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Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

Goal:

e Find a shortcut edge (u*,v*) that minimizes the diameter of P + (u*,v*)
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Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

Goal:

e Find a shortcut edge (u*,v*) that minimizes the diameter of P + (u*,v*)

diameter(P + (u,v))=8
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Diameter-Optimally Augmenting a Path

Input:

e A weighted path P with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

Goal:

e Find a shortcut edge (u*,v*) that minimizes the diameter of P + (u*,v*)

diameter(P + (u,v))=8

O—— O ——O0——0—0
diameter(P+ (u*,v*))=7
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Requires Q(n?) queries/time in general:

iameter-Optimally Augmenting a Path

Can be solved in:
e O(n*logn) time, O(n) space [Wang & Zhao TCS 2021]
1 o O(n?) time, O(nlogn) space [Bilo, TCS 2022]
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inequality
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Diameter-Optimally Augmenting a Path

Can be solved in:
e O(n?logn) time, O(n) space [Wang & Zhao TCS 2021]
1 o O(n?) time, O(nlogn) space [Bilo, TCS 2022]

Requires Q(n?) queries/time in general:
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Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:

e O(n log? n) time (GroBe et al., J. Found. Comput. Sci. 2019]
e O(nlogn) time Wang, Comput. Geom. 2018]
e (1+¢)-apxintime O(n+ Llog 1) [Bilo, TCS 2022] Also for trees!
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e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)




k-Diameter-Optimally Augmenting a Tree

k-DOAT Input:
e A weighted tree 1" with n vertices and non-negative edge costs

e Acccess to an oracle that can be queried with a missing edge
(u,v) and reports the cost of (u,v)

Goal:
e Find a S set of at most &k shortcuts that minimizes the diameter of 7'+ S
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Consider k£ = 3 for simplicity
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Our Lower Bound for k = 3

Instance Z:

+ Metric closure

For any set S of < 3 shortcuts, diam(7T + S) > 10
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Our Lower Bound for k = 3

Pick a € A and b € B and lower the cost of (a,b) to 1

Instance Z, »:

+ Metric closure

There is a set S of 3 shortcuts such that diam(7 + S5) =9

Key Property: the cost all edges, except for (a,b) is the same in Z and Z,
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Our Lower Bound for k = 3

Input: Either Z or Z, ; for some (a,b) € A x B

\
A A ~ - A
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O

An algorithm that solves 3-DOAT needs to tell Z apart from Z,

. which requires querying all edges in A x B

. . 2 . . . . . . 10
Actually shows: there is no o(n®)-queries/time o-approximation algorithm with o < 3



Our Exact Algorithm
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(Speeding up the) Naive Strategy

e For every possible set S of k shortcuts: O(n?*) choices

o Compute the diameter of 7' 4 S M O(k - n) time
Total running time:m O(k - n25+1) time

Some remarks:

e Saves a O(n) factor

e Computing the diameter of a graph with (n — 1) + k edges is interesting in its own regard
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Warm-up: Diameter of an Augmented Path P + S
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S
e For every source vertex s O(n) choices
e Compute the eccentricity £(s) of sin P+.S  Want: 5(]{) time How?

Mark s, the endpoints of the path, and all endpoints of some shortcut as terminals

Idea: if we know the distances from s to the terminals, we can quickly compute all other distances
from s
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Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances a,, = dp4s(s,v) between s and all terminals v in P 4 S

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

W, W, W, W, W, W, W W, W,
S U v

“Shrink” P + S into H
. dp(u,v)

y
O, Q O/ (N O O(k) vertices and O(k) edges.

Compute «a,, = dg(s,v) for all terminals v in time O(klog k) using Dijkstra’s algorithm .
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What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Qyy + dP(ua I)

d = mi
P—l—S(S?I) 1111 ()4@+dp(v,x)

Assign each node of P to its “closest” terminal
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Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Oty 1 dP(ua I)

d = 1mi
p+s(5,) = min o, + dp(v, x)

Assign each node of P to its “closest” terminal
For each terminal v, we are interested in the distance &£, from v to the farthest node assigned to v

The eccentricity of s is £(s) = maXierminal v (@ + Ey)

Observation: It suffices to quickly find the boundary edges
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For each subpath between two consecutive terminal vertices u, v:

o oo

() () () () () ()
-/ O/ / / / /
S L1 L9 X3 T4

A~ Monotonically non-decreasing w.r.t. 1
pis(s, ;) = min

Oy T dP(”; 33@) ¥ Monotonically non-increasing w.r.t. ¢

Find the cross-over point via binary search in time O(logn).
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Mark terminals

H < Compress graph

Compute a,s on H

For each terminal v:

e Find &, via binary search Auxiliar Data

Structure

Return max, (o, + &) DS




From Paths to Trees

e DS < Build(T)

e Mark terminals

e H < Compress graph

e Compute a,s on H

e For each terminal v:

e Find &, via binary search Auxiliar Data
e Return max, (a, + &) Strl[J)cécure

Build(7T'): Initializes the data structure on the tree T O(n)
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e Compute a,s on H

e For each terminal v:

e Find &, via binary search Auxiliar Data
e Return max, (a, + &) Strl[J)cécure

Build(7'): Initializes the data structure on the tree T O(n)

MakeTerminal(v): Marks vertex v as a terminal vertex O(logn)



From Paths to Trees

e DS < Build(T)
e DS.MakeTerminal(v;) , DS.MakeTerminal(vs), ...
e H < DS.Shrink()+ S
e Compute a,s on H
e For each terminal v:
e Find &, via binary search

e Return max, (a, + &,)

Build(T"): Initializes the data structure on the tree T
MakeTerminal(v): Marks vertex v as a terminal vertex

Shrink(): Returns a compact representation of 7' that contains all terminals

Auxiliar Data

Structure
DS

O(n)
O(logn)
O(# terminals)
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Auxiliar Data
Structure
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A simplifying assumption

We can assume that T’ is a binary tree

This adds O(n) additional nodes



Shrink()

The vertex set V' of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals
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The vertex set V' of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals
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Define the “distance” of a vertex x as d(x) = mingerminal v (ozv + dr(v, :c))

ReportFarthest() returns a vertex = that maximizes §(x)



ReportFarthest()

d(x) = 12 = Eccentricity of s*

Define the “distance” of a vertex x as d(x) = mingerminal v (ozv + dr(v, x))

ReportFarthest() returns a vertex = that maximizes §(x)



Our Data Structure: Implementation

(o The tree T is stored using a top-tree T time per op: O(log #vertices) )
e Can add (link) and remove (cut) edges
e Can mark/unmark vertices as terminals
e Given a vertex v, it reports the closest ancestor of v that is a terminal
e Given v, can report the eccentricity of v w.r.t. its tree
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[ The tree T is stored using a top-tree T time per op: O(log #vertices)
e Can add (link) and remove (cut) edges
e Can mark/unmark vertices as terminals
e Given a vertex v, it reports the closest ancestor of v that is a terminal

i e Given v, can report the eccentricity of v w.r.t. its tree

~

-
e The shrunk tree Tsnhrunk Is stored using a link-cut tree

e Vertex additions and deletions

e Link/cut operations time per op: O(log #vertices)

_J

_ _J
e Oracles with linear size that can report: time per op: 0(1)j
e The lowerst common ancestor of a pair of vertices in T’
e The level ancestor of a vertex in T
L e The distance/hop-disance between a pair of vertices in T |




Implementing ReportFarthest()

Compute the distance 3, = d(v) to each vertex v in Typrunk
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Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit
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Implementing ReportFarthest()

Compute the distance 3, = d(v) to each vertex v in Typrunk

C:A;\i

Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit

This allows us to treat all vertices in Tk as if they were terminals
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Assign each node of 1" to the “closest” node of Tghrunk
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Assign each node of 7" to the “closest” node of T¢hunk

We want to quickly find the boundary edges
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Implementing ReportFarthest()

7

AR T

Each edge (u,v) in Tyhrunk COrresponds to a vertical path (u = z1,xo, ..., T =v)inT
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7

AR T

Each edge (u,v) in Tyhrunk COrresponds to a vertical path (u = z1,xo, ..., T =v)inT

B’LL + dT(Uw 'CEZ)
Bv + dT(Ua xz)

d(x;) = min {
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Each edge (u,v) in Tyhrunk corresponds to a vertical path (u = z1,29,..., 2, =v) in T

By + dr(u, z;) 4 Monotonically non-decreasing w.r.t. 1

d(x;) = min {

By + dT(Ua xz) ¥~ Monotonically non-increasing w.r.t. ¢
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Each edge (u,v) in Tyhrunk corresponds to a vertical path (u = z1,29,..., 2, =v) in T

| B+ dr(u, ) 4 Monotonically non-decreasing w.r.t. 1 .
d(x;) = min Binary search!

By + dT(Ua xz) ¥~ Monotonically non-increasing w.r.t. ¢
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Cut all bounday edges from T




~

Implementing ReportFarthest()

Cut all bounday edges from T

The resulting forest contains exactly one tree T}, for each vertex v in Tynrunk
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Implementing ReportFarthest()

Cut all bounday edges from T
The resulting forest contains exactly one tree T}, for each vertex v in Tynrunk

For each v: query T to find the eccentricity &, of v in T,
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~

Cut all bounday edges from T
The resulting forest contains exactly one tree T}, for each vertex v in Tynrunk

For each v: query T to find the eccentricity &, of v in T,

Return max, (8, + &) ...and restore the orignal state of 7 (link the boundary edges)



Open Problems

Faster algorithms for metric £-DOAT?

e Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

O(nlogn) 777 Q(n?)




Open Problems

Faster algorithms for metric £-DOAT?

e Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

O(nlogn) 777 Q(n?)

Questions?




