

Compact Distance Oracles with Large Sensitivity and Low Stretch

Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann, Martin Schirneck
universität wien

The Problem

The Problem

The Problem

The Problem

> What is the shortest distance between \mathbf{A} and \mathbf{B} with failures on edges \mathbf{c} and \mathbf{d} ?

It is 12 .

And between \mathbf{E} and \mathbf{F} with a failure on edge \mathbf{g} ?

f-edge fault-tolerant distance sensitive oracle

at most $f \in O(\log n / \log \log n)$ failing edges

with stretch σ

length 10

Our Goal

```
goal:
    create an oracle with subquadratic space
superquadratic space
however: undirected graph
or
Thorup and Zwick [2005]
stretch \sigma\geq3
```

(worse for directed)

Our Result

stretch σ	space	query time	
$(8 k-2)(f+1)$	$O\left(f k n^{1+1 / k} \log (n W)\right)$ integer $k \geq 1$	$\tilde{O}\left(f \log \log d_{G-F}(s, t)\right)$	Chechik, Langberg, Peleg, Roditty [Algorithmica 2012]
$2 k-1$	$O\left(f^{\left.1-1 / k n^{1+1 / k}\right)}\right.$	$\Omega\left(n^{1+1 / k}\right)$	using a spanner
$3+\epsilon$	$O\left(n^{\left.2-\frac{\alpha}{f+1}\right)}\right.$ $0<\alpha<\frac{1}{2}$	$O\left(n^{\alpha}\right)$	Bilò, Chechik, Choudhary, Cohen, Friedrich, K, Schirneck [STOC 2023]
$2 k-1$	$O\left(n^{1+\frac{1}{k}+\alpha+o(1)}\right.$ $0<\alpha<1$ integer $k \geq 2$	$\tilde{O}\left(n^{\left.1+\frac{1}{k}-\frac{\alpha}{k(f+1)}\right)}\right.$	our result

Overview

small hop diameter < L

many graphs with random edges missing
one of them is probably good
derandomized with error-correcting codes

long hop diameter > L

subgraph of pivots
replacement path goes through at least one pivot

What is the shortest distance between \mathbf{A} and \mathbf{B} with failures on edges \mathbf{c} ?

Small Hop Diameter

Small Hop Diameter

query algorithm:

1. select spanners with F (or more) missing
2. query corresponding oracles
3. return lowest distance

Small Hop Diameter - Derandomization

how to do this deterministically?

edge a	0	0	1	0	1	1	ideally: one oracle for each possible F
edge b	0	1	0	1	0	1	obviously too many
edge c	1	0	0	1	1	0	
edge d	1	1	1	0	0	0	
	\rightarrow instead: Reed-Solomon codes (adapted by Karthik and Parter [2021])						

Small Hop Diameter - Derandomization

derandomization tradeoffs:

more space
more preprocessing time
less query time

Large Hop Diameter

Large Hop Diameter

query algorithm:

1. select graphs with F (or more) missing
2. ask short hop diameter oracle first

3. merge pivot spanners

4. add connections to s and t for each pivot and each graph
5. return minimum of shortest path from step 2 and 4

Summary

stretch σ
$2 k-1$
space
$O\left(n^{1+\frac{1}{k}+\alpha+o(1)}\right)$
$0<\alpha<1$
integer $k \geq 2$

oracle
preprocessing time
$k m n^{1+\alpha+\frac{1}{k}+o(1)}$

Thanks for listening!

