3-Coloring (C_{4}, C_{s})-free Diameter Two Graphs

Presented by: Prahlad Narasimhan Kasthurirangan

Authors: Tereza Klimošová (Charles University), Vibha Sahlot (University of Cologne)

3-Coloring (C_{4}, C_{s})-free Diameter Two Graphs

Given: An undirected diameter two graph $G(V, E)$ with no induced C_{4} and C_{s} for some fixed $s \geq 10$.

Aim: Decide if G is 3-colorable?

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Given: An undirected diameter two graph $G(V, E)$ with no induced C_{4} and C_{f} for some fixed $s \geq 10$.

Aim: Decide if G is 3-colorable?

- Distance between two vertices is the length of the shortest path between then (number of edges in the shortest path).
- Diameter of a graph is the distance between any two most distanced vertices.

Graph with diameter two

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Given: An undirected diameter two $\left(C_{4}, C_{4}\right)$-free graph $G(V, E)$ for some fixed $s \geq 10$.

Aim: Decide if G is 3-colorable?

- A graph G is H-free if it does not contain H as an induced subgraph

Graph with no induced C_{4}

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Given: An undirected diameter two $\left(C_{4}, C_{3}\right)$-free graph $G(V, E)$ for some fixed $s \geq 10$.

Aim: Decide if G is 3-colorable?

- A graph G is k-colorable if we can assign k colors to the vertices of G such that endpoints of every edge is coloured distinctly.

A 3-colorable graph

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

- The 3-Coloring is NP-hard even on planar graphs [Garey,Jonson,Stockmeyer 1976]
- Lots of research has been done on hereditary classes of graphs, i.e., classes that are closed under vertex deletion.
- However, many natural classes of graphs are not hereditary, for example, graphs with bounded diameter.

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

- The 3-Coloring is NP-hard even on planar graphs [Garey,Jonson,Stockmeyer 1976]
- Lots of research has been done on hereditary classes of graphs, i.e., classes that are closed under vertex deletion.
- However, many natural classes of graphs are not hereditary, for example, graphs with bounded diameter.
- 3-Coloring on graphs with diameter two has been posed as an open problem in several papers.

Previous Results

-3-Coloring is NP-complete for the class of graphs with diam. 3, even for triangle-free graphs [Mertzios and Spiraki 2016].

Subexponential algorithm for 3-Coloring diam. 2 graph with runtime $2^{\mathcal{O}(\sqrt{n \log n})}$.

Previous Results

-3-Coloring is NP-complete for the class of graphs with diam. 3, even for triangle-free graphs [Mertzios and Spiraki 2016].

Subexponential algorithm for 3-Coloring diam. 2 graph with runtime

$$
2^{\mathscr{O}(\sqrt{n \log n})} .
$$

- Improved algorithm for 3-Coloring diam. 2 graph with runtime $2^{\mathcal{O}\left(n^{\frac{1}{3}} \log ^{2} n\right)}$ [Debski et al.2022].

Previous Results

-3-Coloring is NP-complete for the class of graphs with diam. 3, even for triangle-free graphs [Mertzios and Spiraki 2016].

Subexponential algorithm for 3-Coloring diam. 2 graph with runtime $2^{\mathcal{O}(\sqrt{n \log n})}$.

- Improved algorithm for 3-Coloring diam. 2 graph with runtime $2^{\mathcal{O}\left(n^{\frac{1}{3}} \log ^{2} n\right)}$ [Debski et al.2022].
- 3-Coloring diam. 2 graph is solvable in polynomial time for:
- graphs that have at least one articulation neighborhood [Mertzios,Spirakis 2016].
- (C3, C4)-free graphs [Martin et al. 2019].
${ }_{-} C_{5}$-free or C_{6}-free graphs , $\left(C_{4}, C_{s}\right)$-free graphs where $s \in\{7,8,9\}$ [Martin et al. 2021].
$-K_{1, r}^{2}-$ free or $S_{1,2,2}$-free graphs, where $\mathrm{r} \geq 1$ [Martin et al. 2019]

Our Results

Theorem 1. List 3-Coloring is solvable in polynomial time on (C_{4}, C_{s})-free graphs with diameter two for any constant $\mathrm{s} \geq 10$.
Theorem 2. List 3-Coloring is solvable in polynomial time on (C_{3}, C_{7})-free graphs with diameter two.

Our Results

Theorem 1. List 3-Coloring is solvable in polynomial time on (C_{4}, C_{s})-free graphs with diameter two for any constant $\mathrm{s} \geq 10$.

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Given: An undirected diameter two graph $G(V, E)$ with no induced
C_{4} and C_{f} for some fixed $s \geq 10$.
Aim: Decide if G is 3-colorable?
Technique

- 2-List Coloring is polynomial time solvable[Edward 1986].
- Convert given instance into instance of List-3-Coloring.
- Use polynomial time reductions to convert G into polynomially many instances of 2-List Coloring.

Some simple reductions

- If G contains a diamond (v, w, x, y) then assign $L(v) \cap L(x)$ to both x and v.

Some simple reductions

- If G contains a diamond (v, w, x, y) then assign $L(v) \cap L(x)$ to both x and v.

Some simple reductions

- If G contains a triangle (v, w, x) where $|L(v)|=2$ and $L(v)=L(w)$, then assign $L(x) \backslash L(v)$ to x .

Colors in $L(v)$ are used to color v and w

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

- If G contains contains an induced C_{5} colour it as follows (upto cyclic ordering). Otherwise polynomial time solvable.

C_{5}

N_{1}

N_{2}

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. If there are at most k connected components in some $N_{1}(i)$ for $i \in$ [5], then polynomial time by resolving 2^{k} instances of 2-List Coloring.
C_{5}

N_{1}

3-Coloring (C_{4}, C_{S})-free Diameter Two Graphs

Lemma. If there are at most k connected components in some $N_{1}(i)$ for $i \in$ [5], then polynomial time by resolving 2^{k} instances of 2-List Coloring.

N_{1}

$N_{1}(1)$	$N_{1}(2)$	$N_{1}(3)$	$N_{1}(4)$	$N_{1}(5)$	Col

No odd cycle in $N_{1}(i)$ and thus all connected components are bipartite

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. Each vertex in $N_{1}(i)$ is not adjacent to any $j \neq i$ for $i, j \in$ [5] in C_{5}.

N_{1}

$N_{1}(1)$	$N_{1}(2)$	$N_{1}(3)$	$N_{1}(4)$	$N_{1}(5)$	Col

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. Each vertex in $N_{1}(i)$ is not adjacent to any $j \neq i$ for $i, j \in[5]$ in C_{5}.

C_{5}
 N_{1}

No induced C_{4} (by assumption) and $(w, 2),(w, 4),(w, 5) \notin E(G)$ (otherwise $\left.w \in \operatorname{Col}\right)$

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. Each vertex in $N_{1}(i)$ has at most one neighbor in $N_{1}(j)$ for $i, j \in$ [5].
C_{5}

N_{1}

$N_{1}(1)$	$N_{1}(2)$	$N_{1}(3)$	$N_{1}(4)$	$N_{1}(5)$	Col

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. Each vertex in $N_{1}(i)$ has at most one neighbor in $N_{1}(j)$ for $i, j \in$ [5].
C_{5}

Vertex in $N_{1}(i)$ is not adjacent to vertex in $N_{1}(i+1)$

3-Coloring (C_{4}, C_{S})-free Diameter Two Graphs

Lemma. Eachvertex in $N_{1}(i)$ has at most one neighbor in $N_{1}(j)$ for $i, j \in[5]$.

Vertex in $N_{1}(i)$ is not adjacent to vertex in $N_{1}(i+1)$
No induced C_{4} (by assumption) and no K_{4} (otherwise not 3-colorable) No diamond as otherwise v or w belongs to Col

3-Coloring (C_{4}, C_{S})-free Diameter Two Graphs

Lemma. Eachvertex in $N_{1}(i)$ has at most one neighbor in $N_{1}(j)$ for $i, j \in[5]$.

Vertex in $N_{1}(i)$ is adjacent to at most one vertex in $N_{1}(i+2)$ and $N_{1}(i+3)$

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. Eachvertex in $N_{1}(i)$ has at most one neighbor in $N_{1}(j)$ for $i, j \in[5]$.

Vertex in $N_{1}(i)$ is adjacent to at most one vertex in $N_{1}(i+2)$ and $N_{1}(i+3)$ $(v, 3) \notin E(G)$ (previous lemma) and $(w, x) \notin E(G)$ (otherwise ($v) \notin C o l$) Similarly for ($1+3$)

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. $\left|N_{1}(1)\right|=\left|N_{1}(3)\right|,\left|N_{1}(2)\right|=\left|N_{1}(4)\right|$ and $G\left[N_{1}(1), N_{1}(3)\right]$, $G\left[N_{1}(2), N_{1}(4)\right]$, are perfect matchings.
C_{5}

N_{1}

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

Lemma. $\left|N_{1}(1)\right|=\left|N_{1}(3)\right|,\left|N_{1}(2)\right|=\left|N_{1}(4)\right|$ and $G\left[N_{1}(1), N_{1}(3)\right]$, $G\left[N_{1}(2), N_{1}(4)\right]$, are perfect matchings.

N_{1}

If v is not adjacent to any vertex in $N_{1}(3)$, then distance between v and 3 is more than 2 (Contrad.) and v is adjacent to at most one vertex in $N_{1}(3)$ (by previous lemma)

3-Coloring (C_{4}, C_{S})-free Diameter Two Graphs

Lemma. All $v \in N_{2} \backslash$ Col has at most one neighbor in each $N_{1}(i), i \in[5]$ and all $v \in L_{3}$ has exactly one neighbor in each $N_{1}(i), i \in[5]$.

N_{1}

$N_{1}(1)$	$N_{1}(2)$	$N_{1}(3)$	$N_{1}(4)$	$N_{1}(5)$	Col

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. All $v \in N_{2} \backslash \mathrm{Col}$ has at most one neighbor in each $N_{1}(i), i \in[5]$ and all $v \in L_{3}$ has exactly one neighbor in each $N_{1}(i), i \in[5]$.

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. All $v \in N_{2} \backslash$ Col has at most one neighbor in each $N_{1}(i), i \in[5]$ and all $v \in L_{3}$ has exactly one neighbor in each $N_{1}(i), i \in[5]$.

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

Lemma. Any $v \in N_{1}(1)$ and $w \in N_{1}(3)$ such that $(v, w) \in E(G)$, then v and w don't share common neighbor in L_{2} or L_{3}. Similarly for vertices in $N_{1}(2)$ and $N_{1}(4)$.

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

Lemma. Any $v \in N_{1}(1)$ and $w \in N_{1}(3)$ such that $(v, w) \in E(G)$, then v and w don't share common neighbor in L_{2} or L_{3}. Similarly for vertices in $N_{1}(2)$ and $N_{1}(4)$.

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

Lemma. If $z \in L_{3}$ and $u \in N_{1}(i), i \in[5]$ such that $(z, u) \notin E(G)$, then there is at most one vertex $z^{\prime} \in L_{3} \cup L_{2}, z \neq z^{\prime}$ such that $\left(z, z^{\prime}\right),\left(u, z^{\prime}\right) \in E(G)$.

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

Lemma. If $z \in L_{3}$ and $u \in N_{1}(i), i \in$ [5] such that $(z, u) \notin E(G)$, then there is at most one vertex $z^{\prime} \in L_{3} \cup L_{2}, z \neq z^{\prime}$ such that $\left(z, z^{\prime}\right),\left(u, z^{\prime}\right) \in E(G)$.

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Lemma. Either $G\left[L_{2} \cup L_{3}\right]$ contains an induced path $P_{\ell^{*}}=\left(p_{1}, p_{2}, \ldots p_{\ell}\right)$ \{neighbors of p_{1} and p_{ℓ} in N_{1} is disjoint from neighbors of $\left.p_{2}, p_{3}, \ldots p_{\ell-1}\right\}$, or 3Coloring can be decided by solving at most $\mathcal{O}\left(3^{6 \ell}\right) 2$-List Coloring instances.

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

Contruction of $P_{\ell^{*}}$
Else $\mathcal{O}\left(3^{6 \ell}\right) 2$-List

Pick $p_{1} \in L_{3}$. Set $\mathrm{j}=0$. For $\mathrm{i}=2 \mathrm{j}+1$

1. Color p_{i} and its 5 neighbors in N_{1}

We are not modifying N_{1}, L_{3}, etc

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

We are not modifying N_{1}, L_{3}, etc

Contruction of $P_{\ell^{*}}$
Else $\mathcal{O}\left(3^{6 \ell}\right)$ 2-List

Pick $p_{1} \in L_{3}$. Set $\mathrm{j}=0$. For $\mathrm{i}=2 \mathrm{j}+1$

1. Color p_{i} and its 5 neighbors in N_{1}
2. If $\exists x \in L_{3}, y \in N_{2}$ s.t.
i. $|L(x)|=3$
ii. $y \in N(x) \cap p_{i}$ and $|L(y)|=2$
iii. $N(y) \cap\left(N_{1} \backslash C o l\right)$ not adjacent to p_{1}.

Set $p_{i+1}=y, p_{i+2}=x$.

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

We are not modifying N_{1}, L_{3}, etc

Contruction of $P_{\ell *}$

Else $\mathcal{O}\left(3^{6 \ell}\right) 2$-List Coloring instances

Pick $p_{1} \in L_{3}$. Set $\mathrm{j}=0$. For $\mathrm{i}=2 \mathrm{j}+1$

1. Color p_{i} and its 5 neighbors in N_{1}
2. If $\exists x \in L_{3}, y \in N_{2}$ s.t.
i. $|L(x)|=3$
ii. $y \in N(x) \cap p_{i}$ and $|L(y)|=2$
iii. $N(y) \cap\left(N_{1} \backslash C o l\right)$ not adjacent to p_{1}.

Set $p_{i+1}=y, p_{i+2}=x$. Color p_{i+1} and its at most 5 neighbours in $N_{1} \cdot j \leftarrow j+1$.

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Else $\mathcal{O}\left(3^{6 \ell}\right)$ 2-List

$\mathcal{O}\left(3^{6 \ell}\right)$ instances

Contruction of $P_{\ell^{*}}$ Coloring instances

Pick $p_{1} \in L_{3}$. Set $\mathrm{j}=0$. For $\mathrm{i}=2 \mathrm{j}+1$

1. Color p_{i} and its 5 neighbors in N_{1}
2. If $\exists x \in L_{3}, y \in N_{2}$ s.t.
i. $|L(x)|=3$

If fails then 2-List Coloring instances
ii. $y \in N(x) \cap p_{i}$ and $|L(y)|=2$
iii. $N(y) \cap\left(N_{1} \backslash C o l\right)$ not adjacent to p_{1}.

Set $p_{i+1}=y, p_{i+2}=x$. Color p_{i+1} and its at most 5 neighbours in $N_{1} . j \leftarrow j+1$.

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

Contruction of $P_{\ell^{*}}$

Else $\mathcal{O}\left(3^{6 \ell}\right)$ 2-List Coloring instances

Pick $p_{1} \in L_{3}$. Set $\mathrm{j}=0$. For $\mathrm{i}=2 \mathrm{j}+1$

1. Color p_{i} and its 5 neighbors in N_{1}
2. If $\exists x \in L_{3}, y \in N_{2}$ s.t.
i. $|L(x)|=3$
ii. $y \in N(x) \cap p_{i}$ and $|L(y)|=2$

If $\exists x$, then $\exists y$ (diam 2).

3-Coloring $\left(C_{4}, C_{S}\right)$-free Diameter Two Graphs

Contruction of $P_{\ell^{*}}$

Else $\mathcal{O}\left(3^{6 \ell}\right)$ 2-List

Pick $p_{1} \in L_{3}$. Set $\mathrm{j}=0$. For $\mathrm{i}=2 \mathrm{j}+1$

1. Color p_{i} and its 5 neighbors in N_{1}
2. If $\exists x \in L_{3}, y \in N_{2}$ s.t.
i. $|L(x)|=3$
ii. $y \in N(x) \cap p_{i}$ and $|L(y)|=2$
ii
p_{i} and its neighbours in N_{1} are coloured, thus $y \in N_{2},|L(y)|=2$

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Contruction of $P_{\ell^{*}}$

Pick $p_{1} \in L_{3}$. Set $\mathrm{j}=0$. For $\mathrm{i}=2 \mathrm{j}+1$

1. Color p_{i} and its 5 neighbors in N_{1}
2. If $\exists x \in L_{3}, y \in N_{2}$ s.t.
i. $|L(x)|=3$
ii. $y \in N(x) \cap p_{i}$ and $|L(y)|=2$
iii. $N(y) \cap\left(N_{1} \backslash C o l\right)$ not adjacent to p_{1}.

Set $p_{i+1}=y, p_{i+2}=x$.

3-Coloring (C_{4}, C_{s})-free Diameter Two Graphs

Theorem 1. List 3-Coloring is solvable in polynomial time on $\left(C_{4}, C_{s}\right)$-free graphs with diameter two for any constant $\mathrm{s} \geq 10$.

$$
\begin{aligned}
& \text { If } \mathrm{G} \text { contains } P_{\ell *} \text {, for } \\
& \ell=s-4 \text {, then we can } \\
& \text { construct } C_{s} \text { which is a } \\
& \text { contradiction. }
\end{aligned}
$$

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Theorem 1. List 3-Coloring is solvable in polynomial time on $\left(C_{4}, C_{s}\right)$-free graphs with diameter two for any constant $s \geq 5$.

Thus, FPT in s :

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Some open problems:

- 3-Coloring C_{4}-free diameter two graphs.

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Some open problems:

- 3-Coloring C_{4}-free diameter two graphs.
- 3-Coloring C_{3}-free diameter two graphs.

3-Coloring $\left(C_{4}, C_{s}\right)$-free Diameter Two Graphs

Some open problems:

- 3-Coloring C_{4}-free diameter two graphs.
- 3-Coloring C_{3}-free diameter two graphs.
- 3-Coloring diameter two graphs.

Parameterized problems

- A parameterized problem is a decision problem where we associate an integer parameter to each instance
- The parameter measures some aspect of the instance
- Formally, $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$ contains the YES-instances (x, k)

Problem Instance
Parameterized problem Instance

Fixed-parameter tractability

- A parameterized problem is fixed-parameter tractable (FPT) if: there is an algorithm that decides
- inputs of size n,
- with parameter value k,
in time $f(k) \cdot n^{c}$ for some constant c and function f
FPT: $f(k) \cdot n^{c}$

Parameterized time complexity: $\mathrm{g}(\mathrm{n}, \mathrm{k})$

