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Define the Problems

x

y

15

15

5 10

5

10
(11, 10)

• Word-RAM: w = Θ(lg n) bits,

• on an n × n grid,

• colors drawn from [0..C − 1],

where C ≤ n,

• and colored dominance range

counting: k = 3.
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Related Work and Our Result

Adaptive 2D orthogonal range counting

Space Query Time Remark

O(n lg lg n) O(lg lg n + logw k) TALG’2016

• The α-capped version of the problem

• Nested shallow cuttings
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Related Work and Our Result

Adaptive 2D orthogonal range counting

Space Query Time Remark

O(n lg lg n) O(lg lg n + logw k) TALG’2016

Adaptive colored 1D range counting

O(n) O(1 + logw k) TODS’2014
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Related Work and Our Result

Adaptive 2D orthogonal range counting

Space Query Time Remark

O(n lg lg n) O(lg lg n + logw k) TALG’2016

Adaptive colored 1D range counting

O(n) O(1 + logw k) TODS’2014

Colored 2D dominance range counting

O(n) O(logw n) Known

• colored 2D dominance range counting → 2D stabbing counting;

• 2D stabbing counting → 2D dominance range counting.

• k = C − k.
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Reducing to 2D 3-Sided Stabbing Counting
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Reducing to 2D 3-Sided Stabbing Counting
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• All rectangles are disjoint.

• Each rectangle has ≤ 3 sides.

• An orange point is dominated

by the query point iff an orange

rectangle contains the query

point.
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Reducing to 2D 3-Sided Stabbing Counting
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• At most
∑

c |Pc | = n rectangles

• # of the rectangles that

contain the query point =

# of the distinct colors

dominated by the query point.
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A t-level shallow cutting.
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• Assume, w.l.o.g, each rect is of the form [x1, x2]× [y1,+∞).

11



A t-level shallow cutting.
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• Divide the vertical edges into slabs of size t.
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A t-level shallow cutting.
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• Each cell is of the form [x1, x2]× (−∞, y2].
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A t-level shallow cutting.
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A t-level shallow cutting.
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• 4 rectangles span the third slab.
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A t-level shallow cutting.
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A t-level shallow cutting.
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• Overall, 2n/t cells are created.
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A t-level shallow cutting.
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• If q is not contained in any cells, then ≥ t rects contain q.

• α-capped version of stabbing counting
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A t-level shallow cutting.
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• Each cell intersects with ≤ 2t rectangles:

• ≤ t rectangles of type-1

• ≤ t rectangles of type-2.
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A t-level shallow cutting.
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• In α-capped version, the query time is bounded by O(logw α),

instead of O(logw n).
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An O(n lg lg n)-word solution

lg n-capped, lg2 n-capped, · · ·, 22
i
′
−1

-capped, 22
i
′

-capped

Failure Failure Failure 22
i
′
−1

< k ≤ 22
i
′

• For each lg lg lg n ≤ i ≤ lg lg n,

• construct 22
i

-capped data structure.

• Return k in O(lg lg k + logw k) time.
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Nested Shallow Cuttings: An Observation
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• Observation: All rects that intersect a smaller cell of t-level cutting

intersect the parent cell in t2-level cutting.

• Before, we looked for the smallest cell that contains the query point
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Handling Type-1 Rectangles
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• Saving space from O(α lg n) to O(α lgα) bits by rank reduction;

• x-rank of q: t1 + t2, where

• t1 is pre-stored, using O(lgα) bits and

• t2 is q.x mod α

• y -rank of q: Use O(α(lg n/ logw α+ lgα)) bits, plus additional O(n)

words, and return in O(logw α) time.
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Handling Type-2 Rectangles
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• Recall that a cell intersects ≤ α type-2 rects.

• Now, build the data structure for
√
α lowest ones:

• A predecessor structure implemented by Fusion Trees

• using O(
√
α lg n) bits of space.
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Wrap-Up: Space Costs

• Total space cost in bits:

O(n lg n) +
∑
α

O(
n

α
· (
√
α lg n + α(

lg n

logw α
+ lgα))) = O(n lg n)
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Wrap-Up: The Query Algorithm
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• Finding the smallest cell that contains q in constant time, e.g.,

22
i′−1 ≤ k ≤ 22

i′

.

• Finding the parent of the smallest cell.

• Search for k1 among type-1 rects in O(logw 22
i′+1

) = O(logw k) time.

• Search for k2 among type-2 rects in O(logw

√
22i

′+1) = O(logw k).

• return k1 + k2 as k.
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Open Problems

Colored 3D dominance range counting:

• O(n lg n/ lg lg n) words of space and O((1 + logw k)2) query time?
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Thanks!
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