Online Interval Scheduling with Predictions

Joan Boyar ${ }^{1}$, Lene M. Favrholdt ${ }^{1}$, Shahin Kamali ${ }^{2}$ and Kim S. Larsen ${ }^{1}$

July 31, 2023

1. University of Southern Denmark, Odense, Denmark 2. York University, Toronto, Canada

The Algorithms and Data Structures Symposium (WADS)

Outline

- Interval Scheduling and Disjoint Path Allocation problems.

Outline

- Interval Scheduling and Disjoint Path Allocation problems.
- Online Algorithms with Predictions
- Interval Scheduling and Disjoint Path Allocation problems.
- Online Algorithms with Predictions
- Main results:
- Disjoint Path Allocation problem
- Interval Scheduling: competitive results, consistency/robustness tradeoffs, and experimental results

Outline

- Interval Scheduling and Disjoint Path Allocation problems.
- Online Algorithms with Predictions
- Main results:
- Disjoint Path Allocation problem
- Interval Scheduling: competitive results, consistency/robustness tradeoffs, and experimental results
- Implied results

Interval Scheduling Problem

- Given a set of intervals, select a subset of non-overlapping intervals with maximum cardinality.
- In the offline setting, a simple greedy algorithm solves the problem optimally.

Interval Scheduling Problem

- Given a set of intervals, select a subset of non-overlapping intervals with maximum cardinality.
- In the offline setting, a simple greedy algorithm solves the problem optimally.

Interval Scheduling Problem

- Given a set of intervals, select a subset of non-overlapping intervals with maximum cardinality.
- In the offline setting, a simple greedy algorithm solves the problem optimally.

Interval Scheduling Problem

- Given a set of intervals, select a subset of non-overlapping intervals with maximum cardinality.
- In the offline setting, a simple greedy algorithm solves the problem optimally.

Interval Scheduling Problem

- Given a set of intervals, select a subset of non-overlapping intervals with maximum cardinality.
- In the offline setting, a simple greedy algorithm solves the problem optimally.

Interval Scheduling Problem

- Given a set of intervals, select a subset of non-overlapping intervals with maximum cardinality.
- In the offline setting, a simple greedy algorithm solves the problem optimally.

Interval Scheduling Problem

- Given a set of intervals, select a subset of non-overlapping intervals with maximum cardinality.
- In the offline setting, a simple greedy algorithm solves the problem optimally.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.
\qquad

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

- An algorithm has a competitive ratio of r iff

$$
\forall I: \operatorname{ALG}(I) \geq r \operatorname{OPT}(I)-o(\operatorname{OPT}(I))
$$

Online Interval Scheduling

- In the online setting, intervals appear one by one in any order, and an irrevocable decision must be made to accept to reject each item before the next ones appear.

- An algorithm has a competitive ratio of r iff

$$
\forall I: \operatorname{ALG}(I) \geq r \operatorname{OPT}(I)-o(\operatorname{OPT}(I))
$$

- The best competitive ratio is $\Theta(1 / m)$ and $\Theta(1 / \log m)$ for deterministic and online algorithms, respectively, where m is the maximum interval length [Awerbuch et al., SODA'94, Lipton \& Tomkins, SODA'94].

Disjoing Path Allocation Problem

- Instead of intervals, the input is formed by pairs of vertices in a given graph.
- The goal is to accept a maximum number of pairs with disjoint paths between them.

Disjoing Path Allocation Problem

- Instead of intervals, the input is formed by pairs of vertices in a given graph.
- The goal is to accept a maximum number of pairs with disjoint paths between them.

Disjoing Path Allocation Problem

- Instead of intervals, the input is formed by pairs of vertices in a given graph.
- The goal is to accept a maximum number of pairs with disjoint paths between them.

Disjoing Path Allocation Problem

- Instead of intervals, the input is formed by pairs of vertices in a given graph.
- The goal is to accept a maximum number of pairs with disjoint paths between them.

Disjoing Path Allocation Problem

- Instead of intervals, the input is formed by pairs of vertices in a given graph.
- The goal is to accept a maximum number of pairs with disjoint paths between them.
- The problem is NP-hard for general graphs (even SP-graphs) [Even and Etai, 1976] and polynomial-time solvable for trees and outerplanar graphs [Garg, Vazirani, and Yannakakis, 1977], Wagner, 1995].

Online Algorithms with Prediction

- Online ALgorithms: give worst-case guarantees but do not provide any insight into typical (average-case) performance.

Online Algorithms with Prediction

- Online ALgorithms: give worst-case guarantees but do not provide any insight into typical (average-case) performance.
- Machine Learning: works well on typical inputs but can go terribly wrong on unusual (worst-case) inputs.

Online Algorithms with Prediction

- Online ALgorithms: give worst-case guarantees but do not provide any insight into typical (average-case) performance.
- Machine Learning: works well on typical inputs but can go terribly wrong on unusual (worst-case) inputs.
- Online Algorithms with Prediction: get the best of two worlds via potentially erroneous prediction about the input.

Online Algorithms with Prediction

- Online ALgorithms: give worst-case guarantees but do not provide any insight into typical (average-case) performance.
- Machine Learning: works well on typical inputs but can go terribly wrong on unusual (worst-case) inputs.
- Online Algorithms with Prediction: get the best of two worlds via potentially erroneous prediction about the input.

Online Algorithms with Prediction

- What prediction should be?
- How to measure error?
- Algorithm Design and Analysis

Interval Scheduling with predictions

- We consider predictions that concern membership in the input sequence.
prediction \hat{l} :

input I :

Interval Scheduling with predictions

- We consider predictions that concern membership in the input sequence.
prediction:

input:

Interval Scheduling with predictions

- We consider predictions that concern membership in the input sequence.
- Statistical predictions such as average input length are unlikely to help.
prediction:

input:

The Error Measure

- We use $\eta=\operatorname{Opt}(F P \cup F N)$
prediction \hat{i} :

input I :

$\eta=\mathrm{OPT}(\mathrm{FP} \cup F \mathrm{~N})=3$

The Error Measure

- We use $\eta=\operatorname{Opt}(F P \cup F N)$
- Desirable Properties:

The Error Measure

- We use $\eta=\operatorname{Opt}(F P \cup F N)$
- Desirable Properties:
- Monotonicity: eliminating false negatives/positives must not increase the error.

The Error Measure

- We use $\eta=\operatorname{Opt}(F P \cup F N)$
- Desirable Properties:
- Monotonicity: eliminating false negatives/positives must not increase the error.
- Lipschitz: the error is not "too small".
- Completeness: the error is not "too large".

The Error Measure

- We use $\eta=\operatorname{Opt}(F P \cup F N)$
- Desirable Properties:
- Monotonicity: eliminating false negatives/positives must not increase the error.
- Lipschitz: the error is not "too small".
- Completeness: the error is not "too large".
- We define normalized error $\gamma(\hat{I}, I)=\frac{\eta(\hat{l}, I)}{\operatorname{OPT}(\hat{l}, I)}$

Algorithmic Goal

- Design an algorithm that is consistent, robust, and smooth.

Follow the Prediction

- The most obvious algorithm to try (first) just follows the prediction:

```
Algorithm Trust
    From \hat{l}, compute an optimal solution, I*
    for all requests r\inI:
    if r\inI*:
        accept
    else:
        reject
```


Follow the Prediction

- A positive result for general graphs:

Theorem

On any graph, $\operatorname{TRust}(\hat{I}, I) \geq(1-2 \gamma(\hat{I}, I)) \operatorname{OPT}(I)$
Proof.

$$
\begin{aligned}
\operatorname{Trust}(\hat{l}, I) & \geq \operatorname{Opt}(\hat{l})-\operatorname{Opt}(F P) \\
& \geq \operatorname{Opt}(I)-\operatorname{Opt}(F N)-\operatorname{Opt}(F P) \\
& \geq \operatorname{Opt}(I)-2 \operatorname{Opt}(F P \cup F N) \\
& =\operatorname{Opt}(I)-2 \eta(\hat{l}, I) \\
& =(1-2 \gamma(\hat{l}, I)) \operatorname{Opt}(I)
\end{aligned}
$$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \operatorname{OpT}(I)
$$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \operatorname{OPT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{Opt}(I)-2 \eta(\hat{I}, I)$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

On a star graphs $S_{8}, \operatorname{AlG}(\hat{I}, I) \leq(1-2 \gamma(\hat{I}, I)) \operatorname{Opt}(I)$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{OPt}(I)-2 \eta(\hat{l}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

On a star graphs $S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{I}, I))$ Opt (I)

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{Opt}(I)-2 \eta(\hat{l}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{ALG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \text { Opt }(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{OPT}(I)-2 \eta(\hat{l}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \operatorname{OpT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{OPT}(I)-2 \eta(\hat{l}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \operatorname{OpT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{Opt}(I)-2 \eta(\hat{I}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \operatorname{OpT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{I}, I) \leq \operatorname{Opt}(I)-2 \eta(\hat{I}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

y
 Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \operatorname{OpT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{Opt}(I)-2 \eta(\hat{I}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

y
 Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \operatorname{OpT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{Opt}(I)-2 \eta(\hat{I}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{ALG}(\hat{l}, I) \leq(1-2 \gamma(\hat{I}, I)) \operatorname{OpT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{OPT}(I)-2 \eta(\hat{l}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{ALG}(\hat{l}, I) \leq(1-2 \gamma(\hat{I}, I)) \operatorname{OpT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{OPT}(I)-2 \eta(\hat{l}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

On a star graphs $S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{I}, I)) \operatorname{Opt}(I)$

- Showing, equivalently, $\operatorname{AlG}(\hat{I}, I) \leq \operatorname{Opt}(I)-2 \eta(\hat{I}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

$$
I=(2,3),(6,7),(1,2),(3,4),(7,8)
$$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

On a star graphs $S_{8}, \operatorname{AlG}(\hat{I}, I) \leq(1-2 \gamma(\hat{I}, I)) \operatorname{Opt}(I)$

- Showing, equivalently, $\operatorname{AlG}(\hat{I}, I) \leq \operatorname{Opt}(I)-2 \eta(\hat{I}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

$$
I=(2,3),(6,7),(1,2),(3,4),(7,8),(5,8)
$$

Follow the Prediction

- This is the best possible for the disjoint path allocation problem:

Theorem

$$
\text { On a star graphs } S_{8}, \operatorname{AlG}(\hat{l}, I) \leq(1-2 \gamma(\hat{l}, I)) \operatorname{OpT}(I)
$$

- Showing, equivalently, $\operatorname{AlG}(\hat{l}, I) \leq \operatorname{OPT}(I)-2 \eta(\hat{l}, I)$
- Exhibit an input (and prediction) s.t., the prediction error is 1 , and the profit of Opt is 2 more than the profit of Alg.
- One case of the proof: $\hat{I}=\{(1,2),(2,3),(3,4),(4,5),(6,7),(7,8)\}$

$$
\begin{aligned}
I= & (2,3),(6,7),(1,2),(3,4),(7,8),(5,8) \\
& O p t(F N \cup F P)=\operatorname{Opt}(\{(4,5),(5,8)\})=1
\end{aligned}
$$

Conclusion for Disjoint Path Allocation

- As long as a graph class contains S_{8}, Trust (follow-the-prediction) is the best possible.

Conclusion for Disjoint Path Allocation

- As long as a graph class contains S_{8}, Trust (follow-the-prediction) is the best possible.
- This motivates us to focus on interval graphs (interval scheduling).

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:

Algorithm TrustGreedy

From \hat{l}, compute a left-most optimal solution, I^{*}
for all requests $r \in I$:
if $r \quad$ does not overlap an accepted request and (is in I^{*} or
does not overlap any I^{*}-requests or overlaps exactly one I^{*}-request ending no earlier than r)
accept r
update I^{*} if necessary
else:
reject r

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{I} :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

- An improved algorithm for interval scheduling:
prediction \hat{l} :

input I :

TrustGreedy Algorithm

Theorem

For any prdeiction \hat{l} and input sequenec I, $\operatorname{TrustGreedy}(\hat{l}, l) \geq(1-\gamma(\hat{l}, l)) \operatorname{Opt}(I)$

- An improvement over the competitive ratio $1-2 \gamma(\hat{l}, I)$ of Trust.

TrustGreedy Algorithm Optimality

Theorem

For any deterministic algorithm ALG, there are input sequences and predictions I and \hat{l}, so $\operatorname{AlG}(\hat{I}, I) \leq(1-\gamma(\hat{I}, I)) \operatorname{Opt}(I)$

TrustGreedy Algorithm Optimality

Theorem

For any deterministic algorithm ALG, there are input sequences and predictions I and \hat{l}, so $\operatorname{Alg}(\hat{l}, I) \leq(1-\gamma(\hat{l}, I)) \operatorname{Opt}(I)$

- Let $\hat{I}=\{(0,2),(0,1)\}$, and I start with $(0,2)$.

TrustGreedy Algorithm Optimality

Theorem

For any deterministic algorithm ALG, there are input sequences and predictions I and \hat{l}, so $\operatorname{AlG}(\hat{l}, I) \leq(1-\gamma(\hat{l}, I)) \operatorname{Opt}(I)$

- Let $\hat{I}=\{(0,2),(0,1)\}$, and I start with $(0,2)$.
- If Alg rejects $(0,2)$, Opt accepts it and input ends, so $(0,1) \in F P$, and $\eta=1$.

TrustGreedy Algorithm Optimality

Theorem

For any deterministic algorithm ALG, there are input sequences and predictions I and \hat{I}, so $\operatorname{AlG}(\hat{I}, I) \leq(1-\gamma(\hat{I}, I)) \operatorname{Opt}(I)$

- Let $\hat{l}=\{(0,2),(0,1)\}$, and I start with $(0,2)$.
- If Alg rejects $(0,2)$, Opt accepts it and input ends, so $(0,1) \in F P$, and $\eta=1$.
- If Alg accepts $(0,2)$, then I continues with $(0,1)$ and $(1,2)$ that Opt accepts, so $(1,2) \in F N$ and $\eta=1$.
$(0,2)$

$$
\begin{aligned}
& \mathrm{Alg}=0 \quad \mathrm{Opt}=1 \\
& \eta=1
\end{aligned}
$$

TrustGreedy Algorithm Optimality

Theorem

For any deterministic algorithm ALG, there are input sequences and predictions I and \hat{I}, so $\operatorname{AlG}(\hat{I}, I) \leq(1-\gamma(\hat{I}, I)) \operatorname{Opt}(I)$

- Let $\hat{I}=\{(0,2),(0,1)\}$, and I start with $(0,2)$.
- If Alg rejects $(0,2)$, Opt accepts it and input ends, so $(0,1) \in F P$, and $\eta=1$.
- If Alg accepts $(0,2)$, then I continues with $(0,1)$ and $(1,2)$ that Opt accepts, so $(1,2) \in F N$ and $\eta=1$.

$$
\begin{aligned}
& (0,2) \\
& \begin{array}{l}
\mathrm{Alg}=0 \quad \text { Opt }=1 \\
\eta=1
\end{array}
\end{aligned}
$$

$\frac{(0,2)}{\frac{(0,1)}{\mathrm{Alg}=1}$| $\eta=1$ |
| :--- |
| $\eta=1,2)$ |
| $\mathrm{Opt}=2$ |}

Consistency/Robustness Tradeoffs

- Consistency refers to the competitive ratio when the predictions are correct, and robusteness is the competitive ratio when predictions are adversarial.

名
 Consistency/Robustness Tradeoffs

- Consistency refers to the competitive ratio when the predictions are correct, and robusteness is the competitive ratio when predictions are adversarial.
- Starting with a negative result:

Theorem

If a (possibly randomized) algorithm AlG is both α-consistent, then its robustness is at most $\beta=\frac{2(1-\alpha)}{\lfloor\log m\rfloor-1}$.

Consistency/Robustness Tradeoffs

- For a positive result, we define Robust-Trust (α) as follows:

```
Algorithm RobustTrust ( }\alpha\mathrm{ )
    Draw probablity p uniformly at random
    if p<\alpha:
        apply algorithm TrustGreedy
    else
        apply algorithm Classify-and-Randomly-Select
```


者
 Consistency/Robustness Tradeoffs

- For a positive result, we define $\operatorname{Robust-Trust}(\alpha)$ as follows:

Algorithm RobustTrust (α)

Draw probablity p uniformly at random if $p<\alpha$:
apply algorithm TrustGreedy
else
apply algorithm Classify-and-Randomly-Select

Theorem

Robust-Trust (α) has consistency at least α and robustness at least $\frac{1-\alpha}{|\log m|}$

- Robust-Trust (α) asymptotically Pareto optimal.

者
 Experimental Result

- Consider Trust, TrustGreedy, Greedy, and Opt on real-world scheduling data on parallel machines [Chapin et al. IPPS/SPDP, 1999]

Implied Results

- The negative result on star graphs implies a negative result for matching in general graphs (even if restricted to planar graphs).

Implied Results

- The negative result on star graphs implies a negative result for matching in general graphs (even if restricted to planar graphs).
- The negative results on matching implies a negative result for indepenedent set in general graphs

$<$ Summary

- For disjoint path allocation problem, Trust has a competitive ratio of $1-2 \gamma(\hat{I}, I)$, which is optimal.
- For interval scheduling, TrustGreedy has a competitive ratio of $1-\gamma(\hat{l}, I)$, which is optimal.
- For consistency/robustness tradeoff, RobustTrust (α) is α-consistent and $(1-\alpha) /\lceil\log m\rceil$-robust, which is asymptotically Pareto-optimal.

