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Wiener Index in Graphs

Let G = (V ,E) be a wieghted undirected graph.

Let δG(u, v) denote the shortest (minimum-wieght) path
between the vertices u and v in G.

The Wiener index of G, W (G), is defined as the sum of the
shortest paths between every pair of vertices in G, i.e.,

W (G) =
∑

u,v∈V

δG(u, v)
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Motivation and Related Works

In Chemistry:
The Wiener index was first introduced by the chemist Haryy
Wiener in 1947 to correlate between the boiling point (and later
other chemical properties) and the molecule structure.

Molecules structure can be modeled as an undirected graph:
each vertex represents an atom and each edge represents a bond
between two atoms.

The Wiener index of molecular graphs can be used to predict
properties of the corresponding molecules.

Most of works related to Wiener index focus on computing and
bounding the Wiener index of specific graphs or classes of graphs.
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Motivation and Related Works

In Network Design: Given an undirected graph G = (V ,E) and a
(non-negative) weight function (representing the delay on each edge),
the routing cost c(T ) of a spanning tree T of G is

c(T ) =
∑

u,v∈V

δT (u, v)

The Minimum Routing Cost Spanning Tree (MRCST) problem
Given a weighted undirected graph G = (V ,E), compute a minimum
routing cost spanning tree of G.

MRCST is NP-complete, even if all edge weights are 1 [Johnson
et al. 1978].

There exists a PTAS for MRCST [Wu et al. 2000].
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Our Contribution

Problem: Given a set P of n points in the plane, compute a spanning
tree on P that minimizes the Wiener index (the edge weights are their
Euclidean lengths).

Our results: We show that
1 The spanning tree of P that minimizes the Wiener index is planar.

2 One can solve the problem in polynomial time when the points of
P are in convex position.

3 Given a cost W and a budget B, computing a spanning tree of P
whose Wiener index is at most W and its weight is at most B is
(weakly) NP-hard.

4 The Hamiltonian path of P that minimizes the Wiener index is not
necessarily planar.

5 Computing a Hamiltonian path of P that minimizes the Wiener
index is NP-hard.
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Optimal Tree is Planar

Let P be a set of n points in the plane and let T be a tree that
minimizes the Wiener index.

Lemma 1
T is planar.

Proof:
Assume towards a contradiction that there are two crossing edges
(a, c) and (b,d) in T .
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Optimal Tree is Planar (Proof of Lemma 1)

Let Tab, Tc , and Td be the sub-trees obtained by removing the
edges (a, c) and (b,d) from T .

Let nab, nc , and nd be the number of points in Tab, Tc , and Td ,
respectively.
Let δa(Tab) =

∑
p∈Tab

δT (a,p) denote the total weight of the paths
from a to every point in Tab

(Similarly, δb(Tab), δc(Tc), δd(Td)).

a b

d c

Ta,b

TcTd
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Optimal Tree is Planar (Proof of Lemma 1)

Thus,

W (T ) = W (Tab) + nc · δa(Tab) + nd · δb(Tab)

+ W (Tc) + (nab + nd) · δc(Tc)

+ W (Td) + (nab + nc) · δd(Td)

+ nc(nab + nd) · |ac|+ nd(nab + nc) · |bd |+ nc · nd · δT (a,b)

a b

d c

Ta,b

TcTd
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Optimal Tree is Planar (Proof of Lemma 1)

Let T ′ be the spanning tree of P obtained from T by replacing the
edge (b,d) by the edge (a,d).

Let T ′′ be the spanning tree of P obtained from T by replacing the
edge (a, c) by the edge (b, c).

a b

d c

Ta,b

TcTd

a b

d c

Ta,b

TcTd

T T ′
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Optimal Tree is Planar (Proof of Lemma 1)

Thus,

W (T ′) = W (Tab) + (nc + nd) · δa(Tab)

+ W (Tc) + (nab + nd) · δc(Tc) + nc(nab + nd) · |ac|
+ W (Td) + (nab + nc) · δd(Td) + nd(nab + nc) · |ad |

a b

d c

Ta,b

TcTd

T ′
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Optimal Tree is Planar (Proof of Lemma 1)

and

W (T ′′) = W (Tab) + (nc + nd) · δb(Tab)

+ W (Tc) + (nab + nd) · δc(Tc) + nc(nab + nd) · |bc|
+ W (Td) + (nab + nc) · δd(Td) + nd(nab + nc) · |bd |

a b

d c

Ta,b

TcTd

T ′′
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Optimal Tree is Planar (Proof of Lemma 1)

Therefore,

W (T )−W (T ′) = nd
(
δb(Tab)− δa(Tab)

)
+ nd(nab + nc)

(
|bd | − |ad |

)
+ nc · nd · δT (a,b)

a b

d c

Ta,b

TcTd

a b

d c

Ta,b

TcTd

T T ′
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Optimal Tree is Planar (Proof of Lemma 1)

and

W (T )−W (T ′′) = nc
(
δa(Tab)− δb(Tab)

)
+ nc(nab + nd)

(
|ac| − |bc|

)
+ nc · nd · δT (a,b)

a b

d c

Ta,b

TcTd

a b

d c

Ta,b

TcTd

T T ′′
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Optimal Tree is Planar (Proof of Lemma 1)

If W (T )−W (T ′) > 0 or W (T )−W (T ′′) > 0, then this contradicts
the minimality of T , and we are done.

Otherwise,

W (T )−W (T ′) = nd
(
δb(Tab)− δa(Tab)

)
+ nd(nab + nc)

(
|bd | − |ad |

)
+ nc · nd · δT (a,b) ≤ 0

and

W (T )−W (T ′′) = nc
(
δa(Tab)− δb(Tab)

)
+ nc(nab + nd)

(
|ac| − |bc|

)
+ nc · nd · δT (a,b) ≤ 0

Since nc > 0 and nd > 0, we have

δb(Tab)− δa(Tab) + (nab + nc)
(
|bd | − |ad |

)
+ nc · δT (a,b) ≤ 0

δa(Tab)− δb(Tab) + (nab + nd)
(
|ac| − |bc|

)
+ nd · δT (a,b) ≤ 0
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Optimal Tree is Planar (Proof of Lemma 1)

By summing the two inequalities,

δb(Tab)− δa(Tab) + (nab + nc)
(
|bd | − |ad |

)
+ nc · δT (a,b) ≤ 0

δa(Tab)− δb(Tab) + (nab + nd)
(
|ac| − |bc|

)
+ nd · δT (a,b) ≤ 0

we have

(nab+nc)
(
|bd |−|ad |

)
+(nab+nd)

(
|ac|−|bc|

)
+(nc+nd)·δT (a,b) ≤ 0

That is,

nab
(
|bd |+ |ac| − |ad | − |bc|

)
+ nc

(
|bd |+ δT (a,b)− |ad |
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Optimal Tree of Points in Convex Position

Let P = {p1,p2, . . . ,pn} be a set of n points in convex position:

For each 1 ≤ i ≤ j ≤ n, let P[i , j] ⊆ P be the set {pi ,pi+1, . . . ,pj}.
Let Ti,j be a spanning tree of P[i , j], and let W (Ti,j) denote its
Wiener index.
Let δi(Ti,j) be the total weight of the paths from pi to every point of
P[i , j] in Ti,j (Similarly, δj(Ti,j)).

p1
p2

pnpn−1

pi
pj

pj+1

pi−1

pi+1
pj−1
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Optimal Tree of Points in Convex Position

Let T be a (planar) minimum Wiener index spanning tree of P and
let W ∗ = W (T ).

Let pj be the point with maximum j that is connected to p1 in T .
Moreover, there exists an index 1 ≤ i < j such that all the points in
P[1, i] are closer to p1 than to pj in T , and all the points in
P[i + 1, j] are closer to pj than to p1 in T .
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Optimal Tree of Points in Convex Position

Hence,

W ∗ = W (T1,i) + (n − i) · δ1(T1,i)

+ W (Ti+1,j) + (n − j + i) · δj(Ti+1,j)

+ W (Tj,n) + (j − 1) · δj(Tj,n)

+ i(n − i) · |p1pj |
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pj+1

pi−1

pi+1

T1,iTj,n

Ti+1,j
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Optimal Tree of Points in Convex Position

Let Wj [i , j] = W (Ti,j) + (n − j + i − 1) · δj(Ti,j) be the minimum
value obtained by a spanning tree Ti,j of P[i , j] rooted at pj .

Let Wi [i , j] = W (Ti,j) + (n − j + i − 1) · δi(Ti,j) be the minimum
value obtained by a spanning tree Ti,j of P[i , j] rooted at pi .
Thus, we can write W ∗ as

W ∗ = W1[1,n] = W1[1, i] + Wj [i + 1, j] + Wj [j ,n] + i(n − i) · |p1pj |
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Optimal Tree of Points in Convex Position

Therefore, W1[1,n] can be recursively computed using

W1[1,n] = min
1<j≤n
1≤i<j

{
W1[1, i] + Wj [i + 1, j] + Wj [j ,n] + i(n − i) · |p1pj |

}

p1p1
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pnpn−1

pi
pj

pj+1

pi−1

pi+1

T1,iTj,n

Ti+1,j
pj−1

pj
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Optimal Tree of Points in Convex Position

Sub-problems: For every 1 ≤ i < j ≤ n, we recursively compute:

Wi [i , j] = min
i<k≤j
i≤l<k

{
Wi [i , l]+Wk [l +1, k ]+Wk [k , j]+(j− l)(n− j + l) · |pipk |

}

Wj [i , j] = min
i≤k<j
k≤l<j

{
Wk [i , k ]+Wk [k , l]+Wj [l+1, j]+(l−i+1)(n−l+i−1)·|pkpj |

}

pi

pj
pk

pl
pl+1

Tk,j

Tl+1,k

Ti,l
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Optimal Tree of Points in Convex Position

Dynamic peogramming algorithm: We maintain two tables
←
M

and
→
M each of size n × n, such that

←
M [i , j] = Wi [i , j] and

→
M [i , j] = Wj [i , j], for each 1 ≤ i < j ≤ n.

Algorithm 1 ComputeOptimal(P)

1: for each i ← 1 to n do←
M [i , i]← 0 ,

→
M [i , i]← 0

2: for each i ← n to 1 do
for each j ← i to n do
←
M [i , j]← min

i<k≤j
i≤l<k

{ ←
M [i , l]+

→
M [l + 1, k ]+

←
M [k , j]

+(j − l)(n − j + l) · |pipk |
}

→
M [i , j]← min

i≤k<j
k≤l<j

{ →
M [i , k ]+

←
M [k , l]+

→
M [l + 1, j]

+(l − i + 1)(n− l + i − 1) · |pkpj |
}

3: return
←
M [1,n]
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Optimal Tree of Points in Convex Position

Theorem 2
Let P be a set of n points in convex position. Then, a spanning tree of
P of minimum Wiener index can be computed in O(n4) time.
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Hardness Proof

Euclidean Wiener Index Tree Problem: Given a set P of points
in the plane, a cost W , and a budget B, decide whether there exists a
spanning tree T of P, such that

W (T ) =
∑

p,q∈P

δT (p,q) ≤W (the Wiener index of T ), and

wt(T ) =
∑

(p,q)∈T

|pq| ≤ B (the weight of T ).

Theorem 2
The Euclidean Wiener Index Tree Problem is weakly NP-hard.

Proof (sketch): We reduce from the Partition problem.

Partition: Given a set X = {x1, x2, . . . , xn} of n positive integers with
even R =

∑n
i=1 xi , decide whether there is a subset S ⊆ X , such that∑

xi∈S xi = R/2.
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Hardness Proof

Given an instance X = {x1, x2, . . . , xn} of Partition, we construct a
set P of m = n3 + 3n points as follows:

Locate n points p1, . . . ,pn equally spaced on a circle of radius nR.
Locate a cluster C of n3 points on the center of the circle.
For each 1 ≤ i ≤ n, locate two points li and ri both at distance xi
from pi and the distance between them is 1

2xi .
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Hardness Proof

Finally, set B = n2R + R +
3
4

R =
(

n2 +
7
4

)
R, and

W = 3n2(m − 3
)
R +

(9
4

m − 13
4

)
R

= 3n5R +
45
4

n3R − 9n2R +
27
4

nR − 13
4

R

C

pi

li

ri

xi
xi

xi
2

nR

nR

nR

rj

lj

pj

xj

xj

xj
2

xi ∈ S xj /∈ S

Karim Abu-Affash (SCE) Geometric Wiener Index WADS 2023 32 / 38



Wiener Index Paths

Let P be a set of n points.

Theorem 4
The path that minimizes the Wiener index among all Hamiltonian paths
of P is not necessarily planar.

Proof: Consider the set P of n = 2m + 2 points located as follows.
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Wiener Index Paths

Since the points in Pl are arbitrarily close to the origin (0,0), any
path connecting these points has a Wiener index zero (Similarly
for the points in Pr ).

Therefore, it is sufficient to consider the 12 possible Hamiltonian
paths defined on points (0,0), (6,0), p, and q.
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path connecting these points has a Wiener index zero (Similarly
for the points in Pr ).

Therefore, it is sufficient to consider the 12 possible Hamiltonian
paths defined on points (0,0), (6,0), p, and q.

6m2 + 4m(4 +
√
26) + 2

(
√
26 +

√
2)m2 +Θ(m)

6m2 + 4m(4 +
√
2) + 2

(2 +
√
26 +

√
2)m2 +Θ(m)

6m2 + 2m(6 +
√
26 +

√
2) + Θ(1)
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Wiener Index Paths

Theorem 5
For points in the Euclidean plane, it is NP-hard to compute a
Hamiltonian path minimizing the Wiener index.

Proof: We reduce from Hamiltonicity in a grid graph (whose vertices
are integer grid points and whose edges join pairs of grid points at
distance one).

It is well known that the Wiener index of a Hamiltonian path of n
points, where each edge is of length one, is

(n+1
3

)
.

Thus, it is easy to see that a grid graph G = (P,E) has a
Hamiltonian path if and only if there exists a Hamiltonian path in
the complete graph over P of Wiener index

(n+1
3

)
.
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Summary

Given a set P of points in the plane, we showed that

1 The spanning tree of P that minimizes the Wiener index is planar.

2 One can solve the problem in polynomial time when the points of
P are in convex position.

3 Given a cost W and a budget B, computing a spanning tree of P
whose Wiener index is at most W and its weight is at most B is
(weakly) NP-hard.

4 The Hamiltonian path of P that minimizes the Wiener index is not
necessarily planar.

5 Computing a Hamiltonian path of P that minimizes the Wiener
index is NP-hard.
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