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Interval Scheduling Problem

Given a set of intervals, select a subset of non-overlapping intervals
with maximum cardinality.

In the offline setting, a simple greedy algorithm solves the problem
optimally.
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Online Interval Scheduling

In the online setting, intervals appear one by one in any order, and
an irrevocable decision must be made to accept to reject each item
before the next ones appear.

An algorithm has a competitive ratio of r iff

∀I : Alg(I ) ≥ rOpt(I )− o(Opt(I ))

The best competitive ratio is Θ(1/m) and Θ(1/ logm) for
deterministic and online algorithms, respectively, where m is the
maximum interval length [Awerbuch et al., SODA’94, Lipton &

Tomkins, SODA’94].
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Disjoing Path Allocation Problem

Instead of intervals, the input is formed by pairs of vertices in a
given graph.

The goal is to accept a maximum number of pairs with disjoint
paths between them.

The problem is NP-hard for general graphs (even SP-graphs) [Even
and Etai, 1976] and polynomial-time solvable for trees and
outerplanar graphs [Garg, Vazirani, and Yannakakis, 1977], Wagner,
1995].
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Online Algorithms with Prediction

Online ALgorithms: give worst-case guarantees but do not provide
any insight into typical (average-case) performance.

Machine Learning: works well on typical inputs but can go terribly
wrong on unusual (worst-case) inputs.

Online Algorithms with Prediction: get the best of two worlds
via potentially erroneous prediction about the input.

effect

inputs

online guarantee

online reality
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Online Algorithms with Prediction

What prediction should be?

How to measure error?

Algorithm Design and Analysis
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Interval Scheduling with predictions

We consider predictions that concern membership in the input
sequence.

Statistical predictions such as average input length are unlikely to
help.

prediction Î :

input I :
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The Error Measure

We use η = Opt(FP ∪ FN)

prediction Î :

input I :

FN

FN

FN

TP TP

TP TP

TP

FN TP

FP

FP

TP TP

TP TP

TP

TP

OPT(FP∪FN) = 3
FN FN

FN

FN

FPFP

η =
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The Error Measure

We use η = Opt(FP ∪ FN)

Desirable Properties:

Monotonicity: eliminating false negatives/positives must not
increase the error.
Lipschitz: the error is not “too small”.
Completeness: the error is not “too large”.

We define normalized error γ(Î , I ) = η(Î ,I )

Opt(Î ,I )
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Algorithmic Goal

Design an algorithm that is consistent, robust, and smooth.

competitive ratio

error η

robustness

consistency
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Follow the Prediction

The most obvious algorithm to try (first) just follows the prediction:

From Î , compute an optimal solution, I ∗

for all requests r ∈ I :

if r ∈ I ∗:

accept

else:

reject

Algorithm Trust
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Follow the Prediction

A positive result for general graphs:

Theorem

On any graph, Trust(Î , I ) ≥ (1− 2γ(Î , I )) Opt(I )

Proof.

Trust(Î , I ) ≥ Opt(Î )−Opt(FP)

≥ Opt(I )−Opt(FN)−Opt(FP)

≥ Opt(I )− 2Opt(FP ∪ FN)

= Opt(I )− 2η(Î , I )

= (1− 2γ(Î , I ))Opt(I )
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Follow the Prediction

This is the best possible for the disjoint path allocation problem:

Theorem

On a star graphs S8, Alg(Î , I ) ≤ (1− 2γ(Î , I )) Opt(I )

Showing, equivalently, Alg(Î , I ) ≤ Opt(I)−2η(Î , I )

Exhibit an input (and prediction) s.t., the prediction error is 1, and
the profit of Opt is 2 more than the profit of Alg.

One case of the proof: Î = {(1, 2), (2, 3), (3, 4), (4, 5), (6, 7), (7, 8)}
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Exhibit an input (and prediction) s.t., the prediction error is 1, and
the profit of Opt is 2 more than the profit of Alg.
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Showing, equivalently, Alg(Î , I ) ≤ Opt(I)−2η(Î , I )

Exhibit an input (and prediction) s.t., the prediction error is 1, and
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Conclusion for Disjoint Path Allocation

As long as a graph class contains S8, Trust (follow-the-prediction)
is the best possible.

This motivates us to focus on interval graphs (interval scheduling).
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TrustGreedy Algorithm

An improved algorithm for interval scheduling:

From Î , compute a left-most optimal solution, I ∗

for all requests r ∈ I :

if r

accept r

else:

reject r

Algorithm TrustGreedy

does not overlap an accepted request and
(is in I ∗ or
does not overlap any I ∗-requests or
overlaps exactly one I ∗-request ending no earlier than r)

update I ∗ if necessary
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TrustGreedy Algorithm

Theorem

For any prdeiction Î and input sequenec I ,
TrustGreedy(Î , I ) ≥ (1− γ(Î , I )) Opt(I )

An improvement over the competitive ratio 1− 2γ(Î , I ) of Trust.
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TrustGreedy Algorithm Optimality

Theorem

For any deterministic algorithm Alg, there are input sequences
and predictions I and Î , so Alg(Î , I ) ≤ (1− γ(Î , I )) Opt(I )

Let Î = {(0, 2), (0, 1)}, and I start with (0, 2).

If Alg rejects (0, 2), Opt accepts it and input ends, so
(0, 1) ∈ FP, and η = 1.
If Alg accepts (0, 2), then I continues with (0, 1) and (1, 2) that
Opt accepts, so (1, 2) ∈ FN and η = 1.
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Consistency/Robustness Tradeoffs

Consistency refers to the competitive ratio when the predictions
are correct, and robusteness is the competitive ratio when
predictions are adversarial.

Starting with a negative result:

Theorem

If a (possibly randomized) algorithm Alg is both α-consistent,

then its robustness is at most β = 2(1−α)
⌊logm⌋−1 .
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Consistency/Robustness Tradeoffs

For a positive result, we define Robust-Trust(α) as follows:

Draw probablity p uniformly at random
if p < α :

apply algorithm TrustGreedy
else

apply algorithm Classify-and-Randomly-Select

Algorithm RobustTrust (α)
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For a positive result, we define Robust-Trust(α) as follows:

Draw probablity p uniformly at random
if p < α :

apply algorithm TrustGreedy
else

apply algorithm Classify-and-Randomly-Select

Algorithm RobustTrust (α)

Theorem

Robust-Trust(α) has consistency at least α and robustness
at least 1−α

⌈logm⌉

Robust-Trust(α) asymptotically Pareto optimal.
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Experimental Result

Consider Trust, TrustGreedy, Greedy, and Opt on
real-world scheduling data on parallel machines [Chapin et al.
IPPS/SPDP, 1999]
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Implied Results

The negative result on star graphs implies a negative result for
matching in general graphs (even if restricted to planar graphs).

The negative results on matching implies a negative result for
indepenedent set in general graphs
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Summary

For disjoint path allocation problem, Trust has a competitive ratio
of 1− 2γ(Î , I ), which is optimal.

For interval scheduling, TrustGreedy has a competitive ratio of
1− γ(Î , I ), which is optimal.

For consistency/robustness tradeoff, RobustTrust(α) is
α-consistent and (1− α)/⌈logm⌉-robust, which is asymptotically
Pareto-optimal.
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