3-Coloring (C_4, C_5) -free Diameter Two Graphs

Presented by: Prahlad Narasimhan Kasthurirangan

Authors: Tereza Klimošová (Charles University), Vibha Sahlot (University of Cologne)

<u> C_4 and C_5 </u> for some fixed $s \ge 10$. Aim: Decide if *G* is <u>3-colorable</u>?

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Given: An undirected diameter two graph G(V, E) with no induced

<u> C_4 and C_{c} </u> for some fixed $s \ge 10$. Aim: Decide if *G* is <u>3-colorable</u>?

- Distance between two vertices is the length of the shortest path between then (number of edges in the shortest path).
- Diameter of a graph is the distance between any two most distanced vertices.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Given: An undirected diameter two graph G(V, E) with no induced

Graph with diameter two

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

fixed $s \ge 10$. Aim: Decide if *G* is <u>3-colorable</u>?

– A graph G is H-free if it does not contain H as an induced subgraph

Given: An undirected diameter two (C_4, C_5) -free graph G(V, E) for some

Graph with no induced C_4

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

fixed $s \ge 10$. Aim: Decide if *G* is 3-colorable?

– A graph G is k-colorable if we can assign k colors to the vertices of G such that endpoints of every edge is coloured distinctly.

Given: An undirected diameter two (C_4, C_5) -free graph G(V, E) for some

A 3-colorable graph

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

- The 3-Coloring is NP-hard even on planar graphs [Garey, Jonson, Stockmeyer 1976]
- Lots of research has been done on hereditary classes of graphs, i.e., classes that are closed under vertex deletion.
- However, many natural classes of graphs are not hereditary, for example, graphs with bounded diameter.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

- The 3-Coloring is NP-hard even on planar graphs [Garey, Jonson, Stockmeyer 1976]
- Lots of research has been done on hereditary classes of graphs, i.e., classes that are closed under vertex deletion.
- However, many natural classes of graphs are not hereditary, for example, graphs with bounded diameter.
- 3-Coloring on graphs with diameter two has been posed as an open problem in several papers.

- 3-Coloring is NP-complete for the class of graphs with diam. 3, even for triangle-free graphs [Mertzios and Spiraki 2016].

> Subexponential algorithm for 3-Coloring diam.2 graph with runtime $2^{O}(\sqrt{nlogn})$

Previous Results

- 3-Coloring is NP-complete for the class of graphs with diam. 3, even for triangle-free graphs [Mertzios and Spiraki 2016].

 $2^{O}(\sqrt{nlogn})$

al.2022].

Previous Results

- Subexponential algorithm for 3-Coloring diam.2 graph with runtime
- Improved algorithm for 3-Coloring diam. 2 graph with runtime $2^{O(n^{\frac{1}{3}}log^{2}n)}$ [Debski et

- 3-Coloring is NP-complete for the class of graphs with diam. 3, even for triangle-free graphs [Mertzios and Spiraki 2016].

 $2^{O}(\sqrt{nlogn})$

- Improved algorithm for 3-Coloring diam. 2 graph with runtime $2^{O(n^{\frac{1}{3}}log^{2}n)}$ [Debski et al.2022].
- 3-Coloring diam. 2 graph is solvable in polynomial time for:
 - graphs that have at least one articulation neighborhood [Mertzios, Spirakis 2016]. -(C3, C4)-free graphs [Martin et al. 2019].

 - $-C_5$ -free or C_6 -free graphs, (C_4, C_5) -free graphs where $s \in \{7, 8, 9\}$ [Martin et al. 2021].
 - $-K_{1,r}^2$ -free or $S_{1,2,2}$ -free graphs, where $r \ge 1$ [Martin et al. 2019]

Previous Results

Subexponential algorithm for 3-Coloring diam.2 graph with runtime

Theorem 1. List 3-Coloring is solvable in polynomial time on (C_4, C_5) -free graphs with diameter two for any constant $s \ge 10$. **Theorem 2**. List 3-Coloring is solvable in polynomial time on (C_3, C_7) -free graphs with diameter two.

Our Results

Theorem 1. List 3-Coloring is solvable in polynomial time on (C_4, C_5) -free graphs with diameter two for any constant $s \ge 10$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

<u> C_4 and C_{c} </u> for some fixed $s \ge 10$. Aim: Decide if *G* is <u>3-colorable</u>?

Technique

- 2-List Coloring is polynomial time solvable[Edward 1986].
- Convert given instance into instance of List-3-Coloring.
- 2-List Coloring.

Given: An undirected diameter two graph G(V, E) with no induced

- Use polynomial time reductions to convert G into polynomially many instances of

- If G contains a diamond (v,w,x,y) then assign $L(v) \cap L(x)$ to both x and v.

Some simple reductions

- If G contains a diamond (v,w,x,y) then assign $L(v) \cap L(x)$ to both x and v.

Some simple reductions

Some simple reductions

to x.

Colors in L(v) are used to color v and w

- If G contains a triangle (v,w,x) where |L(v)|=2 and L(v)=L(w), then assign $L(x)\setminus L(v)$

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Otherwise polynomial time solvable.

– If G contains contains an induced C_5 colour it as follows (upto cyclic ordering).

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. If there are at most k connected components in some $N_1(i)$ for $i \in [5]$, then polynomial time by resolving 2^k instances of 2-List Coloring.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. If there are at most k connected components in some $N_1(i)$ for $i \in [5]$, then polynomial time by resolving 2^k instances of 2-List Coloring.

No odd cycle in $N_1(i)$ and thus all connected components are bipartite

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Each vertex in $N_1(i)$ is not adjacent to any $j \neq i$ for $i, j \in [5]$ in C_5 .

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Each vertex in $N_1(i)$ is not adjacent to any $j \neq i$ for $i, j \in [5]$ in C_5 .

No induced C_4 (by assumption) and $(w,2), (w,4), (w,5) \notin E(G)$ (otherwise $w \in Col$)

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Each vertex in $N_1(i)$ has at most one neighbor in $N_1(j)$ for $i, j \in [5]$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Each vertex in $N_1(i)$ has at most one neighbor in $N_1(j)$ for $i, j \in [5]$.

Vertex in $N_1(i)$ is not adjacent to vertex in $N_1(i + 1)$

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Eachvertex in $N_1(i)$ has at most one neighbor in $N_1(j)$ for $i, j \in [5]$.

Vertex in $N_1(i)$ is not adjacent to vertex in $N_1(i + 1)$ No induced C_4 (by assumption) and no K_4 (otherwise not 3-colorable) No **diamond** as otherwise v or w belongs to *Col*

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Eachvertex in $N_1(i)$ has at most one neighbor in $N_1(j)$ for $i, j \in [5]$.

Vertex in $N_1(i)$ is adjacent to at most one vertex in $N_1(i + 2)$ and $N_1(i + 3)$

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Eachvertex in $N_1(i)$ has at most one neighbor in $N_1(j)$ for $i, j \in [5]$.

Vertex in $N_1(i)$ is adjacent to at most one vertex in $N_1(i + 2)$ and $N_1(i + 3)$ $(v,3) \notin E(G)$ (previous lemma) and $(w,x) \notin E(G)$ (otherwise $(v) \notin Col$) Similarly for (I+3)

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. $|N_1(1)| = |N_1(3)|, |N_1(2)| = |N_1(4)|$ and $G[N_1(1), N_1(3)],$ $G[N_1(2), N_1(4)]$, are perfect matchings.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. $|N_1(1)| = |N_1(3)|, |N_1(2)| = |N_1(4)|$ and $G[N_1(1), N_1(3)],$ $G[N_1(2), N_1(4)]$, are perfect matchings.

If v is not adjacent to any vertex in $N_1(3)$, then distance between v and 3 is more than 2 (Contrad.) and v is adjacent to at most one vertex in $N_1(3)$ (by previous lemma)

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. All $v \in N_2 \setminus Col$ has at most one neighbor in each $N_1(i), i \in [5]$ and all $v \in L_3$ has exactly one neighbor in each $N_1(i), i \in [5]$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. All $v \in N_2 \setminus Col$ has at most one neighbor in each $N_1(i), i \in [5]$ and all $v \in L_3$ has exactly one neighbor in each $N_1(i), i \in [5]$.

All $v \in N_2 \setminus Col$ has at most one neighbor in each $N_1(i), i \in [5]$ $(v, w) \notin E(G)$ (otherwise) $x \in Col$) and $(a, x) \notin E(G)$ (by contruction)

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. All $v \in N_2 \setminus Col$ has at most one neighbor in each $N_1(i), i \in [5]$ and all $v \in L_3$ has exactly one neighbor in each $N_1(i), i \in [5]$.

All $v \in L_3$ has exactly one neighbor in each $N_1(i), i \in [5]$ If $x \in L_3$ is not adjacent to any vertex in $N_1(1)$ then distance between x and 1 is more than 2(Contrad.)

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Any $v \in N_1(1)$ and $w \in N_1(3)$ such that $(v, w) \in E(G)$, then v and w don't share common neighbor in L_2 or L_3 . Similarly for vertices in $N_1(2)$ and $N_1(4)$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Any $v \in N_1(1)$ and $w \in N_1(3)$ such that $(v, w) \in E(G)$, then v and w don't share common neighbor in L_2 or L_3 . Similarly for vertices in $N_1(2)$ and $N_1(4)$.

If $x \in L_3 \cup L_2$ is adjacent to both v and w, then x should be coloured c and thus $x \notin L_3 \cup L_2$

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. If $z \in L_3$ and $u \in N_1(i), i \in [5]$ such that $(z, u) \notin E(G)$, then there is at most one vertex $z' \in L_3 \cup L_2$, $z \neq z'$ such that $(z, z'), (u, z') \in E(G)$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. If $z \in L_3$ and $u \in N_1(i), i \in [5]$ such that $(z, u) \notin E(G)$, then there is at most one vertex $z' \in L_3 \cup L_2$, $z \neq z'$ such that $(z, z'), (u, z') \in E(G)$.

If $w \in L_3$ s.t. $(w, z), (w, u) \in E(G)$, then as G is C_4 -free, $(z', w) \in E(G)$ and L(u)=L(z), thus $z \in L_2$ (contrad.)

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Lemma. Either $G[L_2 \cup L_3]$ contains an induced path $P_{\ell^*} = (p_1, p_2, \dots, p_\ell)$ {neighbors of p_1 and p_ℓ in N_1 is disjoint from neighbors of $p_2, p_3, \dots, p_{\ell-1}$ }, or 3-Coloring can be decided by solving at most $\mathcal{O}(3^{6\ell})$ 2-List Coloring instances.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

We are not modifying N_1, L_3 , etc

Contruction of P_{ℓ^*}

Else $\mathcal{O}(3^{6\ell})$ 2-List **Coloring instances**

Pick $p_1 \in L_3$. Set j=0. For i=2j+1

1. Color p_i and its 5 neighbors in N_1

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

We are not modifying N_1, L_3 , etc

Coloring instances Contruction of P_{ℓ^*} Pick $p_1 \in L_3$. Set j=0. For i=2j+1 1. Color p_i and its 5 neighbors in N_1 2. If $\exists x \in L_3, y \in N_2$ s.t. i. |L(x)|=3ii. $y \in N(x) \cap p_i$ and |L(y)| = 2iii. $N(y) \cap (N_1 \setminus Col)$ not adjacent to p_1 . Set $p_{i+1} = y, p_{i+2} = x$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

We are not modifying N_1, L_3 , etc

Coloring instances Contruction of P_{ℓ^*} Pick $p_1 \in L_3$. Set j=0. For i=2j+1 1. Color p_i and its 5 neighbors in N_1 2. If $\exists x \in L_3, y \in N_2$ s.t. i. |L(x)|=3ii. $y \in N(x) \cap p_i$ and |L(y)| = 2iii. $N(y) \cap (N_1 \setminus Col)$ not adjacent to p_1 . Set $p_{i+1} = y, p_{i+2} = x$. Color p_{i+1} and its at most 5 neighbours in $N_1 . j \leftarrow j + 1$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

at most 5 neighbours in $N_1 \cdot j \leftarrow j + 1$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Else $\mathcal{O}(3^{6\ell})$ 2-List Coloring instances Contruction of P_{ℓ^*} Pick $p_1 \in L_3$. Set j=0. For i=2j+1 1. Color p_i and its 5 neighbors in N_1 2. If $\exists x \in L_3, y \in N_2$ s.t. i. |L(x)|=3ii. $y \in N(x) \cap p_i$ and |L(y)| = 2

If $\exists x$, then $\exists y$ (diam 2).

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Else $\mathcal{O}(3^{6\ell})$ 2-List Coloring instances Contruction of P_{ℓ^*} Pick $p_1 \in L_3$. Set j=0. For i=2j+1 1. Color p_i and its 5 neighbors in N_1 2. If $\exists x \in L_3, y \in N_2$ s.t. i. |L(x)|=3ii. $y \in N(x) \cap p_i$ and |L(y)| = 2 p_i and its neighbours in N_1 are

coloured, thus $y \in N_2$, |L(y)| = 2

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

 p_{2j+3} is chosen s.t. $|L(p_{2i+3})| = 3:$ not adjacent to $p_1, p_2...p_{2j+1}$ and their neighbours in N_1

Contruction of P_{ℓ^*}

Pick $p_1 \in L_3$. Set j=0. For i=2j+1

1. Color p_i and its 5 neighbors in N_1

2. If $\exists x \in L_3, y \in N_2$ s.t.

i. |L(x)|=3

ii. $y \in N(x) \cap p_i$ and |L(y)| = 2

iii. $N(y) \cap (N_1 \setminus Col)$ not adjacent to p_1 .

Set $p_{i+1} = y, p_{i+2} = x$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Theorem 1. List 3-Coloring is solvable in polynomial time on (C_4, C_5) -free graphs with diameter two for any constant $s \ge 10$.

If G contains P_{ℓ^*} , for $\ell = s - 4$, then we can construct C_s which is a contradiction.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Theorem 1. List 3-Coloring is solvable in polynomial time on (C_4, C_5) -free graphs with diameter two for any constant $s \ge 5$.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

<u>Some open problems:</u>

• 3-Coloring C_4 -free diameter two graphs.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Some open problems:

• 3-Coloring C_4 -free diameter two graphs. • 3-Coloring C_3 -free diameter two graphs.

3-Coloring (C_4 , C_5)-free Diameter Two Graphs

Some open problems:

- 3-Coloring C_4 -free diameter two graphs.
- 3-Coloring C_3 -free diameter two graphs.
- 3-Coloring diameter two graphs.

Thank You (

Parameterized problems

- A parameterized problem is a decision problem where we associate an integer parameter to each instance
 - The parameter measures some aspect of the instance
 - Formally, $\mathcal{Q} \subseteq \Sigma^* \times \mathbb{N}$ contains the YES-instances (x, k)

Problem Instance

Parameterized problem Instance

Fixed-parameter tractability

- A parameterized problem is fixed-parameter tractable (FPT) if: there is an algorithm that decides
 - inputs of size *n*,
 - with parameter value k,

in time $f(k) \cdot n^c$ for some constant c and function f

FPT: $f(k) \cdot n^c$

Parameterized time complexity: g(n,k)

