sigma) \forall \sigma$

LAZY_{α}
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

1st step: define suitable variables

- t^{*} : start time of last schedule
- s : duration of last schedule
$\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma)=t^{*}+s$
2nd step: find inequalities
- $t^{*} \geq \alpha$. Opt, \ldots

Question: Is Thm implied?

Analysis of LAZY

$$
\begin{aligned}
& \text { Thm. For } \alpha=1.457 \text {, } \\
& \operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{Opt}(\sigma) \forall \sigma
\end{aligned}
$$

1st step: define suitable variables

- t^{*} : start time of last schedule
- s : duration of last schedule $\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma)=t^{*}+s$

2nd step: find inequalities

- $t^{*} \geq \alpha$. Opt, \ldots

Question: Is Thm implied?

LAZY_{α}
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

- solve "adversary problem"

$$
\begin{aligned}
& \max \frac{t^{*}+s}{\mathrm{OPT}} \\
& \text { s.t. } t^{*} \geq \alpha \cdot \mathrm{OPT}
\end{aligned}
$$

Analysis of LAZY

$$
\begin{aligned}
& \text { Thm. For } \alpha=1.457 \text {, } \\
& \operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{Opt}(\sigma) \forall \sigma
\end{aligned}
$$

1st step: define suitable variables

- t^{*} : start time of last schedule
- s : duration of last schedule
$\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma)=t^{*}+s$
2nd step: find inequalities
- $t^{*} \geq \alpha$. Opt, \ldots

Question: Is Thm implied?

LAZY $_{\alpha}$
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

- solve "adversary problem"

$$
\max \frac{t^{*}+s}{\mathrm{OPT}}
$$

$$
\text { s.t. } t^{*} \geq \alpha \cdot \text { OPT }
$$

- rescaling σ gives
(ALP) $\max t^{*}+s$

$$
\text { s.t. } \mathrm{OPT}=1
$$

$$
t^{*} \geq \alpha \cdot \mathrm{OPT}
$$

Analysis of LAZY

$$
\begin{aligned}
& \text { Thm. For } \alpha=1.457 \text {, } \\
& \operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{OPT}(\sigma) \forall \sigma
\end{aligned}
$$

1st step: define suitable variables

- t^{*} : start time of last schedule
- s : duration of last schedule
$\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma)=t^{*}+s$
2nd step: find inequalities
- $t^{*} \geq \alpha \cdot$ Opt, \ldots

Question: Is Thm implied?

- solution of (ALP): $\alpha+5\left(t^{*}=\alpha, s=5\right)$

LAZY $_{\alpha}$
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

- solve "adversary problem"

$$
\begin{aligned}
& \max \frac{t^{*}+s}{\mathrm{OPT}} \\
& \text { s.t. } t^{*} \geq \alpha \cdot \mathrm{OPT}
\end{aligned}
$$

- rescaling σ gives
(ALP) $\max t^{*}+s$

$$
\text { s.t. } \mathrm{OPT}=1
$$

$$
t^{*} \geq \alpha \cdot \mathrm{OPT}
$$

Analysis of LAZY

$$
\begin{aligned}
& \text { Thm. For } \alpha=1.457 \text {, } \\
& \operatorname{LAZY}_{\alpha}(\sigma) \leq(1+\alpha) \operatorname{Opt}(\sigma) \forall \sigma
\end{aligned}
$$

LAZY $_{\alpha}$
new request revealed:
\quad if possible before $\alpha \operatorname{OPT}(t): \operatorname{RESET}$
when idle:
\quad start schedule at $t \geq \alpha \cdot \operatorname{OPT}(t)$

1st step: define suitable variables

- t^{*} : start time of last schedule
- s : duration of last schedule
$\Rightarrow \operatorname{LAZY}_{\alpha}(\sigma)=t^{*}+s$
2nd step: find inequalities
- $t^{*} \geq \alpha \cdot$ Opt, \ldots

Question: Is Thm implied?

- solution of (ALP): $\alpha+5\left(t^{*}=\alpha, s=5\right)$
\rightarrow add inequality $s \leq 2$. OPT

Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

- useful to assemble linear inequalities (for analysis of a fixed algorithm)

Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

- useful to assemble linear inequalities (for analysis of a fixed algorithm)

Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

- useful to assemble linear inequalities (for analysis of a fixed algorithm)

- our solution requires discrete variables

Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

- useful to assemble linear inequalities (for analysis of a fixed algorithm)

- our solution requires discrete variables
\rightarrow need dual solution for every Branch \& Bound node

Factor-revealing approach [Bienkowski, Kraska, Liu (2021)]

- useful to assemble linear inequalities (for analysis of a fixed algorithm)

- our solution requires discrete variables
\rightarrow need dual solution for every Branch \& Bound node
- our work: purely analytic proof informed by factor-revealing

Takeaways

- dial-a-ride problem: serve transportation requests appearing over time
- minimize completion time

Takeaways

- dial-a-ride problem: serve transportation requests appearing over time
- minimize completion time
- competitive analysis: compare performance to offline optimum

Takeaways

- dial-a-ride problem: serve transportation requests appearing over time
- minimize completion time
- competitive analysis: compare performance to offline optimum
- Ignore is 4 -competitive and Replan is ≥ 2.5-competitive

Takeaways

- dial-a-ride problem: serve transportation requests appearing over time
- minimize completion time
- competitive analysis: compare performance to offline optimum
- Ignore is 4 -competitive and Replan is ≥ 2.5-competitive

Theorem. LAZY is

- 2.457-competitive on general metric spaces,
- 2.366-competitive on the half-line.

Takeaways

- dial-a-ride problem: serve transportation requests appearing over time
- minimize completion time
- competitive analysis: compare performance to offline optimum
- Ignore is 4 -competitive and REPLAN is ≥ 2.5-competitive

Theorem. LAZY is

- 2.457-competitive on general metric spaces,
- 2.366-competitive on the half-line.
- key to analysis: factor-revealing approach
- method to assemble linear inequalities

[^0]: 都

[^1]: .

