
Tight Approximation Algorithms for Ordered
Covering

Jatin Batra, Syamantak Das and A. Jha

TIFR Mumbai, IIIT-Delhi and EPFL

2023



Minimum Vertex Cover

Definition
Given a graph G = (V ,E ), find the smallest cardinality subset
S ⊆ V such that for all edges e in E , e ∩ S ≠ ∅.

Vertex Cover

G = (V,E)

Figure: Vertex Cover in G



Alternate View (Scheduling)

1. One Machine.

2. The vertices are the jobs.

4 2 3 1 5 6

σ

4

2

3

1

5

6 G = (V,E)

M

Figure: Scheduling Vertices on a Machine

Objective Function?



Alternate View (Scheduling): Cover Times

Definition
Given a graph G = (V ,E ) and a schedule 𝜎 : V → [n] of its
vertices, the cover time of an edge is the first moment a vertex in
the edge is scheduled.

4

6

Cov
σ
(e) = 1

4 2 3 1 5 6

σ

Figure: Cover Time of an Edge

1. Vertex Cover: min𝜎 maxe∈E Cov𝜎 (e).
2. Min-Sum Vertex Cover: min𝜎

∑
e∈E Cov𝜎 (e)

[FLT04, BBFT21, Sta22]



Can we unify?



Ordered Optimization [AS, CSa, BSS18, CSb, CS19]

Given a schedule 𝜎, arrange e in descending order as:
Cov𝜎 (e1) ≥ Cov𝜎 (e2) ≥ . . .Cov𝜎 (em).

?

min
σ
Cov

σ
(e1) minσ

∑m

j=1
Covσ(ej)

Figure: Generalized Objective Functions



Ordered Optimization [AS, CSa, BSS18, CSb, CS19]

Given a schedule 𝜎, arrange e in descending order as:
Cov𝜎 (e1) ≥ Cov𝜎 (e2) ≥ . . .Cov𝜎 (em).

minσ Covσ(e1) minσ
∑m

j=1
Covσ(ej)

ℓ

minσ

∑
ℓ

j=1
Covσ(ej)

Figure: Top-ℓ Objective Functions

Ordered Objective Functions:

min𝜎
∑m

j=1 wjCov𝜎 (ej )
for w1 ≥ w2 ≥ . . .wm ≥ 0. This framework has gained a lot of
attention for clustering (Ordered k-Median) and Load Balancing
problems.



Our Contribution

Figure: One Ring to Rule Them All



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − Y) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − Y) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover

▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − Y) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − Y) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − Y) under UGC

[KR08].

▶ Min-Sum Vertex Cover
▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − Y) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − Y) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − Y) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − Y) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − Y) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Vertex Cover
▶ Upper Bound: 2-approx (Folklore)
▶ Hardness of Approximation: (2 − Y) under UGC

[KR08].
▶ Min-Sum Vertex Cover

▶ Upper Bound: 16/9-approx [BBFT21].
▶ Hardness of Approximation: 1.014 under UGC

[Sta22].
▶ Ordered Min-Sum Vertex Cover

▶ Upper Bound: 8-approx [GGKT08] (All-norm, more
general result).

▶ Lower Bound: (2 − Y) under UGC (Captures VC).

However, the techniques for upper bounds are very different across
the problems.



Current State

▶ Set Cover
▶ Upper Bound: O (log n)-approx [Joh73, Sla96].
▶ Lower Bound: NP-Hard to approximate within

(1 − Y) loge n [DS14]
▶ Min-Sum Vertex Cover
▶ Upper Bound: 4-approx [FLT04].
▶ Lower Bound: NP-Hard to approximate within

(4 − Y) [FLT04].
▶ Ordered Set Cover
▶ O (log n)-approx. [GGKT08] Upper Bound (Much

more general result, All-norm) s
▶ General Lower Bound: NP-Hard to approximate

within Ω(log n) (Captures Set Cover). But for
specialised Top-ℓ objectives?



Current State

▶ Set Cover
▶ Upper Bound: O (log n)-approx [Joh73, Sla96].
▶ Lower Bound: NP-Hard to approximate within

(1 − Y) loge n [DS14]

▶ Min-Sum Vertex Cover
▶ Upper Bound: 4-approx [FLT04].
▶ Lower Bound: NP-Hard to approximate within

(4 − Y) [FLT04].
▶ Ordered Set Cover
▶ O (log n)-approx. [GGKT08] Upper Bound (Much

more general result, All-norm) s
▶ General Lower Bound: NP-Hard to approximate

within Ω(log n) (Captures Set Cover). But for
specialised Top-ℓ objectives?



Current State

▶ Set Cover
▶ Upper Bound: O (log n)-approx [Joh73, Sla96].
▶ Lower Bound: NP-Hard to approximate within

(1 − Y) loge n [DS14]
▶ Min-Sum Vertex Cover
▶ Upper Bound: 4-approx [FLT04].
▶ Lower Bound: NP-Hard to approximate within

(4 − Y) [FLT04].

▶ Ordered Set Cover
▶ O (log n)-approx. [GGKT08] Upper Bound (Much

more general result, All-norm) s
▶ General Lower Bound: NP-Hard to approximate

within Ω(log n) (Captures Set Cover). But for
specialised Top-ℓ objectives?



Current State

▶ Set Cover
▶ Upper Bound: O (log n)-approx [Joh73, Sla96].
▶ Lower Bound: NP-Hard to approximate within

(1 − Y) loge n [DS14]
▶ Min-Sum Vertex Cover
▶ Upper Bound: 4-approx [FLT04].
▶ Lower Bound: NP-Hard to approximate within

(4 − Y) [FLT04].
▶ Ordered Set Cover
▶ O (log n)-approx. [GGKT08] Upper Bound (Much

more general result, All-norm) s
▶ General Lower Bound: NP-Hard to approximate

within Ω(log n) (Captures Set Cover). But for
specialised Top-ℓ objectives?



Our Results

Definition
Ordered Min-Sum Vertex Cover(OMSVC): Let G = (V , E ) be
a graph, and a w1 ≥ w2 ≥ . . .wm ≥ 0 be a sequence of
non-negative weights. Design a schedule 𝜎 of vertices to
minimize

∑
j wjCov𝜎 (ej ) where ej is the ordering of edges in

descending order of cover times.

Theorem
There is a (2 + Y)-approximation algorithm for OMSVC
running in time nO (1/Y).



Our Results

Definition
Ordered Min-Sum Vertex Cover(OMSVC): Let G = (V , E ) be
a graph, and a w1 ≥ w2 ≥ . . .wm ≥ 0 be a sequence of
non-negative weights. Design a schedule 𝜎 of vertices to
minimize

∑
j wjCov𝜎 (ej ) where ej is the ordering of edges in

descending order of cover times.

Theorem
There is a (2 + Y)-approximation algorithm for OMSVC
running in time nO (1/Y).



Our Results

Definition
Top-ℓ Set Cover: Let E be a set and I be a collection of subsets
of E . Design a schedule 𝜎 of sets to minimize

∑ℓ
j=1 Cov𝜎 (ej ) for a

fixed ℓ ∈ [n] where the elements ej are ordered in descending order
of cover times.

Theorem
The natural greedy algorithm gives a (8 log2(n/ℓ) + 16)-approx for
Top-ℓ Set Cover.

Theorem
It is hard to approximate the Top-ℓ Set Cover problem within a
factor better than max (Ω(1),Ω(log(n/ℓ)).
First ℓ-based approximation ratio and hardness result for Top-ℓ
objectives (to our knowledge).



Our Results

Definition
Top-ℓ Set Cover: Let E be a set and I be a collection of subsets
of E . Design a schedule 𝜎 of sets to minimize

∑ℓ
j=1 Cov𝜎 (ej ) for a

fixed ℓ ∈ [n] where the elements ej are ordered in descending order
of cover times.

Theorem
The natural greedy algorithm gives a (8 log2(n/ℓ) + 16)-approx for
Top-ℓ Set Cover.

Theorem
It is hard to approximate the Top-ℓ Set Cover problem within a
factor better than max (Ω(1),Ω(log(n/ℓ)).
First ℓ-based approximation ratio and hardness result for Top-ℓ
objectives (to our knowledge).



Our Results

Definition
Top-ℓ Set Cover: Let E be a set and I be a collection of subsets
of E . Design a schedule 𝜎 of sets to minimize

∑ℓ
j=1 Cov𝜎 (ej ) for a

fixed ℓ ∈ [n] where the elements ej are ordered in descending order
of cover times.

Theorem
The natural greedy algorithm gives a (8 log2(n/ℓ) + 16)-approx for
Top-ℓ Set Cover.

Theorem
It is hard to approximate the Top-ℓ Set Cover problem within a
factor better than max (Ω(1),Ω(log(n/ℓ)).

First ℓ-based approximation ratio and hardness result for Top-ℓ
objectives (to our knowledge).



Our Results

Definition
Top-ℓ Set Cover: Let E be a set and I be a collection of subsets
of E . Design a schedule 𝜎 of sets to minimize

∑ℓ
j=1 Cov𝜎 (ej ) for a

fixed ℓ ∈ [n] where the elements ej are ordered in descending order
of cover times.

Theorem
The natural greedy algorithm gives a (8 log2(n/ℓ) + 16)-approx for
Top-ℓ Set Cover.

Theorem
It is hard to approximate the Top-ℓ Set Cover problem within a
factor better than max (Ω(1),Ω(log(n/ℓ)).
First ℓ-based approximation ratio and hardness result for Top-ℓ
objectives (to our knowledge).



Overview of the Talk

We will talk about our algorithm which gets a (2 + Y)-approx. for
Top-ℓ Vertex Cover.

▶ We will motivate reducing Top-ℓ Vertex Cover to Discounted
Min-Sum Vertex Cover (Standard in Ordered Optimization).

▶ We will give a review of the approach of Feige et. al. [FLT04]
and why it fails in our problem.

▶ We will show how a dependent-rounding[GKPS06] based
approach fixes these problems.



Overview of the Talk

We will talk about our algorithm which gets a (2 + Y)-approx. for
Top-ℓ Vertex Cover.

▶ We will motivate reducing Top-ℓ Vertex Cover to Discounted
Min-Sum Vertex Cover (Standard in Ordered Optimization).

▶ We will give a review of the approach of Feige et. al. [FLT04]
and why it fails in our problem.

▶ We will show how a dependent-rounding[GKPS06] based
approach fixes these problems.



Overview of the Talk

We will talk about our algorithm which gets a (2 + Y)-approx. for
Top-ℓ Vertex Cover.

▶ We will motivate reducing Top-ℓ Vertex Cover to Discounted
Min-Sum Vertex Cover (Standard in Ordered Optimization).

▶ We will give a review of the approach of Feige et. al. [FLT04]
and why it fails in our problem.

▶ We will show how a dependent-rounding[GKPS06] based
approach fixes these problems.



Overview of the Talk

We will talk about our algorithm which gets a (2 + Y)-approx. for
Top-ℓ Vertex Cover.

▶ We will motivate reducing Top-ℓ Vertex Cover to Discounted
Min-Sum Vertex Cover (Standard in Ordered Optimization).

▶ We will give a review of the approach of Feige et. al. [FLT04]
and why it fails in our problem.

▶ We will show how a dependent-rounding[GKPS06] based
approach fixes these problems.



Reduction

Let 𝜎 : V → T be a schedule for an instance of Top-ℓ Vertex
Cover.

Covσ(em)

1 2

Covσ(eℓ)

r

Free of Cost

k

Covσ(e1)

Cost Paid

T

≤ ≤ ≤≤

Figure: Top-ℓ Vertex Cover



Reduction

Intuition

▶ Try to write down an ILP for this problem.

▶ Any schedule should be encoded as a feasible
solution to this ILP.

▶ ILP should know edges which have the Top-ℓ
cover times for any schedule 𝜎.

▶ How to write constraints for this?



Reduction

Intuition

▶ Try to write down an ILP for this problem.

▶ Any schedule should be encoded as a feasible
solution to this ILP.

▶ ILP should know edges which have the Top-ℓ
cover times for any schedule 𝜎.

▶ How to write constraints for this?



Reduction

Intuition

▶ Try to write down an ILP for this problem.

▶ Any schedule should be encoded as a feasible
solution to this ILP.

▶ ILP should know edges which have the Top-ℓ
cover times for any schedule 𝜎.

▶ How to write constraints for this?



Reduction

Intuition

▶ Try to write down an ILP for this problem.

▶ Any schedule should be encoded as a feasible
solution to this ILP.

▶ ILP should know edges which have the Top-ℓ
cover times for any schedule 𝜎.

▶ How to write constraints for this?



Reduction

Intuition

▶ Try to write down an ILP for this problem.

▶ Any schedule should be encoded as a feasible
solution to this ILP.

▶ ILP should know edges which have the Top-ℓ
cover times for any schedule 𝜎.

▶ How to write constraints for this?



Reduction

Intuition

▶ Try to write down an ILP for this problem.

▶ Any schedule should be encoded as a feasible
solution to this ILP.

▶ ILP should know edges which have the Top-ℓ
cover times for any schedule 𝜎.

▶ How to write constraints for this?



Reduction

Problem? Do not know the
ordering before hand.



Reduction

≤ ≤ ≤≤

Shift by a Discount

Add the Discount back later

(Covσ(em)− λ)+ (Covσ(eℓ)− λ)+ (Covσ(e1)− λ)+

Oblivious to Ordering Fixed

∑
e∈E(Covσ(e)− λ)+ + λ · ℓ ≥

∑
ℓ

i=1 Covσ(eℓ)∀λ ≥ 0

Figure: Top-ℓ Vertex Cover



Reduction

≤ ≤ ≤≤

Add the Discount back later

Oblivious to Ordering Fixed

λ = Covσ∗(eℓ)

∑
e∈E(Covσ∗(e)− λ)+ + λ · ℓ =

∑
ℓ

i=1 Covσ∗(eℓ)

(Covσ∗(em)− λ)+ (Covσ∗(eℓ)− λ)+ (Covσ∗(e1)− λ)+

Shift by Good Discount

Figure: Top-ℓ Vertex Cover



Reduction

Try to minimize:∑︁
e∈E

(Cov𝜎 (e) − _)+

over all possible schedules for a correct guess
_ = Cov𝜎∗ (eℓ).



Reduction

Theorem
[AS, BSS18, CSa, CS19, CSb] Let 𝜎∗ be the optimal schedule to
an instance of Top-ℓ Vertex Cover. Then, a schedule 𝜎 satisfying:∑︁

e∈E
(Cov𝜎 − 2_)+ ≤ 2

∑︁
e∈E

(Cov𝜎∗ − _)+

implies that
∑ℓ

j=1 Cov𝜎 (ej ) ≤ 2
∑ℓ

j=1 Cov𝜎∗ (ej ).

Definition
Discounted Min-Sum Vertex Cover (DMSVC) Let G = (V ,E ) be a
graph, and a _ ≥ 0 be a discount. Design a schedule 𝜎 of vertices
which satisfies:∑︁

e∈E
(Cov𝜎 − 2_)+ ≤ 2

∑︁
e∈E

(Cov𝜎∗ − _)+



Plan for the Talk

1. In the following, we will try to solve the
Discounted Min-Sum Vertex Cover problem via
an LP-rounding algorithm.

2. Let us first try to write down the linear program.



Plan for the Talk

1. In the following, we will try to solve the
Discounted Min-Sum Vertex Cover problem via
an LP-rounding algorithm.

2. Let us first try to write down the linear program.



Plan for the Talk

1. In the following, we will try to solve the
Discounted Min-Sum Vertex Cover problem via
an LP-rounding algorithm.

2. Let us first try to write down the linear program.



Intuition for Linear Program

Variables: xv ,t , ue,t .
Indicator variables.

xv ,t =

{
1 v is scheduled at t

0 otherwise

ue,t =

{
1 Cov𝜎 (e) ≥ t

0 otherwise
.

ue,t tracks at each step if e has not been covered.



Intuition for Linear Program

Variables: xv ,t , ue,t .
Indicator variables.

xv ,t =

{
1 v is scheduled at t

0 otherwise

ue,t =

{
1 Cov𝜎 (e) ≥ t

0 otherwise
.

ue,t tracks at each step if e has not been covered.



Intuition for Linear Program

Variables: xv ,t , ue,t .
Indicator variables.

xv ,t =

{
1 v is scheduled at t

0 otherwise

ue,t =

{
1 Cov𝜎 (e) ≥ t

0 otherwise
.

ue,t tracks at each step if e has not been covered.



Intuition For Linear Program

Variables: ue,t , xv ,t

v

u

e

v

1
∑
v′∈V xv′,t ≤ 1

uT
t t′

Figure: Intuition for variables and constraints



Intuition For Linear Program

v u

v

u

e

ue,t = 1

xu,t′′ = 1

ue,t = 0

2 ue,t +
∑

t′<t xv,t′ +
∑

t′<t xu,t′ ≥ 1

xv,T = 1
for 1 ≤ t ≤ T

for T + 1 ≤ t

Figure: Intuition for variables and constraints, Cov𝜎 (e) =
∑

t ue ,t



Intuition For Linear Program

v

u

e

ue,t = 1

v

λ
Free

Paid

∑
t≥λ ue,t

Objective
Function

for 1 ≤ t ≤ T

Figure: Intuition for variables and constraints



DMSVC Linear Program

Minimize
∑︁
t≥_

∑︁
e∈E

ue ,t , s .t .∑︁
v ∈V

xv ,t ≤ 1 , ∀ t = 1, 2, . . . (1)

ue ,t +
∑︁
t′<t

xu,t′ +
∑︁
t′<t

xv ,t′ ≥ 1, ∀ e = (u, v ), t = 1, 2, . . . (2)

u, x ≥ 0 .



Bi-criteria algorithm for DMSVC

V

σ

[n]

1

2

n

2λ

v1

v2

vn

Figure: Assignment Graph



Naive Approach

Solve the above LP.

v

T 1 2

xv,1 xv,2 xv,n

n

Figure: Try to throw each vertex in bins with probability xv ,t



Naive Approach

v

u

e

λ

xu,t′′ = 1/2

xv,t′′ = 1/2 ue,t = 0, t > t′′

Figure: Try to throw each vertex in bins with probability xv ,t



Naive Approach

v

T 1 2 n

xv,1 xv,2

λ

xv,λ

∑
t≤λ xv,t < 1

xv,n

Likewise for u

Figure: Try to throw each vertex in bins with probability xv ,t



Naive Approach

v

T 1 2 n

xv,1 xv,2

λ

xv,λ

∑
t≤λ xv,t < 1

xv,n

Throw v after λ

Likewise for u

Figure: Ball might be thrown in the last bin



Naive Approach

Independently throw each vertex into the bins using scaled
probabilities (x).

v

u

e

λ
Free

Paid

∑
t≥λ ue,t

xv,t = 1/2
xu,t = 1/2

= 0

Figure: Linear Program does not pay anything, While we pay a lot.



Approach of [FLT04]

If e = {v , u} is fractionally scheduled before _, then either∑
t<_ xv ,t ≥ 1/2 or

∑
t<_ xu,t ≥ 1/2.

(Since fractional covering means
∑

t<_ xv ,t +
∑

t<_ xu,t ≥ 1.)

v

u

e

v

T 1 2 nλ

2xv,1 2xv,2

2xv,λ

∑
t≤λ 2xv,t ≥ 1

xv,t ≥ 1/2 → 2xv,t ≥ 1

Figure: [FLT04]



Approach of [FLT04]

Independently throw each vertex into the bins using scaled
probabilities (2x).

v

T 1 2 n

2xv,1 2xv,2

2xv,n

Figure: [FLT04]



Approach of [FLT04]

Break the bins and schedule a uniformly random permutation of
vertices inside the bin.

1 2 12 345

Figure: [FLT04]



Problem?

Recall,
∑

v∈V xv ,t ≤ 1. Thus
E[#vertices in a bin] = 2

∑
v∈V xv ,t ≤ 2.

λ

Expectation

Reality

T

Figure: [FLT04]



Problem?

Want to ensure with high probability that at most
2_ vertices are scheduled within first _ slots.



Ingredients We Need

2xv,1

2xv,2
v

1

2

k

2xv,k

∑
j≤k 2xv,j = 1

1

Figure: Marginal Preservation: Throw v into a bin with probability 2xv ,t



Ingredients We Hope for

∑
v∈V xv,t ≤ 1

2xv1,t

2xv2,t

2xvn,t

2

Figure: Dependent Rounding on Side of Slots

▶ ≤ 2 vertices in each bin with probability 1.

▶ Thus, ≤ 2_ vertices in first _ bins with probability 1.



Fix?

Dependent Rounding.



Dependent Rounding [GKPS06]

Theorem
Given a weighted bipartite graph (V ∪ T , F , z : F → [0, 1])
(z = 2x), it is possible to sample a subset of edges S ⊆ F
satisfying the following criterion:

1. Pr ((v , t) ∈ S) = 2xv ,t (Marginal Preservation),

2. degS (t) =
⌈∑

e∈ 𝛿 (t ) 2xv ,t
⌉
≤ 2 (Ensures that the load is at

most 2).

3. degS (v ) =
∑

e∈ 𝛿 (v ) 2xv ,t = 1 (Ensures each vertex is thrown
into exactly 1 bin)

4. (Negative Correlation): For any time t,
Pr((v , t) ∈ S , (u, t) ∈ S) ≤ Pr((v , t) ∈ S) Pr((u, t) ∈ S).
[However, we do not use it]



Dependent Rounding [GKPS06]

Theorem
Given a weighted bipartite graph (V ∪ T , F , z : F → [0, 1])
(z = 2x), it is possible to sample a subset of edges S ⊆ F
satisfying the following criterion:

1. Pr ((v , t) ∈ S) = 2xv ,t (Marginal Preservation),

2. degS (t) =
⌈∑

e∈ 𝛿 (t ) 2xv ,t
⌉
≤ 2 (Ensures that the load is at

most 2).

3. degS (v ) =
∑

e∈ 𝛿 (v ) 2xv ,t = 1 (Ensures each vertex is thrown
into exactly 1 bin)

4. (Negative Correlation): For any time t,
Pr((v , t) ∈ S , (u, t) ∈ S) ≤ Pr((v , t) ∈ S) Pr((u, t) ∈ S).
[However, we do not use it]



Dependent Rounding [GKPS06]

Theorem
Given a weighted bipartite graph (V ∪ T , F , z : F → [0, 1])
(z = 2x), it is possible to sample a subset of edges S ⊆ F
satisfying the following criterion:

1. Pr ((v , t) ∈ S) = 2xv ,t (Marginal Preservation),

2. degS (t) =
⌈∑

e∈ 𝛿 (t ) 2xv ,t
⌉
≤ 2 (Ensures that the load is at

most 2).

3. degS (v ) =
∑

e∈ 𝛿 (v ) 2xv ,t = 1 (Ensures each vertex is thrown
into exactly 1 bin)

4. (Negative Correlation): For any time t,
Pr((v , t) ∈ S , (u, t) ∈ S) ≤ Pr((v , t) ∈ S) Pr((u, t) ∈ S).
[However, we do not use it]



Dependent Rounding [GKPS06]

Theorem
Given a weighted bipartite graph (V ∪ T , F , z : F → [0, 1])
(z = 2x), it is possible to sample a subset of edges S ⊆ F
satisfying the following criterion:

1. Pr ((v , t) ∈ S) = 2xv ,t (Marginal Preservation),

2. degS (t) =
⌈∑

e∈ 𝛿 (t ) 2xv ,t
⌉
≤ 2 (Ensures that the load is at

most 2).

3. degS (v ) =
∑

e∈ 𝛿 (v ) 2xv ,t = 1 (Ensures each vertex is thrown
into exactly 1 bin)

4. (Negative Correlation): For any time t,
Pr((v , t) ∈ S , (u, t) ∈ S) ≤ Pr((v , t) ∈ S) Pr((u, t) ∈ S).
[However, we do not use it]



Dependent Rounding [GKPS06]

Theorem
Given a weighted bipartite graph (V ∪ T , F , z : F → [0, 1])
(z = 2x), it is possible to sample a subset of edges S ⊆ F
satisfying the following criterion:

1. Pr ((v , t) ∈ S) = 2xv ,t (Marginal Preservation),

2. degS (t) =
⌈∑

e∈ 𝛿 (t ) 2xv ,t
⌉
≤ 2 (Ensures that the load is at

most 2).

3. degS (v ) =
∑

e∈ 𝛿 (v ) 2xv ,t = 1 (Ensures each vertex is thrown
into exactly 1 bin)

4. (Negative Correlation): For any time t,
Pr((v , t) ∈ S , (u, t) ∈ S) ≤ Pr((v , t) ∈ S) Pr((u, t) ∈ S).
[However, we do not use it]



Dependent Rounding [GKPS06]

Theorem
Given a weighted bipartite graph (V ∪ T , F , z : F → [0, 1])
(z = 2x), it is possible to sample a subset of edges S ⊆ F
satisfying the following criterion:

1. Pr ((v , t) ∈ S) = 2xv ,t (Marginal Preservation),

2. degS (t) =
⌈∑

e∈ 𝛿 (t ) 2xv ,t
⌉
≤ 2 (Ensures that the load is at

most 2).

3. degS (v ) =
∑

e∈ 𝛿 (v ) 2xv ,t = 1 (Ensures each vertex is thrown
into exactly 1 bin)

4. (Negative Correlation): For any time t,
Pr((v , t) ∈ S , (u, t) ∈ S) ≤ Pr((v , t) ∈ S) Pr((u, t) ∈ S).
[However, we do not use it]



Our Algorithm:

1. Guess the appropriate discount given ℓ: ℓth-largest cover time
of OPT (Cov𝜎∗ (eℓ)).

2. Solve the linear program for DMSVC with the discount chosen
above to obtain solution (x , u).

3. Run Dependent rounding on the bipartite graph
(V ∪ T , F , 2x : F → [0, 1]). (The sampled edges give an
assignment of vertices to time slot).

4. Break bins of time slots t (Each bin has at most 2 vertices:
cost goes up by at most 2).



Our Algorithm:

1. Guess the appropriate discount given ℓ: ℓth-largest cover time
of OPT (Cov𝜎∗ (eℓ)).

2. Solve the linear program for DMSVC with the discount chosen
above to obtain solution (x , u).

3. Run Dependent rounding on the bipartite graph
(V ∪ T , F , 2x : F → [0, 1]). (The sampled edges give an
assignment of vertices to time slot).

4. Break bins of time slots t (Each bin has at most 2 vertices:
cost goes up by at most 2).



Our Algorithm:

1. Guess the appropriate discount given ℓ: ℓth-largest cover time
of OPT (Cov𝜎∗ (eℓ)).

2. Solve the linear program for DMSVC with the discount chosen
above to obtain solution (x , u).

3. Run Dependent rounding on the bipartite graph
(V ∪ T , F , 2x : F → [0, 1]). (The sampled edges give an
assignment of vertices to time slot).

4. Break bins of time slots t (Each bin has at most 2 vertices:
cost goes up by at most 2).



Our Algorithm:

1. Guess the appropriate discount given ℓ: ℓth-largest cover time
of OPT (Cov𝜎∗ (eℓ)).

2. Solve the linear program for DMSVC with the discount chosen
above to obtain solution (x , u).

3. Run Dependent rounding on the bipartite graph
(V ∪ T , F , 2x : F → [0, 1]). (The sampled edges give an
assignment of vertices to time slot).

4. Break bins of time slots t (Each bin has at most 2 vertices:
cost goes up by at most 2).



Our Algorithm:

1. Guess the appropriate discount given ℓ: ℓth-largest cover time
of OPT (Cov𝜎∗ (eℓ)).

2. Solve the linear program for DMSVC with the discount chosen
above to obtain solution (x , u).

3. Run Dependent rounding on the bipartite graph
(V ∪ T , F , 2x : F → [0, 1]). (The sampled edges give an
assignment of vertices to time slot).

4. Break bins of time slots t (Each bin has at most 2 vertices:
cost goes up by at most 2).



The End

Thank you.



Open Directions

▶ Getting a 2-approx. for All-Norm Vertex Cover
(Improving from 8 [GGKT08])

▶ Getting ℓ-dependent or w -dependent
approximation algorithms for other problems
(such as Load Balancing or k-Median).



Open Directions

▶ Getting a 2-approx. for All-Norm Vertex Cover
(Improving from 8 [GGKT08])

▶ Getting ℓ-dependent or w -dependent
approximation algorithms for other problems
(such as Load Balancing or k-Median).



Open Directions

▶ Getting a 2-approx. for All-Norm Vertex Cover
(Improving from 8 [GGKT08])

▶ Getting ℓ-dependent or w -dependent
approximation algorithms for other problems
(such as Load Balancing or k-Median).



References

A. A. Ageev and M. I. Sviridenko.
Pipage rounding: a new method of constructing algorithms
with proven performance guarantee.
Journal of Combinatorial Optimization, 8:2004.

Nikhil Bansal, Jatin Batra, Majid Farhadi, and Prasad Tetali.
Improved approximations for min sum vertex cover and
generalized min sum set cover.
SODA ’21, page 986–1005. Society for Industrial and Applied
Mathematics, 2021.

Jaros law Byrka, Krzysztof Sornat, and Joachim Spoerhase.
Constant-factor approximation for ordered k-median.
In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, page 620–631, New
York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3188745.3188930.

Deeparnab Chakrabarty and Chaitanya Swamy.
Interpolating between k-median and k-center: Approximation
algorithms for ordered k-median.
In 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018.

Deeparnab Chakrabarty and Chaitanya Swamy.
Simpler and better algorithms for minimum-norm load
balancing.
In 27th Annual European Symposium on Algorithms, volume
144 of LIPIcs, pages 27:1–27:12.

Deeparnab Chakrabarty and Chaitanya Swamy.
Approximation algorithms for minimum norm and ordered
optimization problems.
STOC 2019, New York, NY, USA, 2019. Association for
Computing Machinery.

Irit Dinur and David Steurer.
Analytical approach to parallel repetition.
In Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, STOC ’14, page 624–633, New York,
NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2591796.2591884.

Uriel Feige, László Lovász, and Prasad Tetali.
Approximating min sum set cover.
Algorithmica, 40(4):219–234, 2004.

Daniel Golovin, Anupam Gupta, Amit Kumar, and Kanat
Tangwongsan.
All-norms and all-lp-norms approximation algorithms.
Leibniz International Proceedings in Informatics, LIPIcs, 2, 01
2008.

Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and
Aravind Srinivasan.
Dependent rounding and its applications to approximation
algorithms.
J. ACM, 53(3):324–360, may 2006.

David S. Johnson.
Approximation algorithms for combinatorial problems.
In Proceedings of the Fifth Annual ACM Symposium on
Theory of Computing, STOC ’73, page 38–49, New York, NY,
USA, 1973. Association for Computing Machinery.
doi:10.1145/800125.804034.

Subhash Khot and Oded Regev.
Vertex cover might be hard to approximate to within 2 − Y.
Journal of Computer and System Sciences, 74(3):335–349,
2008.
Computational Complexity 2003.

Petr Slav́ık.
A tight analysis of the greedy algorithm for set cover.
In Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, page 435–441, New
York, NY, USA, 1996. Association for Computing Machinery.
doi:10.1145/237814.237991.

Aleksa Stanković.
Some Results on Approximability of Minimum Sum Vertex
Cover.
In Amit Chakrabarti and Chaitanya Swamy, editors,
Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022), volume 245 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
50:1–50:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.
URL: https:
//drops.dagstuhl.de/opus/volltexte/2022/17172,
doi:10.4230/LIPIcs.APPROX/RANDOM.2022.50.

https://doi.org/10.1145/3188745.3188930
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/800125.804034
https://doi.org/10.1145/237814.237991
https://drops.dagstuhl.de/opus/volltexte/2022/17172
https://drops.dagstuhl.de/opus/volltexte/2022/17172
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.50

