Compact Distance Oracles with Large Sensitivity and Low Stretch

Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann, Martin Schirneck

भारतीय प्रौद्योगिकी संस्थान दिल्ली Indian Institute of Technology Delhi

HPI

Compact Distance Oracles with Large Sensitivity and Low Stretch Sin

Compact Distance Oracles with Large Sensitivity and Low Stretch

Compact Distance Oracles with Large Sensitivity and Low Stretch Sir

Our Goal

goal: create an oracle with subquadratic space

however: undirected graph — or

stretch $\sigma \ge 3$

(worse for directed)

Compact Distance Oracles with Large Sensitivity and Low Stretch Simon K

Simon Krogmann

superquadratic space

Thorup and Zwick [2005]

Our Result

stretch σ	space	query time	
(8k - 2)(f + 1)	$O(fkn^{1+1/k}\log(nW))$ integer $k \ge 1$	$\tilde{O}(f \log \log d_{G-F}(s,t))$	Chechik, Langbe [Algorithmica 20
2 <i>k</i> – 1	$O(f^{1-1/k}n^{1+1/k})$	$\Omega(n^{1+1/k})$	using a spanner
3 + ε	$O(n^{2-\frac{\alpha}{f+1}})$ $0 < \alpha < \frac{1}{2}$	O(n ^α)	Bilò, Chechik, Ch Friedrich, K, Sch
2 <i>k</i> – 1	$O(n^{1+rac{1}{k}+lpha+o(1)})$ 0 <lpha<1 integer $k\geq 2$</lpha<1 	$ ilde{O}(n^{1+rac{1}{k}-rac{lpha}{k(f+1)}})$	our result

Compact Distance Oracles with Large Sensitivity and Low Stretch Simon Krogmann

erg, Peleg, Roditty 012]

houdhary, Cohen, irneck [STOC 2023]

Overview

small hop diameter < L

many graphs with random edges missing

one of them is probably good

derandomized with error-correcting codes

subgraph of pivots

Compact Distance Oracles with Large Sensitivity and Low Stretch

Simon Krogmann

long hop diameter > L

replacement path goes through at least one pivot

What is the shortest distance between **A** and **B** with failures on edges **c**?

Compact Distance Oracles with Large Sensitivity and Low Stretch

Small Hop Diameter

Compact Distance Oracles with Large Sensitivity and Low Stretch

Simon Krogmann

idea from Weimann and Yuster [2013]

replace with DOs by Thorup and Zwick [2005]

Thorup and Zwick [2005]

Compact Distance Oracles with Large Sensitivity and Low Stretch

Simon Krogmann

Small Hop Diameter

query algorithm:

1. select spanners with *F* (or more) missing

2. query corresponding oracles

3. return lowest distance

Small Hop Diameter - Derandomization

how to do this deterministically?

instead: Reed-Solomon codes (adapted by Karthik and Parter [2021])

 \rightarrow identify correct oracles in O(1)no spanners needed

Compact Distance Oracles with Large Sensitivity and Low Stretch Simon Krogmann

Small Hop Diameter - Derandomization

derandomization tradeoffs:

more space

more preprocessing time

less query time

Compact Distance Oracles with Large Sensitivity and Low Stretch Simon Krogmann

Large Hop Diameter

Compact Distance Oracles with Large Sensitivity and Low Stretch Simon

Simon Krogmann

3

3

Large Hop Diameter

query algorithm:

1. select graphs with *F* (or more) missing

2. ask short hop diameter oracle first

3. merge pivot spanners

add connections to s and t for each pivot and each graph

5. return minimum of shortest path from step 2 and 4Compact Distance Oracles with Large Sensitivity and Low StretchSimon Krogmann

Summary

Thanks for listening!

Compact Distance Oracles with Large Sensitivity and Low Stretch

Simon Krogmann

preprocessing time