Socially Fair Matching: Exact and Approximation Algorithms WADS 2023

Sayan Bandyapadhyay ¹ Fedor V. Fomin ² Tanmay Inamdar ² Fahad Panolan ³ Kirill Simonov ⁴

¹Portland State University, Oregon, USA
² University of Bergen, Norway
³IIT Hyderabad, India
⁴Hasso Plattner Institute, University of Potsdam, Germany

Matching

Tanmay Inamdar

Matching

Tanmay Inamdar

Matching

Tanmay Inamdar

Tanmay Inamdar

3/16

Tanmay Inamdar

3/16

Tanmay Inamdar

3/16

Socially Fair Matching

Input: Complete bipartite graph $G = (\mathbb{R} \oplus \mathbb{B}, E)$ and weights $w : E \to \mathbb{R}^+$ **Task:** Find a perfect matching M and a partition of M into $(\mathbb{M}_R, \mathbb{M}_B)$

 $\max\left\{w(M_R), w(M_B)\right\}$

Socially Fair Matching

Input: Complete bipartite graph $G = (\mathbb{R} \uplus \mathbb{B}, E)$ and weights $w : E \to \mathbb{R}^+$ **Task:** Find a perfect matching M and a partition of M into $(\mathbb{M}_R, \mathbb{M}_B)$

 $\max\left\{w(M_R), w(M_B)\right\}$

A perfect matching M and a corresponding partition of M into (M_R, M_B) with $w(M_R) = r$ and $w(M_B) = b$ will be called **an** (r, b) **perfect matching**

- **Deterministic PTAS**: $(1 + \epsilon)$ -approximation in $n^{O(1/\epsilon)}$ time
- Randomized (Monte-Carlo) algorithms:
 - Polynomial time exact algorithm when weights are integral and polynomially bounded
 - ▶ Randomized EPTAS for general weights: $(1 + \epsilon)$ -approximation in randomized $(n/\epsilon)^{O(1)}$ time

SOCIALLY FAIR MATCHING: Starting point

- ▶ Goal: find an (r, b) perfect matching with minimum max {r, b} Minimize maximum of two parts
- So finding minimum-weight perfect matching should be the first step, right?
- Not quite...

 Min Weight Perfect Matching is polynomial-time solvable (for arbitrary weights)

- Min Weight Perfect Matching is polynomial-time solvable (for arbitrary weights)
- Previous example immediately suggests reduction from PARTITION to SOCIALLY FAIR MATCHING

- Min Weight Perfect Matching is polynomial-time solvable (for arbitrary weights)
- ▶ Previous example immediately suggests reduction from PARTITION to SOCIALLY FAIR MATCHING Given integers $\{a_1, a_2, \ldots, a_n\}$ which we want to divide into two subsets of equal sum, create a perfect matching with $w(e_i) = a_i$ and set other weights to ∞

- Min Weight Perfect Matching is polynomial-time solvable (for arbitrary weights)
- ▶ Previous example immediately suggests reduction from PARTITION to SOCIALLY FAIR MATCHING Given integers {a₁, a₂,..., a_n} which we want to divide into two subsets of equal sum, create a perfect matching with w(e_i) = a_i and set other weights to ∞
- SOCIALLY FAIR MATCHING is weakly NP-hard (i.e., NP-hard if weights are arbitrary)

SOCIALLY FAIR MATCHING: Starting point

- Min Weight Perfect Matching may be "bad" if we cannot divide it in a balanced way
- But it already gives a 2-approximation
- If the edge-weights are "small" compared to OPT, then we can balance easily

Heavy edges: weight more than e OPT Light edges: weight at most e OPT

Observation

Optimal solution uses no more than $\frac{2}{\epsilon}$ heavy edges

Heavy edges: weight more than e OPT Light edges: weight at most e OPT

Observation

Optimal solution uses no more than $\frac{2}{\epsilon}$ heavy edges

Proof.

Suppose not.

Then wlog red side uses more than $1/\epsilon$ heavy edges Then the total red weight is more than $\epsilon~{\rm OPT}\cdot 1/\epsilon={\rm OPT}$, a contradiction.

1. "Guess" at most $\lceil 2/\epsilon\rceil$ heavy edges from the optimal matching: $n^{2/\epsilon}$ guesses

Socially Fair Matching: Deterministic PTAS

1. "Guess" at most $\lceil 2/\epsilon\rceil$ heavy edges from the optimal matching: $n^{2/\epsilon}$ guesses Also guess how they are assigned to R or B: $2^{2/\epsilon}$ guesses

- 1. "Guess" at most $\lceil 2/\epsilon \rceil$ heavy edges from the optimal matching: $n^{2/\epsilon}$ guesses Also guess how they are assigned to R or B: $2^{2/\epsilon}$ guesses
- 2. Prune the remaining instance by deleting all matched vertices and heavy edges

- 1. "Guess" at most $\lceil 2/\epsilon \rceil$ heavy edges from the optimal matching: $n^{2/\epsilon}$ guesses Also guess how they are assigned to R or B: $2^{2/\epsilon}$ guesses
- 2. Prune the remaining instance by deleting all matched vertices and heavy edges
- 3. Remaining bipartite graph only contains light edges
- 4. Find a minimum-weight perfect matching for remaining vertices containing only light edges

- 1. "Guess" at most $\lceil 2/\epsilon \rceil$ heavy edges from the optimal matching: $n^{2/\epsilon}$ guesses Also guess how they are assigned to R or B: $2^{2/\epsilon}$ guesses
- 2. Prune the remaining instance by deleting all matched vertices and heavy edges
- 3. Remaining bipartite graph only contains light edges
- Find a minimum-weight perfect matching for remaining vertices containing only light edges which can be approximately balanced to any ratio
- 5. Results in $(1 + \epsilon)$ -approximation

Randomized Exact Algorithm

- Edge-weights are integers from [0, N] for some integer N
- Algebraic tools: DeMillo–Lipton–Schwartz–Zippel Lemma and Polynomial Identity Testing (PIT)
- Reduce the problem to checking whether certain polynomials are not identically zero
- Polynomials are implicitly defined: no explicit representation, but can be efficiently evaluated at given points
- ▶ Polynomial $P_{r,b}(x, y, Z)$ is not identically zero iff there exists a perfect matching M that can be partitioned into (M_R, M_B) where $w(M_R) = r$ and $w(M_B) = b$.

Randomized Exact Algorithm

- ▶ Let F be a field of characteristic 2 and let F[U] be the ring of polynomials where U = {x, y, z_{1,1}, z_{1,2}, ..., z_{n,n}} is a set of variables
- Define matrix $A = (a_{ij})$ where $a_{ij} = (x^{w_{ij}} + y^{w_{ij}}) \cdot z_{ij}$.

• det(A) =
$$Q(x, y, Z)$$
 is a polynomial in $\mathbb{F}[U]$, where $Z = \{z_{1,1}, \dots z_{n,n}\}$

$$Q(x, y, Z) = \sum_{r=0}^{N} \sum_{b=0}^{N} x^{r} y^{b} \cdot P_{r,b}(Z)$$

• Degree of
$$Q(x, y, Z)$$
 is at most $n \cdot N$

Observation

 $P_{r,b}(Z)$ is not identically 0 iff there exists a (r,b) perfect matching.

Tanmay Inamdar

Polynomial Identity Testing

- ▶ Goal is to find $0 \le r, b \le N$ with minimum $\{r, b\}$ such that, there exists a (r, b) perfect matching
- Equivalently, iterate over all $0 \le r, b \le N$ and check whether $P_{r,b}(Z)$ is identically zero
- ▶ DLSZ Lemma implies If we evaluate $P_{r,b}(Z)$ at randomly sampled $k \gg n^2$ values, with high probability, all evaluations are zero iff $P_{r,b}(Z)$ is identically zero
- \blacktriangleright Each evaluation takes time polynomial in n and N
- ► Can solve Socially FAIR MATCHING exactly in time $(n + N)^{O(1)}$ with high probability

Randomized EPTAS

- \blacktriangleright We assumed that weights are integral and from range [0,N]
- Reduce general case to this case (heavily inspired from knapsack-type EPTAS)
- \blacktriangleright Weights can be made integers in the range $[0,n/\epsilon],$ at the expense of $(1+\epsilon)\text{-loss}$
- Then solve exactly (via PIT)
- ► Randomized (n/ε)^{O(1)} time algorithm that computes a (1 + ε)-approximation with high probability

Summary and Open Problems

- Deterministic PTAS for general weights Randomized EPTAS (exact if weights are integer and polynomially bounded)
- ▶ NP-hard for general weights (reduction from PARTITION)
- Can we get deterministic EPTAS?

Problem naturally extends to 3 colors and more, but algorithms unclear 3-DIMENSIONAL MATCHING is NP-hard Approximations? Beyond polynomial-time?