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Socially Fair Matching

Socially Fair Matching
Input: Complete bipartite graph G = (R ⊎ B, E) and weights w : E → R+

Task: Find a perfect matching M and a partition of M into (MR, MB)

max {w(MR), w(MB)}

A perfect matching M and a corresponding partition of M into (MR, MB)
with w(MR) = r and w(MB) = b will be called an (r, b) perfect
matching
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Our Results

▶ Deterministic PTAS: (1 + ϵ)-approximation in nO(1/ϵ) time

▶ Randomized (Monte-Carlo) algorithms:

▶ Polynomial time exact algorithm when weights are integral and
polynomially bounded

▶ Randomized EPTAS for general weights: (1 + ϵ)-approximation in
randomized (n/ϵ)O(1) time
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Socially Fair Matching: Starting point

▶ Goal: find an (r, b) perfect matching with minimum max {r, b}
Minimize maximum of two parts

▶ So finding minimum-weight perfect matching should be the first step,
right?

▶ Not quite...
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Socially Fair Matching vs Min Weight Perfect
Matching
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Socially Fair Matching vs Min Weight Perfect
Matching

▶ Min Weight Perfect Matching is polynomial-time solvable (for
arbitrary weights)

▶ Previous example immediately suggests reduction from Partition to
Socially Fair Matching
Given integers {a1, a2, . . . , an} which we want to divide into two
subsets of equal sum,
create a perfect matching with w(ei) = ai and set other weights to ∞

▶ =⇒ Socially Fair Matching is weakly NP-hard
(i.e., NP-hard if weights are arbitrary)
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Socially Fair Matching: Starting point

▶ Min Weight Perfect Matching may be “bad” if we cannot divide it in
a balanced way

▶ But it already gives a 2-approximation

▶ If the edge-weights are “small” compared to OPT, then we can
balance easily
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Socially Fair Matching: Deterministic PTAS

▶ Heavy edges: weight more than ϵ OPT
Light edges: weight at most ϵ OPT

Observation
Optimal solution uses no more than 2

ϵ heavy edges

Proof.
Suppose not.
Then wlog red side uses more than 1/ϵ heavy edges
Then the total red weight is more than ϵ OPT · 1/ϵ = OPT, a
contradiction.
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Socially Fair Matching: Deterministic PTAS

1. “Guess” at most ⌈2/ϵ⌉ heavy edges from the optimal matching: n2/ϵ guesses

Also guess how they are assigned to R or B: 22/ϵ guesses

2. Prune the remaining instance by deleting all matched vertices and heavy
edges

3. Remaining bipartite graph only contains light edges

4. Find a minimum-weight perfect matching for remaining vertices containing
only light edges
which can be approximately balanced to any ratio

5. Results in (1 + ϵ)-approximation
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Randomized Exact Algorithm

▶ Edge-weights are integers from [0, N ] for some integer N

▶ Algebraic tools: DeMillo–Lipton–Schwartz–Zippel Lemma and
Polynomial Identity Testing (PIT)

▶ Reduce the problem to checking whether certain polynomials are not
identically zero

▶ Polynomials are implicitly defined: no explicit representation, but can
be efficiently evaluated at given points

▶ Polynomial Pr,b(x, y, Z) is not identically zero iff there exists a
perfect matching M that can be partitioned into (MR, MB) where
w(MR) = r and w(MB) = b.
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Randomized Exact Algorithm

▶ Let F be a field of characteristic 2 and let F[U ] be the ring of
polynomials where U = {x, y, z1,1, z1,2, . . . , zn,n} is a set of variables

▶ Define matrix A = (aij) where aij = (xwij + ywij ) · zij .

▶ det(A) = Q(x, y, Z) is a polynomial in F[U ], where
Z = {z1,1, . . . zn,n}

Q(x, y, Z) =
N∑

r=0

N∑
b=0

xryb · Pr,b(Z)

▶ Degree of Q(x, y, Z) is at most n · N

Observation
Pr,b(Z) is not identically 0 iff there exists a (r, b) perfect matching.
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Polynomial Identity Testing

▶ Goal is to find 0 ≤ r, b ≤ N with minimum {r, b} such that,
there exists a (r, b) perfect matching

▶ Equivalently, iterate over all 0 ≤ r, b ≤ N and check whether Pr,b(Z)
is identically zero

▶ DLSZ Lemma implies
If we evaluate Pr,b(Z) at randomly sampled k ≫ n2 values, with high
probability,
all evaluations are zero iff Pr,b(Z) is identically zero

▶ Each evaluation takes time polynomial in n and N

▶ Can solve Socially Fair Matching exactly in time (n + N)O(1)

with high probability
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Randomized EPTAS

▶ We assumed that weights are integral and from range [0, N ]

▶ Reduce general case to this case (heavily inspired from knapsack-type
EPTAS)

▶ Weights can be made integers in the range [0, n/ϵ], at the expense of
(1 + ϵ)-loss

▶ Then solve exactly (via PIT)

▶ Randomized (n/ϵ)O(1) time algorithm that computes a
(1 + ϵ)-approximation with high probability
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Summary and Open Problems

▶ Deterministic PTAS for general weights
Randomized EPTAS (exact if weights are integer and polynomially
bounded)

▶ NP-hard for general weights (reduction from Partition)

▶ Can we get deterministic EPTAS?

▶ Problem naturally extends to 3 colors and more, but algorithms
unclear
3-Dimensional Matching is NP-hard
Approximations? Beyond polynomial-time?
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