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3-Coloring (C,4, C,)-free Diameter Two Graphs

Given: An undirected diameter two graph G(V, E) with no induced

C,and C_ for some fixed s > 10.

Aim: Decide if G is 3-colorable?



3-Coloring (C,4, C,)-free Diameter Two Graphs

Given: An undirected diameter two graph G(V, E) with no induced
C,and C_ for some fixed s > 10.

Aim: Decide if G is 3-colorable?

— Distance between two vertices is the length of
the shortest path between then (number of
edges in the shortest path).

— Diameter of a graph is the distance between
any two most distanced vertices.

Graph with diameter two



3-Coloring (C,, C,)-free Diameter Two Graphs

Given: An undirected diameter two (C,, C)-free graph G(V, E) for some
fixed s > 10.

Aim: Decide if G is 3-colorable?

— A graph G is H-free if it does not contain H as
an induced subgraph

Graph with no induced C,



3-Coloring (C,, C,)-free Diameter Two Graphs

Given: An undirected diameter two (C,, C)-free graph G(V, E) for some
fixed s > 10.

Aim: Decide if G is 3-colorable?

— A graph G is k-colorable if we can assign k
colors to the vertices of G such that endpoints
of every edge is coloured distinctly.

A 3-colorable graph



3-Coloring (C,, C,)-free Diameter Two Graphs

— The 3-Coloring is NP-hard even on planar graphs [Garey,Jonson,Stockmeyer 1976]

— Lots of research has been done on hereditary classes of graphs, i.e., classes that
are closed under vertex deletion.

— However, many natural classes of graphs are not hereditary, for example, graphs
with bounded diameter.



3-Coloring (C,, C,)-free Diameter Two Graphs

— The 3-Coloring is NP-hard even on planar graphs [Garey,Jonson,Stockmeyer 1976]

— Lots of research has been done on hereditary classes of graphs, i.e., classes that
are closed under vertex deletion.

— However, many natural classes of graphs are not hereditary, for example, graphs
with bounded diameter.

— 3-Coloring on graphs with diameter two has been posed as an open problem in
several papers.



Previous Results

— 3-Coloring is NP-complete for the class of graphs with diam. 3, even for triangle-free
graphs [Mertzios and Spiraki 2016].

Subexponential algorithm for 3-Coloring diam.2 graph with runtime
2@(\/nlogn).
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Previous Results

— 3-Coloring is NP-complete for the class of graphs with diam. 3, even for triangle-free
graphs [Mertzios and Spiraki 2016].

Subexponential algorithm for 3-Coloring diam.2 graph with runtime
2@(\/nlagn).

1
— Improved algorithm for 3-Coloring diam. 2 graph with runtime2 003 log™n) [Debski et
al.2022].

— 3-Coloring diam. 2 graph is solvable in for:
— graphs that have at least one articulation neighborhood [Mertzios,Spirakis 2016].
— (C3, C4)-free graphs [Martin et al. 2019].
—Cs -free or Cg¢-free graphs , (C,, C,)-free graphs where s € {7,8,9} [Martin et al.
2021].

— K12 ~free or S, , ,-free graphs, where r > 1 [Martin et al. 2019]



Our Results

Theorem 1. List 3-Coloring is solvable in polynomial time on (C,, C,)-free graphs
with diameter two tor any constant s > 10.

Theorem 2. List 3-Coloring is solvable in polynomial time on (C5, C;)-free graphs
with diameter two.



Our Results

Theorem 1. List 3-Coloring is solvable in polynomial time on (C,, C,)-free graphs
with diameter two tor any constant s > 10.



3-Coloring (C,, C,)-free Diameter Two Graphs

Given: An undirected diameter two graph G(V, E) with no induced
C,and C_ for some fixed s > 10.

Aim: Decide if G is 3-colorable?

Technique
— 2-List Coloring is polynomial time solvable[Edward 1986].
— Convert given instance into instance of List-3-Coloring.

— Use polynomial time reductions to convert G into polynomially many instances of
2-List Coloring.



Some simple reductions

— |f G contains a diamond (v,w,x,y) then assign L(v)NL(x) to both x and v.

V L(v)NL(X)




Some simple reductions

— |f G contains a diamond (v,w,x,y) then assign L(v)NL(x) to both x and v.

V L(v)NL(x)

) — .,

X L(v)NL(X)

w and y are coloured differently from v and x



Some simple reductions

— If G contains a triangle (v,w,x) where |L(v)|=2 and L(v)=L(w), then assign L(x)\L(v)
to Xx.

q W
IL(v)|=2 and L(X)\L(V)
L(v)=L(w)

Colors in L(v) are used to color vand w



3-Coloring (C,4, C,)-free Diameter Two Graphs

— If G contains contains an induced C; colour it as follows (upto cyclic ordering).
Otherwise polynomial time solvable.

a b a b C
CS
1 2 3 4 5
]\]1 Ni(D) | M(2) | NGB | Ni(4) N,(5) | Col

N 0 L, L, Col




3-Coloring (C,, C,)-free Diameter Two Graphs

Lemma. If there are at most k connected components in some N,(i) fori € [3J],
then polynomial time by resolving 2* instances of 2-List Coloring.

Cs

]\]1 N, (1) N, (2) N, (3) N,(4) N,(5) Col




3-Coloring (C,, C,)-free Diameter Two Graphs

Lemma. If there are at most k connected components in some N,(i) fori € [3J],
then polynomial time by resolving 2* instances of 2-List Coloring.

C d C
S ] 2 o
]\]1 N, (1) N,(2) N,(3) N, (4) N;(5) Col

No odd cycle in N,(i) and thus all connected components are bipartite



3-Coloring (C,, C,)-free Diameter Two Graphs

LLemma. Each vertex in N,(7) is not adjacent to any j # i for i,] € [5] in Cs.

N, N | M@ | NG | M@ NO) | Col




3-Coloring (C,, C,)-free Diameter Two Graphs

LLemma. Each vertex in N,(7) is not adjacent to any j # i for i,] € [5] in Cs.

W Col
IV 0

No induced C, (by assumption) and (w,2), (w,4), (w,5) &€ E(G) (otherwise w € Col)



3-Coloring (C,, C,)-free Diameter Two Graphs

Lemma. Each vertex in N,(i) has at most one neighbor in N,(j) for i,j € [3].

N, N | M@ | NG | M@ NO) | Col




3-Coloring (C,, C,)-free Diameter Two Graphs

Lemma. Each vertex in N,(i) has at most one neighbor in N,(j) for i,j € [3].

a b a b C
1 2 3 4 5
Vv W
@ Col
N, @

Vertex in N,(i) is not adjacent to vertex in N;(i + 1)



3-Coloring (C,, C,)-free Diameter Two Graphs

LLemma. Eachvertex in N;(i) has at most one neighbor in N,(j) for i,j € [3].

a b a b C
1 2 3 4 5
V W
@ Col
N, @

Vertex in N,(i) is not adjacent to vertex in N;(i + 1)
No induced C, (by assumption) and no K, (otherwise not 3-colorable)

No diamond as otherwise v or w belongs to Col



3-Coloring (C,, C,)-free Diameter Two Graphs

LLemma. Eachvertex in N;(i) has at most one neighbor in N,(j) for i,j € [3].

Vertex in N,(i) is adjacent to at most one vertex in N;(i + 2) and N,(i + 3)



3-Coloring (C,, C,)-free Diameter Two Graphs

LLemma. Eachvertex in N;(i) has at most one neighbor in N,(j) for i,j € [3].

Vertex in N,(i) is adjacent to at most one vertex in N;(i + 2) and N,(i + 3)

(v,3) & E(G) (previous lemma) and (w, x) & E(G) (otherwise (v) & Col)
Similarly for (1+3)



3-Coloring (C,, C,)-free Diameter Two Graphs

Lemma. |N/(1)| =[N,3)],[N;(2)]| = |N,(4)| and G[N|(1), N,(3)],
G|[N;(2), N,(4)], are perfect matchings.

a b a b C
1 2 3 4 5
V W
@ Col
N, ®
@ @® X




3-Coloring (C,, C,)-free Diameter Two Graphs

Lemma. |N/(1)| =[N,3)],[N;(2)]| = |N,(4)| and G[N|(1), N,(3)],
G|[N;(2), N,(4)], are perfect matchings.

a b a b C
1 2 3 4 5
V W
@ Col
IV ®
@ @

If v is not adjacent to any vertex in N(3), then distance between v and 3 is more than

2 (Contrad.) and v is adjacent to at most one vertex in N,(3) (by previous lemma)



3-Coloring (C,4, C,)-free Diameter Two Graphs

Lemma. All v € N, \ Col has at most one neighbor in each N;(i),i € [5] and all
v € L, has exactly one neighbor in each N,(i),i € [3].

Nl Ny(1) Ny(2) N, (3) Ny(4) N(S) | Col

N o) L, L, Col




3-Coloring (C,4, C,)-free Diameter Two Graphs

Lemma. All v € N, \ Col has at most one neighbor in each N;(i),i € [5] and all
v € L, has exactly one neighbor in each N,(i),i € [3].

Allv € N,\Col has at most
C ° n c one neighbor in each
: 1 2 3 4 0 N(@),1 € [5]
(v,w) & E(G) (otherwise

x € Col)and (a,x) &€ E(G)
Mool veew ol |T Ty comucion
NA\Col
2




3-Coloring (C,4, C,)-free Diameter Two Graphs

Lemma. All v € N, \ Col has at most one neighbor in each N;(i),i € [5] and all
v € L, has exactly one neighbor in each N,(i),i € [3].

All v € L, has exactly one
c neighbor in each

If x € Ly is not adjacent to

any vertex in N;(1) then

N Col distance between x and 1 is
1 more than 2(Contrad.)




3-Coloring (C,4, C,)-free Diameter Two Graphs

LLemma. Any v € N,(1) and w € N,(3) such that (v,w) € E(G), then v and w don’t
share common neighbor in L, or L,. Similarly for vertices in NV;(2) and N,(4).

]\71 v © ® w Col




3-Coloring (C,4, C,)-free Diameter Two Graphs

LLemma. Any v € N,(1) and w € N,(3) such that (v,w) € E(G), then v and w don’t
share common neighbor in L, or L,. Similarly for vertices in NV;(2) and N,(4).

CS f x € Ly U L, is adjacent to
1 2 3 4 5
both v and w, then x should
be coloured ¢ and thus
Nl v © e W Col X & L3 W L2




3-Coloring (C,4, C,)-free Diameter Two Graphs

Lemma.If z € L, and u € N,(i), 1 € [5] such that (z, u) € E(G), then there is at
most one vertex ' € L, U L,, 7z # 7' such that (z, 2'), (u, 7') € E(G).




3-Coloring (C,4, C,)-free Diameter Two Graphs

Lemma.If z € L, and u € N,(i), 1 € [5] such that (z, u) € E(G), then there is at
most one vertex ' € L, U L,, 7z # 7' such that (z, 2'), (u, 7') € E(G).

fw € Ly s.t.
(w,2), (w,u) € E(G), then a:
G is Cy-free, (z',w) € E(G)

and L(u)=L(z), thus z € L,
(contrad.)




3-Coloring (C,4, C,)-free Diameter Two Graphs

Lemma. Either G[L, U L;] contains an induced path P, . = (p{, ps, ...P/)
{neighbors of p; and p, in N, 1s disjoint from neighbors ot p,, ps, ...p,_1}, Or 3-
Coloring can be decided by solving at most 0(3%%) 2-List Coloring instances.

b a b C




3-Coloring (C,4, C,)-free Diameter Two Graphs

Else O(3%%) 2-List
b 5 B c Contruction of .. Coloring instances

5 Pick p; € Ly . Set j=0. For i=2j+1

1. Color p; and its 5 neighbors in /V,
- - 8 Col

We are not moditying N, L, etc



3-Coloring (C,4, C,)-free Diameter Two Graphs

Else ©(3%) 2-List
Contruction of P . Coloring instances

5 Pick p; € L; . Set j=0. For i=2j+1

1. Color p; and its 5 neighbors in NV,

s
Col_J2.1f3dxe L,y €N,st

,,/ . |L(x)|=3

i.ye Nx)Np;and |[L(y)| =2

x € Ly, [ Lix)| =3

iii. N(y) N (N;\Col) not adjacent to p; .

Set i — s ;i = X.
We are not moditying N, L, etc Pir1 = V> Pit2



3-Coloring (C,4, C,)-free Diameter Two Graphs

Else ©(3%) 2-List
Contruction of P . Coloring instances

5 Pick p; € L; . Set j=0. For i=2j+1

1. Color p; and its 5 neighbors in NV,

A £
d 4 Col_ |2 faxel,yeN,st

'/r L IL(0I=3
/ 56
i.y € Nx)Np;and |[L(y)| =2
pi\ /‘X€L3,‘L(x)\ _

iii. N(y) N (N;\Col) not adjacent to p; .
YEN,, |L(y)| =2

Setp,., = y.p;.» = x. Colorp,.;andits

We are not moditying [V}, L, etc at most 5 neighbours in N;.j <« j+ 1.



3-Coloring (C,4, C,)-free Diameter Two Graphs

Else ©(3%) 2-List
Contructionof P . Coloring instances

5 Pick p; € L, . Set j=0. For i=2j+1

1. Color p; and its 5 neighbors in /V,

7 é Z Col
2.1f dx € Ly, y € N, s.t.
VI : If fails then 2-List
M . L(X)I=3 Coloring instances
i.ye€ Nx)Np;and |L(y)| =2

yEN,, |L(y)| =2

iii. N(y) N (N, \ Col) not adjacent to p, .

Setp.,., = V,pP;.» = X.Color p,, ; and its
O(3%) instances at most 5 neighboursin N;.j <« j+ 1.



3-Coloring (C,4, C,)-free Diameter Two Graphs

Else O(3%%) 2-List
b 5 B c Contruction of .. Coloring instances

5 Pick p; € Ly . Set j=0. For i=2j+1

1. Color p; and its 5 neighbors in /V,
- d z Col

— 2.1f dx € L;,y € N, s.t.
vl i 2
/',A/ 1. |[L(x)|=3

i N\ —® | =] TYEN®Npand [Ly)| =2

yEN,, |L(y)| =2

If dx, then dy (diam 2).



3-Coloring (C,4, C,)-free Diameter Two Graphs

Else O(3%%) 2-List
b 5 B c Contruction of .. Coloring instances

5 Pick p; € Ly . Set j=0. For i=2j+1

1. Color p; and its 5 neighbors in /V,
- d z Col

= 2.1f dx e L.,y € N, s.t.
vl ’ 2
/',A/ 1. |[L(x)|=3

P N\ —® | =4 TYEN®Npand [L()| =2

p; and its neighbours in N, are
coloured, thusy € N,, |L(y)| =2



3-Coloring (C,, C,)-free Diameter Two Graphs

Contruction of .
Pick p; € L;. Set j=0. For

P»j+3 18 chosen s.t. 1. Color p; and its 5 neighbors in N,

L(p5. = 3: not adjacent to
| Lpojia) j 2.1f dx € Ly, y € N, s t.

1. |L(X)[=3
i.yeNkx)Np;and |L(y)| =2

P1>P2---P2jt1 and their neighbours in
N

iii. N(y) N (N;\Col) not adjacent to p; .

Setpi | = Vs Pipn = X



3-Coloring (C,4, C,)-free Diameter Two Graphs

Theorem 1. List 3-Coloring is solvable in polynomial time on (C,, C,)-free graphs
with diameter two for any constant s > 10.

If G contains P, for

£ = s —4, then we can

construct C; which is a
contradiction.




3-Coloring (C,4, C,)-free Diameter Two Graphs

Theorem 1. List 3-Coloring is solvable in polynomial time on (C,, C,)-free graphs
with diameter two for any constant s > 3.

Thus, FPTin s:
O(3%n)




3-Coloring (C,, C,)-free Diameter Two Graphs

Some open problems:
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Some open problems:




3-Coloring (C,, C,)-free Diameter Two Graphs

Some open problems:

Thank You




Parameterized problems

e A parameterized problem is a decision problem where we associate an integer parameter to
each instance

— The parameter measures some aspect of the instance

— Formally, @ C 2* X N contains the YEs-instances (x, k)

- _> G(n'k)

Problem Instance Parameterized problem Instance



Fixed-parameter tractability

e A parameterized problem is fixed-parameter tractable (FPT) if:

there is an algorithm that decides
e inputs of size n,

e with parameter value k,

in time f(k) - n for some constant ¢ and function f FPT: f(k) - n®

Time complexity: f(n) Parameterized time complexity: g(n,k)



