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• A weighted path P with n vertices and non-negative edge costs

Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

Goal:

• Find a shortcut edge (u∗, v∗) that minimizes the diameter of P + (u∗, v∗)

Diameter-Optimally Augmenting a Path

vu 1 3 8 2

4

diameter(P + (u, v))= 8

diameter(P+(u∗, v∗))= 7
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Requires Ω(n2) queries/time in general: Can be solved in:

• O(n2) time, O(n log n) space

• O(n2 log n) time, O(n) space
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Requires Ω(n2) queries/time in general:

Metric opdimal diameter augmentation: The costs of all edges and non-edges satisfy the triangle
inequality

Can be solved in:

• O(n2) time, O(n log n) space

• O(n2 log n) time, O(n) space

Can be solved in:

• O(n log3 n) time

• O(n log n) time

Diameter-Optimally Augmenting a Path

• (1 + ε)-apx in time O(n+ 1
ε log

1
ε ) Also for trees!

[Bilò, TCS 2022]
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k-Diameter-Optimally Augmenting a Tree

• A weighted tree T with n vertices and non-negative edge costs

k-DOAT Input:

• Acccess to an oracle that can be queried with a missing edge
(u, v) and reports the cost of (u, v)

Goal:

• Find a S set of at most k shortcuts that minimizes the diameter of T + S

4 2
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Pick a ∈ A and b ∈ B

Instance Ia,b:
and lower the cost of (a, b) to 1

+ Metric closure

Key Property: the cost all edges, except for (a, b) is the same in I and Ia,b

There is a set S of 3 shortcuts such that diam(T + S) = 9
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1?

Our Lower Bound for k = 3

Input: Either I or Ia,b for some (a, b) ∈ A×B

A B

An algorithm that solves 3-DOAT needs to tell I apart from Ia,b

Actually shows: there is no o(n2)-queries/time σ-approximation algorithm with σ < 10
9

... which requires querying all edges in A×B
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(Speeding up the) Naive Strategy

• For every possible set S of k shortcuts:

• Compute the diameter of T + S

O(n2k) choices

eO(n2) time

Total running time: eO(n2k+2)

eO(k · n) time

eO(k · n2k+1) time

• Saves a Θ(n) factor

• Computing the diameter of a graph with (n− 1) + k edges is interesting in its own regard

Some remarks:
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Warm-up: Diameter of an Augmented Path P + S

• For every source vertex s

• Compute the eccentricity E(s) of s in P + S

Mark s, the endpoints of the path, and all endpoints of some shortcut as terminals

Idea: if we know the distances from s to the terminals, we can quickly compute all other distances
from s

How?

O(n) choices

Want: eO(k) time

s
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Warm-up: Diameter of an Augmented Path P + S

Subgoal: Quickly find all distances αv = dP+S(s, v) between s and all terminals v in P + S

s

Assumption: constant time access to all-pairs distances in P (easy after a O(n)-time preprocessing)

s

“Shrink” P + S into H

Compute αv = dH(s, v) for all terminals v in time O(k log k) using Dijkstra’s algorithm .

O(k) vertices and O(k) edges.

dP (u, v)

u v

vu
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s
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Assign each node of P to its “closest” terminal

dP+S(s, x) = min

(
αu + dP (u, x)

αv + dP (v, x)

For each terminal v, we are interested in the distance Ev from v to the farthest node assigned to v
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Warm-up: Diameter of an Augmented Path P + S

What about the other vertices?

s

The shortest path to a non-terminal vertex x must pass through one of its two neighboring terminal
vertices u, v

Assign each node of P to its “closest” terminal

Observation: It suffices to quickly find the boundary edges

dP+S(s, x) = min

(
αu + dP (u, x)

αv + dP (v, x)

For each terminal v, we are interested in the distance Ev from v to the farthest node assigned to v

xu v

The eccentricity of s is E(s) = maxterminal v (αv + Ev)
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Warm-up: Diameter of an Augmented Path P + S

For each subpath between two consecutive terminal vertices u, v:

s

dP+S(s, xi) = min

(
αu + dP (u, xi)

αv + dP (v, xi)

Find the cross-over point via binary search in time O(log n).

Monotonically non-decreasing w.r.t. i

Monotonically non-increasing w.r.t. i

u vx1 x2 x3 x4
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• Compute αvs on H

• For each terminal v:
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• Compute αvs on H

• DS ← Build(T )

• DS.MakeTerminal(v1) , DS.MakeTerminal(v2), . . .

• H ← DS.Shrink() + S
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A simplifying assumption

We can assume that T is a binary tree

This adds O(n) additional nodes

0

0 0 0
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Shrink()

The vertex set V ′ of the shrunk tree are all the terminals, plus all the LCAs between pairs of terminals

Shrink()

dT (u, v)

u

v

u

v

T Tshrunk
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Define the “distance” of a vertex x as δ(x) = minterminal v


αv + dT (v, x)

�

ReportFarthest() returns a vertex x that maximizes δ(x)
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Our Data Structure: Implementation

• The tree T is stored using a top-tree T

• Given a vertex v, it reports the closest ancestor of v that is a terminal

• Can mark/unmark vertices as terminals

• Can add (link) and remove (cut) edges

• Given v, can report the eccentricity of v w.r.t. its tree

time per op: O(log#vertices)
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• The tree T is stored using a top-tree T

• Given a vertex v, it reports the closest ancestor of v that is a terminal
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• Given v, can report the eccentricity of v w.r.t. its tree

• Link/cut operations

time per op: O(log#vertices)

time per op: O(log#vertices)



Our Data Structure: Implementation

• Oracles with linear size that can report:

• The lowerst common ancestor of a pair of vertices in T

• The distance/hop-disance between a pair of vertices in T

• The level ancestor of a vertex in T

• The shrunk tree Tshrunk is stored using a link-cut tree

• Vertex additions and deletions

• The tree T is stored using a top-tree T

• Given a vertex v, it reports the closest ancestor of v that is a terminal

• Can mark/unmark vertices as terminals

• Can add (link) and remove (cut) edges

• Given v, can report the eccentricity of v w.r.t. its tree

• Link/cut operations

time per op: O(log#vertices)

time per op: O(log#vertices)

time per op: O(1)



Implementing ReportFarthest()

Compute the distance βv = δ(v) to each vertex v in Tshrunk
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Implementing ReportFarthest()

Compute the distance βv = δ(v) to each vertex v in Tshrunk

5

2

1 6

32 4

Can be done in time O(k) using a postorder DFS vits followed by a preoder DFS visit

15 3

8

7 2

4

6 3

64

7

7

8

11

This allows us to treat all vertices in Tshrunk as if they were terminals
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Implementing ReportFarthest()

Assign each node of T to the “closest” node of Tshrunk
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Implementing ReportFarthest()

Assign each node of T to the “closest” node of Tshrunk

We want to quickly find the boundary edges
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Implementing ReportFarthest()

2

Each edge (u, v) in Tshrunk corresponds to a vertical path ⟨u = x1, x2, . . . , xk = v⟩ in T
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Implementing ReportFarthest()

2

Each edge (u, v) in Tshrunk corresponds to a vertical path ⟨u = x1, x2, . . . , xk = v⟩ in T

δ(xi) = min

(
βu + dT (u, xi)

βv + dT (v, xi)
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Implementing ReportFarthest()

2

Each edge (u, v) in Tshrunk corresponds to a vertical path ⟨u = x1, x2, . . . , xk = v⟩ in T

δ(xi) = min

(
βu + dT (u, xi)

βv + dT (v, xi)

u = x1

x2

x3

v = x4

Monotonically non-decreasing w.r.t. i

Monotonically non-increasing w.r.t. i
Binary search!
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Implementing ReportFarthest()

Cut all bounday edges from T
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The resulting forest contains exactly one tree Tv for each vertex v in Tshrunk
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For each v: query T to find the eccentricity Ev of v in Tv
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Implementing ReportFarthest()

Cut all bounday edges from T
The resulting forest contains exactly one tree Tv for each vertex v in Tshrunk

For each v: query T to find the eccentricity Ev of v in Tv

Return maxv (βv + Ev) . . . and restore the orignal state of T (link the boundary edges)

v



Open Problems

Faster algorithms for metric k-DOAT?

• Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

??? Ω(n2)O(n log n)

k = 1 k = 2 k ≥ 3



Open Problems

Faster algorithms for metric k-DOAT?

• Avoid trying all possible shortcuts

Lower bound on the number of queries needed to solve metric 2-DOAT?

??? Ω(n2)O(n log n)

k = 1 k = 2 k ≥ 3

Thank you!

Questions?


