Minimum Sum Colorings of Chordal Graphs

Ian DeHaan and Zachary Friggstad

WADS 2023

Adjacent vertices must receive different colors.

Adjacent vertices must receive different colors.

Chromatic Number: $\chi(G)$ = fewest colors required to color *G*.

Adjacent vertices must receive different colors.

Chromatic Number: $\chi(G)$ = fewest colors required to color *G*.

Scheduling Models

- Vertices: jobs to be processed
- Edges: resource conflicts
- Objective: minimize the final completion time

Adjacent vertices must receive different colors.

Chromatic Number: $\chi(G)$ = fewest colors required to color *G*.

Scheduling Models

- Vertices: jobs to be processed
- Edges: resource conflicts
- Objective: minimize the final average completion time

Minimum-Sum Coloring Problem

Find a coloring $\phi: V \to \{1, 2, 3, ...\}$ which minimizes $\sum_{v \in V} \phi(v)$.

Using 2 colors gives a minimum sum of 12,

Minimum-Sum Coloring Problem

Find a coloring $\phi: V \to \{1, 2, 3, ...\}$ which minimizes $\sum_{v \in V} \phi(v)$.

Using 2 colors gives a minimum sum of 12,

but allowing 3 colors gives a minimum sum of 11.

Minimum-Sum Coloring Problem

Find a coloring $\phi: V \to \{1, 2, 3, ...\}$ which minimizes $\sum_{v \in V} \phi(v)$.

Using 2 colors gives a minimum sum of 12,

but allowing 3 colors gives a minimum sum of 11.

```
There is no n^{0.999}-approximation for arbitrary graphs.
[Bar-Noy et al, 1998]
```

Min-Sum Coloring on Trees

- The optimum coloring uses O(log n) colors. [Kubicka and Schwenk, 1989]
- An optimal solution can be computed in O(n · log² n) time using dynamic programming.

Min-Sum Coloring on Bipartite Graphs

It is APX-HARD to compute an optimum min-sum coloring in bipartite graphs [Bar-Noy and Kortsarz, 1998],

Min-Sum Coloring on Bipartite Graphs

It is APX-HARD to compute an optimum min-sum coloring in bipartite graphs [Bar-Noy and Kortsarz, 1998],

but there is a $\frac{27}{26}$ -approximation. [Malafiejski et al., 2004]

Min-Sum Coloring on Bipartite Graphs

It is APX-HARD to compute an optimum min-sum coloring in bipartite graphs [Bar-Noy and Kortsarz, 1998],

but there is a $\frac{27}{26}$ -approximation. [Malafiejski et al., 2004]

Example:

The natural 2-coloring is a 1.5-approximation.

Analysis: The sum of colors is at most $n + \frac{1}{2} \cdot n = 1.5 \cdot n \le 1.5 \cdot OPT$.

A Greedy Algorithm

Greedily coloring maximum independent sets yields a 4-approximation. [Bar-Noy et al, 1998]

Some Known Approximation Bounds for Min-Sum coloring

Graph Class	Upper Bound	Lower Bound
Perfect	3.591	APX-hard
Chordal	$1.796 + \epsilon$	APX-hard
Interval	1.796	APX-hard
Bipartite	27/26	APX-hard
Planar	PTAS	NP-hard
Line graphs	1.8298	APX-hard

Chordal Graphs

Definition (Chordal Graphs)

No induced cycles of length \geq 4, <u>a.k.a.</u> triangulated graphs.

Chordal Graphs

Definition (Chordal Graphs)

No induced cycles of length ≥ 4 , <u>a.k.a.</u> triangulated graphs.

95% of "interference" graphs in the Java 1.5 library are chordal. [Pereira and Palsberg, 2005]

Interval Graph Algorithm

Suppose G allows us to compute a maximum-size k-colorable subgraph (MKCS) in polynomial time for any $k \ge 1$.

Then, a 1.796-approximation is possible. [Halldórsson et al., 2008]

Figure: Interval graphs can be used to represent concurrent tasks.

Interval Graph Algorithm

Set $c \coloneqq 3.591$ and pick some $\delta \in [0, 1)$ uniformly randomly.

for $k = c^{\delta}, c^{\delta+1}, c^{\delta+2}, c^{\delta+3}, \dots$

- Find a maximum *k*-colorable subgraph of *G*.
- Use the next k unused integers to color it.
- Remove these nodes from *G*.

Interval Graph Algorithm

Set $c \coloneqq 3.591$ and pick some $\delta \in [0, 1)$ uniformly randomly.

for $k = c^{\delta}, c^{\delta+1}, c^{\delta+2}, c^{\delta+3}, \dots$

- Find a maximum *k*-colorable subgraph of *G*.
- Use the next k unused integers to color it.
- Remove these nodes from *G*.

This yields an approximation with guarantee

$$\frac{c+1}{2\cdot\ln c}\approx 1.796$$

Unfortunately, $\rm M\kappa CS$ in chordal graphs is NP-hard. [Yannakakis and Gavril, 1987]

Unfortunately, $M\kappa CS$ in chordal graphs is **NP**-hard. [Yannakakis and Gavril, 1987]

However, it can be approximated!

Theorem (D., Friggstad, 2023)

For any constant $\epsilon > 0$, there is a polynomial-time $(1 - \epsilon)$ -approximation for MKCS in chordal graphs.

Unfortunately, $M\kappa CS$ in chordal graphs is **NP**-hard. [Yannakakis and Gavril, 1987]

However, it can be approximated!

Theorem (D., Friggstad, 2023)

For any constant $\epsilon > 0$, there is a polynomial-time $(1 - \epsilon)$ -approximation for MKCS in chordal graphs.

To get an improved approximation for min-sum coloring, we require an approach which can be used with $\rm M\kappa CS$ approximations.

Theorem (D., Friggstad, 2023)

Let \mathcal{G} be a graph class that is closed under taking induced subgraphs. If there is a PTAS for weighted MKCS in \mathcal{G} , then for any $\epsilon > 0$, there is a polynomial-time $(1.796 + \epsilon)$ -approximation for minimum-sum coloring in \mathcal{G} .

Theorem (D., Friggstad, 2023)

Let \mathcal{G} be a graph class that is closed under taking induced subgraphs. If there is a PTAS for weighted MKCS in \mathcal{G} , then for any $\epsilon > 0$, there is a polynomial-time $(1.796 + \epsilon)$ -approximation for minimum-sum coloring in \mathcal{G} .

General Statement: Given a ρ -approximation for MkCS, our min-sum coloring approximation guarantee is:

$$\inf_{1 < c < \frac{1}{1 - \rho}} \frac{\rho \cdot (c+1)}{2 \cdot (1 - (1 - \rho) \cdot c) \cdot \ln c}$$

Previous Work

Weighted MKCS in chordal graphs can be solved in $n^{O(k)}$ time. [Yannakakis and Gavril, 1987]

Previous Work

Weighted MKCS in chordal graphs can be solved in $n^{O(k)}$ time. [Yannakakis and Gavril, 1987]

Any chordal graph is the intersection graph of subtrees of a tree $\mathcal{T}.$

Previous Work

Weighted MKCS in chordal graphs can be solved in $n^{O(k)}$ time. [Yannakakis and Gavril, 1987]

Any chordal graph is the intersection graph of subtrees of a tree \mathcal{T} .

Dynamic Program:

For $v \in \mathcal{T}$ and any $\leq k$ subtrees S spanning v:

f(v, S) = best solution in the subtree under v that uses S at v

Approximations for Large k

Theorem (D., Friggstad, 2023)

There is a poly(n)-time $(1 - 2/k^{1/3})$ -approximation for weighted MKCS in chordal graphs.

Approximations for Large k

Theorem (D., Friggstad, 2023)

There is a poly(n)-time $(1 - 2/k^{1/3})$ -approximation for weighted MKCS in chordal graphs.

To get the $(1 - \epsilon)$ -approximation for any constant ϵ :

- If $k \le 8/\epsilon^3$, use the exact algorithm (running time $n^{O(1/\epsilon^3)}$).
- Otherwise, use our new $(1 2/k^{1/3}) \ge (1 \epsilon)$ approximation.

An ordering $v_1, ..., v_n$ of the nodes such that for each v_i , its right neighbors $N^r(v_i)$ form a clique.

An ordering $v_1, ..., v_n$ of the nodes such that for each v_i , its right neighbors $N^r(v_i)$ form a clique.

A graph is chordal iff it has a perfect elimination ordering.

An ordering $v_1, ..., v_n$ of the nodes such that for each v_i , its right neighbors $N^r(v_i)$ form a clique.

A graph is chordal iff it has a perfect elimination ordering.

This ordering can be computed in linear time.

An ordering $v_1, ..., v_n$ of the nodes such that for each v_i , its right neighbors $N^r(v_i)$ form a clique.

A graph is chordal iff it has a perfect elimination ordering.

This ordering can be computed in linear time.

Remark

 $S \subseteq V$ induces a k-colorable subgraph iff for each $v_i \in S$,

$$|N^r(v_i) \cap S| \leq k-1.$$

Linear Programming Formulation

Let x_i indicate if we select v_i in our k-colorable subgraph.

Linear Programming Formulation

Let x_i indicate if we select v_i in our k-colorable subgraph.

Rounding Algorithm

- $S \leftarrow \emptyset$
- for i from n down to 1:
 - Flip a coin c_i with bias $(1 1/k^{1/3}) \cdot x_i$ towards heads.
 - If $S \cup \{v_i\}$ is feasible and c_i = heads, add v_i to S.

Analysis of the Rounding Algorithm

For each v_i , the **expected** number of heads flipped from $N^r(v_i)$ is at most $k \cdot (1 - k^{-1/3}) = k - k^{2/3}$.

For each v_i , the **expected** number of heads flipped from $N^r(v_i)$ is at most $k \cdot (1 - k^{-1/3}) = k - k^{2/3}$.

The probability that at least k coins from $N^r(v_i)$ are heads is at most $k^{-1/3}$ (Chebyshev's inequality).

For each v_i , the **expected** number of heads flipped from $N^r(v_i)$ is at most $k \cdot (1 - k^{-1/3}) = k - k^{2/3}$.

The probability that at least k coins from $N^r(v_i)$ are heads is at most $k^{-1/3}$ (Chebyshev's inequality).

Thus, v_i will be added with probability at least:

 $\mathbf{Pr}[|\# \text{heads from } N^r(v_i)| < k \land c_i = \text{heads}] \ge (1-k^{-1/3}) \cdot (1-k^{-1/3}) \cdot x_i.$

For each v_i , the **expected** number of heads flipped from $N^r(v_i)$ is at most $k \cdot (1 - k^{-1/3}) = k - k^{2/3}$.

The probability that at least k coins from $N^r(v_i)$ are heads is at most $k^{-1/3}$ (Chebyshev's inequality).

Thus, v_i will be added with probability at least:

 $\mathbf{Pr}[|\# \text{heads from } N^r(v_i)| < k \land c_i = \text{heads}] \ge (1 - k^{-1/3}) \cdot (1 - k^{-1/3}) \cdot x_i.$

 \therefore The expected size of S is at least $(1-2/k^{1/3}) \cdot OPT_{LP}$.

This analysis approach was presented because there are generic ways to efficiently de-randomize such algorithms if the analysis only uses second moments.

This analysis approach was presented because there are generic ways to efficiently de-randomize such algorithms if the analysis only uses second moments.

With more hands-on work, we can de-randomize tighter analysis (using Chernoff bounds) to get a deterministic algorithm with guarantee

$$1 - \frac{O(1)}{k \log k}.$$

k-Colorable Subgraphs to Min-Sum Coloring

Theorem (D., Friggstad 2023)

Let \mathcal{G} be a graph class that is closed under taking induced subgraphs. If there is a PTAS for weighted MKCS in \mathcal{G} , then for any $\epsilon > 0$, there is a polynomial-time $(1.796 + \epsilon)$ -approximation for minimum-sum coloring in \mathcal{G} .

Linear Program

subject to:

- $x_{v,k}$ indicates that v has color k.
- ▶ $z_{C,k}$ indicates that C is the set of nodes that are $\leq k$ -colored.

minimize:
$$\sum_{v \in V} \sum_{k=1}^{n} w_v \cdot k \cdot x_{v,k}$$
(1)

$$\sum_{k=1}^{n} x_{\nu,k} = 1 \qquad \forall \nu \in V \qquad (2)$$

$$\sum_{C \in \mathcal{C}_k} z_{C,k} \le 1 \qquad \forall \ 1 \le k \le n \tag{3}$$

$$\sum_{C \in \mathcal{C}_k: v \in C} z_{C,k} \ge \sum_{\substack{k' \le k}} x_{v,k'} \quad \forall v \in V, 1 \le k \le n \quad (4)$$
$$x, z \ge 0$$

Last constraint: (partial) agreement between z and x on the statement v is colored by color at most k.

Taking the Dual

maximize:
$$\sum_{v \in V} \alpha_v - \sum_{k=1}^n \beta_k$$

subject to:
$$\alpha_v \leq w_v \cdot k + \sum_{\hat{k}=k}^n \theta_{v,\hat{k}} \quad \forall \ v \in V, 1 \leq k \leq n$$
(5)
$$\sum_{v \in C} \theta_{v,k} \leq \beta_k \quad \forall \ 1 \leq k \leq n, C \in \mathcal{C}_k$$
(6)
$$\beta, \theta \geq 0$$
(7)

Solving and Rounding

Via the ellipsoid method for solving LPs, this yields a solution (x, z) with value $\leq OPT$ for the following slightly modified LP.

$$\begin{array}{rcl} \sum_{t} x_{v,t} &=& 1 & \forall v \\ \sum_{S} z_{S,t} &=& 1/\rho & \forall t \\ \sum_{S \ni v} z_{S,t} &\geq& \sum_{t' \leq t} x_{t',v} & \forall v,t \\ x,z &\geq& 0 \end{array}$$

Rounding Algorithm

 $c \leftarrow 3.591$ $\delta \sim [0,1)$ uniformly at random For $k \coloneqq c^{\delta}, c^{\delta+1}, c^{\delta+2}, \dots$

- Sample a $\lfloor k \rfloor$ -colorable subset S from the distribution $\rho \cdot z_S$.
- Randomly permute the coloring.
- Concatenate this coloring to the coloring of G so far.

Min-sum coloring in perfect graphs has a 3.592-approximation. [Gandhi et al., 2008]

Min-sum coloring in perfect graphs has a 3.592-approximation. [Gandhi et al., 2008]

Question:

Can we do better using our framework?

Min-sum coloring in perfect graphs has a 3.592-approximation. [Gandhi et al., 2008]

Question:

Can we do better using our framework?

MKCS is APX-HARD in perfect graphs, even for k = 2. [Addario-Berry et al., 2010]

Min-sum coloring in perfect graphs has a 3.592-approximation. [Gandhi et al., 2008]

Question:

Can we do better using our framework?

MKCS is APX-HARD in perfect graphs, even for k = 2. [Addario-Berry et al., 2010]

We need a 0.704-approx to do better using our framework; the best known is a 0.632-approx.

Min-sum coloring in perfect graphs has a 3.592-approximation. [Gandhi et al., 2008]

Question:

Can we do better using our framework?

MKCS is APX-HARD in perfect graphs, even for k = 2. [Addario-Berry et al., 2010]

We need a 0.704-approx to do better using our framework; the best known is a 0.632-approx.

Next Steps: Latency Constant

The "latency constant" $c \approx 3.591$ shows up in the current best approximation ratio for interval, chordal, and perfect graphs.

Next Steps: Latency Constant

The "latency constant" $c \approx 3.591$ shows up in the current best approximation ratio for interval, chordal, and perfect graphs.

It also shows up in some best known approximations for minimum latency problems.

Next Steps: Latency Constant

The "latency constant" $c \approx 3.591$ shows up in the current best approximation ratio for interval, chordal, and perfect graphs.

It also shows up in some best known approximations for minimum latency problems.

Question:

Is c a fundamental lower bound, or can these approximations be improved?

Thank you!