Finding Diameter-Reducing Shortcuts in Trees

Davide Bilò, Luciano Gualà, Stefano Leucci, Luca Pepè Sciarria

UNIVERSITÀ
DEGLI STUDI DELL'AQUILA

Università di Roma

Università di Roma

Diameter-Optimally Augmenting a Path

Input:

- A weighted path P with n vertices and non-negative edge costs

Diameter-Optimally Augmenting a Path

Input:

- A weighted path P with n vertices and non-negative edge costs
- Acccess to an oracle that can be queried with a missing edge (u, v) and reports the cost of (u, v)

Diameter-Optimally Augmenting a Path

Input:

- A weighted path P with n vertices and non-negative edge costs
- Acccess to an oracle that can be queried with a missing edge (u, v) and reports the cost of (u, v)

Diameter-Optimally Augmenting a Path

Input:

- A weighted path P with n vertices and non-negative edge costs
- Acccess to an oracle that can be queried with a missing edge (u, v) and reports the cost of (u, v)

Goal:

- Find a shortcut edge $\left(u^{*}, v^{*}\right)$ that minimizes the diameter of $P+\left(u^{*}, v^{*}\right)$

Diameter-Optimally Augmenting a Path

Input:

- A weighted path P with n vertices and non-negative edge costs
- Acccess to an oracle that can be queried with a missing edge (u, v) and reports the cost of (u, v)

Goal:

- Find a shortcut edge $\left(u^{*}, v^{*}\right)$ that minimizes the diameter of $P+\left(u^{*}, v^{*}\right)$

$\operatorname{diameter}(P+(u, v))=8$

Diameter-Optimally Augmenting a Path

Input:

- A weighted path P with n vertices and non-negative edge costs
- Acccess to an oracle that can be queried with a missing edge (u, v) and reports the cost of (u, v)

Goal:

- Find a shortcut edge $\left(u^{*}, v^{*}\right)$ that minimizes the diameter of $P+\left(u^{*}, v^{*}\right)$

$$
\operatorname{diameter}(P+(u, v))=8
$$

$$
\operatorname{diameter}\left(P+\left(u^{*}, v^{*}\right)\right)=7
$$

Diameter-Optimally Augmenting a Path

Requires $\Omega\left(n^{2}\right)$ queries/time in general:

Diameter-Optimally Augmenting a Path

Requires $\Omega\left(n^{2}\right)$ queries/time in general:

Diameter-Optimally Augmenting a Path

Requires $\Omega\left(n^{2}\right)$ queries/time in general:

Diameter-Optimally Augmenting a Path

Requires $\Omega\left(n^{2}\right)$ queries/time in general:

Can be solved in:

- $O\left(n^{2} \log n\right)$ time, $O(n)$ space [Wang \& Zhao TCS 2021]
- $O\left(n^{2}\right)$ time, $O(n \log n)$ space [Bilò, TCS 2022]

Diameter-Optimally Augmenting a Path

Requires $\Omega\left(n^{2}\right)$ queries/time in general:

Can be solved in:

- $O\left(n^{2} \log n\right)$ time, $O(n)$ space [Wang \& Zhao TCS 2021]
- $O\left(n^{2}\right)$ time, $O(n \log n)$ space [Bilò, TCS 2022]

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle inequality

Diameter-Optimally Augmenting a Path

Requires $\Omega\left(n^{2}\right)$ queries/time in general:

Can be solved in:

- $O\left(n^{2} \log n\right)$ time, $O(n)$ space [Wang \& Zhao TCS 2021]
- $O\left(n^{2}\right)$ time, $O(n \log n)$ space [Bilò, TCS 2022]

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle inequality

Can be solved in:

- $O\left(n \log ^{3} n\right)$ time
- $O(n \log n)$ time
[Große et al., J. Found. Comput. Sci. 2019]
[Wang, Comput. Geom. 2018]

Diameter-Optimally Augmenting a Path

Requires $\Omega\left(n^{2}\right)$ queries/time in general:

Can be solved in:

- $O\left(n^{2} \log n\right)$ time, $O(n)$ space [Wang \& Zhao TCS 2021]
- $O\left(n^{2}\right)$ time, $O(n \log n)$ space [Bilò, TCS 2022]

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle inequality

Can be solved in:

- $O\left(n \log ^{3} n\right)$ time
- $O(n \log n)$ time
- $(1+\varepsilon)$-apx in time $O\left(n+\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ [Bilò, TCS 2022]

Diameter-Optimally Augmenting a Path

Requires $\Omega\left(n^{2}\right)$ queries/time in general:

Can be solved in:

- $O\left(n^{2} \log n\right)$ time, $O(n)$ space [Wang \& Zhao TCS 2021]
- $O\left(n^{2}\right)$ time, $O(n \log n)$ space [Bilò, TCS 2022]

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle inequality
Can be solved in:

- $O\left(n \log ^{3} n\right)$ time
- $O(n \log n)$ time
- $(1+\varepsilon)$-apx in time $O\left(n+\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ [Bilò, TCS 2022] Also for trees!

k-Diameter-Optimally Augmenting a Tree

k-DOAT Input:

- A weighted tree T with n vertices and non-negative edge costs
- Acccess to an oracle that can be queried with a missing edge (u, v) and reports the cost of (u, v)

$$
k=3
$$

k-Diameter-Optimally Augmenting a Tree

k-DOAT Input:

- A weighted tree T with n vertices and non-negative edge costs
- Acccess to an oracle that can be queried with a missing edge (u, v) and reports the cost of (u, v)

Goal:

- Find a S set of at most k shortcuts that minimizes the diameter of $T+S$

$$
k=3
$$

Our Results

Lower bound for metric k-DOAT:

- For $k \geq 3$: Any $<\frac{10}{9}$-approximation algorithm uses $\Omega\left(n^{2}\right)$ queries.

Our Results

Lower bound for metric k-DOAT:

- For $k \geq 3$: Any $<\frac{10}{9}$-approximation algorithm uses $\Omega\left(n^{2}\right)$ queries.

Approximation algorithms for metric k-DOAT:

- Linear-time 4 -approximation algorithm for $k=O\left(\sqrt{\frac{n}{\log n}}\right)$
- Linear-time $(1+\varepsilon)$-approximation algorithm for $k=o(\sqrt{\log n})$ and trees with $O\left(n^{\frac{1}{(2 k+2)^{2}}}\right)$ leaves.

Our Results

Lower bound for metric k-DOAT:

- For $k \geq 3$: Any $<\frac{10}{9}$-approximation algorithm uses $\Omega\left(n^{2}\right)$ queries.

Approximation algorithms for metric k-DOAT:

- Linear-time 4 -approximation algorithm for $k=O\left(\sqrt{\frac{n}{\log n}}\right)$
- Linear-time $(1+\varepsilon)$-approximation algorithm for $k=o(\sqrt{\log n})$ and trees with $O\left(n^{\frac{1}{(2 k+2)^{2}}}\right)$ leaves.
\Longrightarrow Paths admit a linear-time $(1+\varepsilon)$-apx algorithm. Dichotomy with trees!

Our Results

Lower bound for metric k-DOAT:

- For $k \geq 3$: Any $<\frac{10}{9}$-approximation algorithm uses $\Omega\left(n^{2}\right)$ queries.

Approximation algorithms for metric k-DOAT:

- Linear-time 4 -approximation algorithm for $k=O\left(\sqrt{\frac{n}{\log n}}\right)$
- Linear-time $(1+\varepsilon)$-approximation algorithm for $k=o(\sqrt{\log n})$ and trees with $O\left(n^{\frac{1}{(2 k+2)^{2}}}\right)$ leaves.
\Longrightarrow Paths admit a linear-time $(1+\varepsilon)$-apx algorithm. Dichotomy with trees!

Exact algorithms (not necessarily metric):

- $O(n k \log n)$-time algorithm to find the diameter of a tree augmented with k edges

Our Results

Lower bound for metric k-DOAT:

- For $k \geq 3$: Any $<\frac{10}{9}$-approximation algorithm uses $\Omega\left(n^{2}\right)$ queries.

Approximation algorithms for metric k-DOAT:

- Linear-time 4 -approximation algorithm for $k=O\left(\sqrt{\frac{n}{\log n}}\right)$
- Linear-time $(1+\varepsilon)$-approximation algorithm for $k=o(\sqrt{\log n})$ and trees with $O\left(n^{\frac{1}{(2 k+2)^{2}}}\right)$ leaves.
\Longrightarrow Paths admit a linear-time $(1+\varepsilon)$-apx algorithm. Dichotomy with trees!

Exact algorithms (not necessarily metric):

- $O(n k \log n)$-time algorithm to find the diameter of a tree augmented with k edges \Downarrow
- $O\left(k \cdot n^{2 k+1} \log n\right)$-time algorithm for k-DOAT

Our Results

Lower bound for metric k-DOAT:

- For $k \geq 3$: Any $<\frac{10}{9}$-approximation algorithm uses $\Omega\left(n^{2}\right)$ queries.

Approximation algorithms for metric k-DOAT:

- Linear-time 4 -approximation algorithm for $k=O\left(\sqrt{\frac{n}{\log n}}\right)$
- Linear-time $(1+\varepsilon)$-approximation algorithm for $k=o(\sqrt{\log n})$ and trees with $O\left(n^{\frac{1}{(2 k+2)^{2}}}\right)$ leaves.
\Longrightarrow Paths admit a linear-time $(1+\varepsilon)$-apx algorithm. Dichotomy with trees!

Exact algorithms (not necessarily metric):

- $O(n k \log n)$-time algorithm to find the diameter of a tree augmented with k edges \Downarrow
- $O\left(k \cdot n^{2 k+1} \log n\right)$-time algorithm for k-DOAT

Our Results

Lower bound for metric k-DOAT:

- For $k \geq 3$: Any $<\frac{10}{9}$-approximation algorithm uses $\Omega\left(n^{2}\right)$ queries.

Approximation algorithms for metric k-DOAT:

- Linear-time 4 -approximation algorithm for $k=O\left(\sqrt{\frac{n}{\log n}}\right)$
- Linear-time $(1+\varepsilon)$-approximation algorithm for $k=o(\sqrt{\log n})$ and trees with $O\left(n^{\frac{1}{(2 k+2)^{2}}}\right)$ leaves.
\Longrightarrow Paths admit a linear-time $(1+\varepsilon)$-apx algorithm. Dichotomy with trees!
Exact algorithms (not necessarily metric):
- $O(n k \log n)$-time algorithm to find the diameter of a tree augmented with k edges \Downarrow
- $O\left(k \cdot n^{2 k+1} \log n\right)$-time algorithm for k-DOAT

Our Lower Bound for $k \geq 3$

Our Lower Bound for $k \geq 3$

Consider $k=3$ for simplicity

Our Lower Bound for $k=3$

Instance \mathcal{I} :

Our Lower Bound for $k=3$

Instance \mathcal{I} :

Our Lower Bound for $k=3$

Instance \mathcal{I} :

Our Lower Bound for $k=3$

Instance \mathcal{I} :

Our Lower Bound for $k=3$

Instance \mathcal{I} :

Our Lower Bound for $k=3$

Instance \mathcal{I} :

Our Lower Bound for $k=3$

Instance \mathcal{I} :

Our Lower Bound for $k=3$

Instance \mathcal{I} :

+ Metric closure

Our Lower Bound for $k=3$

Instance \mathcal{I} :

+ Metric closure
For any set S of ≤ 3 shortcuts, $\operatorname{diam}(T+S) \geq 10$

Our Lower Bound for $k=3$

Pick $a \in A$ and $b \in B$
Instance $\mathcal{I}_{a, b}$:

Our Lower Bound for $k=3$

Pick $a \in A$ and $b \in B$
Instance $\mathcal{I}_{a, b}$:

Our Lower Bound for $k=3$

Pick $a \in A$ and $b \in B$ and lower the cost of (a, b) to 1
Instance $\mathcal{I}_{a, b}$:

Our Lower Bound for $k=3$

Pick $a \in A$ and $b \in B$ and lower the cost of (a, b) to 1
Instance $\mathcal{I}_{a, b}$:

+ Metric closure

Our Lower Bound for $k=3$

Pick $a \in A$ and $b \in B$ and lower the cost of (a, b) to 1
Instance $\mathcal{I}_{a, b}$:

+ Metric closure
There is a set S of 3 shortcuts such that $\operatorname{diam}(T+S)=9$

Our Lower Bound for $k=3$

Pick $a \in A$ and $b \in B$ and lower the cost of (a, b) to 1 Instance $\mathcal{I}_{a, b}$:

+ Metric closure
There is a set S of 3 shortcuts such that $\operatorname{diam}(T+S)=9$

Key Property: the cost all edges, except for (a, b) is the same in \mathcal{I} and $\mathcal{I}_{a, b}$

Our Lower Bound for $k=3$

Input: Either \mathcal{I} or $\mathcal{I}_{a, b}$ for some $(a, b) \in A \times B$

Our Lower Bound for $k=3$

Input: Either \mathcal{I} or $\mathcal{I}_{a, b}$ for some $(a, b) \in A \times B$

An algorithm that solves 3-DOAT needs to tell \mathcal{I} apart from $\mathcal{I}_{a, b}$
... which requires querying all edges in $A \times B$

Our Lower Bound for $k=3$

Input: Either \mathcal{I} or $\mathcal{I}_{a, b}$ for some $(a, b) \in A \times B$

An algorithm that solves 3-DOAT needs to tell \mathcal{I} apart from $\mathcal{I}_{a, b}$
... which requires querying all edges in $A \times B$

Actually shows: there is no $o\left(n^{2}\right)$-queries/time σ-approximation algorithm with $\sigma<\frac{10}{9}$

Our Exact Algorithm

(Speeding up the) Naive Strategy

- For every possible set S of k shortcuts:
- Compute the diameter of $T+S$
$O\left(n^{2 k}\right)$ choices
$\widetilde{O}\left(n^{2}\right)$ time

(Speeding up the) Naive Strategy

- For every possible set S of k shortcuts:
- Compute the diameter of $T+S$
$O\left(n^{2 k}\right)$ choices
$\widetilde{O}\left(n^{2}\right)$ time

Total running time: $\widetilde{O}\left(n^{2 k+2}\right)$

(Speeding up the) Naive Strategy

- For every possible set S of k shortcuts:
- Compute the diameter of $T+S$
$O\left(n^{2 k}\right)$ choices
$\widetilde{O}\left(n^{2}\right)$ time

Total running time: $\widetilde{O}\left(n^{2 k+2}\right)$

(Speeding up the) Naive Strategy

- For every possible set S of k shortcuts:
- Compute the diameter of $T+S$
$O\left(n^{2 k}\right)$ choices
$O\left(n^{2}\right) \quad \widetilde{O}(k \cdot n)$ time

Total running time: $\widetilde{O}\left(n^{2 k+2}\right)$

(Speeding up the) Naive Strategy

- For every possible set S of k shortcuts:
- Compute the diameter of $T+S$
$O\left(n^{2 k}\right)$ choices
$O\left(n^{2}\right.$ time $\quad \widetilde{O}(k \cdot n)$ time

Total running time: $\widetilde{O\left(n^{2 k+2}\right)} \quad \widetilde{O}\left(k \cdot n^{2 k+1}\right)$ time

(Speeding up the) Naive Strategy

- For every possible set S of k shortcuts:
- Compute the diameter of $T+S$
$O\left(n^{2 k}\right)$ choices
$O\left(n^{2}\right) \quad \widetilde{O}(k \cdot n)$ time

Total running time: $\widetilde{O}\left(n^{2 k+2}\right) \quad \widetilde{O}\left(k \cdot n^{2 k+1}\right)$ time

Some remarks:

- Saves a $\Theta(n)$ factor
- Computing the diameter of a graph with $(n-1)+k$ edges is interesting in its own regard

Warm-up: Diameter of an Augmented Path $P+S$

- For every source vertex s
$O(n)$ choices
- Compute the eccentricity $\mathcal{E}(s)$ of s in $P+S$

Warm-up: Diameter of an Augmented Path $P+S$

- For every source vertex s
$O(n)$ choices
- Compute the eccentricity $\mathcal{E}(s)$ of s in $P+S \quad$ Want: $\widetilde{O}(k)$ time

Warm-up: Diameter of an Augmented Path $P+S$

- For every source vertex s
$O(n)$ choices
- Compute the eccentricity $\mathcal{E}(s)$ of s in $P+S \quad$ Want: $\widetilde{O}(k)$ time

How?

Warm-up: Diameter of an Augmented Path $P+S$

- For every source vertex s
- Compute the eccentricity $\mathcal{E}(s)$ of s in $P+S \quad$ Want: $\widetilde{O}(k)$ time How?

Mark s, the endpoints of the path, and all endpoints of some shortcut as terminals
Idea: if we know the distances from s to the terminals, we can quickly compute all other distances from s

Warm-up: Diameter of an Augmented Path $P+S$

Subgoal: Quickly find all distances $\alpha_{v}=d_{P+S}(s, v)$ between s and all terminals v in $P+S$

Warm-up: Diameter of an Augmented Path $P+S$

Subgoal: Quickly find all distances $\alpha_{v}=d_{P+S}(s, v)$ between s and all terminals v in $P+S$
Assumption: constant time access to all-pairs distances in $P \quad$ (easy after a $O(n)$-time preprocessing)

Warm-up: Diameter of an Augmented Path $P+S$

Subgoal: Quickly find all distances $\alpha_{v}=d_{P+S}(s, v)$ between s and all terminals v in $P+S$
Assumption: constant time access to all-pairs distances in $P \quad$ (easy after a $O(n)$-time preprocessing)

"Shrink" $P+S$ into H

Warm-up: Diameter of an Augmented Path $P+S$

Subgoal: Quickly find all distances $\alpha_{v}=d_{P+S}(s, v)$ between s and all terminals v in $P+S$
Assumption: constant time access to all-pairs distances in $P \quad$ (easy after a $O(n)$-time preprocessing)

"Shrink" $P+S$ into H

Warm-up: Diameter of an Augmented Path $P+S$

Subgoal: Quickly find all distances $\alpha_{v}=d_{P+S}(s, v)$ between s and all terminals v in $P+S$
Assumption: constant time access to all-pairs distances in $P \quad$ (easy after a $O(n)$-time preprocessing)

"Shrink" $P+S$ into H

$O(k)$ vertices and $O(k)$ edges.

Warm-up: Diameter of an Augmented Path $P+S$

Subgoal: Quickly find all distances $\alpha_{v}=d_{P+S}(s, v)$ between s and all terminals v in $P+S$
Assumption: constant time access to all-pairs distances in $P \quad$ (easy after a $O(n)$-time preprocessing)

"Shrink" $P+S$ into H

$O(k)$ vertices and $O(k)$ edges.

Compute $\alpha_{v}=d_{H}(s, v)$ for all terminals v in time $O(k \log k)$ using Dijkstra's algorithm .

Warm-up: Diameter of an Augmented Path $P+S$

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal vertices u, v

Warm-up: Diameter of an Augmented Path $P+S$

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal vertices u, v

Warm-up: Diameter of an Augmented Path $P+S$

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal vertices u, v

$$
d_{P+S}(s, x)=\min \left\{\begin{array}{l}
\alpha_{u}+d_{P}(u, x) \\
\alpha_{v}+d_{P}(v, x)
\end{array}\right.
$$

Warm-up: Diameter of an Augmented Path $P+S$

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal vertices u, v

$$
d_{P+S}(s, x)=\min \left\{\begin{array}{l}
\alpha_{u}+d_{P}(u, x) \\
\alpha_{v}+d_{P}(v, x)
\end{array}\right.
$$

Assign each node of P to its "closest" terminal

Warm-up: Diameter of an Augmented Path $P+S$

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal vertices u, v

$$
d_{P+S}(s, x)=\min \left\{\begin{array}{l}
\alpha_{u}+d_{P}(u, x) \\
\alpha_{v}+d_{P}(v, x)
\end{array}\right.
$$

Assign each node of P to its "closest" terminal
For each terminal v, we are interested in the distance \mathcal{E}_{v} from v to the farthest node assigned to v The eccentricity of s is $\mathcal{E}(s)=\max _{\text {terminal }}\left(\alpha_{v}+\mathcal{E}_{v}\right)$

Warm-up: Diameter of an Augmented Path $P+S$

What about the other vertices?

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal vertices u, v

$$
d_{P+S}(s, x)=\min \left\{\begin{array}{l}
\alpha_{u}+d_{P}(u, x) \\
\alpha_{v}+d_{P}(v, x)
\end{array}\right.
$$

Assign each node of P to its "closest" terminal
For each terminal v, we are interested in the distance \mathcal{E}_{v} from v to the farthest node assigned to v
The eccentricity of s is $\mathcal{E}(s)=\max _{\text {terminal }}\left(\alpha_{v}+\mathcal{E}_{v}\right)$
Observation: It suffices to quickly find the boundary edges

Warm-up: Diameter of an Augmented Path $P+S$

For each subpath between two consecutive terminal vertices u, v :

$$
d_{P+S}\left(s, x_{i}\right)=\min \left\{\begin{array}{l}
\alpha_{u}+d_{P}\left(u, x_{i}\right) \\
\alpha_{v}+d_{P}\left(v, x_{i}\right)
\end{array}\right.
$$

Warm-up: Diameter of an Augmented Path $P+S$

For each subpath between two consecutive terminal vertices u, v :

$$
d_{P+S}\left(s, x_{i}\right)=\min \left\{\begin{array}{ll}
\alpha_{u}+d_{P}\left(u, x_{i}\right) \\
\alpha_{v}+d_{P}\left(v, x_{i}\right)
\end{array} \quad \text { Monotonically non-decreasing w.r.t. } i\right.
$$

Warm-up: Diameter of an Augmented Path $P+S$

For each subpath between two consecutive terminal vertices u, v :

$$
d_{P+S}\left(s, x_{i}\right)=\min \left\{\begin{array}{l}
\alpha_{u}+d_{P}\left(u, x_{i}\right) \\
\alpha_{v}+d_{P}\left(v, x_{i}\right)
\end{array} \quad \text { Monotonically non-decreasing w.r.t. } i\right.
$$

Find the cross-over point via binary search in time $O(\log n)$.

From Paths to Trees

- Mark terminals
- $H \leftarrow$ Compress graph
- Compute α_{v} s on H
- For each terminal v :
- Find \mathcal{E}_{v} via binary search
- Return $\max _{v}\left(\alpha_{v}+\mathcal{E}_{v}\right)$

From Paths to Trees

- Mark terminals
- $H \leftarrow$ Compress graph
- Compute α_{v} s on H
- For each terminal v :
- Find \mathcal{E}_{v} via binary search
- Return $\max _{v}\left(\alpha_{v}+\mathcal{E}_{v}\right)$

Auxiliar Data Structure DS

From Paths to Trees

- DS $\leftarrow \operatorname{Build}(T)$
- Mark terminals
- $H \leftarrow$ Compress graph
- Compute α_{v} s on H
- For each terminal v :
- Find \mathcal{E}_{v} via binary search
- Return $\max _{v}\left(\alpha_{v}+\mathcal{E}_{v}\right)$

Auxiliar Data Structure DS

Build (T) : Initializes the data structure on the tree T

From Paths to Trees

- DS $\leftarrow \operatorname{Build}(T)$
- DS.MakeTerminal $\left(v_{1}\right)$, DS.MakeTerminal $\left(v_{2}\right), \ldots$
- $H \leftarrow$ Compress graph
- Compute α_{v} s on H
- For each terminal v :
- Find \mathcal{E}_{v} via binary search
- Return $\max _{v}\left(\alpha_{v}+\mathcal{E}_{v}\right)$

Auxiliar Data Structure DS

Build (T) : Initializes the data structure on the tree T
MakeTerminal (v) : Marks vertex v as a terminal vertex
$O(n)$
$O(\log n)$

From Paths to Trees

- DS $\leftarrow \operatorname{Build}(T)$
- DS.MakeTerminal $\left(v_{1}\right)$, DS.MakeTerminal $\left(v_{2}\right), \ldots$
- $H \leftarrow \mathrm{DS} . \operatorname{Shrink}()+S$
- Compute α_{v} s on H
- For each terminal v :
- Find \mathcal{E}_{v} via binary search
- Return $\max _{v}\left(\alpha_{v}+\mathcal{E}_{v}\right)$

Auxiliar Data Structure DS

Build (T) : Initializes the data structure on the tree T
$O(n)$
MakeTerminal (v): Marks vertex v as a terminal vertex
Shrink(): Returns a compact representation of T that contains all terminals
$O(\log n)$
O (\# terminals)

From Paths to Trees

- DS $\leftarrow \operatorname{Build}(T)$
- DS.MakeTerminal $\left(v_{1}\right)$, DS.MakeTerminal $\left(v_{2}\right), \ldots$
- $H \leftarrow$ DS. Shrink ()$+S$
- Compute α_{v} s on H DS.SetAlpha $\left(v_{1}, \alpha_{1}\right)$, DS.SetAlpha $\left(v_{2}, \alpha_{2}\right), \ldots$
- For each terminal v :
- Find \mathcal{E}_{v} via binary search
- Return $\max _{v}\left(\alpha_{v}+\mathcal{E}_{v}\right)$

Auxiliar Data Structure DS

Build (T) : Initializes the data structure on the tree T
$O(n)$
MakeTerminal (v): Marks vertex v as a terminal vertex
Shrink(): Returns a compact representation of T that contains all terminals SetAlpha $\left(v, \alpha_{v}\right)$: Assigns a weight $\alpha_{v} \geq 0$ to vertex v
$O(\log n)$
O (\# terminals)
$O(1)$

From Paths to Trees

- DS $\leftarrow \operatorname{Build}(T)$
- DS.MakeTerminal $\left(v_{1}\right)$, DS.MakeTerminal $\left(v_{2}\right), \ldots$
- $H \leftarrow$ DS. Shrink ()$+S$
- Compute α_{v} s on H DS.SetAlpha $\left(v_{1}, \alpha_{1}\right)$, DS.SetAlpha $\left(v_{2}, \alpha_{2}\right), \ldots$
- Return DS.ReportFarthest()

Auxiliar Data Structure DS

Build (T) : Initializes the data structure on the tree T
MakeTerminal (v) : Marks vertex v as a terminal vertex
Shrink(): Returns a compact representation of T that contains all terminals SetAlpha $\left(v, \alpha_{v}\right)$: Assigns a weight $\alpha_{v} \geq 0$ to vertex v ReportFarthest(): Return the vertex that is "farthest" from all terminals
$O(n)$
$O(\log n)$
O (\# terminals)
$O(1)$
O (\# terminals $\cdot \log n$)

From Paths to Trees

- DS $\leftarrow \operatorname{Build}(T)$
- DS.MakeTerminal $\left(v_{1}\right)$, DS.MakeTerminal $\left(v_{2}\right), \ldots$
- $H \leftarrow \mathrm{DS} . \operatorname{Shrink}()+S$
- Compute α_{v} s on H DS.SetAlpha $\left(v_{1}, \alpha_{1}\right)$, DS.SetAlpha $\left(v_{2}, \alpha_{2}\right), \ldots$
- Return DS.ReportFarthest()

Auxiliar Data Structure

DS

Build (T) : Initializes the data structure on the tree T
MakeTerminal (v) : Marks vertex v as a terminal vertex
Shrink(): Returns a compact representation of T that contains all terminals
SetAlpha $\left(v, \alpha_{v}\right)$: Assigns a weight $\alpha_{v} \geq 0$ to vertex v
ReportFarthest(): Return the vertex that is "farthest" from all terminals
$O(n)$
$O(\log n)$
O (\# terminals)
$O(1)$
$O(\#$ terminals $\cdot \log n)$

A simplifying assumption

We can assume that T is a binary tree

Shrink()

The vertex set V^{\prime} of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals

Shrink()

The vertex set V^{\prime} of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals

Shrink()

The vertex set V^{\prime} of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals

ReportFarthest()

Define the "distance" of a vertex x as $\delta(x)=\min _{\text {terminal } v}\left(\alpha_{v}+d_{T}(v, x)\right)$

ReportFarthest()

Define the "distance" of a vertex x as $\delta(x)=\min _{\text {terminal } v}\left(\alpha_{v}+d_{T}(v, x)\right)$

ReportFarthest()

Define the "distance" of a vertex x as $\delta(x)=\min _{\text {terminal } v}\left(\alpha_{v}+d_{T}(v, x)\right)$
ReportFarthest() returns a vertex x that maximizes $\delta(x)$

ReportFarthest()

Define the "distance" of a vertex x as $\delta(x)=\min _{\text {terminal } v}\left(\alpha_{v}+d_{T}(v, x)\right)$
ReportFarthest() returns a vertex x that maximizes $\delta(x)$

Our Data Structure: Implementation

- The tree T is stored using a top-tree \mathcal{T}
time per op: $O(\log \#$ vertices $)$
- Can add (link) and remove (cut) edges
- Can mark/unmark vertices as terminals
- Given a vertex v, it reports the closest ancestor of v that is a terminal
- Given v, can report the eccentricity of v w.r.t. its tree

Our Data Structure: Implementation

- The tree T is stored using a top-tree \mathcal{T}
time per op: $O(\log \#$ vertices $)$
- Can add (link) and remove (cut) edges
- Can mark/unmark vertices as terminals
- Given a vertex v, it reports the closest ancestor of v that is a terminal
- Given v, can report the eccentricity of v w.r.t. its tree

- The shrunk tree $T_{\text {shrunk }}$ is stored using a link-cut tree
- Vertex additions and deletions
- Link/cut operations

Our Data Structure: Implementation

- The tree T is stored using a top-tree $\mathcal{T} \quad$ time per op: O ($\log \#$ vertices $)$
- Can add (link) and remove (cut) edges
- Can mark/unmark vertices as terminals
- Given a vertex v, it reports the closest ancestor of v that is a terminal
- Given v, can report the eccentricity of v w.r.t. its tree

- The shrunk tree $T_{\text {shrunk }}$ is stored using a link-cut tree
- Vertex additions and deletions
- Link/cut operations time per op: $O(\log \#$ vertices $)$
- Oracles with linear size that can report:
- The lowerst common ancestor of a pair of vertices in T
- The level ancestor of a vertex in T
- The distance/hop-disance between a pair of vertices in T

Implementing ReportFarthest()

Compute the distance $\beta_{v}=\delta(v)$ to each vertex v in $T_{\text {shrunk }}$

Can be done in time $O(k)$ using a postorder DFS vits followed by a preoder DFS visit

Implementing ReportFarthest()

Compute the distance $\beta_{v}=\delta(v)$ to each vertex v in $T_{\text {shrunk }}$

Can be done in time $O(k)$ using a postorder DFS vits followed by a preoder DFS visit

Implementing ReportFarthest()

Compute the distance $\beta_{v}=\delta(v)$ to each vertex v in $T_{\text {shrunk }}$

Can be done in time $O(k)$ using a postorder DFS vits followed by a preoder DFS visit This allows us to treat all vertices in $T_{\text {shrunk }}$ as if they were terminals

Implementing ReportFarthest()

Implementing ReportFarthest()

Assign each node of T to the "closest" node of $T_{\text {shrunk }}$

Implementing ReportFarthest()

Assign each node of T to the "closest" node of $T_{\text {shrunk }}$
We want to quickly find the boundary edges

Implementing ReportFarthest()

Each edge (u, v) in $T_{\text {shrunk }}$ corresponds to a vertical path $\left\langle u=x_{1}, x_{2}, \ldots, x_{k}=v\right\rangle$ in T

Implementing ReportFarthest()

Each edge (u, v) in $T_{\text {shrunk }}$ corresponds to a vertical path $\left\langle u=x_{1}, x_{2}, \ldots, x_{k}=v\right\rangle$ in T

Implementing ReportFarthest()

Each edge (u, v) in $T_{\text {shrunk }}$ corresponds to a vertical path $\left\langle u=x_{1}, x_{2}, \ldots, x_{k}=v\right\rangle$ in T
$\delta\left(x_{i}\right)=\min \left\{\begin{array}{l}\beta_{u}+d_{T}\left(u, x_{i}\right) \\ \beta_{v}+d_{T}\left(v, x_{i}\right)\end{array}\right.$

Implementing ReportFarthest()

Each edge (u, v) in $T_{\text {shrunk }}$ corresponds to a vertical path $\left\langle u=x_{1}, x_{2}, \ldots, x_{k}=v\right\rangle$ in T
$\delta\left(x_{i}\right)=\min \left\{\begin{array}{ll}\beta_{u}+d_{T}\left(u, x_{i}\right) \\ \beta_{v}+d_{T}\left(v, x_{i}\right)\end{array} \quad\right.$ Monotonically non-decreasing w.r.t. i

Implementing ReportFarthest()

Each edge (u, v) in $T_{\text {shrunk }}$ corresponds to a vertical path $\left\langle u=x_{1}, x_{2}, \ldots, x_{k}=v\right\rangle$ in T
$\delta\left(x_{i}\right)=\min \left\{\begin{array}{l}\beta_{u}+d_{T}\left(u, x_{i}\right) \\ \beta_{v}+d_{T}\left(v, x_{i}\right)\end{array} \quad\right.$ Monotonically non-decreasing w.r.t. i
Binary search!

Implementing ReportFarthest()

Cut all bounday edges from \mathcal{T}

Implementing ReportFarthest()

Cut all bounday edges from \mathcal{T}
The resulting forest contains exactly one tree T_{v} for each vertex v in $T_{\text {shrunk }}$

Implementing ReportFarthest()

Cut all bounday edges from \mathcal{T}
The resulting forest contains exactly one tree T_{v} for each vertex v in $T_{\text {shrunk }}$ For each v : query \mathcal{T} to find the eccentricity \mathcal{E}_{v} of v in T_{v}

Implementing ReportFarthest()

Cut all bounday edges from \mathcal{T}
The resulting forest contains exactly one tree T_{v} for each vertex v in $T_{\text {shrunk }}$
For each v : query \mathcal{T} to find the eccentricity \mathcal{E}_{v} of v in T_{v}
Return $\max _{v}\left(\beta_{v}+\mathcal{E}_{v}\right)$
\ldots and restore the orignal state of \mathcal{T} (link the boundary edges)

Open Problems

Faster algorithms for metric k-DOAT?

- Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

$O(n \log n)$	$? ? ?$	$\Omega\left(n^{2}\right)$
$k=1$	$k=2$	$k \geq 3$

Open Problems

Faster algorithms for metric k-DOAT?

- Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

