Generalized Partial Vertex Cover

Sayan Bandyapadhyay !

Zachary Friggstad 2 and Ramin Mousavi 2

IPortland State University

2University of Alberta

WADS 2023




Partial vertex cover
Vertex cover: choose k vertices that cover all the edges.

<>



Partial vertex cover
Vertex cover: choose k vertices that cover all the edges.

>

Partial vertex cover: choose k vertices that cover at least ¢ edges.
c is the coverage requirement.



Partial vertex cover
Vertex cover: choose k vertices that cover all the edges.

<>

Partial vertex cover: choose k vertices that cover at least ¢ edges.
c is the coverage requirement.

Generalized partial vertex cover: choose k vertices that cover at
least c; edges from Ej, at least ¢, edges from Ep,..., at least ¢,

edges from E,,.
E;iscolorclassiand E = EiWEy ... W E,,.

C\=2
C,=1
C‘S =3



Motivation

P> Vertex cover:
1. 2-approx, folklore.
2. FPT in k, i.e., solvable in f(k) - poly(n) time, Chen et al.
2005.



Motivation

» Vertex cover:

1. 2-approx, folklore.
2. FPT in k, i.e., solvable in f(k) - poly(n) time, Chen et al.
2005.

» Partial vertex cover:

1. 2-approx on k, Bshouty and Burroughs 1998.
3/4-approx on ¢, Ageev and Sviridenko 1999.

FPT in c, Blaser 2003.

no FPT in k, Guo et al. 2005.

APX-hard on ¢ Petrank 1994.

1 — € approx on c in time f(k,¢) - poly(n), Marx 2008.

ok wN



Motivation

» Vertex cover:

1. 2-approx, folklore.
2. FPT in k, i.e., solvable in f(k) - poly(n) time, Chen et al.
2005.

» Partial vertex cover:

1. 2-approx on k, Bshouty and Burroughs 1998.
3/4-approx on ¢, Ageev and Sviridenko 1999.

FPT in c, Blaser 2003.

no FPT in k, Guo et al. 2005.

APX-hard on ¢ Petrank 1994.

1 — ¢ approx on c in time f(k,¢€) - poly(n), Marx 2008.

ok wN

For generalized partial vertex cover, what can be achieved?



What can be achieved?

Known results:

>

>
>

>
>

Theorem (Bandyapadhyay, Friggstad, and M.)

1.
2.

O(log m)-approx on k where m is the number of color classes.
Tight! Bera et al. 2014.

~ 2-approx on k for constant m. Bandyapadhyay et al. 2021.
find k vertices that cover at least 0.63% of each coverage
requirements if m is constant, Chekuri et al. 2009.

no FPT in k.

APX-hard even for m = 1. So no (1 — ¢)-approx on ¢;'s in
time f(m,¢) - poly(n).

no a-approx for o < 1 in time f(k) - n°) assuming ETH.

m-k2-lo
(1 — €)-approx on ¢;’s in time 2005 . poly(n).



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

» if ¢ is small (< @)



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

o ()
> if ¢ is small (< *2%):
1. label coding: randomly assign one label to each edge among ¢
many labels



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

o ().
> if ¢ is small (< *2%):
1. label coding: randomly assign one label to each edge among ¢
many labels
2. with “good” probability the OPT edges are all labeled
differently



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

k
» if ¢ is small (< Q)
1. label coding: randomly assign one label to each edge among ¢

many labels
2. with “good” probability the OPT edges are all labeled

differently
3. guess all the configuration of vertices in OPT. k¢ many

guesses



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

k
» if ¢ is small (< Q)

1. label coding: randomly assign one label to each edge among ¢
many labels

2. with “good” probability the OPT edges are all labeled
differently

3. guess all the configuration of vertices in OPT. k¢ many
guesses

4. brute-force



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

k
» if ¢ is small (< Q)

1. label coding: randomly assign one label to each edge among ¢
many labels

2. with “good” probability the OPT edges are all labeled
differently

3. guess all the configuration of vertices in OPT. k¢ many
guesses

4. brute-force
K

> if cis large (> Q)



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

k
» if ¢ is small (< Q)
1. label coding: randomly assign one label to each edge among ¢
many labels
2. with “good” probability the OPT edges are all labeled
differently
3. guess all the configuration of vertices in OPT. k¢ many
guesses

4. brute-force
K

> if cis large (> Q)
1.di>dy...>d,



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

k
» if ¢ is small (< Q)

1. label coding: randomly assign one label to each edge among ¢
many labels

2. with “good” probability the OPT edges are all labeled
differently

3. guess all the configuration of vertices in OPT. k¢ many
guesses

4. brute-force
K

> if cis large (> Q)
1. di>dr...>d,
2. choose the first k vertices



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

» if ¢ is small (< @)

1.

4.

> if cis large (> Q)
1.
2.

3.

label coding: randomly assign one label to each edge among ¢
many labels

. with “good"” probability the OPT edges are all labeled

differently

. guess all the configuration of vertices in OPT. k¢ many

guesses

brute-force
K

d>dy...>d,
choose the first k vertices

k
>~ d; > c (edges are double counted)
i=1



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least ¢ edges.

k
» if ¢ is small (< Q)

1. label coding: randomly assign one label to each edge among ¢
many labels

2. with “good” probability the OPT edges are all labeled
differently

3. guess all the configuration of vertices in OPT. k¢ many
guesses

4. brute-force
K

> if cis large (> Q)
1.y >dr...>d,
2. clboose the first k vertices
3. > d; > c (edges are double counted)
i=1
4. the total number of double counted edges is at most (%) <e€-c



Our algorithm, small color classes

()

for small color classes < 22~ do label-coding as before and guess
the configuration of the vertices in OPT on these color classes.

¢=2 lsh-\..“ eolor \os)
.= 2
Cq= T erye colov clast

ov‘(‘ - o\ue \lel‘\(QS

Ao



Our algorithm, large color classes

=72 ]xh\..ll eolor oty
C,= 2
czr'j’ targe colov class

o‘)‘r - o\ue vu‘\\‘({S

AT



Our algorithm, large color classes

G=1 ]xs"..ll ealor clos)
C,= 2
targe colov class

ls]\1y - Ylue vekices

AT

Given the configuration of small color classes in OPT, we use DP
to find a solution.

c’: the coverage requirements for a subset of large color classes
T: the configuration of some small color classes in OPT.

Order vertices vy, vo, v3, ..., V,



Our algorithm, large color classes

G=1 ]xh\..ll ealor clos)
C,= 2
targe colov class

ls]\1y - Ylue vekices

AT

Given the configuration of small color classes in OPT, we use DP
to find a solution.

c’: the coverage requirements for a subset of large color classes
T: the configuration of some small color classes in OPT.

Order vertices vy, vo, v3, ..., V,

g(k' i, T,c") = yes iif there are k' vertices among the first i vertices
compatible with T and

cover ¢’ on large color classes



Running time
Let's look at our DP table:
g(k/7 i7 T7 CI)

T: the configuration of some small color classes in OPT.
c’: the coverage requirements for a subset of large color classes



Running time
Let's look at our DP table:
g(k/7 i7 T7 CI)

T: the configuration of some small color classes in OPT.
c’: the coverage requirements for a subset of large color classes

» The number of possibilities for T is f(k, m,€).



Running time
Let's look at our DP table:
g(k',i, T,c)
T: the configuration of some small color classes in OPT.
c¢’: the coverage requirements for a subset of large color classes

» The number of possibilities for T is f(k, m,€).

» The number of possibilities for ¢’ is (the number of edges)™.
Not FPT in m :(



Running time

Let's look at our DP table:
g(k/7 i7 T7 CI)

T: the configuration of some small color classes in OPT.
c’: the coverage requirements for a subset of large color classes

» The number of possibilities for T is f(k, m,€).

» The number of possibilities for ¢’ is (the number of edges)™.
Not FPT in m :(

» Standard scaling and rounding the degree of vertices in large
color classes. Then, the number of possibilities reduces to

().



Running time
Let's look at our DP table:
g(k/7 i7 T7 CI)

T: the configuration of some small color classes in OPT.
c’: the coverage requirements for a subset of large color classes

» The number of possibilities for T is f(k, m,€).

» The number of possibilities for ¢’ is (the number of edges)™.
Not FPT in m :(

» Standard scaling and rounding the degree of vertices in large
color classes. Then, the number of possibilities reduces to
k
()™
Conclusion: we have a tight FPT approximation scheme in
parameters k, m, and e.



Running time
Let's look at our DP table:
g(k',i, T,c)
T: the configuration of some small color classes in OPT.
c¢’: the coverage requirements for a subset of large color classes

» The number of possibilities for T is f(k, m,€).

» The number of possibilities for ¢’ is (the number of edges)™.
Not FPT in m :(

» Standard scaling and rounding the degree of vertices in large
color classes. Then, the number of possibilities reduces to
k
()™
Conclusion: we have a tight FPT approximation scheme in
parameters k, m, and e.

THANK YOU!



