
Finding Diameter-Reducing Shortcuts in Trees

Davide Bilò, Luciano Gualà, Stefano Leucci, Luca Pepè Sciarria



• A weighted path P with n vertices and non-negative edge costs

Input:

Diameter-Optimally Augmenting a Path

1 3 8 2



• A weighted path P with n vertices and non-negative edge costs

Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

Diameter-Optimally Augmenting a Path

vu 1 3 8 2



• A weighted path P with n vertices and non-negative edge costs

Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

Diameter-Optimally Augmenting a Path

vu

c(u, v) = 2

1 3 8 2

2



• A weighted path P with n vertices and non-negative edge costs

Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

Goal:

• Find a shortcut edge (u∗, v∗) that minimizes the diameter of P + (u∗, v∗)

Diameter-Optimally Augmenting a Path

vu

c(u, v) = 2

1 3 8 2

2



• A weighted path P with n vertices and non-negative edge costs

Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

Goal:

• Find a shortcut edge (u∗, v∗) that minimizes the diameter of P + (u∗, v∗)

Diameter-Optimally Augmenting a Path

vu

c(u, v) = 2

1 3 8 2

2

diameter(P + (u, v))= 8



• A weighted path P with n vertices and non-negative edge costs

Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

Goal:

• Find a shortcut edge (u∗, v∗) that minimizes the diameter of P + (u∗, v∗)

Diameter-Optimally Augmenting a Path

vu 1 3 8 2

4

diameter(P + (u, v))= 8

diameter(P+(u∗, v∗))= 7
u∗ v∗



Requires Ω(n2) queries/time in general:

Diameter-Optimally Augmenting a Path

0 10 0 0



Requires Ω(n2) queries/time in general:

Diameter-Optimally Augmenting a Path

0 10 0 0

1
1

1

1



Requires Ω(n2) queries/time in general:

Diameter-Optimally Augmenting a Path

0 10 0 0

0 10 0 01
1

1

1
0



Requires Ω(n2) queries/time in general: Can be solved in:

• O(n2) time, O(n log n) space

• O(n2 log n) time, O(n) space

Diameter-Optimally Augmenting a Path

[Bilò, TCS 2022]

[Wang & Zhao TCS 2021]

0 10 0 0

0 10 0 01
1

1

1
0



Requires Ω(n2) queries/time in general:

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:

• O(n2) time, O(n log n) space

• O(n2 log n) time, O(n) space

Diameter-Optimally Augmenting a Path

[Bilò, TCS 2022]

[Wang & Zhao TCS 2021]

0 10 0 0

0 10 0 01
1

1

1
0



Requires Ω(n2) queries/time in general:

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:

• O(n2) time, O(n log n) space

• O(n2 log n) time, O(n) space

Can be solved in:

• O(n log3 n) time

• O(n log n) time

Diameter-Optimally Augmenting a Path

[Bilò, TCS 2022]

[Wang & Zhao TCS 2021]

0 10 0 0

0 10 0 01
1

1

1
0

[Große et al., J. Found. Comput. Sci. 2019]

[Wang, Comput. Geom. 2018]



Requires Ω(n2) queries/time in general:

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:

• O(n2) time, O(n log n) space

• O(n2 log n) time, O(n) space

Can be solved in:

• O(n log3 n) time

• O(n log n) time

Diameter-Optimally Augmenting a Path

• (1 + ε)-apx in time O(n+ 1
ε log

1
ε )

[Bilò, TCS 2022]

[Wang & Zhao TCS 2021]

[Bilò, TCS 2022]

0 10 0 0

0 10 0 01
1

1

1
0

[Große et al., J. Found. Comput. Sci. 2019]

[Wang, Comput. Geom. 2018]



Requires Ω(n2) queries/time in general:

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:

• O(n2) time, O(n log n) space

• O(n2 log n) time, O(n) space

Can be solved in:

• O(n log3 n) time

• O(n log n) time

Diameter-Optimally Augmenting a Path

• (1 + ε)-apx in time O(n+ 1
ε log

1
ε ) Also for trees!

[Bilò, TCS 2022]

[Wang & Zhao TCS 2021]

[Bilò, TCS 2022]

0 10 0 0

0 10 0 01
1

1

1
0

[Große et al., J. Found. Comput. Sci. 2019]

[Wang, Comput. Geom. 2018]



k-Diameter-Optimally Augmenting a Tree

• A weighted tree T with n vertices and non-negative edge costs

k-DOAT Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

4 2

651

k = 3



k-Diameter-Optimally Augmenting a Tree

• A weighted tree T with n vertices and non-negative edge costs

k-DOAT Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

Goal:

• Find a S set of at most k shortcuts that minimizes the diameter of T + S

4 2

651

2 3

8

k = 3



Our Results

• For k ≥ 3: Any < 10
9 -approximation algorithm uses Ω(n2) queries.

Lower bound for metric k-DOAT:



Our Results

• For k ≥ 3: Any < 10
9 -approximation algorithm uses Ω(n2) queries.

Lower bound for metric k-DOAT:

Approximation algorithms for metric k-DOAT:

• Linear-time 4-approximation algorithm for k = O
�q

n
log n

�

• Linear-time (1 + ε)-approximation algorithm for k = o(
√
log n) and trees with O(n

1
(2k+2)2 ) leaves.



Our Results

• For k ≥ 3: Any < 10
9 -approximation algorithm uses Ω(n2) queries.

Lower bound for metric k-DOAT:

Approximation algorithms for metric k-DOAT:

• Linear-time 4-approximation algorithm for k = O
�q

n
log n

�

• Linear-time (1 + ε)-approximation algorithm for k = o(
√
log n) and trees with O(n

1
(2k+2)2 ) leaves.

=⇒ Paths admit a linear-time (1 + ε)-apx algorithm. Dichotomy with trees!



Our Results

• For k ≥ 3: Any < 10
9 -approximation algorithm uses Ω(n2) queries.

Lower bound for metric k-DOAT:

Exact algorithms (not necessarily metric):

• O(nk log n)-time algorithm to find the diameter of a tree augmented with k edges

Approximation algorithms for metric k-DOAT:

• Linear-time 4-approximation algorithm for k = O
�q

n
log n

�

• Linear-time (1 + ε)-approximation algorithm for k = o(
√
log n) and trees with O(n

1
(2k+2)2 ) leaves.

=⇒ Paths admit a linear-time (1 + ε)-apx algorithm. Dichotomy with trees!



Our Results

• For k ≥ 3: Any < 10
9 -approximation algorithm uses Ω(n2) queries.

Lower bound for metric k-DOAT:

Exact algorithms (not necessarily metric):

• O(nk log n)-time algorithm to find the diameter of a tree augmented with k edges⇒

• O(k · n2k+1 log n)-time algorithm for k-DOAT

Approximation algorithms for metric k-DOAT:

• Linear-time 4-approximation algorithm for k = O
�q

n
log n

�

• Linear-time (1 + ε)-approximation algorithm for k = o(
√
log n) and trees with O(n

1
(2k+2)2 ) leaves.

=⇒ Paths admit a linear-time (1 + ε)-apx algorithm. Dichotomy with trees!



Our Results

• For k ≥ 3: Any < 10
9 -approximation algorithm uses Ω(n2) queries.

Lower bound for metric k-DOAT:

Exact algorithms (not necessarily metric):

• O(nk log n)-time algorithm to find the diameter of a tree augmented with k edges⇒

• O(k · n2k+1 log n)-time algorithm for k-DOAT

Approximation algorithms for metric k-DOAT:

• Linear-time 4-approximation algorithm for k = O
�q

n
log n

�

• Linear-time (1 + ε)-approximation algorithm for k = o(
√
log n) and trees with O(n

1
(2k+2)2 ) leaves.

=⇒ Paths admit a linear-time (1 + ε)-apx algorithm. Dichotomy with trees!



Our Results

• For k ≥ 3: Any < 10
9 -approximation algorithm uses Ω(n2) queries.

Lower bound for metric k-DOAT:

Exact algorithms (not necessarily metric):

• O(nk log n)-time algorithm to find the diameter of a tree augmented with k edges⇒

• O(k · n2k+1 log n)-time algorithm for k-DOAT

Approximation algorithms for metric k-DOAT:

• Linear-time 4-approximation algorithm for k = O
�q

n
log n

�

• Linear-time (1 + ε)-approximation algorithm for k = o(
√
log n) and trees with O(n

1
(2k+2)2 ) leaves.

=⇒ Paths admit a linear-time (1 + ε)-apx algorithm. Dichotomy with trees!



Our Lower Bound for k ≥ 3



Our Lower Bound for k ≥ 3

Consider k = 3 for simplicity



Our Lower Bound for k = 3

2

Instance I:



Our Lower Bound for k = 3

2

3

Instance I:



Our Lower Bound for k = 3

2

3

Instance I:



Our Lower Bound for k = 3

3 3

2

Instance I:



Our Lower Bound for k = 3

3

3

3

2

Instance I:



Our Lower Bound for k = 3

3

3

3

2 2

2

Instance I:



Our Lower Bound for k = 3

3

3

3

2 22

2

Instance I:



Our Lower Bound for k = 3

3

3

3

2 22

2

+ Metric closure

Instance I:



Our Lower Bound for k = 3

3

3

3

2 22

2

+ Metric closure

For any set S of ≤ 3 shortcuts, diam(T + S) ≥ 10

Instance I:

2

2

2 2



Our Lower Bound for k = 3

3

3

3

2 22

2

A B

Pick a ∈ A and b ∈ B

Instance Ia,b:



Our Lower Bound for k = 3

3

3

3

2 22

2

a b
A B

Pick a ∈ A and b ∈ B

Instance Ia,b:



Our Lower Bound for k = 3

13

3

3

2 22

2

a b
A B

Pick a ∈ A and b ∈ B

Instance Ia,b:
and lower the cost of (a, b) to 1



Our Lower Bound for k = 3

13

3

3

2 22

2

a b
A B

Pick a ∈ A and b ∈ B

Instance Ia,b:
and lower the cost of (a, b) to 1

+ Metric closure



Our Lower Bound for k = 3

13

3

3

2 22

2

a b
A B

Pick a ∈ A and b ∈ B

Instance Ia,b:
and lower the cost of (a, b) to 1

+ Metric closure

There is a set S of 3 shortcuts such that diam(T + S) = 9

2

2 2
a b

1



Our Lower Bound for k = 3

13

3

3

2 22

2

a b
A B

Pick a ∈ A and b ∈ B

Instance Ia,b:
and lower the cost of (a, b) to 1

+ Metric closure

Key Property: the cost all edges, except for (a, b) is the same in I and Ia,b

There is a set S of 3 shortcuts such that diam(T + S) = 9

2

2 2
a b

1



1?

Our Lower Bound for k = 3

Input: Either I or Ia,b for some (a, b) ∈ A×B

A B



1?

Our Lower Bound for k = 3

Input: Either I or Ia,b for some (a, b) ∈ A×B

A B

An algorithm that solves 3-DOAT needs to tell I apart from Ia,b
... which requires querying all edges in A×B



1?

Our Lower Bound for k = 3

Input: Either I or Ia,b for some (a, b) ∈ A×B

A B

An algorithm that solves 3-DOAT needs to tell I apart from Ia,b

Actually shows: there is no o(n2)-queries/time σ-approximation algorithm with σ < 10
9

... which requires querying all edges in A×B



Our Exact Algorithm



(Speeding up the) Naive Strategy

• For every possible set S of k shortcuts:

• Compute the diameter of T + S

O(n2k) choices

eO(n2) time



(Speeding up the) Naive Strategy

• For every possible set S of k shortcuts:

• Compute the diameter of T + S

O(n2k) choices

eO(n2) time

Total running time: eO(n2k+2)



(Speeding up the) Naive Strategy

• For every possible set S of k shortcuts:

• Compute the diameter of T + S

O(n2k) choices

eO(n2) time

Total running time: eO(n2k+2)



(Speeding up the) Naive Strategy

• For every possible set S of k shortcuts:

• Compute the diameter of T + S

O(n2k) choices

eO(n2) time

Total running time: eO(n2k+2)

eO(k · n) time



(Speeding up the) Naive Strategy

• For every possible set S of k shortcuts:

• Compute the diameter of T + S

O(n2k) choices

eO(n2) time

Total running time: eO(n2k+2)

eO(k · n) time

eO(k · n2k+1) time



(Speeding up the) Naive Strategy

• For every possible set S of k shortcuts:

• Compute the diameter of T + S

O(n2k) choices

eO(n2) time

Total running time: eO(n2k+2)

eO(k · n) time

eO(k · n2k+1) time

• Saves a Θ(n) factor

• Computing the diameter of a graph with (n− 1) + k edges is interesting in its own regard

Some remarks:



Warm-up: Diameter of an Augmented Path P + S

• For every source vertex s

• Compute the eccentricity E(s) of s in P + S

O(n) choices

s



Warm-up: Diameter of an Augmented Path P + S

• For every source vertex s

• Compute the eccentricity E(s) of s in P + S

O(n) choices

Want: eO(k) time

s



Warm-up: Diameter of an Augmented Path P + S

• For every source vertex s

• Compute the eccentricity E(s) of s in P + S How?

O(n) choices

Want: eO(k) time

s



Warm-up: Diameter of an Augmented Path P + S

• For every source vertex s

• Compute the eccentricity E(s) of s in P + S

Mark s, the endpoints of the path, and all endpoints of some shortcut as terminals

Idea: if we know the distances from s to the terminals, we can quickly compute all other distances
from s

How?

O(n) choices

Want: eO(k) time

s



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances αv = dP+S(s, v) between s and all terminals v in P + S

s



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances αv = dP+S(s, v) between s and all terminals v in P + S

s

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances αv = dP+S(s, v) between s and all terminals v in P + S

s

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

s

“Shrink” P + S into H



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances αv = dP+S(s, v) between s and all terminals v in P + S

s

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

s

“Shrink” P + S into H
dP (u, v)

u v

vu



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances αv = dP+S(s, v) between s and all terminals v in P + S

s

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

s

“Shrink” P + S into H

O(k) vertices and O(k) edges.

dP (u, v)

u v

vu



Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances αv = dP+S(s, v) between s and all terminals v in P + S

s

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

s

“Shrink” P + S into H

Compute αv = dH(s, v) for all terminals v in time O(k log k) using Dijkstra’s algorithm .

O(k) vertices and O(k) edges.

dP (u, v)

u v

vu



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

s

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

xu v



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

s

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

xu v



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

s

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

dP+S(s, x) = min

(
αu + dP (u, x)

αv + dP (v, x)

xu v



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

s

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Assign each node of P to its “closest” terminal

dP+S(s, x) = min

(
αu + dP (u, x)

αv + dP (v, x)

xu v



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

s

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Assign each node of P to its “closest” terminal

dP+S(s, x) = min

(
αu + dP (u, x)

αv + dP (v, x)

For each terminal v, we are interested in the distance Ev from v to the farthest node assigned to v

xu v

The eccentricity of s is E(s) = maxterminal v (αv + Ev)



Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

s

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Assign each node of P to its “closest” terminal

Observation: It suffices to quickly find the boundary edges

dP+S(s, x) = min

(
αu + dP (u, x)

αv + dP (v, x)

For each terminal v, we are interested in the distance Ev from v to the farthest node assigned to v

xu v

The eccentricity of s is E(s) = maxterminal v (αv + Ev)



Warm-up: Diameter of an Augmented Path P + S

For each subpath between two consecutive terminal vertices u, v:

s

dP+S(s, xi) = min

(
αu + dP (u, xi)

αv + dP (v, xi)

u vx1 x2 x3 x4



Warm-up: Diameter of an Augmented Path P + S

For each subpath between two consecutive terminal vertices u, v:

s

dP+S(s, xi) = min

(
αu + dP (u, xi)

αv + dP (v, xi)

Monotonically non-decreasing w.r.t. i

Monotonically non-increasing w.r.t. i

u vx1 x2 x3 x4



Warm-up: Diameter of an Augmented Path P + S

For each subpath between two consecutive terminal vertices u, v:

s

dP+S(s, xi) = min

(
αu + dP (u, xi)

αv + dP (v, xi)

Find the cross-over point via binary search in time O(log n).

Monotonically non-decreasing w.r.t. i

Monotonically non-increasing w.r.t. i

u vx1 x2 x3 x4



From Paths to Trees

• Mark terminals

• H ← Compress graph

• Compute αvs on H

• For each terminal v:

• Find Ev via binary search

• Return maxv (αv + Ev)



From Paths to Trees

• Mark terminals

• H ← Compress graph

• Compute αvs on H

• For each terminal v:

• Find Ev via binary search

• Return maxv (αv + Ev)
Auxiliar Data
Structure

DS



From Paths to Trees

• Mark terminals

• H ← Compress graph

• Compute αvs on H

• For each terminal v:

• Find Ev via binary search

• Return maxv (αv + Ev)

• DS ← Build(T )

Auxiliar Data
Structure

DS

Build(T ): Initializes the data structure on the tree T O(n)



From Paths to Trees

• H ← Compress graph

• Compute αvs on H

• For each terminal v:

• Find Ev via binary search

• Return maxv (αv + Ev)

• DS ← Build(T )

• DS.MakeTerminal(v1) , DS.MakeTerminal(v2), . . .

Auxiliar Data
Structure

DS

MakeTerminal(v): Marks vertex v as a terminal vertex O(log n)

Build(T ): Initializes the data structure on the tree T O(n)



From Paths to Trees

• Compute αvs on H

• For each terminal v:

• Find Ev via binary search

• Return maxv (αv + Ev)

• DS ← Build(T )

• DS.MakeTerminal(v1) , DS.MakeTerminal(v2), . . .

• H ← DS.Shrink() + S

Auxiliar Data
Structure

DS

MakeTerminal(v): Marks vertex v as a terminal vertex

Shrink(): Returns a compact representation of T that contains all terminals

O(log n)

O(# terminals)

Build(T ): Initializes the data structure on the tree T O(n)



From Paths to Trees

• Compute αvs on H

• For each terminal v:

• Find Ev via binary search

• Return maxv (αv + Ev)

• DS ← Build(T )

• DS.MakeTerminal(v1) , DS.MakeTerminal(v2), . . .

• H ← DS.Shrink() + S

DS.SetAlpha(v1,α1), DS.SetAlpha(v2,α2), . . .

Auxiliar Data
Structure

DS

MakeTerminal(v): Marks vertex v as a terminal vertex

Shrink(): Returns a compact representation of T that contains all terminals

SetAlpha(v,αv): Assigns a weight αv ≥ 0 to vertex v

O(log n)

O(# terminals)

O(1)

Build(T ): Initializes the data structure on the tree T O(n)



From Paths to Trees

• Compute αvs on H

• DS ← Build(T )

• DS.MakeTerminal(v1) , DS.MakeTerminal(v2), . . .

• H ← DS.Shrink() + S

• Return DS.ReportFarthest()

DS.SetAlpha(v1,α1), DS.SetAlpha(v2,α2), . . .

Auxiliar Data
Structure

DS

MakeTerminal(v): Marks vertex v as a terminal vertex

Shrink(): Returns a compact representation of T that contains all terminals

SetAlpha(v,αv): Assigns a weight αv ≥ 0 to vertex v

ReportFarthest(): Return the vertex that is “farthest“ from all terminals

O(log n)

O(# terminals)

O(1)

O(# terminals · log n)

Build(T ): Initializes the data structure on the tree T O(n)



From Paths to Trees

• Compute αvs on H

• DS ← Build(T )

• DS.MakeTerminal(v1) , DS.MakeTerminal(v2), . . .

• H ← DS.Shrink() + S

• Return DS.ReportFarthest()

DS.SetAlpha(v1,α1), DS.SetAlpha(v2,α2), . . .

Auxiliar Data
Structure

DS

MakeTerminal(v): Marks vertex v as a terminal vertex

Shrink(): Returns a compact representation of T that contains all terminals

SetAlpha(v,αv): Assigns a weight αv ≥ 0 to vertex v

ReportFarthest(): Return the vertex that is “farthest“ from all terminals

O(log n)

O(# terminals)

O(1)

O(# terminals · log n)

Build(T ): Initializes the data structure on the tree T O(n)



A simplifying assumption

We can assume that T is a binary tree

This adds O(n) additional nodes

0

0 0 0



Shrink()

The vertex set V ′ of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals

T



Shrink()

The vertex set V ′ of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals

T



Shrink()

The vertex set V ′ of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals

Shrink()

dT (u, v)

u

v

u

v

T Tshrunk



ReportFarthest()

2

3

8

Define the “distance” of a vertex x as δ(x) = minterminal v


αv + dT (v, x)

�

5 6

3

4

2

4

4

5

2

7

1 3



ReportFarthest()

2

3

8

Define the “distance” of a vertex x as δ(x) = minterminal v


αv + dT (v, x)

�

δ(x) = 12

5 6

3

4

2

4

4

5

2

7

1 3

x



ReportFarthest()

2

3

8

Define the “distance” of a vertex x as δ(x) = minterminal v


αv + dT (v, x)

�

ReportFarthest() returns a vertex x that maximizes δ(x)

δ(x) = 12

5 6

3

4

2

4

4

5

2

7

1 3

x



ReportFarthest()

Define the “distance” of a vertex x as δ(x) = minterminal v


αv + dT (v, x)

�

ReportFarthest() returns a vertex x that maximizes δ(x)

δ(x) = 12

5 6

3

4

2

4

4

5

2

7

1 3

x

s∗

= Eccentricity of s∗

2

3

8



Our Data Structure: Implementation

• The tree T is stored using a top-tree T

• Given a vertex v, it reports the closest ancestor of v that is a terminal

• Can mark/unmark vertices as terminals

• Can add (link) and remove (cut) edges

• Given v, can report the eccentricity of v w.r.t. its tree

time per op: O(log#vertices)



Our Data Structure: Implementation

• The shrunk tree Tshrunk is stored using a link-cut tree

• Vertex additions and deletions

• The tree T is stored using a top-tree T

• Given a vertex v, it reports the closest ancestor of v that is a terminal

• Can mark/unmark vertices as terminals

• Can add (link) and remove (cut) edges

• Given v, can report the eccentricity of v w.r.t. its tree

• Link/cut operations

time per op: O(log#vertices)

time per op: O(log#vertices)



Our Data Structure: Implementation

• Oracles with linear size that can report:

• The lowerst common ancestor of a pair of vertices in T

• The distance/hop-disance between a pair of vertices in T

• The level ancestor of a vertex in T

• The shrunk tree Tshrunk is stored using a link-cut tree

• Vertex additions and deletions

• The tree T is stored using a top-tree T

• Given a vertex v, it reports the closest ancestor of v that is a terminal

• Can mark/unmark vertices as terminals

• Can add (link) and remove (cut) edges

• Given v, can report the eccentricity of v w.r.t. its tree

• Link/cut operations

time per op: O(log#vertices)

time per op: O(log#vertices)

time per op: O(1)



Implementing ReportFarthest()

Compute the distance βv = δ(v) to each vertex v in Tshrunk

5

2

1 6

32 4

Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit

15 3

8

7 2

4

6 3

64



Implementing ReportFarthest()

Compute the distance βv = δ(v) to each vertex v in Tshrunk

5

2

1 6

32 4

Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit

15 3

8

7 2

4

6 3

64

7

7

8

11



Implementing ReportFarthest()

Compute the distance βv = δ(v) to each vertex v in Tshrunk

5

2

1 6

32 4

Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit

15 3

8

7 2

4

6 3

64

7

7

8

11

This allows us to treat all vertices in Tshrunk as if they were terminals



Implementing ReportFarthest()

2

4

1 6

3

2

5

5

1

2

8

4

6 3

1

2

6

2 5

4

4

7 2

6 3

4 6
11

7 8

7

T



Implementing ReportFarthest()

Assign each node of T to the “closest” node of Tshrunk

2

4

1 6

3

2

5

5

1

2

8

4

6 3

1

2

6

2 5

4

4

7 2

6 3

4 6
11

7 8

7

T



Implementing ReportFarthest()

Assign each node of T to the “closest” node of Tshrunk

We want to quickly find the boundary edges

2

4

1 6

3

2

5

5

1

2

8

4

6 3

1

2

6

2 5

4

4

7 2

6 3

4 6
11

7 8

7

T



Implementing ReportFarthest()

2

Each edge (u, v) in Tshrunk corresponds to a vertical path ⟨u = x1, x2, . . . , xk = v⟩ in T

u

v

7



Implementing ReportFarthest()

2

Each edge (u, v) in Tshrunk corresponds to a vertical path ⟨u = x1, x2, . . . , xk = v⟩ in T

u = x1

x2

x3

v = x4

u

v

7

2

5

4

6

7



Implementing ReportFarthest()

2

Each edge (u, v) in Tshrunk corresponds to a vertical path ⟨u = x1, x2, . . . , xk = v⟩ in T

δ(xi) = min

(
βu + dT (u, xi)

βv + dT (v, xi)

u = x1

x2

x3

v = x4

u

v

7

2

5

4

6

7



Implementing ReportFarthest()

2

Each edge (u, v) in Tshrunk corresponds to a vertical path ⟨u = x1, x2, . . . , xk = v⟩ in T

δ(xi) = min

(
βu + dT (u, xi)

βv + dT (v, xi)

u = x1

x2

x3

v = x4

Monotonically non-decreasing w.r.t. i

Monotonically non-increasing w.r.t. i

u

v

7

2

5

4

6

7



Implementing ReportFarthest()

2

Each edge (u, v) in Tshrunk corresponds to a vertical path ⟨u = x1, x2, . . . , xk = v⟩ in T

δ(xi) = min

(
βu + dT (u, xi)

βv + dT (v, xi)

u = x1

x2

x3

v = x4

Monotonically non-decreasing w.r.t. i

Monotonically non-increasing w.r.t. i
Binary search!

u

v

7

2

5

4

6

7



Implementing ReportFarthest()

Cut all bounday edges from T



Implementing ReportFarthest()

Cut all bounday edges from T
The resulting forest contains exactly one tree Tv for each vertex v in Tshrunk

v



Implementing ReportFarthest()

Cut all bounday edges from T
The resulting forest contains exactly one tree Tv for each vertex v in Tshrunk

For each v: query T to find the eccentricity Ev of v in Tv

v



Implementing ReportFarthest()

Cut all bounday edges from T
The resulting forest contains exactly one tree Tv for each vertex v in Tshrunk

For each v: query T to find the eccentricity Ev of v in Tv

Return maxv (βv + Ev) . . . and restore the orignal state of T (link the boundary edges)

v



Open Problems

Faster algorithms for metric k-DOAT?

• Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

??? Ω(n2)O(n log n)

k = 1 k = 2 k ≥ 3



Open Problems

Faster algorithms for metric k-DOAT?

• Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

??? Ω(n2)O(n log n)

k = 1 k = 2 k ≥ 3

Thank you!

Questions?


