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Partial vertex cover
Vertex cover: choose k vertices that cover all the edges.

Partial vertex cover: choose k vertices that cover at least c edges.
c is the coverage requirement.

Generalized partial vertex cover: choose k vertices that cover at
least c1 edges from E1, at least c2 edges from E2,..., at least cm
edges from Em.
Ei is color class i and E = E1 ⊎ E2 . . . ⊎ Em.
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Motivation

▶ Vertex cover:

1. 2-approx, folklore.
2. FPT in k , i.e., solvable in f (k) · poly(n) time, Chen et al.

2005.

▶ Partial vertex cover:

1. 2-approx on k, Bshouty and Burroughs 1998.
2. 3/4-approx on c, Ageev and Sviridenko 1999.
3. FPT in c, Bläser 2003.
4. no FPT in k, Guo et al. 2005.
5. APX-hard on c Petrank 1994.
6. 1− ϵ approx on c in time f (k, ϵ) · poly(n), Marx 2008.

For generalized partial vertex cover, what can be achieved?
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What can be achieved?

Known results:

▶ O(logm)-approx on k where m is the number of color classes.
Tight! Bera et al. 2014.

▶ ≈ 2-approx on k for constant m. Bandyapadhyay et al. 2021.

▶ find k vertices that cover at least 0.63% of each coverage
requirements if m is constant, Chekuri et al. 2009.

▶ no FPT in k .

▶ APX-hard even for m = 1. So no (1− ϵ)-approx on ci ’s in
time f (m, ϵ) · poly(n).

Theorem (Bandyapadhyay, Friggstad, and M.)

1. no α-approx for α ≤ 1 in time f (k) · no(k) assuming ETH.

2. (1− ϵ)-approx on ci ’s in time 2O(m·k2·log k
ϵ

) · poly(n).



Main tool

FPT approximation scheme for partial vertex cover.
Partial vertex cover: find k vertices that cover at least c edges.

▶ if c is small (<
(k2)
ϵ ):

1. label coding: randomly assign one label to each edge among c
many labels

2. with “good” probability the OPT edges are all labeled
differently

3. guess all the configuration of vertices in OPT. kc many
guesses

4. brute-force

▶ if c is large (≥ (k2)
ϵ ):

1. d1 ≥ d2 . . . ≥ dn
2. choose the first k vertices

3.
k∑

i=1

di ≥ c (edges are double counted)

4. the total number of double counted edges is at most
(
k
2

)
≤ ϵ · c
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Our algorithm, small color classes

for small color classes <
(k2)
ϵ do label-coding as before and guess

the configuration of the vertices in OPT on these color classes.



Our algorithm, large color classes

Given the configuration of small color classes in OPT, we use DP
to find a solution.
c ′: the coverage requirements for a subset of large color classes
T : the configuration of some small color classes in OPT.
Order vertices v1, v2, v3, . . . , vn

g(k ′, i ,T , c ′) = yes iif there are k ′ vertices among the first i vertices

compatible with T and

cover c ′ on large color classes
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Running time

Let’s look at our DP table:

g(k ′, i ,T , c ′)

T : the configuration of some small color classes in OPT.
c ′: the coverage requirements for a subset of large color classes

▶ The number of possibilities for T is f (k ,m, ϵ).

▶ The number of possibilities for c ′ is (the number of edges)m.
Not FPT in m :(

▶ Standard scaling and rounding the degree of vertices in large
color classes. Then, the number of possibilities reduces to
(kϵ )

m.

Conclusion: we have a tight FPT approximation scheme in
parameters k ,m, and ϵ.

THANK YOU!
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