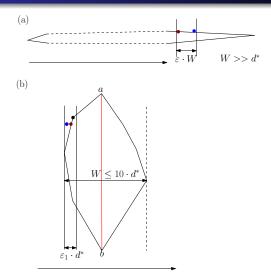

Approximating the discrete center line segment in linear time

Joachim Gudmundsson and Yuan Sha

University of Sydney

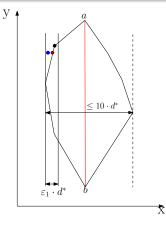
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The discrete center segment of a point set P


The red segment is the discrete center segment

• Previous result: an $O(n^2)$ time, $O(n^2)$ space exact algorithm by Daescu and Teo.

 Use approximation: (1 + ε)-approximation algorithm that runs in O(n + ¹/_{ε⁴} log ¹/_ε) time and uses linear space.


- compute an approximate convex hull $(1 + \varepsilon)$ -approximate convex hull has $O(1/\varepsilon)$ vertices
- reduce the number of candidate center segment: the diagonals of CH(P), grids
- $O(n + \frac{1}{\varepsilon^7})$ time algorithm.

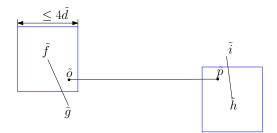
Find an orientation

• find an orientation for constructing the apprx convex hull: $(1 + \varepsilon)$ -approximate diametral point pair

Approximate point set


The blue point is in P and lies outside ACH(P). We shift it until it lies on the boundary of ACH(P). The red point is the shifted blue point.

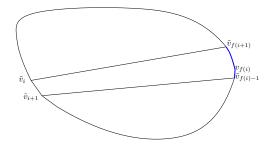
Let \tilde{P} be the approximate point set, a $(1 + \varepsilon)$ center segment of \tilde{P} corresponds to a $(1 + \varepsilon)$ center segment of P_{ϵ} and P_{ϵ} and P


Computing a $(1 + \varepsilon)$ center segment of $ilde{P}$

Reduce the number of candidate center segment

- use the diagonals of $CH(\tilde{P})$ to estimate \tilde{d}
- lay a grid

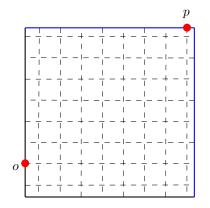
(1+arepsilon) center segment of $ilde{P}$



- Lay a grid. Consider square grids.
- $O(\frac{1}{\varepsilon^2})$ pairs of square grids. $O(\frac{1}{\varepsilon^4})$ segments for each pair.
- $O(n + \frac{1}{\epsilon^7})$ time algorithm.

- only $O(\frac{1}{\varepsilon})$ pairs of vertex grids monotone properties
- only $O(\frac{1}{\epsilon^3})$ segments for a pair of square grids build tables
- Query a half-plane farthest point in O(log ¹/_ε) time build data structure

Further refinement


• only $O(\frac{1}{\epsilon})$ pairs of vertex grids – monotone properties

For $\tilde{v}_i \tilde{v}_{i+1}$, only consider $\tilde{v}_{f(i)-1} \tilde{v}_{f(i)}, \ldots, \tilde{v}_{f(i+1)-1} \tilde{v}_{f(i+1)}$

Further refinement

• only $O(\frac{1}{c^3})$ segments for a pair of vertex grids – build tables

a table entry for a pair of grid corners on the boundary of a square grid

• Query a half-plane farthest point in $O(\log \frac{1}{\varepsilon})$ time – build data structure

•
$$O(n + \frac{1}{\varepsilon^4} \log \frac{1}{\varepsilon})$$
 time algorithm

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで