Faster Algorithms for Cycle Hitting Problems on Disk Graphs

Shinwoo An, Kyungjin Cho, and Eunjin Oh Department of Computer Science and Engineering Pohang University of Science and Technology (POSTECH)

Disk Graphs

Geometric Intersection Graphs: Intersection graphs of geometric objects

1

Disk Graphs: Intersection graphs of a set of disks

Disk Graphs

Disk Graphs generalizes unit disk graphs

UDG admits **Subexponential-time algorithms** for Cycle Hitting Problems. ex) TRIANGLE HITTING SET, FEEDBACK VERTEX SET

Question

Does a **DG** admit subexponential-time algorithms for those problems?

Two Cycle Hitting Problems

G = (V, E): Graph, k: integer, S: solution of size k

Triangle Hitting Set

G-S is triangle-free

Feedback Vertex Set

G-S is cycle-free

Two Cycle Hitting Problems

G = (V, E): Graph, k: integer, S: solution of size k

Triangle Hitting Set

G-S is triangle-free

Feedback Vertex Set

G-S is cycle-free

	THS	FVS
[LPSXZ 23]	$2^{O(k^{9/10}\log k)}n^{O(1)}$	$2^{O(k^{13/14}\log k)}n^{O(1)}$
Ours	$2^{O(k^{4/5}\log k)}n^{O(1)}$	$2^{O(k^{9/10}\log k)}n^{O(1)}$

(G, k): **yes**-insatuce, p : maximum <u>ply</u>

(G,k): **yes**-insatuce, p : maximum <u>ply</u>

Step 1. Branching

- $2^{O((k/p)\log k)}$ instances
- <u>Core</u> of size O(pk)

(G, k): **yes**-insatuce, p : maximum <u>ply</u>

Step 1. Branching

- $2^{O((k/p)\log k)}$ instances
- Core of size O(pk)

Step 2. Kernelization

- O(pk)-size Core $\rightarrow O(pk)$ -size kernel

(G,k): **yes**-insatuce, p : maximum <u>ply</u>

Step 1. Branching

- $2^{O((k/p)\log k)}$ instances
- Core of size O(pk)

Step 2. Kernelization

- O(pk)-size Core $\rightarrow O(pk)$ -size kernel

Step 3. Treewidth Analysis

- $O(pk)\text{-size kernel} \rightarrow O(p^{1.5}\sqrt{k})$ treewidth

(G,k): **yes**-insatuce, p : maximum <u>ply</u>

Step 1. Branching

- $2^{O((k/p)\log k)}$ instances
- Core of size O(pk)

Step 2. Kernelization

- O(pk)-size Core $\rightarrow O(pk)$ -size kernel

Step 3. Treewidth Analysis

- $O(pk)\text{-size kernel} \rightarrow O(p^{1.5}\sqrt{k})$ treewidth

Step 4. Dynamic Programming

- Standard DP

p: maximum ply, k: Solution size

Clique of size t contains t-2 solutions.

p: maximum ply, k: Solution size

Clique of size t contains t-2 solutions.

- Branch all large cliques ($\geq p$)
- $2^{O((k/p)\log k)}$ instances (subexponential)

p: maximum ply, k: Solution size

• : Removed Solution

 $\rightarrow 2^{O(k)}$ instances..

p: maximum ply, k: Solution size

- Still $2^{O(k)}$ instances

p: maximum ply, k: Solution size

Branch on large-size matching

 $N^*(v)$: neighbors of v, not adjacent to Mark

M: maximum matching of $N^*(v)$

Branch if |M| > p. (large size matching)

 $2^{O((k/p)\log k)}$ instances (subexponential)

p : maximum ply and maximum matching size

Mark

Remove

Compute 3-approx. solution by greedy approach

3-Approx. Sol

- Polynomai time

p : maximum ply and maximum matching size

Mark

Remove

Compute 3-approx. solution by greedy approach

3-Approx. Sol

- Polynomai time

Compute F_0 : Mark \cup 3-Approx $\rightarrow |F_0| = O(k)$

p : maximum ply and maximum matching size

 $\ensuremath{\mathbf{Core}}$: Some triangles of G

Case 1: A triangle with edge xy of F_0

Compute F_0 : Mark \cup 3-Approx $\rightarrow |F_0| = O(k)$

Case 2: A triangle with $v \in F_0$ and matching of $N^*(v)$ Core size: O(pk)

p : maximum ply and maximum matching size

 $\ensuremath{\mathbf{Core}}$: Some triangles of G

(G,k): **yes**-insatuce, p : maximum <u>ply</u>

Step 1. Branching

- $2^{O((k/p)\log k)}$ instances
- <u>Core</u> of size O(pk)

Step 2. Kernelization

- O(pk)-size Core $\rightarrow O(pk)$ -size kernel

Step 3. Treewidth Analysis

- $O(pk)\text{-size kernel} \rightarrow O(p^{1.5}\sqrt{k})$ treewidth

Step 4. Dynamic Programming

- Standard DP

Kernelization: Crown Decomposition

Crown Decomposition: Structure of the graph

- *I* : vertices (not in same triangle)
- ${\cal H}: {\rm edges} \mbox{ form triangle with } {\cal I}$

Kernelization: Crown Decomposition

Crown Decomposition: Structure of the graph

- *I* : vertices (not in same triangle)
- ${\cal H}: {\rm edges} \mbox{ form triangle with } {\cal I}$
- M: matching of $G_{I,H}$

If all H is matched under $M \to (I, H, M)$ is **Crown Decomposition**

W: Core of size O(pk)

W: Core of size O(pk)

 I_W : Vertices of triangle not in W H_W : Edges form triangle with I_W

W: Core of size O(pk)

 I_W : Vertices of triangle not in W H_W : Edges form triangle with I_W

 (I_W, H_W) may not form a crown.

 \rightarrow Cannot match all H_W into a matching

W: Core of size O(pk)

W: Core of size O(pk)

Lemma.:

If $|I_W| > |H_W|$, one can compute a crown (I, H, M) of G with $I \subset I_W$ and $H \subset H_W$.

X: Minimum vertex cover, M_X : matching containing X

W : Core of size O(pk)

Algorithm: Remove all I_W and mark all H_W

W : Core of size O(pk)

Algorithm: Remove all I_W and mark all H_W

Eventually, $|\mathsf{Remove}| + |\mathsf{Mark}| > k \text{ or } I_W \le H_W$

 $I_W \le H_W \to |G| = O(|H_W|) = O(W) = O(pk)$

\rightarrow Small-size kernel.

(G,k): **yes**-insatuce, p : maximum <u>ply</u>

Step 1. Branching

- $2^{O((k/p)\log k)}$ instances
- Core of size O(pk)

Step 2. Kernelization

- O(pk)-size Core $\rightarrow O(pk)$ -size kernel

Step 3. Treewidth Analysis

- $O(pk)\text{-size kernel} \rightarrow O(p^{1.5}\sqrt{k})$ treewidth

Step 4. Dynamic Programming

- Standard DP

Two Cycle Hitting Problems

G = (V, E): Graph, k: integer, S: solution of size k

Triangle Hitting Set

G-S is triangle-free

Feedback Vertex Set

G-S is cycle-free

 $\textbf{THS}: \textsf{branching} \rightarrow \textsf{kernelizing} \rightarrow \textsf{treewidth}$

 $\textbf{FVS?}: \text{ branching} \rightarrow \textbf{cannot kernelize}$

Overview: Feedback Vertex Set

(G,k) : **yes**-instance, p : maximum ply

Step 1. Branching

- $2^{O((k/p)\log k)}$ instances
- <u>Core</u> of size O(pk)

Step 2. Cleaning

- Remain one vertex from false twins.

Step 3. Treewidth Analysis

- Classify vertivecs by additively weighted high-order Voronoi diagram.
- Not all classes affect the treewidth. \rightarrow treewidth is $O(p^4\sqrt{k})$.

Step 4. Dynamic Programming

- Standard DP.

x, y: false twins

Arrangement Graph \mathcal{A} : geometric information of the disk graph

Arrangement Graph \mathcal{A} : geometric information of the disk graph

Compute arrangement graph of subset F of G.

2-Approx. Solution

- $F: Core \cup 2-Approx$
 - G F is cycle-free

Classify G - F into irregular and regular:

- Complexity of $\mathcal{A}{=}~O(p|F|)$
- |Irregular|=O(p|F|)

Classify G - F into irregular and regular:

Classify G - F into deep and shallow:

Relation to Treewidth:

- |Deep and Regular| is **small** (small treewidth)
- |Shallow and Regular| is large but irrelevant to treewidth

Lemma. The number of deep and regular vertices is $O(p^2|F|)$.

Lemma. The number of deep and regular vertices is $O(p^2|F|)$.

Additively weighted order-r Voronoi diagram:

- Subdivision of the plane
- Points in a region has same r-nearest sites

Additively Weighted

Order-1 VD

Order-2 VD

Lemma. The number of deep and regular vertices is $O(p^2|F|)$.

Additively weighted order-*r* Voronoi diagram:

Lemma. The number of deep and regular vertices is $O(p^2|F|)$.

Additively weighted order-*r* Voronoi diagram:

If |N(v)| = |N(v')| = 5, v, v' in same region \rightarrow false twin

Lemma. The number of deep and regular vertices is $O(p^2|F|)$.

Additively weighted order-*r* Voronoi diagram:

If |N(v)| = |N(v')| = 5, v, v' in same region \rightarrow false twin

$$\begin{split} |\mathsf{Deep}| = &\sum_k |\mathsf{order}\text{-}k - \mathsf{VD}| \\ = &O(p^2|F|) \text{ [Rosenberger 91]} \end{split}$$

(Sketch) Shallow and Regular vertices irrelevant to the treewidth

(Sketch) Shallow and Regular vertices irrelevant to the treewidth

— : Shallow and regular

Connect boundary regions

(Sketch) Shallow and Regular vertices irrelevant to the treewidth

—: F + Deep + Irregular—: Shallow and regular

Connect boundary regions

(Sketch) Shallow and Regular vertices irrelevant to the treewidth

—: F + Deep + Irregular
—: Shallow and regular

Connect boundary regions

- $t \times t \ {\rm grid} \rightarrow {\rm treewidth} \ t$
- $\exists \mathsf{Red}\xspace$ paths \rightarrow still bounded

(Sketch) Shallow and Regular vertices irrelevant to the treewidth

----: F + Deep + Irregular ----: Shallow and regular

Connect boundary regions

- $t \times t \ {\rm grid} \rightarrow {\rm treewidth} \ t$
- $\exists \mathsf{Red}\xspace$ paths \rightarrow still bounded
- $|F+De+Irr|=O(p^2k) \rightarrow \text{treewidth } O(p^4\sqrt{k})$ [LSPXZ 23]

Summary

Progress on subexponential-time algorithms for Cycle Hitting problems on DGs.

TRIANGLE HITTING SET : $2^{O(k^{9/10} \log k)} n^{O(1)}$ time $\rightarrow 2^{O(k^{4/5} \log k)} n^{O(1)}$ time FEEDBACK VERTEX SET : $2^{O(k^{13/14} \log k)} n^{O(1)}$ time $\rightarrow 2^{O(k^{9/10} \log k)} n^{O(1)}$ time

Summary

Progress on subexponential-time algorithms for Cycle Hitting problems on DGs.

TRIANGLE HITTING SET : $2^{O(k^{9/10} \log k)} n^{O(1)}$ time $\rightarrow 2^{O(k^{4/5} \log k)} n^{O(1)}$ time FEEDBACK VERTEX SET : $2^{O(k^{13/14} \log k)} n^{O(1)}$ time $\rightarrow 2^{O(k^{9/10} \log k)} n^{O(1)}$ time

If we are aware of the geometric representation,

- $2^{O(k^{2/3} \log k)} n^{O(1)}$ -time for TRIANGLE HITTING SET
- $2^{O(k^{7/8} \log k)} n^{O(1)}$ -time for FEEDBACK VERTEX SET
- $2^{O(k^{15/16} \log k)} n^{O(1)}$ -time for ODD CYCLE TRANSVERSAL

Summary

Progress on **subexponential-time** algorithms for Cycle Hitting problems on **DG**s.

TRIANGLE HITTING SET : $2^{O(k^{9/10} \log k)} n^{O(1)}$ time $\rightarrow 2^{O(k^{4/5} \log k)} n^{O(1)}$ time FEEDBACK VERTEX SET : $2^{O(k^{13/14} \log k)} n^{O(1)}$ time $\rightarrow 2^{O(k^{9/10} \log k)} n^{O(1)}$ time

If we are aware of the geometric representation,

- $2^{O(k^{2/3} \log k)} n^{O(1)}$ -time for TRIANGLE HITTING SET
- $2^{O(k^{7/8} \log k)} n^{O(1)}$ -time for FEEDBACK VERTEX SET
- $2^{O(k^{15/16} \log k)} n^{O(1)}$ -time for ODD CYCLE TRANSVERSAL

Future Works.

- Does our analysis work for other NP-hard problems?
- Does disk graph admit ETH-tight algorithms as Unit disk graph does? ** $2^{O(\sqrt{k})}n^{O(1)}$ -time algorithm

Questions?