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k-center problem

Problem Statement: Given a set of n points in plane, cover the points
using k balls so that the maximum radius of a ball is minimized

e k-center problem for arbitrary points: n°Vk) time

e 2-center problem for arbitrary points: O(nlog n) time
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e 2-center problem for points in convex position: O(n log n) time

e 3-center problem for points in convex position: O(n? Iog3 n) time
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Our results

First efficient algorithm for planar k-center problem for

points in convex position

e O(n? min{k,logn}logn

k’n log n)-time algorithm

e For k = 3, 0(n’log> n) = O(n*logn).
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Preliminaries

P = (po, ..., Pn_1) : (cyclic) sequence of points in clockwise order
P(i’ t) — <pi7 pi—l—l’ ceey pi+t—1>
substring: subsequence that consists of a consecutive run of elements
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Decision Algorithm

Statement: Given set of points P, integer k, and a real value r, determine
whether P admits (k, r)-cover.
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Decision Algorithm

Statement: Given set of points P, integer k, and a real value r, determine
whether P admits (k, r)-cover.

f(i, £): length of the longest substring of P from p; that admits an (¥, r)-cover

f(i,3) =10 = ||}

f—.
-
-

- P admits (k, r)-cover if f(i, k) > |P| for some i
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Decision Algorithm

For a substring P(i, f(i, £)), there are three cases for the group that

contains the first substring:
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Decision Algorithm

For a substring P(i, f(i, £)), there are three cases for the group that

contains the first substring:
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f(i, £) = max{fa(i,£), fa(i,£), fc(i,£)}
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Decision Algorithm

For case A & B: O(k?n)-time algorithm
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Observation. The value f(i, £) + i is nondecreasing while i and £ is increasing.
fa(i,€) = f(i, 1) +f(i +£(i,1),£ — 1)
max{fa(i, ), fs(i, £) } = maxicyce—1{f(i,y) + (i + (i, 7). £ — )}
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Decision Algorithm

For case C: O(n? log n)-time / O(kn?)-time algorithm
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Decision Algorithm
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Decision Algorithm
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Decision Algorithm

Initially, t = 1, B = fa(i, £)

{
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Decision Algorithm
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Decision Algorithm
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Initially, t = 1, B = fa(i, £)
Each step: amortized O(1) time
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Decision Algorithm

Lemma. max{fa(i,£), fz(i, £)} can be computed in O(k?n) time for all i and <.

Lemma. max{fa(i,£),fc(i,£)} can be computed in O(min{kn?,n?logn})
time for all i and £.
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Lemma. max{fa(i,£), fz(i, £)} can be computed in O(k?n) time for all i and <.

Lemma. max{fa(i,£),fc(i,£)} can be computed in O(min{kn?,n?logn})
time for all i and £.

Theorem. Given a set of n points in convex position, an integer k, and a
radius r, we can determine in O(n® min{k, log n} + k?n) time whether the
set admits a (k, r)-cover or not.

Let the running time of decision algorithm Ts = O(n? min{k, logn} + k?n)
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Search Algorithm
Smallest disk: defined by at most three points

In a naive way, it takes O(n* log n) time by applying binary search over the
set of O(n?) radii
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Search Algorithm
Smallest disk: defined by at most three points

Pu

Since there are at most two substrings corresponding to a
disk, the smallest disk is defined by a point and a substring.
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Search Algorithm

For each fixed p,, we only consider O(n) number of substrings.

O(n?) candidates of radii are computed in O(n? log n) time as intervals,
interval (r;, ry| that contains r* can be computed in O(Ts log n) time.
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Search Algorithm

ry(i, t): radius of the smallest disk covering P(i, t) and p,
tu(i,r) = max{t|r,(i,t) < r}

/7 Pitty(ir)-1
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Search Algorithm

ry(i, t): radius of the smallest disk covering P(i, t) and p,
tu(i,r) = max{t|r,(i,t) < r}

Pi

Pu

Lemma. For any fixed integers u and i and any fixed r € (r,, ry|, we can
compute t,(i,r) in O(log n) time after O(n)-time preprocessing.
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Search Algorithm

Using Cole’s parametric search with O(n?) processors,

we can compute t, (i, r*) for all i and u in O(Tslog n) time
ro(i, t,(i, r*)) for all i and u in O(n? log n) time

From these O(n?) candidates, find r* using binary search in O(Tslogn)
time.

Also works under the Minkowski distance of order p for any fixed integer p
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Thank You!
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