Generalized Partial Vertex Cover

Sayan Bandyapadhyay 1 Zachary Friggstad 2 and Ramin Mousavi 2

¹Portland State University

²University of Alberta

WADS 2023

Partial vertex cover

Vertex cover: choose k vertices that cover all the edges.

Partial vertex cover

Vertex cover: choose k vertices that cover all the edges.

Partial vertex cover: choose *k* vertices that cover at least c edges. *c* is the coverage requirement.

Partial vertex cover

Vertex cover: choose k vertices that cover all the edges.

Partial vertex cover: choose *k* vertices that cover at least c edges. *c* is the coverage requirement.

Generalized partial vertex cover: choose k vertices that cover at least c_1 edges from E_1 , at least c_2 edges from E_2 ,..., at least c_m edges from E_m .

 E_i is color class *i* and $E = E_1 \uplus E_2 \ldots \uplus E_m$.

Motivation

► Vertex cover:

- 1. 2-approx, folklore.
- 2. FPT in k, i.e., solvable in $f(k) \cdot poly(n)$ time, Chen et al. 2005.

Motivation

Vertex cover:

- 1. 2-approx, folklore.
- 2. FPT in k, i.e., solvable in $f(k) \cdot poly(n)$ time, Chen et al. 2005.
- Partial vertex cover:
 - 1. 2-approx on k, Bshouty and Burroughs 1998.
 - 2. 3/4-approx on c, Ageev and Sviridenko 1999.
 - 3. FPT in c, Bläser 2003.
 - 4. no FPT in k, Guo et al. 2005.
 - 5. APX-hard on c Petrank 1994.
 - 6. 1ϵ approx on c in time $f(k, \epsilon) \cdot \text{poly}(n)$, Marx 2008.

Motivation

Vertex cover:

- 1. 2-approx, folklore.
- 2. FPT in k, i.e., solvable in $f(k) \cdot poly(n)$ time, Chen et al. 2005.
- Partial vertex cover:
 - 1. 2-approx on k, Bshouty and Burroughs 1998.
 - 2. 3/4-approx on c, Ageev and Sviridenko 1999.
 - 3. FPT in c, Bläser 2003.
 - 4. no FPT in k, Guo et al. 2005.
 - 5. APX-hard on c Petrank 1994.
 - 6. 1ϵ approx on c in time $f(k, \epsilon) \cdot \text{poly}(n)$, Marx 2008.

For generalized partial vertex cover, what can be achieved?

What can be achieved?

Known results:

- O(log m)-approx on k where m is the number of color classes. Tight! Bera et al. 2014.
- ▶ \approx 2-approx on k for constant m. Bandyapadhyay et al. 2021.
- find k vertices that cover at least 0.63% of each coverage requirements if m is constant, Chekuri et al. 2009.
- ▶ no FPT in *k*.
- APX-hard even for m = 1. So no (1ϵ) -approx on c_i 's in time $f(m, \epsilon) \cdot poly(n)$.

Theorem (Bandyapadhyay, Friggstad, and M.)

no α-approx for α ≤ 1 in time f(k) · n^{o(k)} assuming ETH.
(1 - ε)-approx on c_i's in time 2^{O((m·k²·log k)}/ε)</sup> · poly(n).

FPT approximation scheme for partial vertex cover. Partial vertex cover: find k vertices that cover at least c edges.

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

• if c is small
$$\left(<\frac{\binom{k}{2}}{\epsilon}\right)$$
:

1. label coding: randomly assign one label to each edge among c many labels

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

• if c is small
$$\left(<\frac{\binom{k}{2}}{\epsilon}\right)$$
:

- 1. label coding: randomly assign one label to each edge among c many labels
- 2. with "good" probability the OPT edges are all labeled differently

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

- 1. label coding: randomly assign one label to each edge among c many labels
- 2. with "good" probability the OPT edges are all labeled differently
- 3. guess all the configuration of vertices in OPT. k^c many guesses

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

- 1. label coding: randomly assign one label to each edge among c many labels
- 2. with "good" probability the OPT edges are all labeled differently
- 3. guess all the configuration of vertices in OPT. k^c many guesses
- 4. brute-force

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

- 1. label coding: randomly assign one label to each edge among c many labels
- 2. with "good" probability the OPT edges are all labeled differently
- 3. guess all the configuration of vertices in OPT. k^c many guesses
- 4. brute-force
- if c is large $(\geq \frac{\binom{k}{2}}{\epsilon})$:

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

- 1. label coding: randomly assign one label to each edge among c many labels
- 2. with "good" probability the OPT edges are all labeled differently
- guess all the configuration of vertices in OPT. k^c many guesses
- 4. brute-force

• if c is large
$$(\geq \frac{\binom{k}{2}}{\epsilon})$$
:
1. $d_1 \geq d_2 \dots \geq d_n$

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

• if c is small $\left(<\frac{\binom{k}{2}}{\epsilon}\right)$:

- 1. label coding: randomly assign one label to each edge among c many labels
- 2. with "good" probability the OPT edges are all labeled differently
- 3. guess all the configuration of vertices in OPT. k^c many guesses

4. brute-force

- if c is large $(\geq \frac{\binom{k}{2}}{\epsilon})$:
 - 1. $d_1 \geq d_2 \ldots \geq d_n$
 - 2. choose the first k vertices

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

- 1. label coding: randomly assign one label to each edge among c many labels
- 2. with "good" probability the OPT edges are all labeled differently
- guess all the configuration of vertices in OPT. k^c many guesses
- 4. brute-force
- if c is large $(\geq \frac{\binom{k}{2}}{\epsilon})$:
 - 1. $d_1 \geq d_2 \ldots \geq d_n$
 - 2. choose the first k vertices
 - 3. $\sum_{i=1}^{n} d_i \ge c$ (edges are double counted)

FPT approximation scheme for partial vertex cover.

Partial vertex cover: find k vertices that cover at least c edges.

• if c is small $\left(<\frac{\binom{k}{2}}{\epsilon}\right)$:

- 1. label coding: randomly assign one label to each edge among c many labels
- 2. with "good" probability the OPT edges are all labeled differently
- guess all the configuration of vertices in OPT. k^c many guesses
- 4. brute-force
- if c is large $(\geq \frac{\binom{k}{2}}{\epsilon})$:
 - 1. $d_1 \geq d_2 \ldots \geq d_n$
 - 2. choose the first k vertices
 - 3. $\sum_{i=1}^{n} d_i \ge c$ (edges are double counted)

4. the total number of double counted edges is at most $\binom{k}{2} \leq \epsilon \cdot c$

Our algorithm, small color classes

for small color classes $< \frac{\binom{k}{2}}{\epsilon}$ do label-coding as before and guess the configuration of the vertices in OPT on these color classes.

Our algorithm, large color classes

a/c b/ /d

Our algorithm, large color classes

Given the configuration of small color classes in $\mathrm{OPT},$ we use DP to find a solution.

c': the coverage requirements for a subset of large color classes

T: the configuration of some small color classes in OPT.

Order vertices $v_1, v_2, v_3, \ldots, v_n$

Our algorithm, large color classes

Given the configuration of small color classes in $\mathrm{OPT},$ we use DP to find a solution.

c': the coverage requirements for a subset of large color classes

T: the configuration of some small color classes in OPT.

Order vertices $v_1, v_2, v_3, \ldots, v_n$

g(k', i, T, c') = yes iif there are k' vertices among the first i vertices compatible with T and cover c' on large color classes

Let's look at our DP table:

- T: the configuration of some small color classes in OPT.
- c': the coverage requirements for a subset of large color classes

Let's look at our DP table:

T: the configuration of some small color classes in OPT.

c': the coverage requirements for a subset of large color classes

• The number of possibilities for T is $f(k, m, \epsilon)$.

Let's look at our DP table:

- T: the configuration of some small color classes in OPT.
- c': the coverage requirements for a subset of large color classes
 - The number of possibilities for T is $f(k, m, \epsilon)$.
 - The number of possibilities for c' is (the number of edges)^m. Not FPT in m :(

Let's look at our DP table:

- T: the configuration of some small color classes in OPT.
- c': the coverage requirements for a subset of large color classes
 - The number of possibilities for T is $f(k, m, \epsilon)$.
 - The number of possibilities for c' is (the number of edges)^m. Not FPT in m :(
 - Standard scaling and rounding the degree of vertices in large color classes. Then, the number of possibilities reduces to (^k/_e)^m.

Let's look at our DP table:

- T: the configuration of some small color classes in OPT.
- c': the coverage requirements for a subset of large color classes
 - The number of possibilities for T is $f(k, m, \epsilon)$.
 - The number of possibilities for c' is (the number of edges)^m. Not FPT in m :(
 - Standard scaling and rounding the degree of vertices in large color classes. Then, the number of possibilities reduces to (^k/_ϵ)^m.

Conclusion: we have a tight FPT approximation scheme in parameters k, m, and ϵ .

Let's look at our DP table:

- T: the configuration of some small color classes in OPT.
- c': the coverage requirements for a subset of large color classes
 - The number of possibilities for T is $f(k, m, \epsilon)$.
 - The number of possibilities for c' is (the number of edges)^m. Not FPT in m :(
 - Standard scaling and rounding the degree of vertices in large color classes. Then, the number of possibilities reduces to (^k/_ϵ)^m.

Conclusion: we have a tight FPT approximation scheme in parameters k, m, and ϵ .

THANK YOU!