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Generalized partial vertex cover: choose k vertices that cover at
least c; edges from Ej, at least ¢, edges from Ep,..., at least ¢,

edges from E,,.
E;iscolorclassiand E = EiWEy ... W E,,.

C\=2
C,=1
C‘S =3
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What can be achieved?

Known results:

>

>
>

>
>

Theorem (Bandyapadhyay, Friggstad, and M.)

1.
2.

O(log m)-approx on k where m is the number of color classes.
Tight! Bera et al. 2014.

~ 2-approx on k for constant m. Bandyapadhyay et al. 2021.
find k vertices that cover at least 0.63% of each coverage
requirements if m is constant, Chekuri et al. 2009.

no FPT in k.

APX-hard even for m = 1. So no (1 — ¢)-approx on ¢;'s in
time f(m,¢) - poly(n).

no a-approx for o < 1 in time f(k) - n°) assuming ETH.

m-k2-lo
(1 — €)-approx on ¢;’s in time 2005 . poly(n).
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Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

k
» if ¢ is small (< Q)

1. label coding: randomly assign one label to each edge among ¢
many labels

2. with “good” probability the OPT edges are all labeled
differently

3. guess all the configuration of vertices in OPT. k¢ many
guesses

4. brute-force
K

> if cis large (> Q)
1.y >dr...>d,
2. clboose the first k vertices
3. > d; > c (edges are double counted)
i=1
4. the total number of double counted edges is at most (%) <e€-c



Our algorithm, small color classes

()

for small color classes < 22~ do label-coding as before and guess
the configuration of the vertices in OPT on these color classes.

¢=2 lsh-\..“ eolor \os)
.= 2
Cq= T erye colov clast
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Our algorithm, large color classes

G=1 ]xh\..ll ealor clos)
C,= 2
targe colov class

ls]\1y - Ylue vekices

AT

Given the configuration of small color classes in OPT, we use DP
to find a solution.

c’: the coverage requirements for a subset of large color classes
T: the configuration of some small color classes in OPT.

Order vertices vy, vo, v3, ..., V,

g(k' i, T,c") = yes iif there are k' vertices among the first i vertices
compatible with T and

cover ¢’ on large color classes
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THANK YOU!



