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Minimum Vertex Cover

Definition
Given a graph G = (V, E), find the smallest cardinality subset
S C V such that for all edges ein E, enNS # 0.
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Vertex Cover

G =(V.E)

Figure: Vertex Cover in G



Alternate View (Scheduling)

1. One Machine.

2. The vertices are the jobs.
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Figure: Scheduling Vertices on a Machine

Objective Function?



Alternate View (Scheduling): Cover Times

Definition
Given a graph G = (V, E) and a schedule o : V — [n] of its
vertices, the cover time of an edge is the first moment a vertex in

the edge is scheduled.
Cov,(e) =1
4[2]3]1[5]6] 4

o

Figure: Cover Time of an Edge

1. Vertex Cover: min, maxecg Cov-(€).

2. Min-Sum Vertex Cover: ming Y .cg Covs(e€)
[FLTO04, BBFT21, Sta22]



Can we unify?



Ordered Optimization [AS, CSa, BSS18, CSb, CS19]

Given a schedule o, arrange e in descending order as:
Covy(e1) = Covy(er) > ... Covy(em).

min, Cov,(e) min, Y770, Cov,(e;)

L |
I 1

?

Figure: Generalized Objective Functions




Ordered Optimization [AS, CSa, BSS18, CSb, CS19]
Given a schedule o, arrange e in descending order as:
Covy(e1) = Covy(er) = ... Covy(em).

min, Cov,(e;) / min, ZT:I Coug(e;)
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min, Z§:1 Cov,(e;)

Figure: Top-¢ Objective Functions
Ordered Objective Functions:

min, Zj”ll w; Cov, (e&))

for wi > wr > ... wpy = 0. This framework has gained a lot of
attention for clustering (Ordered k-Median) and Load Balancing
problems.



Our Contribution

Figure: One Ring to Rule Them All
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Current State

» Vertex Cover
» Upper Bound: 2-approx (Folklore)
» Hardness of Approximation: (2 — &) under UGC
[KRO8].
» Min-Sum Vertex Cover
» Upper Bound: 16/9-approx [BBFT21].
» Hardness of Approximation: 1.014 under UGC
[Sta22].
» Ordered Min-Sum Vertex Cover
» Upper Bound: 8-approx [GGKTO08] (All-norm, more
general result).
> Lower Bound: (2 - ¢&) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.
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Current State

> Set Cover
> Upper Bound: O(log n)-approx [Joh73, Sla96].
» Lower Bound: NP-Hard to approximate within
(1-¢)log. n [DS14]
» Min-Sum Vertex Cover
> Upper Bound: 4-approx [FLTO04].
» Lower Bound: NP-Hard to approximate within
(4 — &) [FLTO4].
» Ordered Set Cover
> O(log n)-approx. [GGKTO08] Upper Bound (Much
more general result, All-norm) s
» General Lower Bound: NP-Hard to approximate
within Q(log n) (Captures Set Cover). But for
specialised Top-£ objectives?



Our Results

Definition

Ordered Min-Sum Vertex Cover(OMSVC): Let G = (V, E) be
a graph, and a wy > wp > ... w,, > 0 be a sequence of
non-negative weights. Design a schedule o of vertices to
minimize 3}; w; Cov,- (&) where ¢; is the ordering of edges in
descending order of cover times.



Our Results

Definition

Ordered Min-Sum Vertex Cover(OMSVC): Let G = (V, E) be
a graph, and a wy > wp > ... w,, > 0 be a sequence of
non-negative weights. Design a schedule o of vertices to
minimize 3}; w; Cov,- (&) where ¢; is the ordering of edges in
descending order of cover times.

Theorem
There is a (2 + €)-approximation algorithm for OMSVC
running in time n©1/#)



Our Results

Definition

Top-¢ Set Cover: Let E be a set and I be a collection of subsets
of E. Design a schedule o of sets to minimize Zle Cov(e)) for a
fixed € € [n] where the elements ¢e; are ordered in descending order

of cover times.



Our Results

Definition

Top-¢ Set Cover: Let E be a set and I be a collection of subsets
of E. Design a schedule o of sets to minimize Zle Cov(e)) for a
fixed € € [n] where the elements ¢e; are ordered in descending order

of cover times.

Theorem
The natural greedy algorithm gives a (8 log,(n/{) + 16)-approx for

Top-t Set Cover.



Our Results

Definition

Top-¢ Set Cover: Let E be a set and I be a collection of subsets
of E. Design a schedule o of sets to minimize Zle Cov(e)) for a
fixed € € [n] where the elements ¢e; are ordered in descending order
of cover times.

Theorem
The natural greedy algorithm gives a (8 log,(n/{) + 16)-approx for
Top-t Set Cover.

Theorem
It is hard to approximate the Top-{ Set Cover problem within a
factor better than max (Q(1), Q(log(n/?)).



Our Results

Definition

Top-¢ Set Cover: Let E be a set and I be a collection of subsets
of E. Design a schedule o of sets to minimize Zle Cov(e)) for a
fixed € € [n] where the elements ¢e; are ordered in descending order
of cover times.

Theorem
The natural greedy algorithm gives a (8 log,(n/{) + 16)-approx for
Top-t Set Cover.

Theorem

It is hard to approximate the Top-{ Set Cover problem within a
factor better than max (Q(1), Q(log(n/?)).

First £-based approximation ratio and hardness result for Top-£
objectives (to our knowledge).
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Overview of the Talk

We will talk about our algorithm which gets a (2 + &)-approx. for
Top-¢ Vertex Cover.

> We will motivate reducing Top-¢ Vertex Cover to Discounted
Min-Sum Vertex Cover (Standard in Ordered Optimization).

> We will give a review of the approach of Feige et. al. [FLT04]
and why it fails in our problem.

» We will show how a dependent-rounding| GKPS06] based
approach fixes these problems.



Reduction

Let o : V — T be a schedule for an instance of Top-£ Vertex
Cover.

Cost Paid

Free of Cost
Figure: Top-¢ Vertex Cover
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Reduction

Intuition
» Try to write down an ILP for this problem.

» Any schedule should be encoded as a feasible
solution to this ILP.

» ILP should know edges which have the Top-¢
cover times for any schedule o .

» How to write constraints for this?



Reduction

Problem? Do not know the
ordering before hand.



Reduction

Shift by a Discount

Add the Discount back later
|

(Covg(em) — Ny < oo < (C’ov(,(ef) —A)p < eee < (Covg(er) I— At

YA>0 Secp(Covs(e) =Ny +X-£> 30 Covy(ey)
| | 1 J

Oblivious to Ordering Fixed

Figure: Top-¢ Vertex Cover



Reduction

Shift by Good Discount
Add the Discount back later A= COUU * <€€>

(Cova*(lem)—kh S e < (Covge(er) —A) 4 < ooe < (Covge(e1) = Ay

| | _
1 | | I 1
Yecp(Covg<(e) =Ny + A€ = Zf:l Cov,+(eg)

| ] | J
Oblivious to Ordering Fixed

Figure: Top-¢ Vertex Cover



Reduction

Try to minimize:
2, (Covr(e) = ).
ecE

over all possible schedules for a correct guess
A = Covy+(e).



Reduction

Theorem
[AS, BSS18, CSa, C519, CSb] Let o* be the optimal schedule to
an instance of Top-{ Vertex Cover. Then, a schedule o satisfying:

Z(Covg —20), <2 Z(Covg* ~ s

ecE ecE
implies that Zle Coviy(gj) <2 Zle Covy+(€)).

Definition

Discounted Min-Sum Vertex Cover (DMSVC) Let G = (V,E) be a
graph, and a 1 > 0 be a discount. Design a schedule o of vertices
which satisfies:

D (Covy = 20), <2 3" (Cove = A);

ecE ecE
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Plan for the Talk

1. In the following, we will try to solve the
Discounted Min-Sum Vertex Cover problem via
an LP-rounding algorithm.

2. Let us first try to write down the linear program.
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Intuition for Linear Program

Variables: x, t, Ue¢.
Indicator variables.

1 vis scheduled at t
Xyt = )
0 otherwise

1 Cov,(e) >t

0 otherwise

Uet =

Ue ¢ tracks at each step if e has not been covered.



Intuition For Linear Program

Variables: wve ¢, Xy ¢

e

u

T oo v e |4

t/

@ 2leV Lol t <1

Figure: Intuition for variables and constraints



Intuition For Linear Program

. forT+1<t
T N e 0
| |
Y xu’t// =1
oo v, | *ee U, oo
e =1 \
Yot Ty T = 1
for 1 <t<T

@ Uet + Dyt Topr + D prey Ty = 1

Figure: Intuition for variables and constraints, Covy(€) = X s Ue ¢



Intuition For Linear Program

Objective
v \6. Function
u 24>\ Uet
I Free A
000 'U
—— Paid —
Ue s = 1
for1 <¢t<T

Figure: Intuition for variables and constraints



DMSVC Linear Program

Minimize ZZue,t, s.t.

t>AecE
Dixr<l, Vit=12,... (1)
veV
ue,t+2xu,tf+ZXv,tf21, YVe=(uv),t=12,... (2)
t'<t t'<t

u,x>0.



Bi-criteria algorithm for DMSVC

2\

~
[ 1]

Uy & n
4 [n]

Figure: Assignment Graph



Naive Approach

Solve the above LP.

v
Ly,1 Ty2 Lyn
T 1 2 n

Figure: Try to throw each vertex in bins with probability x, ¢



Naive Approach

Uu
$u7t// = 1/2
A
\

/ 000

to =12 e =0t > #'—

Figure: Try to throw each vertex in bins with probability x, ;




Naive Approach

Likewise for u

v

Tyl \ Toup2 Ty ) o
SO O O

T 1 2 A n

F— S <1 ——

Figure: Try to throw each vertex in bins with probability x, ¢



Naive Approach

Likewise for u

v

Tyl \ Tu2 Ty \ Ton
S o..olo

T 1 2 A n

| Dot Lo < 1 4' Throw v after \

Figure: Ball might be thrown in the last bin



Naive Approach

Independently throw each vertex into the bins using scaled
probabilities (x).

v e
\.u 2>\ Ue t
=0
I Free A
HEAEEN | |
l/ —— Paid —
Tyt = 1/2
Tyt = 1/2

Figure: Linear Program does not pay anything, While we pay a lot.



Approach of [FLT04]

If e ={v, u} is fractionally scheduled before A, then either

DtcaXvie = 1/20r YiaXue = 1/2.
(Since fractional covering means Y,y Xv.t + 2ipeq Xut = 1.)

xv,t21/2_>2xv,t2]- €

e

Figure: [FLT04]



Approach of [FLT04]

Independently throw each vertex into the bins using scaled
probabilities (2x).

v 2Ty p,
2741 2Ty 2
T 1 2 n

Figure: [FLT04]



Approach of [FLT04]

Break the bins and schedule a uniformly random permutation of
vertices inside the bin.

— [oJe]o[e]o]e

s (1 R
1 2

12 345

Figure: [FLT04]



Problem?

Recall, >\, cv Xv.t < 1. Thus
E[#vertices in a bin] =2 ¢y Xyt < 2.

T 000

Expectation @ @ oo @
Reahty (1)

Figure: [FLT04]




Problem?

Want to ensure with high probability that at most
21 vertices are scheduled within first A slots.



Ingredients We Need

Yj<k 2Ty =1

® Aw;
2%y 1 2@

H
N e

Figure: Marginal Preservation: Throw v into a bin with probability 2x, ¢



Ingredients We Hope for

@ Z’UEV xv,t S 1

Figure: Dependent Rounding on Side of Slots

> < 2 vertices in each bin with probability 1.
» Thus, < 24 vertices in first A bins with probability 1.



Fix?

Dependent Rounding.



Dependent Rounding [GKPS06]
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Dependent Rounding [GKPS06]

Theorem
Given a weighted bipartite graph (VU T,F,z: F — [0,1])
(z = 2x), it is possible to sample a subset of edges S C F
satisfying the following criterion:
1. Pr((v,t) € S) =2x,.+ (Marginal Preservation),
2. degs(t) = [Tecs(r) 2%v,¢| < 2 (Ensures that the load is at
most 2).
3. degs(v) = Yees(v) 2%v.t = 1 (Ensures each vertex is thrown
into exactly 1 bin)
4. (Negative Correlation): For any time t,
Pr((v,t) € S,(u,t) € S) < Pr((v,t) € S)Pr((u,t) € S).
[However, we do not use it]
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Our Algorithm:

1. Guess the appropriate discount given ¢: £-largest cover time
of OPT (Covy+(er)).

2. Solve the linear program for DMSVC with the discount chosen
above to obtain solution (x, u).

3. Run Dependent rounding on the bipartite graph
(VUT,F,2x: F — [0,1]). (The sampled edges give an
assignment of vertices to time slot).

4. Break bins of time slots t (Each bin has at most 2 vertices:
cost goes up by at most 2).



The End

Thank you.
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Open Directions

» Getting a 2-approx. for All-Norm Vertex Cover
(Improving from 8 [GGKT08])

> Getting {-dependent or w-dependent
approximation algorithms for other problems
(such as Load Balancing or k-Median).
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