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Graph Coloring

Adjacent vertices must receive different colors.

Chromatic Number: χ(G) = fewest colors required to color G .

Scheduling Models

▸ Vertices: jobs to be processed

▸ Edges: resource conflicts

▸ Objective: minimize the final completion time



Graph Coloring

Adjacent vertices must receive different colors.

Chromatic Number: χ(G) = fewest colors required to color G .

Scheduling Models

▸ Vertices: jobs to be processed

▸ Edges: resource conflicts

▸ Objective: minimize the final completion time



Graph Coloring

Adjacent vertices must receive different colors.

Chromatic Number: χ(G) = fewest colors required to color G .

Scheduling Models

▸ Vertices: jobs to be processed

▸ Edges: resource conflicts

▸ Objective: minimize the final completion time



Graph Coloring

Adjacent vertices must receive different colors.

Chromatic Number: χ(G) = fewest colors required to color G .

Scheduling Models

▸ Vertices: jobs to be processed

▸ Edges: resource conflicts

▸ Objective: minimize the /////final average completion time



Minimum-Sum Coloring Problem

Find a coloring ϕ ∶ V → {1,2,3, . . .} which minimizes ∑
v∈V

ϕ(v).
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Using 2 colors gives a minimum sum of 12,

but allowing 3 colors gives a minimum sum of 11.

There is no n0.999-approximation for arbitrary graphs.
[Bar-Noy et al, 1998]
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Min-Sum Coloring on Trees
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▸ The optimum coloring uses O(log n) colors.
[Kubicka and Schwenk, 1989]

▸ An optimal solution can be computed in O(n ⋅ log2 n) time
using dynamic programming.



Min-Sum Coloring on Bipartite Graphs

It is APX-hard to compute an optimum min-sum coloring in
bipartite graphs [Bar-Noy and Kortsarz, 1998],

but there is a 27
26 -approximation. [Malafiejski et al., 2004]

Example:

The natural 2-coloring is a 1.5-approximation.
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Analysis: The sum of colors is at most n+ 1
2 ⋅n = 1.5 ⋅n ≤ 1.5 ⋅OPT .
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A Greedy Algorithm

Greedily coloring maximum independent sets yields a
4-approximation. [Bar-Noy et al, 1998]

Red = 1
Green = 2
Blue = 3



Some Known Approximation Bounds for Min-Sum coloring

Graph Class Upper Bound Lower Bound

Perfect 3.591 APX-hard

Chordal 1.796 + ϵ APX-hard

Interval 1.796 APX-hard

Bipartite 27/26 APX-hard

Planar PTAS NP-hard

Line graphs 1.8298 APX-hard



Chordal Graphs

Definition (Chordal Graphs)

No induced cycles of length ≥ 4, a.k.a. triangulated graphs.

95% of “interference” graphs in the Java 1.5 library are chordal.
[Pereira and Palsberg, 2005]
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Interval Graph Algorithm

Suppose G allows us to compute a maximum-size k-colorable
subgraph (MkCS) in polynomial time for any k ≥ 1.

Then, a 1.796-approximation is possible. [Halldórsson et al., 2008]

Figure: Interval graphs can be used to represent concurrent tasks.



Interval Graph Algorithm

Set c ∶= 3.591 and pick some δ ∈ [0,1) uniformly randomly.

for k = cδ, cδ+1, cδ+2, cδ+3, . . .
▸ Find a maximum k-colorable subgraph of G .

▸ Use the next k unused integers to color it.

▸ Remove these nodes from G .

This yields an approximation with guarantee

c + 1
2 ⋅ ln c

≈ 1.796
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MkCS in Chordal Graphs

Unfortunately, MkCS in chordal graphs is NP-hard.
[Yannakakis and Gavril, 1987]

However, it can be approximated!

Theorem (D., Friggstad, 2023)

For any constant ϵ > 0, there is a polynomial-time
(1 − ϵ)-approximation for MkCS in chordal graphs.

To get an improved approximation for min-sum coloring, we require
an approach which can be used with MkCS approximations.
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MkCS in Chordal Graphs

Theorem (D., Friggstad, 2023)

Let G be a graph class that is closed under taking induced
subgraphs. If there is a PTAS for weighted MkCS in G, then for
any ϵ > 0, there is a polynomial-time (1.796 + ϵ)-approximation for
minimum-sum coloring in G.

General Statement: Given a ρ-approximation for MkCS, our
min-sum coloring approximation guarantee is:

inf
1<c< 1

1−ρ

ρ ⋅ (c + 1)
2 ⋅ (1 − (1 − ρ) ⋅ c) ⋅ ln c
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Previous Work

Weighted MkCS in chordal graphs can be solved in nO(k) time.
[Yannakakis and Gavril, 1987]

Any chordal graph is the intersection graph of subtrees of a tree T .

Dynamic Program:

For v ∈ T and any ≤ k subtrees S spanning v :

f (v ,S) = best solution in the subtree under v that uses S at v
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Approximations for Large k

Theorem (D., Friggstad, 2023)

There is a poly(n)-time (1 − 2/k1/3)-approximation for weighted
MkCS in chordal graphs.

To get the (1 − ϵ)-approximation for any constant ϵ:

▸ If k ≤ 8/ϵ3, use the exact algorithm (running time nO(1/ϵ
3)).

▸ Otherwise, use our new (1 − 2/k1/3) ≥ (1 − ϵ) approximation.
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Perfect Elimination Orderings
An ordering v1, ..., vn of the nodes such that for each vi , its right
neighbors N r(vi) form a clique.

A graph is chordal iff it has a perfect elimination ordering.

This ordering can be computed in linear time.

Remark

S ⊆ V induces a k-colorable subgraph iff for each vi ∈ S ,

∣N r(vi) ∩ S ∣ ≤ k − 1.
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Linear Programming Formulation
Let xi indicate if we select vi in our k-colorable subgraph.

maximize ∶ ∑i wi ⋅ xi
subject to ∶ xi +∑vj∈Nr (vi) xj ≤ k ∀ i

xi ∈ [0,1] ∀ i

<latexit sha1_base64="2Fd72gqMqEiNs3s3bUW+L1REiZQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz6ol+uuFV3AbJOvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CSz0q91PCEsjEd8q6likbc+Nni1Bm5sMqAhLG2pZAs1N8TGY2MmUaB7YwojsyqNxf/87ophjd+JlSSIldsuShMJcGYzP8mA6E5Qzm1hDIt7K2EjaimDG06JRuCt/ryOmnXqt5VtX5frzRqeRxFOINzuAQPrqEBd9CEFjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AFboo3P</latexit>vi

Rounding Algorithm

▸ S ← ∅
▸ for i from n down to 1:

▸ Flip a coin ci with bias (1 − 1/k1/3) ⋅ xi towards heads.
▸ If S ∪ {vi} is feasible and ci = heads, add vi to S .



Linear Programming Formulation
Let xi indicate if we select vi in our k-colorable subgraph.

maximize ∶ ∑i wi ⋅ xi
subject to ∶ xi +∑vj∈Nr (vi) xj ≤ k ∀ i

xi ∈ [0,1] ∀ i

<latexit sha1_base64="2Fd72gqMqEiNs3s3bUW+L1REiZQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lpoQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+VMwvp37TxOujYjVI04T7kd0qEQoGEUrPUz6ol+uuFV3AbJOvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CSz0q91PCEsjEd8q6likbc+Nni1Bm5sMqAhLG2pZAs1N8TGY2MmUaB7YwojsyqNxf/87ophjd+JlSSIldsuShMJcGYzP8mA6E5Qzm1hDIt7K2EjaimDG06JRuCt/ryOmnXqt5VtX5frzRqeRxFOINzuAQPrqEBd9CEFjAYwjO8wpsjnRfn3flYthacfOYU/sD5/AFboo3P</latexit>vi

Rounding Algorithm

▸ S ← ∅
▸ for i from n down to 1:

▸ Flip a coin ci with bias (1 − 1/k1/3) ⋅ xi towards heads.
▸ If S ∪ {vi} is feasible and ci = heads, add vi to S .



Analysis of the Rounding Algorithm

For each vi , the expected number of heads flipped from N r(vi) is
at most k ⋅ (1 − k−1/3) = k − k2/3.

The probability that at least k coins from N r(vi) are heads is at
most k−1/3 (Chebyshev’s inequality).

Thus, vi will be added with probability at least:

Pr[∣#heads from N r(vi)∣ < k ∧ ci = heads] ≥ (1−k−1/3)⋅(1−k−1/3)⋅xi .

∴ The expected size of S is at least (1 − 2/k1/3) ⋅OPTLP .
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Analysis of the Rounding Algorithm

This analysis approach was presented because there are generic
ways to efficiently de-randomize such algorithms if the analysis
only uses second moments.

With more hands-on work, we can de-randomize tighter analysis
(using Chernoff bounds) to get a deterministic algorithm with
guarantee

1 − O(1)
k log k

.
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k-Colorable Subgraphs to Min-Sum Coloring

Theorem (D., Friggstad 2023)

Let G be a graph class that is closed under taking induced
subgraphs.If there is a PTAS for weighted MkCS in G, then for
any ϵ > 0, there is a polynomial-time (1.796 + ϵ)-approximation for
minimum-sum coloring in G.



Linear Program

▸ xv ,k - indicates that v has color k .

▸ zC ,k - indicates that C is the set of nodes that are ≤ k-colored.

minimize: ∑
v∈V

n

∑
k=1

wv ⋅ k ⋅ xv ,k (1)

subject to:
n

∑
k=1

xv ,k = 1 ∀ v ∈ V (2)

∑
C∈Ck

zC ,k ≤ 1 ∀ 1 ≤ k ≤ n (3)

∑
C∈Ck ∶v∈C

zC ,k ≥ ∑
k ′≤k

xv ,k ′ ∀ v ∈ V ,1 ≤ k ≤ n (4)

x , z ≥ 0

Last constraint: (partial) agreement between z and x on the
statement v is colored by color at most k.



Taking the Dual

maximize: ∑
v∈V

αv −
n

∑
k=1

βk

subject to: αv ≤ wv ⋅ k +
n

∑
k̂=k

θv ,k̂ ∀ v ∈ V ,1 ≤ k ≤ n

(5)

∑
v∈C

θv ,k ≤ βk ∀ 1 ≤ k ≤ n,C ∈ Ck

(6)

β, θ ≥ 0 (7)



Solving and Rounding

Via the ellipsoid method for solving LPs, this yields a solution
(x , z) with value ≤ OPT for the following slightly modified LP.

∑t xv ,t = 1 ∀ v

∑S zS ,t = 1/ρ ∀ t

∑S∋v zS ,t ≥ ∑t′≤t xt′,v ∀ v , t
x , z ≥ 0

Rounding Algorithm
c ← 3.591
δ ∼ [0,1) uniformly at random
For k ∶= cδ, cδ+1, cδ+2, . . .
▸ Sample a ⌊k⌋-colorable subset S from the distribution ρ ⋅ zS .
▸ Randomly permute the coloring.

▸ Concatenate this coloring to the coloring of G so far.



Next Steps: Min-Sum Coloring on Perfect Graphs

Min-sum coloring in perfect graphs has a 3.592-approximation.
[Gandhi et al., 2008]

Question:

Can we do better using our framework?

MkCS is APX-hard in perfect graphs, even for k = 2.
[Addario-Berry et al., 2010]

We need a 0.704-approx to do better using our framework; the
best known is a 0.632-approx.
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Next Steps: Latency Constant

The “latency constant” c ≈ 3.591 shows up in the current best
approximation ratio for interval, chordal, and perfect graphs.

It also shows up in some best known approximations for minimum
latency problems.

Question:

Is c a fundamental lower bound, or can these approximations be
improved?
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Thank you!


