Finding Diameter-Reducing Shortcuts in Trees

Davide Bilo, Luciano Guala, Stefano Leucci, Luca Pepeé Sciarria

Universita di Roma Universita di Roma

UNIVERSITA UNIVERSITA
DEGLI STUDI Tor Vergata DEGLI STUDI Tor Vergata
DELL’AQUILA DELL’AQUILA

Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

~
~
Y
~
~
-
~
e
-
~
-
-
-
-~
-~
-

-®
-
-
-®
-
-
-
-
-
-

- -

Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

~
~
Y
~
~
-
~
e
-
~
-
-
-
-~
-~
-

-®
-
-
-®
-
-
-
-
-
-

- -

Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

Goal:

e Find a shortcut edge (u*,v*) that minimizes the diameter of P + (u*,v*)

~
~
~y
~
~
-
~
e
-
~
-
-
-
-~
-~
-

®
-
-
-
-
-
-
-
-
-

- -

Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

Goal:

e Find a shortcut edge (u*,v*) that minimizes the diameter of P + (u*,v*)

diameter(P + (u,v))=8

~
~
~y
~
~
-
~
e
-
~
-
-
-
-~
-~
-

-®
-
-
-®
-
-
-
-
-
-

-~ -

Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

Goal:

e Find a shortcut edge (u*,v*) that minimizes the diameter of P + (u*,v*)

diameter(P + (u,v))=8

O—— O ——O0——0—0
diameter(P+ (u*,v*))=7

Diameter-Optimally Augmenting a Path

Requires Q(n?) queries/time in general:

O-*-0L000-2-0

Diameter-Optimally Augmenting a Path

Requires Q(n?) queries/time in general:

.....
g ~

~
.....
-
~ . -

S
Sa
s
-
~a

Diameter-Optimally Augmenting a Path

Requires Q(n?) queries/time in general:

S
Sa
s
-
~a

Diameter-Optimally Augmenting a Path

Can be solved in:
_ e O(n?logn) time, O(n) space [Wang & Zhao TCS 2021]
1 o O(n?) time, O(nlogn) space [Bilo, TCS 2022]

Requires Q(n?) queries/time in general:

S
Sa
s
-
~a

D

Requires Q(n?) queries/time in general:

iameter-Optimally Augmenting a Path

Can be solved in:
e O(n*logn) time, O(n) space [Wang & Zhao TCS 2021]
1 o O(n?) time, O(nlogn) space [Bilo, TCS 2022]

~..
-~
-
~~~~
-
-------------

s
~
Sa
~a
e
-
~aaa
-------

-
-----------

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle

inequality



Diameter-Optimally Augmenting a Path

Can be solved in:
e O(n?logn) time, O(n) space [Wang & Zhao TCS 2021]
1 o O(n?) time, O(nlogn) space [Bilo, TCS 2022]

Requires Q(n?) queries/time in general:

______________
————
.* ~

s
Sa
~a
-
~a
-------
----------------

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:
e O(nlog®n) time [GroBe et al., J. Found. Comput. Sci. 2019]
e O(nlogn) time [Wang, Comput. Geom. 2018]



Diameter-Optimally Augmenting a Path

Can be solved in:
_ e O(n?logn) time, O(n) space [Wang & Zhao TCS 2021]
1 o O(n?) time, O(nlogn) space [Bilo, TCS 2022]

----------------

Requires Q(n?) queries/time in general:

s
Sa
~a
-
~a
-------
----------------

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:

e O(nlog®n) time (GroBe et al., J. Found. Comput. Sci. 2019]
e O(nlogn) time Wang, Comput. Geom. 2018]
e (1+¢)-apxintime O(n+ Llog 1) [Bilo, TCS 2022]




Diameter-Optimally Augmenting a Path

Can be solved in:
e O(n?logn) time, O(n) space [Wang & Zhao TCS 2021]
1 o O(n?) time, O(nlogn) space [Bilo, TCS 2022]

Requires Q(n?) queries/time in general:

______________
————
.* ~

S
Sa
s
-
~a
_________
----------------

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:

e O(n log? n) time (GroBe et al., J. Found. Comput. Sci. 2019]
e O(nlogn) time Wang, Comput. Geom. 2018]
e (1+¢)-apxintime O(n+ Llog 1) [Bilo, TCS 2022] Also for trees!



k-Diameter-Optimally Augmenting a Tree

k-DOAT Input:
e A weighted tree 1" with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)




k-Diameter-Optimally Augmenting a Tree

k-DOAT Input:
e A weighted tree 1" with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

Goal:
e Find a S set of at most &k shortcuts that minimizes the diameter of 7'+ S




Our Results

Lower bound for metric k-DOAT:

e For k> 3: Any < g—o—approximation algorithm uses Q(n?) queries.



Our Results

Lower bound for metric k-DOAT:
e For k> 3: Any < g—o—approximation algorithm uses Q(n?) queries.

Approximation algorithms for metric k-DOAT:

e Linear-time 4-approximation algorithm for &k = O ( I )

logn

1
e Linear-time (1 + ¢)-approximation algorithm for k = o(y/logn) and trees with O(n (2x+2?) leaves.



Our Results

Lower bound for metric k-DOAT:
e For k> 3: Any < g—o—approximation algorithm uses Q(n?) queries.

Approximation algorithms for metric k-DOAT:

e Linear-time 4-approximation algorithm for &k = O ( I )

logn
1
e Linear-time (1 + ¢)-approximation algorithm for k = o(y/logn) and trees with O(n (2x+2?) leaves.

—> Paths admit a linear-time (1 + €)-apx algorithm. Dichotomy with trees!



Our Results

Lower bound for metric k-DOAT:
e For k> 3: Any < g—o—approximation algorithm uses Q(n?) queries.

Approximation algorithms for metric k-DOAT:

e Linear-time 4-approximation algorithm for &k = O ( I )

logn
1
e Linear-time (1 + ¢)-approximation algorithm for k = o(y/logn) and trees with O(n (2x+2?) leaves.

—> Paths admit a linear-time (1 + €)-apx algorithm. Dichotomy with trees!

Exact algorithms (not necessarily metric):

e O(nklogn)-time algorithm to find the diameter of a tree augmented with k edges



Our Results

Lower bound for metric k-DOAT:
e For k> 3: Any < g—o—approximation algorithm uses Q(n?) queries.

Approximation algorithms for metric k-DOAT:

e Linear-time 4-approximation algorithm for &k = O ( I )

logn
1
e Linear-time (1 + ¢)-approximation algorithm for k = o(y/logn) and trees with O(n (2x+2?) leaves.

—> Paths admit a linear-time (1 + €)-apx algorithm. Dichotomy with trees!

Exact algorithms (not necessarily metric):

e O(nklogn)-time algorithm to find the diameter of a tree augmented with k edges

4

o O(k-n**1llogn)-time algorithm for k-DOAT



Our Results

Lower bound for metric k-DOAT:
e For k> 3: Any < g—o—approximation algorithm uses Q(n?) queries.

Approximation algorithms for metric k-DOAT:

e Linear-time 4-approximation algorithm for &k = O ( I )

logn
1
e Linear-time (1 + ¢)-approximation algorithm for k = o(y/logn) and trees with O(n (2x+2?) leaves.

—> Paths admit a linear-time (1 + €)-apx algorithm. Dichotomy with trees!

Exact algorithms (not necessarily metric):

e O(nklogn)-time algorithm to find the diameter of a tree augmented with k edges

4

o O(k-n**1llogn)-time algorithm for k-DOAT




Our Results

Lower bound for metric k-DOAT:
e For k> 3: Any < g—o—approximation algorithm uses Q(n?) queries.

Approximation algorithms for metric k-DOAT:

e Linear-time 4-approximation algorithm for &k = O ( I )

logn
1
e Linear-time (1 + ¢)-approximation algorithm for k = o(y/logn) and trees with O(n (2x+2?) leaves.

—> Paths admit a linear-time (1 + €)-apx algorithm. Dichotomy with trees!

Exact algorithms (not necessarily metric):

e O(nklogn)-time algorithm to find the diameter of a tree augmented with k edges

4

o O(k-n**1llogn)-time algorithm for k-DOAT




Our Lower Bound for £k > 3




Our Lower Bound for £k > 3

Consider k£ = 3 for simplicity




Our Lower Bound for k = 3

Instance Z:




Instance Z:

Our Lower Bound for k = 3




Our Lower Bound for k = 3

Instance Z:




Our Lower Bound for k = 3

Instance Z:




Our Lower Bound for k = 3

Instance Z:




Our Lower Bound for k = 3

Instance Z:




Our Lower Bound for k = 3

Instance Z:




Our Lower Bound for k = 3

Instance Z:

+ Metric closure



Our Lower Bound for k = 3

Instance Z:

+ Metric closure

For any set S of < 3 shortcuts, diam(7T + S) > 10




Our Lower Bound for k = 3

Picka€¢ Aand b€ B

Instance Z, »:

L} :--_---"
-

.
~ea
-
-




Our Lower Bound for k = 3

Picka€¢ Aand b€ B

Instance Z, »:




Our Lower Bound for k = 3

Pick a € A and b € B and lower the cost of (a,b) to 1

Instance Z, »:




Our Lower Bound for k = 3

Pick a € A and b € B and lower the cost of (a,b) to 1

Instance Z, »:

+ Metric closure



Our Lower Bound for k = 3

Pick a € A and b € B and lower the cost of (a,b) to 1

Instance Z, »:

+ Metric closure

There is a set S of 3 shortcuts such that diam(7 + S5) =9




Our Lower Bound for k = 3

Pick a € A and b € B and lower the cost of (a,b) to 1

Instance Z, »:

+ Metric closure

There is a set S of 3 shortcuts such that diam(7 + S5) =9

Key Property: the cost all edges, except for (a,b) is the same in Z and Z,



Our Lower Bound for k = 3

Input: Either Z or Z, ; for some (a,b) € A x B




Our Lower Bound for k = 3

Input: Either Z or Z, ; for some (a,b) € A x B

\
A A ~ - A
@), @), J— @),

O

An algorithm that solves 3-DOAT needs to tell Z apart from Z,

.. which requires querying all edges in A x B



Our Lower Bound for k = 3

Input: Either Z or Z, ; for some (a,b) € A x B

\
A A ~ - A
@), @), J— @),

O

An algorithm that solves 3-DOAT needs to tell Z apart from Z,

. which requires querying all edges in A x B

. . 2 . . . . . . 10
Actually shows: there is no o(n®)-queries/time o-approximation algorithm with o < 3



Our Exact Algorithm




(Speeding up the) Naive Strategy

e For every possible set S of k shortcuts: O(n?*) choices

~

e Compute the diameter of T+ S O(n?) time



(Speeding up the) Naive Strategy

e For every possible set S of k shortcuts: O(n?*) choices

~

e Compute the diameter of T+ S O(n?) time

Total running time: O(n2k+2)



(Speeding up the) Naive Strategy

e For every possible set S of k shortcuts: O(n?*) choices

~

e Compute the diameter of T'+ S O(n?) time

Total running time: O(n2k+2)



(Speeding up the) Naive Strategy

e For every possible set S of k shortcuts: O(n?*) choices

o Compute the diameter of 7' 4 S M O(k - n) time

Total running time: 5(n2k+2)




(Speeding up the) Naive Strategy

e For every possible set S of k shortcuts: O(n?*) choices

o Compute the diameter of 7' 4 S M O(k - n) time
Total running time:M O(k - n25+1) time




(Speeding up the) Naive Strategy

e For every possible set S of k shortcuts: O(n?*) choices

o Compute the diameter of 7' 4 S M O(k - n) time
Total running time:m O(k - n25+1) time

Some remarks:

e Saves a O(n) factor

e Computing the diameter of a graph with (n — 1) + k edges is interesting in its own regard



Warm-up: Diameter of an Augmented Path P + S

) W VNN WY 4 WY 40 WY AR\ /f_\\\
-/ (A2 O

()
-/ -/ -/ -/
S

e For every source vertex s O(n) choices

e Compute the eccentricity £(s) of sin P+ S



Warm-up: Diameter of an Augmented Path P + S

-/ (A2 O

-/ A

()
-/
S

e For every source vertex s O(n) choices

e Compute the eccentricity £(s) of sin P+.S  Want: 5(k) time



Warm-up: Diameter of an Augmented Path P + S

(A2 O

-/ A

() ()
-/ -/
S

e For every source vertex s O(n) choices

e Compute the eccentricity £(s) of sin P+.S  Want: 5(k) time How?



Warm-up: Diameter of an Augmented Path P + S

(A2 O

() ()
O/ / O/ / O/
S
e For every source vertex s O(n) choices
e Compute the eccentricity £(s) of sin P+.S  Want: 5(]{) time How?

Mark s, the endpoints of the path, and all endpoints of some shortcut as terminals

Idea: if we know the distances from s to the terminals, we can quickly compute all other distances
from s



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances a,, = dp4s(s,v) between s and all terminals v in P 4 S

=



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances a,, = dp4s(s,v) between s and all terminals v in P 4 S

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

( )V —— (D} —— (V" M /f_\\\

C
(

() ()
-/ -/ -/ -/ -/ -/ -/
S



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances a,, = dp4s(s,v) between s and all terminals v in P 4 S

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

W, ), ), W, W, W, W, ), U
S

N 7

“Shrink” P + .S into H




Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances a,, = dp4s(s,v) between s and all terminals v in P 4 S

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

W, W, W, W, W, W, W W, W,
S U v

“Shrink” P 4 S into H
() ) " O
2/




Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances a,, = dp4s(s,v) between s and all terminals v in P 4 S

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

W, W, W, W, W, W, W W, W,
S U v

“Shrink” P + S into H
. dp(u,v)

y
O, Q O/ (N O O(k) vertices and O(k) edges.




Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances a,, = dp4s(s,v) between s and all terminals v in P 4 S

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

W, W, W, W, W, W, W W, W,
S U v

“Shrink” P + S into H
. dp(u,v)

y
O, Q O/ (N O O(k) vertices and O(k) edges.

Compute «a,, = dg(s,v) for all terminals v in time O(klog k) using Dijkstra’s algorithm .



Warm-up: Diameter of an Augmented Path P + S

-/ -/ -/
()

What about the other vertices?

() () () () () ()
-/ -/ -/ -/ —/
S u Xr

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Qyy + dP(ua 'CE)

d = mi
P—l—S(S?I) 1111 @U+dp(v,x)



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Qyy + dP(ua I)

d = mi
P—l—S(S?I) 1111 ()4@+dp(v,x)

Assign each node of P to its “closest” terminal



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Oty 1 dP(ua aj)

d = 1mi
p+s(5,) = min o, + dp(v, x)

Assign each node of P to its “closest” terminal
For each terminal v, we are interested in the distance &£, from v to the farthest node assigned to v

The eccentricity of s is £(s) = maXierminal v (@ + Ey)



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Oty 1 dP(ua I)

d = 1mi
p+s(5,) = min o, + dp(v, x)

Assign each node of P to its “closest” terminal
For each terminal v, we are interested in the distance &£, from v to the farthest node assigned to v

The eccentricity of s is £(s) = maXierminal v (@ + Ey)

Observation: It suffices to quickly find the boundary edges



Warm-up: Diameter of an Augmented Path P + S

For each subpath between two consecutive terminal vertices u, v:

() ()
-/ -/ -/ -/ -/ -/ / -/ -/
S



Warm-up: Diameter of an Augmented Path P + S

For each subpath between two consecutive terminal vertices u, v:

() ()
-/ -/ -/ -/ -/ -/ / -/ -/
S

A~ Monotonically non-decreasing w.r.t. 1
Oy, + dp(u, xz) y &

dpys(s,r;) = min | | |
Oy T dP(”; 33@) ¥ Monotonically non-increasing w.r.t. ¢



Warm-up: Diameter of an Augmented Path P + S

For each subpath between two consecutive terminal vertices u, v:

o oo

() () () () () ()
-/ O/ / / / /
S L1 L9 X3 T4

A~ Monotonically non-decreasing w.r.t. 1
pis(s, ;) = min

Oy T dP(”; 33@) ¥ Monotonically non-increasing w.r.t. ¢

Find the cross-over point via binary search in time O(logn).



From Paths to Trees

Mark terminals

H <+ Compress graph

Compute a,s on H

For each terminal v:

e Find &, via binary search

Return max, (o, + &)




From Paths to Trees

Mark terminals

H < Compress graph

Compute a,s on H

For each terminal v:

e Find &, via binary search Auxiliar Data

Structure

Return max, (o, + &) DS




From Paths to Trees

e DS < Build(T)

e Mark terminals

e H < Compress graph

e Compute a,s on H

e For each terminal v:

e Find &, via binary search Auxiliar Data
e Return max, (a, + &) Strl[J)cécure

Build(7T'): Initializes the data structure on the tree T O(n)



From Paths to Trees

e DS < Build(T)

e DS.MakeTerminal(v;) , DS.MakeTerminal(vs), ...

e H < Compress graph

e Compute a,s on H

e For each terminal v:

e Find &, via binary search Auxiliar Data
e Return max, (a, + &) Strl[J)cécure

Build(7'): Initializes the data structure on the tree T O(n)

MakeTerminal(v): Marks vertex v as a terminal vertex O(logn)



From Paths to Trees

e DS < Build(T)
e DS.MakeTerminal(v;) , DS.MakeTerminal(vs), ...
e H < DS.Shrink()+ S
e Compute a,s on H
e For each terminal v:
e Find &, via binary search

e Return max, (a, + &,)

Build(T"): Initializes the data structure on the tree T
MakeTerminal(v): Marks vertex v as a terminal vertex

Shrink(): Returns a compact representation of 7' that contains all terminals

Auxiliar Data

Structure
DS

O(n)
O(logn)
O(# terminals)



From Paths to Trees

e DS + Build(T)
e DS.MakeTerminal(v;) , DS.MakeTerminal(vs), ...
e H < DS.Shrink()+ S
e Compute ays on H DS.SetAlpha(vi, 1), DS.SetAlpha(ve, as), ...
e For each terminal v:
e Find &, via binary search

e Return max, (a, + &)

Build(T"): Initializes the data structure on the tree T
MakeTerminal(v): Marks vertex v as a terminal vertex
Shrink(): Returns a compact representation of 7' that contains all terminals

SetAlpha(v, v, ): Assigns a weight «,, > 0 to vertex v

Auxiliar Data

Structure
DS



From Paths to Trees

e DS < Build(T)

e DS.MakeTerminal(v;) , DS.MakeTerminal(vs), ...
e H < DS.Shrink()+ S

e Compute ays on H DS.SetAlpha(vi, 1), DS.SetAlpha(ve, as), ...

e Return DS.ReportFarthest()

Auxiliar Data
Structure
DS
Build(7'): Initializes the data structure on the tree T O(n)
MakeTerminal(v): Marks vertex v as a terminal vertex O(logn)
Shrink(): Returns a compact representation of 7' that contains all terminals  O(# terminals)
SetAlpha(v, v, ): Assigns a weight «,, > 0 to vertex v O(1)
ReportFarthest(): Return the vertex that is “farthest” from all terminals O(# terminals - logn)



From Paths to Trees

e DS < Build(T)

e DS.MakeTerminal(v;) , DS.MakeTerminal(vs), ...
e H < DS.Shrink()+ S

e Compute ays on H DS.SetAlpha(vi, 1), DS.SetAlpha(ve, as), ...

e Return DS.ReportFarthest()

Auxiliar Data
Structure
DS
Build(7'): Initializes the data structure on the tree T O(n)
MakeTerminal(v): Marks vertex v as a terminal vertex O(logn)
Shrink(): Returns a compact representation of 7' that contains all terminals  O(# terminals)
SetAlpha(v, v, ): Assigns a weight «,, > 0 to vertex v O(1)
ReportFarthest(): Return the vertex that is “farthest” from all terminals O(# terminals - logn)



A simplifying assumption

We can assume that T’ is a binary tree

This adds O(n) additional nodes



Shrink()

The vertex set V' of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals



Shrink()

r 7

M4

The vertex set V' of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals




Shrink()

Tshrunk

r 7

AN
i
AN AN irlors

The vertex set V' of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals




ReportFarthest()

Define the “distance” of a vertex x as d(x) = mingerminal v (ozv + dr(v, :c))



ReportFarthest()

Define the “distance” of a vertex x as d(x) = mingerminal v (ozv + dr(v, :c))



ReportFarthest()

Define the “distance” of a vertex x as d(x) = mingerminal v (ozv + dr(v, :c))

ReportFarthest() returns a vertex = that maximizes §(x)



ReportFarthest()

d(x) = 12 = Eccentricity of s*

Define the “distance” of a vertex x as d(x) = mingerminal v (ozv + dr(v, x))

ReportFarthest() returns a vertex = that maximizes §(x)



Our Data Structure: Implementation

(o The tree T is stored using a top-tree T time per op: O(log #vertices) )
e Can add (link) and remove (cut) edges
e Can mark/unmark vertices as terminals
e Given a vertex v, it reports the closest ancestor of v that is a terminal
e Given v, can report the eccentricity of v w.r.t. its tree




Our Data Structure: Implementation

-
e The tree T is stored using a top-tree T time per op: O(log #vertices)

.

e Can add (link) and remove (cut) edges
e Can mark/unmark vertices as terminals
e Given a vertex v, it reports the closest ancestor of v that is a terminal

e Given v, can report the eccentricity of v w.r.t. its tree

~

_

-
e The shrunk tree Tsnhrunk Is stored using a link-cut tree

e Vertex additions and deletions

e Link/cut operations time per op: O(log #vertices)

J

_J




Our Data Structure: Implementation

[ The tree T is stored using a top-tree T time per op: O(log #vertices)
e Can add (link) and remove (cut) edges
e Can mark/unmark vertices as terminals
e Given a vertex v, it reports the closest ancestor of v that is a terminal

i e Given v, can report the eccentricity of v w.r.t. its tree

~

-
e The shrunk tree Tsnhrunk Is stored using a link-cut tree

e Vertex additions and deletions

e Link/cut operations time per op: O(log #vertices)

_J

_ _J
e Oracles with linear size that can report: time per op: 0(1)j
e The lowerst common ancestor of a pair of vertices in T’
e The level ancestor of a vertex in T
L e The distance/hop-disance between a pair of vertices in T |




Implementing ReportFarthest()

Compute the distance 3, = d(v) to each vertex v in Typrunk

iR
gg\i

Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit



Implementing ReportFarthest()

Compute the distance 3, = d(v) to each vertex v in Typrunk

C:A;\i

Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit



Implementing ReportFarthest()

Compute the distance 3, = d(v) to each vertex v in Typrunk

C:A;\i

Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit

This allows us to treat all vertices in Tk as if they were terminals



Implementing ReportFarthest()




Implementing ReportFarthest()

-~
.

o Y
[ 11 1
[ )
Dy

Assign each node of 1" to the “closest” node of Tghrunk



Implementing ReportFarthest()

-~
.

o Y
[ 11 1
[ )
Dy

Assign each node of 7" to the “closest” node of T¢hunk

We want to quickly find the boundary edges



Implementing ReportFarthest()

AR

Each edge (u,v) in Tyhrunk COrresponds to a vertical path (u = z1,xo, ..., T =v)inT




Implementing ReportFarthest()

7

AR T

Each edge (u,v) in Tyhrunk COrresponds to a vertical path (u = z1,xo, ..., T =v)inT




Implementing ReportFarthest()

7

AR T

Each edge (u,v) in Tyhrunk COrresponds to a vertical path (u = z1,xo, ..., T =v)inT

B’LL + dT(Uw 'CEZ)
Bv + dT(Ua xz)

d(x;) = min {



Implementing ReportFarthest()

N

4
ji i@I i

Each edge (u,v) in Tyhrunk corresponds to a vertical path (u = z1,29,..., 2, =v) in T

By + dr(u, z;) 4 Monotonically non-decreasing w.r.t. 1

d(x;) = min {

By + dT(Ua xz) ¥~ Monotonically non-increasing w.r.t. ¢



Implementing ReportFarthest()

7

4
AR M )

Each edge (u,v) in Tyhrunk corresponds to a vertical path (u = z1,29,..., 2, =v) in T

| B+ dr(u, ) 4 Monotonically non-decreasing w.r.t. 1 .
d(x;) = min Binary search!

By + dT(Ua xz) ¥~ Monotonically non-increasing w.r.t. ¢



Implementing ReportFarthest()

N

hA 4

Cut all bounday edges from T




~

Implementing ReportFarthest()

Cut all bounday edges from T

The resulting forest contains exactly one tree T}, for each vertex v in Tynrunk



~

Implementing ReportFarthest()

Cut all bounday edges from T
The resulting forest contains exactly one tree T}, for each vertex v in Tynrunk

For each v: query T to find the eccentricity &, of v in T,



Implementing ReportFarthest()

~

Cut all bounday edges from T
The resulting forest contains exactly one tree T}, for each vertex v in Tynrunk

For each v: query T to find the eccentricity &, of v in T,

Return max, (8, + &) ...and restore the orignal state of 7 (link the boundary edges)



Open Problems

Faster algorithms for metric £-DOAT?

e Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

O(nlogn) 777 Q(n?)




Open Problems

Faster algorithms for metric £-DOAT?

e Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

O(nlogn) 777 Q(n?)

Questions?




