Efficient *k*-center algorithms for planar points in convex position

Jongmin Choi

Jaegun Lee

Hee-Kap Ahn

k-center problem

Problem Statement: Given a set of *n* points in plane, cover the points using *k* balls so that the maximum radius of a ball is minimized

- *k*-center problem for arbitrary points: $n^{O(\sqrt{k})}$ time
- 2-center problem for arbitrary points: $O(n \log n)$ time

k-center problem

Problem Statement: Given a set of *n* points in plane, cover the points using *k* balls so that the maximum radius of a ball is minimized

- *k*-center problem for arbitrary points: $n^{O(\sqrt{k})}$ time
- 2-center problem for arbitrary points: $O(n \log n)$ time

- 2-center problem for points in convex position: $O(n \log n)$ time
- 3-center problem for points in convex position: $O(n^2 \log^3 n)$ time

Our results

First efficient algorithm for planar *k*-center problem for points in convex position

- $O(n^2 \min\{k, \log n\} \log n + k^2 n \log n)$ -time algorithm
- For k = 3, $O(n^2 \log^3 n) \Rightarrow O(n^2 \log n)$.

Jaegun Lee

 $P = \langle p_0, ..., p_{n-1} \rangle$: (cyclic) sequence of points in clockwise order $P(i, t) = \langle p_i, p_{i+1}, ..., p_{i+t-1} \rangle$

substring: subsequence that consists of a consecutive run of elements

 $P = \langle p_0, ..., p_{n-1} \rangle$: (cyclic) sequence of points in clockwise order $P(i, t) = \langle p_i, p_{i+1}, ..., p_{i+t-1} \rangle$

substring: subsequence that consists of a consecutive run of elements

 (ℓ, r) -partition: partition into substrings such that set of ℓ disks with radius r can cover the partition

 $P = \langle p_0, ..., p_{n-1} \rangle$: (cyclic) sequence of points in clockwise order $P(i, t) = \langle p_i, p_{i+1}, ..., p_{i+t-1} \rangle$

substring: subsequence that consists of a consecutive run of elements

 (ℓ, r) -partition: partition into substrings such that set of ℓ disks with radius r can cover the partition

Lemma. If *P* can be covered by ℓ disks with radius *r*, there exists a (ℓ, r) -partition which is *line-separable* and *balanced*((ℓ, r) -cover).

• *balanced*: each group of substring paired by a disk consists of at most two nonconsecutive substrings

 $P = \langle p_0, ..., p_{n-1} \rangle$: (cyclic) sequence of points in clockwise order $P(i, t) = \langle p_i, p_{i+1}, ..., p_{i+t-1} \rangle$

substring: subsequence that consists of a consecutive run of elements

 (ℓ, r) -partition: partition into substrings such that set of ℓ disks with radius r can cover the partition

Lemma. If *P* can be covered by ℓ disks with radius *r*, there exists a (ℓ, r) -partition which is *line-separable* and *balanced*((ℓ, r) -cover).

• *balanced*: each group of substring paired by a disk consists of at most two nonconsecutive substrings

 $P = \langle p_0, ..., p_{n-1} \rangle$: (cyclic) sequence of points in clockwise order $P(i, t) = \langle p_i, p_{i+1}, ..., p_{i+t-1} \rangle$

substring: subsequence that consists of a consecutive run of elements

 (ℓ, r) -partition: partition into substrings such that set of ℓ disks with radius r can cover the partition

Lemma. If *P* can be covered by ℓ disks with radius *r*, there exists a (ℓ, r) -partition which is *line-separable* and *balanced*((ℓ, r) -cover).

• *balanced*: each group of substring paired by a disk consists of at most two nonconsecutive substrings

Statement: Given set of points *P*, integer *k*, and a real value *r*, determine whether *P* admits (*k*, *r*)-cover.

Statement: Given set of points *P*, integer *k*, and a real value *r*, determine whether *P* admits (k, r)-cover.

Statement: Given set of points *P*, integer *k*, and a real value *r*, determine whether *P* admits (k, r)-cover.

Statement: Given set of points *P*, integer *k*, and a real value *r*, determine whether *P* admits (k, r)-cover.

Statement: Given set of points *P*, integer *k*, and a real value *r*, determine whether *P* admits (k, r)-cover.

Statement: Given set of points *P*, integer *k*, and a real value *r*, determine whether *P* admits (*k*, *r*)-cover.

 $f(i, \ell)$: length of the longest substring of P from p_i that admits an (ℓ, r) -cover

- *P* admits (k, r)-cover if $f(i, k) \ge |P|$ for some *i*

For a substring $P(i, f(i, \ell))$, there are three cases for the group that contains the first substring:

Jaegun Lee

For a substring $P(i, f(i, \ell))$, there are three cases for the group that contains the first substring:

 $f(i, \boldsymbol{\ell}) = \max\{f_A(i, \boldsymbol{\ell}), f_B(i, \boldsymbol{\ell}), f_C(i, \boldsymbol{\ell})\}$

For case A & B: $O(k^2n)$ -time algorithm

Observation. The value $f(i, \ell) + i$ is nondecreasing while *i* and ℓ is increasing.

$$\begin{aligned} f_{A}(i, \ell) &= f(i, 1) + f(i + f(i, 1), \ell - 1) \\ \max\{f_{A}(i, \ell), f_{B}(i, \ell)\} &= \max_{1 \leqslant \gamma \leqslant \ell - 1}\{f(i, \gamma) + f(i + f(i, \gamma), \ell - \gamma)\} \end{aligned}$$

Lemma. max{ $f_A(i, \ell), f_B(i, \ell)$ } can be computed in $O(k^2n)$ time for all *i* and ℓ . **Lemma**. max{ $f_A(i, \ell), f_C(i, \ell)$ } can be computed in $O(\min\{kn^2, n^2 \log n\})$ time for all *i* and ℓ .

Lemma. max{ $f_A(i, \ell), f_B(i, \ell)$ } can be computed in $O(k^2n)$ time for all i and ℓ . **Lemma**. max{ $f_A(i, \ell), f_C(i, \ell)$ } can be computed in $O(\min\{kn^2, n^2 \log n\})$ time for all i and ℓ .

Theorem. Given a set of *n* points in convex position, an integer *k*, and a radius *r*, we can determine in $O(n^2 \min\{k, \log n\} + k^2 n)$ time whether the set admits a (k, r)-cover or not.

Let the running time of decision algorithm $T_s = O(n^2 \min\{k, \log n\} + k^2 n)$

Smallest disk: defined by at most three points

In a naïve way, it takes $O(n^3 \log n)$ time by applying binary search over the set of $O(n^3)$ radii

Smallest disk: defined by at most three points

Since there are at most two substrings corresponding to a disk, the smallest disk is defined by a point and a substring.

Smallest disk: defined by at most three points

Since there are at most two substrings corresponding to a disk, the smallest disk is defined by a point and a substring.

Smallest disk: defined by at most three points

Since there are at most two substrings corresponding to a disk, the smallest disk is defined by a point and a substring.

For each fixed p_u , we only consider O(n) number of substrings.

For each fixed p_u , we only consider O(n) number of substrings.

For each fixed p_u , we only consider O(n) number of substrings.

For each fixed p_u , we only consider O(n) number of substrings.

 $r_u(i, t)$: radius of the smallest disk covering P(i, t) and $p_u t_u(i, r) = \max\{t | r_u(i, t) \leq r\}$

 $r_u(i, t)$: radius of the smallest disk covering P(i, t) and $p_u t_u(i, r) = \max\{t | r_u(i, t) \leq r\}$

Lemma. For any fixed integers *u* and *i* and any fixed $r \in (r_L, r_U]$, we can compute $t_u(i, r)$ in $O(\log n)$ time after O(n)-time preprocessing.

Using Cole's parametric search with $O(n^2)$ processors,

we can compute $t_u(i, r^*)$ for all *i* and *u* in $O(T_s \log n)$ time $r_u(i, t_u(i, r^*))$ for all *i* and *u* in $O(n^2 \log n)$ time

From these $O(n^2)$ candidates, find r^* using binary search in $O(T_s \log n)$ time.

Also works under the Minkowski distance of order *p* for any fixed integer *p*

Jaegun Lee

Thank You!

