Efficient k-center algorithms for planar points in convex position

Jongmin Choi

Jaegun Lee
Hee-Kap Ahn

k－center problem

Problem Statement：Given a set of n points in plane，cover the points using k balls so that the maximum radius of a ball is minimized
－k－center problem for arbitrary points：$n^{O(\sqrt{k})}$ time
－2－center problem for arbitrary points：$O(n \log n)$ time

k－center problem

Problem Statement：Given a set of n points in plane，cover the points using k balls so that the maximum radius of a ball is minimized
－k－center problem for arbitrary points：$n^{O(\sqrt{k})}$ time
－2－center problem for arbitrary points：$O(n \log n)$ time

－2－center problem for points in convex position：$O(n \log n)$ time
－3－center problem for points in convex position：$O\left(n^{2} \log ^{3} n\right)$ time

Our results

First efficient algorithm for planar k－center problem for points in convex position
－$O\left(n^{2} \min \{k, \log n\} \log n+k^{2} n \log n\right)$－time algorithm
－For $k=3, O\left(n^{2} \log ^{3} n\right) \Rightarrow O\left(n^{2} \log n\right)$ ．

Preliminaries

$P=\left\langle p_{0}, \ldots, p_{n-1}\right\rangle:$ (cyclic) sequence of points in clockwise order $P(i, t)=\left\langle p_{i}, p_{i+1}, \ldots, p_{i+t-1}\right\rangle$
substring: subsequence that consists of a consecutive run of elements

Preliminaries

$P=\left\langle p_{0}, \ldots, p_{n-1}\right\rangle:$ (cyclic) sequence of points in clockwise order $P(i, t)=\left\langle p_{i}, p_{i+1}, \ldots, p_{i+t-1}\right\rangle$
substring: subsequence that consists of a consecutive run of elements
(ℓ, r)-partition: partition into substrings such that set of ℓ disks with radius r can cover the partition

Preliminaries

$P=\left\langle p_{0}, \ldots, p_{n-1}\right\rangle:$（cyclic）sequence of points in clockwise order $P(i, t)=\left\langle p_{i}, p_{i+1}, \ldots, p_{i+t-1}\right\rangle$
substring：subsequence that consists of a consecutive run of elements
(ℓ, r)－partition：partition into substrings such that set of ℓ disks with radius r can cover the partition

Lemma．If P can be covered by ℓ disks with radius r ，there exists a (ℓ, r)－partition which is line－separable and balanced（（ $\ell, r)$－cover）．
－balanced：each group of substring paired by a disk consists of at most two nonconsecutive substrings

Preliminaries

$P=\left\langle p_{0}, \ldots, p_{n-1}\right\rangle:$（cyclic）sequence of points in clockwise order $P(i, t)=\left\langle p_{i}, p_{i+1}, \ldots, p_{i+t-1}\right\rangle$
substring：subsequence that consists of a consecutive run of elements
(ℓ, r)－partition：partition into substrings such that set of ℓ disks with radius r can cover the partition

Lemma．If P can be covered by ℓ disks with radius r ，there exists a (ℓ, r)－partition which is line－separable and balanced（（ $\ell, r)$－cover）．
－balanced：each group of substring paired by a disk consists of at most two nonconsecutive substrings

Preliminaries

$P=\left\langle p_{0}, \ldots, p_{n-1}\right\rangle:$（cyclic）sequence of points in clockwise order $P(i, t)=\left\langle p_{i}, p_{i+1}, \ldots, p_{i+t-1}\right\rangle$
substring：subsequence that consists of a consecutive run of elements
(ℓ, r)－partition：partition into substrings such that set of ℓ disks with radius r can cover the partition

Lemma．If P can be covered by ℓ disks with radius r ，there exists a (ℓ, r)－partition which is line－separable and balanced（（ $\ell, r)$－cover）．
－balanced：each group of substring paired by a disk consists of at most two nonconsecutive substrings

Decision Algorithm

Statement: Given set of points P, integer k, and a real value r, determine whether P admits (k, r)-cover.

Decision Algorithm

Statement：Given set of points P ，integer k ，and a real value r ，determine whether P admits（ k, r ）－cover．
$f(i, \ell)$ ：length of the longest substring of P from p_{i} that admits an (ℓ, r)－cover

Decision Algorithm

Statement: Given set of points P, integer k, and a real value r, determine whether P admits (k, r)-cover.
$f(i, \ell)$: length of the longest substring of P from p_{i} that admits an (ℓ, r)-cover

Decision Algorithm

Statement：Given set of points P ，integer k ，and a real value r ，determine whether P admits（ k, r ）－cover．
$f(i, \ell)$ ：length of the longest substring of P from p_{i} that admits an (ℓ, r)－cover

Decision Algorithm

Statement: Given set of points P, integer k, and a real value r, determine whether P admits (k, r)-cover.
$f(i, \ell)$: length of the longest substring of P from p_{i} that admits an (ℓ, r)-cover

Decision Algorithm

Statement：Given set of points P ，integer k ，and a real value r ，determine whether P admits（ k, r ）－cover．
$f(i, \ell)$ ：length of the longest substring of P from p_{i} that admits an (ℓ, r)－cover

$-P$ admits (k, r)－cover if $f(i, k) \geq|P|$ for some i

Decision Algorithm

For a substring $P(i, f(i, \ell))$ ，there are three cases for the group that contains the first substring：

case A
case B
case C

Decision Algorithm

For a substring $P(i, f(i, \ell))$ ，there are three cases for the group that contains the first substring：

Decision Algorithm

For a substring $P(i, f(i, \ell))$ ，there are three cases for the group that contains the first substring：

Decision Algorithm

For a substring $P(i, f(i, \ell))$ ，there are three cases for the group that contains the first substring：

Decision Algorithm

For a substring $P(i, f(i, \ell))$ ，there are three cases for the group that contains the first substring：

Decision Algorithm

For a substring $P(i, f(i, \ell))$ ，there are three cases for the group that contains the first substring：

case A
case B
case C
$f(i, \ell)=\max \left\{f_{A}(i, \ell), f_{B}(i, \ell), f_{C}(i, \ell)\right\}$

Decision Algorithm

For case A \＆B：$O\left(k^{2} n\right)$－time algorithm

Observation．The value $f(i, \ell)+i$ is nondecreasing while i and ℓ is increasing．

$$
\begin{aligned}
& f_{A}(i, \ell)=f(i, 1)+f(i+f(i, 1), \ell-1) \\
& \max \left\{f_{A}(i, \ell), f_{B}(i, \ell)\right\}=\max _{1 \leqslant \gamma \leqslant \ell-1}\{f(i, \gamma)+f(i+f(i, \gamma), \ell-\gamma)\}
\end{aligned}
$$

Decision Algorithm

For case $\mathrm{C}: ~ O\left(n^{2} \log n\right)$-time $/ O\left(k n^{2}\right)$-time algorithm

Decision Algorithm

For case $\mathrm{C}: ~ O\left(n^{2} \log n\right)$-time $/ O\left(k n^{2}\right)$-time algorithm

Decision Algorithm

For case $C: O\left(n^{2} \log n\right)$－time $/ O\left(k n^{2}\right)$－time algorithm

Decision Algorithm

For case $C: O\left(n^{2} \log n\right)$－time $/ O\left(k n^{2}\right)$－time algorithm
$t=1$

Initially，$t=1, \beta=f_{A}(i, \ell)$

Decision Algorithm

For case $C: O\left(n^{2} \log n\right)$－time $/ O\left(k n^{2}\right)$－time algorithm
$t=1$

Decision Algorithm

For case $C: O\left(n^{2} \log n\right)$-time $/ O\left(k n^{2}\right)$-time algorithm
$t=2$

Decision Algorithm

For case $\mathrm{C}: O\left(n^{2} \log n\right)$－time $/ O\left(k n^{2}\right)$－time algorithm

Decision Algorithm

Lemma. $\max \left\{f_{A}(i, \ell), f_{B}(i, \ell)\right\}$ can be computed in $O\left(k^{2} n\right)$ time for all i and ℓ. Lemma. $\max \left\{f_{A}(i, \ell), f_{C}(i, \ell)\right\}$ can be computed in $O\left(\min \left\{k n^{2}, n^{2} \log n\right\}\right)$ time for all i and ℓ.

Decision Algorithm

Lemma. $\max \left\{f_{A}(i, \ell), f_{B}(i, \ell)\right\}$ can be computed in $O\left(k^{2} n\right)$ time for all i and ℓ. Lemma. $\max \left\{f_{A}(i, \ell), f_{C}(i, \ell)\right\}$ can be computed in $O\left(\min \left\{k n^{2}, n^{2} \log n\right\}\right)$ time for all i and ℓ.

Theorem. Given a set of n points in convex position, an integer k, and a radius r, we can determine in $O\left(n^{2} \min \{k, \log n\}+k^{2} n\right)$ time whether the set admits a (k, r)-cover or not.

Let the running time of decision algorithm $T_{S}=O\left(n^{2} \min \{k, \log n\}+k^{2} n\right)$

Search Algorithm

Smallest disk: defined by at most three points

In a naïve way, it takes $O\left(n^{3} \log n\right)$ time by applying binary search over the set of $O\left(n^{3}\right)$ radii

Search Algorithm

Smallest disk：defined by at most three points

Since there are at most two substrings corresponding to a disk，the smallest disk is defined by a point and a substring．

Search Algorithm

Smallest disk：defined by at most three points

Since there are at most two substrings corresponding to a disk，the smallest disk is defined by a point and a substring．

Search Algorithm

Smallest disk：defined by at most three points

Since there are at most two substrings corresponding to a disk，the smallest disk is defined by a point and a substring．

Search Algorithm

For each fixed p_{u} ，we only consider $O(n)$ number of substrings．

$O\left(n^{2}\right)$ candidates of radii are computed in $O\left(n^{2} \log n\right)$ time as intervals， interval $\left(r_{L}, r_{U}\right]$ that contains r^{*} can be computed in $O\left(T_{S} \log n\right)$ time．

Search Algorithm

For each fixed p_{u} ，we only consider $O(n)$ number of substrings．

$O\left(n^{2}\right)$ candidates of radii are computed in $O\left(n^{2} \log n\right)$ time as intervals， interval $\left(r_{L}, r_{U}\right]$ that contains r^{*} can be computed in $O\left(T_{S} \log n\right)$ time．

Search Algorithm

For each fixed p_{u} ，we only consider $O(n)$ number of substrings．

$O\left(n^{2}\right)$ candidates of radii are computed in $O\left(n^{2} \log n\right)$ time as intervals， interval $\left(r_{L}, r_{U}\right]$ that contains r^{*} can be computed in $O\left(T_{S} \log n\right)$ time．

Search Algorithm

For each fixed p_{u}, we only consider $O(n)$ number of substrings.

$O\left(n^{2}\right)$ candidates of radii are computed in $O\left(n^{2} \log n\right)$ time as intervals, interval $\left(r_{L}, r_{U}\right]$ that contains r^{*} can be computed in $O\left(T_{S} \log n\right)$ time.

Search Algorithm

$r_{u}(i, t)$: radius of the smallest disk covering $P(i, t)$ and p_{u} $t_{u}(i, r)=\max \left\{t \mid r_{u}(i, t) \leqslant r\right\}$

Search Algorithm

$r_{u}(i, t)$ ：radius of the smallest disk covering $P(i, t)$ and p_{u} $t_{u}(i, r)=\max \left\{t \mid r_{u}(i, t) \leqslant r\right\}$

Lemma．For any fixed integers u and i and any fixed $r \in\left(r_{L}, r_{U}\right]$ ，we can compute $t_{u}(i, r)$ in $O(\log n)$ time after $O(n)$－time preprocessing．

Search Algorithm

Using Cole＇s parametric search with $O\left(n^{2}\right)$ processors， we can compute $t_{u}\left(i, r^{*}\right)$ for all i and u in $O\left(T_{S} \log n\right)$ time

$$
r_{u}\left(i, t_{u}\left(i, r^{*}\right)\right) \text { for all } i \text { and } u \text { in } O\left(n^{2} \log n\right) \text { time }
$$

From these $O\left(n^{2}\right)$ candidates，find r^{*} using binary search in $O\left(T_{s} \log n\right)$ time．

Also works under the Minkowski distance of order p for any fixed integer p

Thank You！

