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Minimum Vertex Cover

Definition
Given a graph G = (V ,E ), find the smallest cardinality subset
S ⊆ V such that for all edges e in E , e ∩ S ≠ ∅.

Vertex Cover

G = (V,E)

Figure: Vertex Cover in G



Alternate View (Scheduling)

1. One Machine.

2. The vertices are the jobs.
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Figure: Scheduling Vertices on a Machine

Objective Function?



Alternate View (Scheduling): Cover Times

Definition
Given a graph G = (V ,E ) and a schedule 𝜎 : V → [n] of its
vertices, the cover time of an edge is the first moment a vertex in
the edge is scheduled.
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Figure: Cover Time of an Edge

1. Vertex Cover: min𝜎 maxe∈E Cov𝜎 (e).
2. Min-Sum Vertex Cover: min𝜎

∑
e∈E Cov𝜎 (e)

[FLT04, BBFT21, Sta22]



Can we unify?



Ordered Optimization [AS, CSa, BSS18, CSb, CS19]

Given a schedule 𝜎, arrange e in descending order as:
Cov𝜎 (e1) ≥ Cov𝜎 (e2) ≥ . . .Cov𝜎 (em).

?

min
σ
Cov

σ
(e1) minσ

∑m

j=1
Covσ(ej)

Figure: Generalized Objective Functions
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Figure: Top-ℓ Objective Functions

Ordered Objective Functions:

min𝜎
∑m

j=1 wjCov𝜎 (ej )
for w1 ≥ w2 ≥ . . .wm ≥ 0. This framework has gained a lot of
attention for clustering (Ordered k-Median) and Load Balancing
problems.



Our Contribution

Figure: One Ring to Rule Them All



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − 𝜀) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − 𝜀) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover

▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − 𝜀) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − 𝜀) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − 𝜀) under UGC

[KR08].

▶ Min-Sum Vertex Cover
▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − 𝜀) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − 𝜀) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − 𝜀) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − 𝜀) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − 𝜀) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − 𝜀) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − 𝜀) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Set Cover
▶ Upper Bound: O (log n)-approx [Joh73, Sla96].
▶ Lower Bound: NP-Hard to approximate within

(1 − 𝜀) loge n [DS14]
▶ Min-Sum Vertex Cover
▶ Upper Bound: 4-approx [FLT04].
▶ Lower Bound: NP-Hard to approximate within

(4 − 𝜀) [FLT04].
▶ Ordered Set Cover
▶ O (log n)-approx. [GGKT08] Upper Bound (Much

more general result, All-norm) s
▶ General Lower Bound: NP-Hard to approximate

within Ω(log n) (Captures Set Cover). But for
specialised Top-ℓ objectives?



Current State

▶ Set Cover
▶ Upper Bound: O (log n)-approx [Joh73, Sla96].
▶ Lower Bound: NP-Hard to approximate within

(1 − 𝜀) loge n [DS14]

▶ Min-Sum Vertex Cover
▶ Upper Bound: 4-approx [FLT04].
▶ Lower Bound: NP-Hard to approximate within

(4 − 𝜀) [FLT04].
▶ Ordered Set Cover
▶ O (log n)-approx. [GGKT08] Upper Bound (Much

more general result, All-norm) s
▶ General Lower Bound: NP-Hard to approximate

within Ω(log n) (Captures Set Cover). But for
specialised Top-ℓ objectives?



Current State

▶ Set Cover
▶ Upper Bound: O (log n)-approx [Joh73, Sla96].
▶ Lower Bound: NP-Hard to approximate within

(1 − 𝜀) loge n [DS14]
▶ Min-Sum Vertex Cover
▶ Upper Bound: 4-approx [FLT04].
▶ Lower Bound: NP-Hard to approximate within

(4 − 𝜀) [FLT04].

▶ Ordered Set Cover
▶ O (log n)-approx. [GGKT08] Upper Bound (Much

more general result, All-norm) s
▶ General Lower Bound: NP-Hard to approximate

within Ω(log n) (Captures Set Cover). But for
specialised Top-ℓ objectives?



Current State

▶ Set Cover
▶ Upper Bound: O (log n)-approx [Joh73, Sla96].
▶ Lower Bound: NP-Hard to approximate within

(1 − 𝜀) loge n [DS14]
▶ Min-Sum Vertex Cover
▶ Upper Bound: 4-approx [FLT04].
▶ Lower Bound: NP-Hard to approximate within

(4 − 𝜀) [FLT04].
▶ Ordered Set Cover
▶ O (log n)-approx. [GGKT08] Upper Bound (Much

more general result, All-norm) s
▶ General Lower Bound: NP-Hard to approximate

within Ω(log n) (Captures Set Cover). But for
specialised Top-ℓ objectives?



Our Results

Definition
Ordered Min-Sum Vertex Cover(OMSVC): Let G = (V , E ) be
a graph, and a w1 ≥ w2 ≥ . . .wm ≥ 0 be a sequence of
non-negative weights. Design a schedule 𝜎 of vertices to
minimize

∑
j wjCov𝜎 (ej ) where ej is the ordering of edges in

descending order of cover times.

Theorem
There is a (2 + 𝜀)-approximation algorithm for OMSVC
running in time nO (1/𝜀).
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Top-ℓ Set Cover: Let E be a set and I be a collection of subsets
of E . Design a schedule 𝜎 of sets to minimize
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j=1 Cov𝜎 (ej ) for a

fixed ℓ ∈ [n] where the elements ej are ordered in descending order
of cover times.
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The natural greedy algorithm gives a (8 log2(n/ℓ) + 16)-approx for
Top-ℓ Set Cover.
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It is hard to approximate the Top-ℓ Set Cover problem within a
factor better than max (Ω(1),Ω(log(n/ℓ)).
First ℓ-based approximation ratio and hardness result for Top-ℓ
objectives (to our knowledge).
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Overview of the Talk

We will talk about our algorithm which gets a (2 + 𝜀)-approx. for
Top-ℓ Vertex Cover.

▶ We will motivate reducing Top-ℓ Vertex Cover to Discounted
Min-Sum Vertex Cover (Standard in Ordered Optimization).

▶ We will give a review of the approach of Feige et. al. [FLT04]
and why it fails in our problem.

▶ We will show how a dependent-rounding[GKPS06] based
approach fixes these problems.
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Reduction

Let 𝜎 : V → T be a schedule for an instance of Top-ℓ Vertex
Cover.

Covσ(em)

1 2

Covσ(eℓ)

r

Free of Cost

k

Covσ(e1)

Cost Paid

T

≤ ≤ ≤≤

Figure: Top-ℓ Vertex Cover



Reduction

Intuition

▶ Try to write down an ILP for this problem.

▶ Any schedule should be encoded as a feasible
solution to this ILP.

▶ ILP should know edges which have the Top-ℓ
cover times for any schedule 𝜎.

▶ How to write constraints for this?
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▶ Any schedule should be encoded as a feasible
solution to this ILP.

▶ ILP should know edges which have the Top-ℓ
cover times for any schedule 𝜎.
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Reduction

Problem? Do not know the
ordering before hand.



Reduction

≤ ≤ ≤≤

Shift by a Discount

Add the Discount back later

(Covσ(em)− λ)+ (Covσ(eℓ)− λ)+ (Covσ(e1)− λ)+

Oblivious to Ordering Fixed

∑
e∈E(Covσ(e)− λ)+ + λ · ℓ ≥

∑
ℓ

i=1 Covσ(eℓ)∀λ ≥ 0

Figure: Top-ℓ Vertex Cover



Reduction

≤ ≤ ≤≤

Add the Discount back later

Oblivious to Ordering Fixed

λ = Covσ∗(eℓ)

∑
e∈E(Covσ∗(e)− λ)+ + λ · ℓ =

∑
ℓ

i=1 Covσ∗(eℓ)

(Covσ∗(em)− λ)+ (Covσ∗(eℓ)− λ)+ (Covσ∗(e1)− λ)+

Shift by Good Discount

Figure: Top-ℓ Vertex Cover



Reduction

Try to minimize:∑︁
e∈E

(Cov𝜎 (e) − 𝜆)+

over all possible schedules for a correct guess
𝜆 = Cov𝜎∗ (eℓ).



Reduction

Theorem
[AS, BSS18, CSa, CS19, CSb] Let 𝜎∗ be the optimal schedule to
an instance of Top-ℓ Vertex Cover. Then, a schedule 𝜎 satisfying:∑︁

e∈E
(Cov𝜎 − 2𝜆)+ ≤ 2

∑︁
e∈E

(Cov𝜎∗ − 𝜆)+

implies that
∑ℓ

j=1 Cov𝜎 (ej ) ≤ 2
∑ℓ

j=1 Cov𝜎∗ (ej ).

Definition
Discounted Min-Sum Vertex Cover (DMSVC) Let G = (V ,E ) be a
graph, and a 𝜆 ≥ 0 be a discount. Design a schedule 𝜎 of vertices
which satisfies:∑︁

e∈E
(Cov𝜎 − 2𝜆)+ ≤ 2

∑︁
e∈E

(Cov𝜎∗ − 𝜆)+



Plan for the Talk

1. In the following, we will try to solve the
Discounted Min-Sum Vertex Cover problem via
an LP-rounding algorithm.

2. Let us first try to write down the linear program.
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Intuition for Linear Program

Variables: xv ,t , ue,t .
Indicator variables.

xv ,t =

{
1 v is scheduled at t

0 otherwise

ue,t =

{
1 Cov𝜎 (e) ≥ t

0 otherwise
.

ue,t tracks at each step if e has not been covered.
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Intuition For Linear Program

Variables: ue,t , xv ,t

v

u

e

v

1
∑
v′∈V xv′,t ≤ 1

uT
t t′

Figure: Intuition for variables and constraints



Intuition For Linear Program

v u

v

u

e

ue,t = 1

xu,t′′ = 1

ue,t = 0

2 ue,t +
∑

t′<t xv,t′ +
∑

t′<t xu,t′ ≥ 1

xv,T = 1
for 1 ≤ t ≤ T

for T + 1 ≤ t

Figure: Intuition for variables and constraints, Cov𝜎 (e) =
∑

t ue ,t



Intuition For Linear Program

v

u

e

ue,t = 1

v

λ
Free

Paid

∑
t≥λ ue,t

Objective
Function

for 1 ≤ t ≤ T

Figure: Intuition for variables and constraints



DMSVC Linear Program

Minimize
∑︁
t≥𝜆

∑︁
e∈E

ue ,t , s .t .∑︁
v ∈V

xv ,t ≤ 1 , ∀ t = 1, 2, . . . (1)

ue ,t +
∑︁
t′<t

xu,t′ +
∑︁
t′<t

xv ,t′ ≥ 1, ∀ e = (u, v ), t = 1, 2, . . . (2)

u, x ≥ 0 .



Bi-criteria algorithm for DMSVC

V

σ

[n]

1

2

n

2λ

v1

v2

vn

Figure: Assignment Graph



Naive Approach

Solve the above LP.

v

T 1 2

xv,1 xv,2 xv,n

n

Figure: Try to throw each vertex in bins with probability xv ,t



Naive Approach

v

u

e

λ

xu,t′′ = 1/2

xv,t′′ = 1/2 ue,t = 0, t > t′′

Figure: Try to throw each vertex in bins with probability xv ,t



Naive Approach

v

T 1 2 n

xv,1 xv,2

λ

xv,λ

∑
t≤λ xv,t < 1

xv,n

Likewise for u

Figure: Try to throw each vertex in bins with probability xv ,t



Naive Approach

v

T 1 2 n

xv,1 xv,2

λ

xv,λ

∑
t≤λ xv,t < 1

xv,n

Throw v after λ

Likewise for u

Figure: Ball might be thrown in the last bin



Naive Approach

Independently throw each vertex into the bins using scaled
probabilities (x).

v

u

e

λ
Free

Paid

∑
t≥λ ue,t

xv,t = 1/2
xu,t = 1/2

= 0

Figure: Linear Program does not pay anything, While we pay a lot.



Approach of [FLT04]

If e = {v , u} is fractionally scheduled before 𝜆, then either∑
t<𝜆 xv ,t ≥ 1/2 or

∑
t<𝜆 xu,t ≥ 1/2.

(Since fractional covering means
∑

t<𝜆 xv ,t +
∑

t<𝜆 xu,t ≥ 1.)

v

u

e

v

T 1 2 nλ

2xv,1 2xv,2

2xv,λ

∑
t≤λ 2xv,t ≥ 1

xv,t ≥ 1/2 → 2xv,t ≥ 1

Figure: [FLT04]



Approach of [FLT04]

Independently throw each vertex into the bins using scaled
probabilities (2x).

v

T 1 2 n

2xv,1 2xv,2

2xv,n

Figure: [FLT04]



Approach of [FLT04]

Break the bins and schedule a uniformly random permutation of
vertices inside the bin.

1 2 12 345

Figure: [FLT04]



Problem?

Recall,
∑

v∈V xv ,t ≤ 1. Thus
E[#vertices in a bin] = 2

∑
v∈V xv ,t ≤ 2.

λ

Expectation

Reality

T

Figure: [FLT04]



Problem?

Want to ensure with high probability that at most
2𝜆 vertices are scheduled within first 𝜆 slots.



Ingredients We Need

2xv,1

2xv,2
v

1

2

k

2xv,k

∑
j≤k 2xv,j = 1

1

Figure: Marginal Preservation: Throw v into a bin with probability 2xv ,t



Ingredients We Hope for

∑
v∈V xv,t ≤ 1

2xv1,t

2xv2,t

2xvn,t

2

Figure: Dependent Rounding on Side of Slots

▶ ≤ 2 vertices in each bin with probability 1.

▶ Thus, ≤ 2𝜆 vertices in first 𝜆 bins with probability 1.



Fix?

Dependent Rounding.



Dependent Rounding [GKPS06]

Theorem
Given a weighted bipartite graph (V ∪ T , F , z : F → [0, 1])
(z = 2x), it is possible to sample a subset of edges S ⊆ F
satisfying the following criterion:

1. Pr ((v , t) ∈ S) = 2xv ,t (Marginal Preservation),

2. degS (t) =
⌈∑

e∈ 𝛿 (t ) 2xv ,t
⌉
≤ 2 (Ensures that the load is at

most 2).

3. degS (v ) =
∑

e∈ 𝛿 (v ) 2xv ,t = 1 (Ensures each vertex is thrown
into exactly 1 bin)

4. (Negative Correlation): For any time t,
Pr((v , t) ∈ S , (u, t) ∈ S) ≤ Pr((v , t) ∈ S) Pr((u, t) ∈ S).
[However, we do not use it]
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The End

Thank you.



Open Directions

▶ Getting a 2-approx. for All-Norm Vertex Cover
(Improving from 8 [GGKT08])

▶ Getting ℓ-dependent or w -dependent
approximation algorithms for other problems
(such as Load Balancing or k-Median).
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