Adaptive Data Structures for Colored 2D Dominance Range Counting

Younan Gao

Dalhousie University

Define the Problems

- Word-RAM: $w=\Theta(\lg n)$ bits,
- on an $n \times n$ grid,
- colors drawn from [0.. $C-1$], where $C \leq n$,
- and colored dominance range counting: $k=3$.

Related Work and Our Result

Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O\left(\lg \lg n+\log _{w} k\right)$	TALG'2016

- The α-capped version of the problem
- Nested shallow cuttings

Related Work and Our Result

Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O\left(\lg \lg n+\log _{w} k\right)$	TALG'2016
Adaptive colored 1 D range counting		
$O(n)$	$O\left(1+\log _{w} k\right)$	TODS'2014

Related Work and Our Result

Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O\left(\lg \lg n+\log _{w} k\right)$	TALG'2016
Adaptive colored 1D range counting		
$O(n)$		
Colored 2D dominance range counting		
$O(n)$	$O\left(\log _{w} n\right)$	Known

- colored 2D dominance range counting \rightarrow 2D stabbing counting;
- 2D stabbing counting $\rightarrow 2 \mathrm{D}$ dominance range counting.
- $k=C-\bar{k}$.

Related Work and Our Result

Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O\left(\lg \lg n+\log _{w} k\right)$	TALG'2016
Adaptive colored 1D range counting		
$O(n)$	$O\left(1+\log _{w} k\right)$	TODS'2014
Colored 2D dominance range counting		
$O(n)$	$O\left(\log _{w} n\right)$	Known
Adaptive colored 2D dominance range counting		
$O(n)$	$O\left(1+\log _{w} k\right)$	New

- Colored 2D dominance range counting \rightarrow 2D stabbing counting
- Adaptive 2D 3-sided stabbing counting
- The α-capped version of 2D 3 -sided stabbing counting
- Nested shallow cuttings

Related Work and Our Result

Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O\left(\lg \lg n+\log _{w} k\right)$	TALG'2016
Adaptive colored 1D range counting		
$O(n)$	$O\left(1+\log _{w} k\right)$	TODS'2014
Colored 2D dominance range counting		
$O(n)$	$O\left(\log _{w} n\right)$	Known
Adaptive colored 2D dominance range counting		
$O(n)$	$O\left(1+\log _{w} k\right)$	New

- Colored 2D dominance range counting \rightarrow 2D stabbing counting
- Adaptive 2D 3-sided stabbing counting
- The α-capped version of 2D 3 -sided stabbing counting
- Nested shallow cuttings

Reducing to 2D 3-Sided Stabbing Counting

A t-level shallow cutting.

- Assume, w.l.o.g, each rect is of the form $\left[x_{1}, x_{2}\right] \times\left[y_{1},+\infty\right)$.

A t-level shallow cutting.

- Divide the vertical edges into slabs of size t.

A t-level shallow cutting.

- Each cell is of the form $\left[x_{1}, x_{2}\right] \times\left(-\infty, y_{2}\right]$.

A t-level shallow cutting.

A t-level shallow cutting.

- 4 rectangles span the third slab.

A t-level shallow cutting.

A t-level shallow cutting.

- Overall, $2 n / t$ cells are created.

A t-level shallow cutting.

- If q is not contained in any cells, then $\geq t$ rects contain q.
- α-capped version of stabbing counting

A t-level shallow cutting.

- Each cell intersects with $\leq 2 t$ rectangles:
- $\leq t$ rectangles of type-1
- $\leq t$ rectangles of type-2.

A t-level shallow cutting.

- In α-capped version, the query time is bounded by $O\left(\log _{w} \alpha\right)$, instead of $O\left(\log _{w} n\right)$.

An $O(n \lg \lg n)$-word solution

- For each $\lg \lg \lg n \leq i \leq \lg \lg n$,
- construct $2^{2^{i}}$-capped data structure.
- Return k in $O\left(\lg \lg k+\log _{w} k\right)$ time.

Nested Shallow Cuttings: An Observation

- Observation: All rects that intersect a smaller cell of t-level cutting intersect the parent cell in t^{2}-level cutting.

Nested Shallow Cuttings: An Observation

- Observation: All rects that intersect a smaller cell of t-level cutting intersect the parent cell in t^{2}-level cutting.
- Before, we looked for the smallest cell that contains the query point

Nested Shallow Cuttings: An Observation

- Observation: All rects that intersect a smaller cell of t-level cutting intersect the parent cell in t^{2}-level cutting.
- Before, we looked for the smallest cell that contains the query point

Handling Type-1 Rectangles

- Saving space from $O(\alpha \lg n)$ to $O(\alpha \lg \alpha)$ bits by rank reduction;

Handling Type-1 Rectangles

- Saving space from $O(\alpha \lg n)$ to $O(\alpha \lg \alpha)$ bits by rank reduction;
- x-rank of q : $t_{1}+t_{2}$, where
- t_{1} is pre-stored, using $O(\lg \alpha)$ bits and
- t_{2} is $q . x \bmod \alpha$

Handling Type-1 Rectangles

- Saving space from $O(\alpha \lg n)$ to $O(\alpha \lg \alpha)$ bits by rank reduction;
- x-rank of $q: t_{1}+t_{2}$, where
- t_{1} is pre-stored, using $O(\lg \alpha)$ bits and
- t_{2} is q.x $\bmod \alpha$
- y-rank of q : Use $O\left(\alpha\left(\lg n / \log _{w} \alpha+\lg \alpha\right)\right)$ bits, plus additional $O(n)$ words, and return in $O\left(\log _{w} \alpha\right)$ time.

Handling Type-2 Rectangles

- Recall that a cell intersects $\leq \alpha$ type- 2 rects.

Handling Type-2 Rectangles

- Recall that a cell intersects $\leq \alpha$ type-2 rects.

Handling Type-2 Rectangles

- Recall that a cell intersects $\leq \alpha$ type-2 rects.
- Now, build the data structure for $\sqrt{\alpha}$ lowest ones:
- A predecessor structure implemented by Fusion Trees
- using $O(\sqrt{\alpha} \lg n)$ bits of space.

Wrap-Up: Space Costs

- Total space cost in bits:

$$
O(n \lg n)+\sum_{\alpha} O\left(\frac{n}{\alpha} \cdot\left(\sqrt{\alpha} \lg n+\alpha\left(\frac{\lg n}{\log _{w} \alpha}+\lg \alpha\right)\right)\right)=O(n \lg n)
$$

Wrap-Up: The Query Algorithm

- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i^{\prime}-1}} \leq k \leq 2^{2^{i^{\prime}}}$.

Wrap-Up: The Query Algorithm

- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i^{\prime}-1}} \leq k \leq 2^{2^{i^{\prime}}}$.
- Finding the parent of the smallest cell.

Wrap-Up: The Query Algorithm

- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i^{\prime}-1}} \leq k \leq 2^{2^{i^{\prime}}}$.
- Finding the parent of the smallest cell.
- Search for k_{1} among type- 1 rects in $O\left(\log _{w} 2^{2^{i^{\prime}+1}}\right)=O\left(\log _{w} k\right)$ time.

Wrap-Up: The Query Algorithm

- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i^{\prime}-1}} \leq k \leq 2^{2^{i^{\prime}}}$.
- Finding the parent of the smallest cell.
- Search for k_{1} among type- 1 rects in $O\left(\log _{w} 2^{2^{i^{\prime}+1}}\right)=O\left(\log _{w} k\right)$ time.
- Search for k_{2} among type-2 rects in $O\left(\log _{w} \sqrt{2^{2^{\prime}+1}}\right)=O\left(\log _{w} k\right)$.

Wrap-Up: The Query Algorithm

- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i^{\prime}-1}} \leq k \leq 2^{2^{i^{\prime}}}$.
- Finding the parent of the smallest cell.
- Search for k_{1} among type- 1 rects in $O\left(\log _{w} 2^{2^{i^{\prime}+1}}\right)=O\left(\log _{w} k\right)$ time.
- Search for k_{2} among type-2 rects in $O\left(\log _{w} \sqrt{2^{2^{\prime}+1}}\right)=O\left(\log _{w} k\right)$.
- return $k_{1}+k_{2}$ as k.

Open Problems

Colored 3D dominance range counting:

- $O(n \lg n / \lg \lg n)$ words of space and $O\left(\left(1+\log _{w} k\right)^{2}\right)$ query time?

Thanks!

