Adaptive Data Structures for Colored 2D Dominance Range Counting

Younan Gao

Dalhousie University

Define the Problems



- Word-RAM: $w = \Theta(\lg n)$ bits,
- on an $n \times n$ grid,

x

- colors drawn from [0..C 1], where $C \le n$,
- and colored dominance range counting: k = 3.

Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O(\lg \lg n + \log_w k)$	TALG'2016

- $\bullet~$ The $\alpha\text{-capped}$ version of the problem
- Nested shallow cuttings

Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O(\lg \lg n + \log_w k)$	TALG'2016
Adaptive colored 1D range counting		
<i>O</i> (<i>n</i>)	$O(1 + \log_w k)$	TODS'2014

Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O(\lg \lg n + \log_w k)$	TALG'2016
Adaptive colored 1D range counting		
<i>O</i> (<i>n</i>)	$O(1 + \log_w k)$	TODS'2014
Colored 2D dominance range counting		
<i>O</i> (<i>n</i>)	$O(\log_w n)$	Known

- colored 2D dominance range counting \rightarrow 2D stabbing counting;
- + 2D stabbing counting \rightarrow 2D dominance range counting.

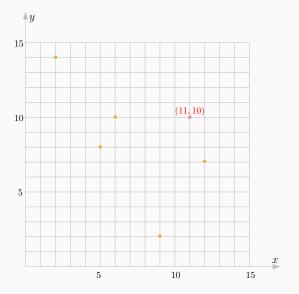
•
$$k = C - \overline{k}$$
.

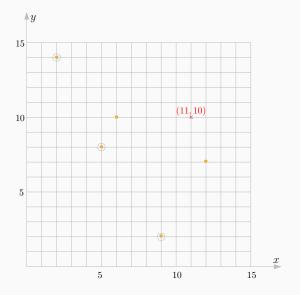
Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O(\lg \lg n + \log_w k)$	TALG'2016
Adaptive colored 1D range counting		
<i>O</i> (<i>n</i>)	$O(1 + \log_w k)$	TODS'2014
Colored 2D dominance range counting		
<i>O</i> (<i>n</i>)	$O(\log_w n)$	Known
Adaptive colored 2D dominance range counting		
<i>O</i> (<i>n</i>)	$O(1 + \log_w k)$	New

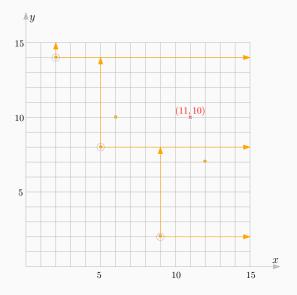
- Colored 2D dominance range counting \rightarrow 2D stabbing counting
- Adaptive 2D 3-sided stabbing counting
 - The $\alpha\text{-capped}$ version of 2D 3-sided stabbing counting
 - Nested shallow cuttings

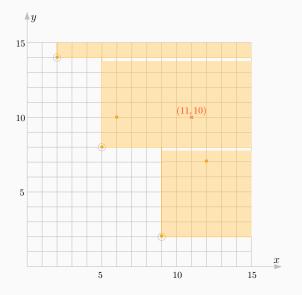
Adaptive 2D orthogonal range counting		
Space	Query Time	Remark
$O(n \lg \lg n)$	$O(\lg \lg n + \log_w k)$	TALG'2016
Adaptive colored 1D range counting		
<i>O</i> (<i>n</i>)	$O(1 + \log_w k)$	TODS'2014
Colored 2D dominance range counting		
O(n)	$O(\log_w n)$	Known
Adaptive colored 2D dominance range counting		
<i>O</i> (<i>n</i>)	$O(1 + \log_w k)$	New

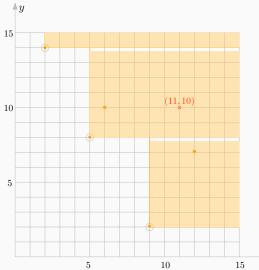
- Colored 2D dominance range counting \rightarrow 2D stabbing counting \checkmark
- Adaptive 2D 3-sided stabbing counting \checkmark
 - The $\alpha\text{-capped version of 2D 3-sided stabbing counting}$
 - Nested shallow cuttings







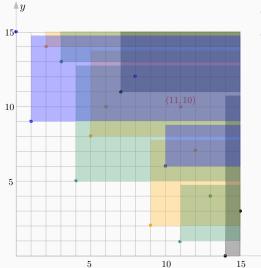




• All rectangles are disjoint.

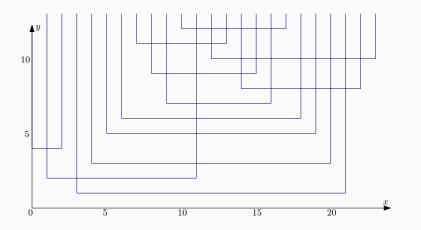
x

- Each rectangle has \leq 3 sides.
- An orange point is dominated by the query point iff an orange rectangle contains the query point.

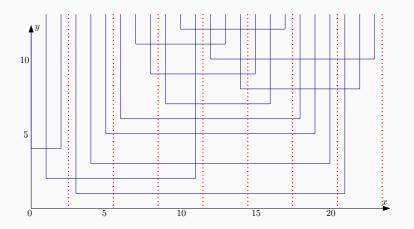


- At most $\sum_{c} |P_{c}| = n$ rectangles
- # of the rectangles that contain the query point = # of the distinct colors dominated by the query point.

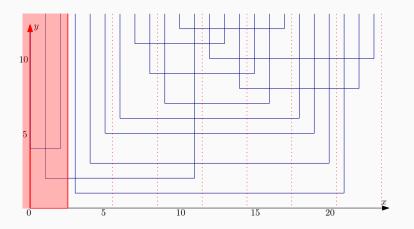
x



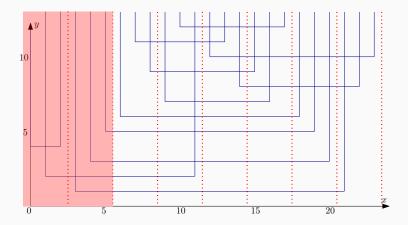
• Assume, w.l.o.g, each rect is of the form $[x_1, x_2] \times [y_1, +\infty)$.

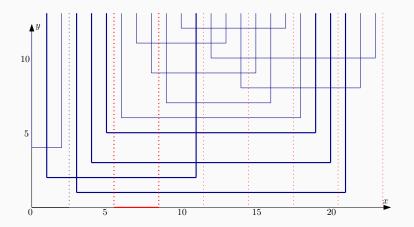


• Divide the vertical edges into slabs of size t.

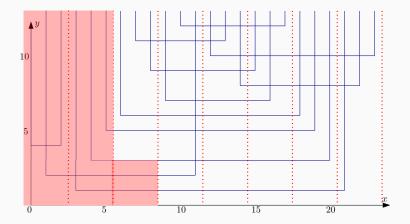


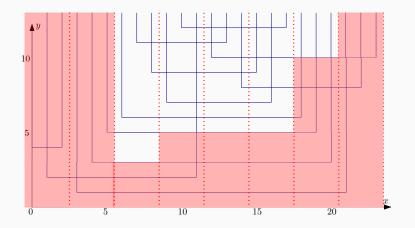
• Each cell is of the form $[x_1, x_2] \times (-\infty, y_2]$.



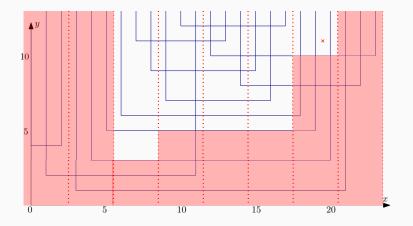


• 4 rectangles span the third slab.

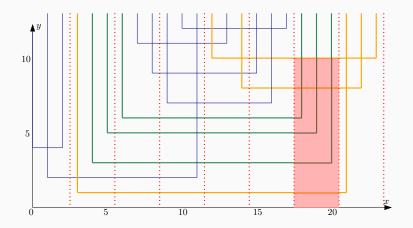




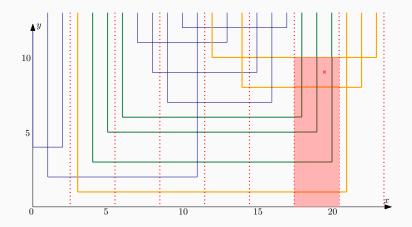
• Overall, 2n/t cells are created.



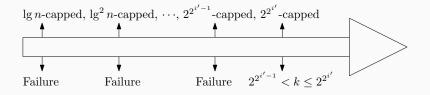
- If q is not contained in any cells, then $\geq t$ rects contain q.
- $\alpha\text{-capped}$ version of stabbing counting



- Each cell intersects with $\leq 2t$ rectangles:
 - $\leq t$ rectangles of type-1
 - $\leq t$ rectangles of type-2.

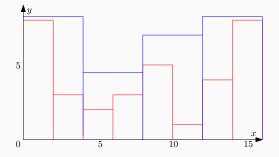


 In α-capped version, the query time is bounded by O(log_w α), instead of O(log_w n).



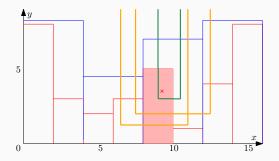
- For each $\lg \lg \lg n \le i \le \lg \lg n$,
- construct 2^{2ⁱ}-capped data structure.
- Return k in $O(\lg \lg k + \log_w k)$ time.

Nested Shallow Cuttings: An Observation



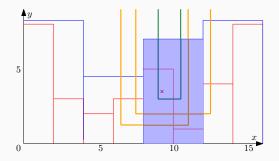
• **Observation:** All rects that intersect a smaller cell of *t*-level cutting intersect the parent cell in *t*²-level cutting.

Nested Shallow Cuttings: An Observation



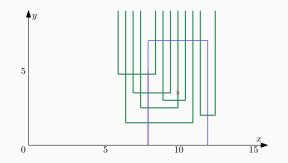
- **Observation:** All rects that intersect a smaller cell of *t*-level cutting intersect the parent cell in *t*²-level cutting.
- Before, we looked for the smallest cell that contains the query point

Nested Shallow Cuttings: An Observation



- **Observation:** All rects that intersect a smaller cell of *t*-level cutting intersect the parent cell in *t*²-level cutting.
- Before, we looked for the smallest cell that contains the query point

Handling Type-1 Rectangles



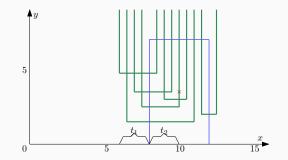
• Saving space from $O(\alpha \lg n)$ to $O(\alpha \lg \alpha)$ bits by rank reduction;

Handling Type-1 Rectangles



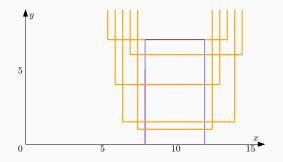
- Saving space from $O(\alpha \lg n)$ to $O(\alpha \lg \alpha)$ bits by rank reduction;
- x-rank of q: $t_1 + t_2$, where
 - t_1 is pre-stored, using $O(\lg \alpha)$ bits and
 - t_2 is $q.x \mod \alpha$

Handling Type-1 Rectangles



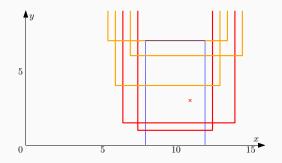
- Saving space from $O(\alpha \lg n)$ to $O(\alpha \lg \alpha)$ bits by rank reduction;
- x-rank of q: $t_1 + t_2$, where
 - t_1 is pre-stored, using $O(\lg \alpha)$ bits and
 - t_2 is $q.x \mod \alpha$
- y-rank of q: Use O(α(lg n/ log_w α + lg α)) bits, plus additional O(n) words, and return in O(log_w α) time.

Handling Type-2 Rectangles



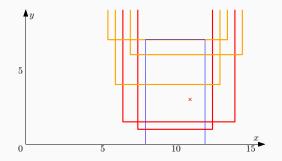
• Recall that a cell intersects $\leq \alpha$ type-2 rects.

Handling Type-2 Rectangles



• Recall that a cell intersects $\leq \alpha$ type-2 rects.

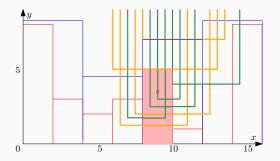
Handling Type-2 Rectangles



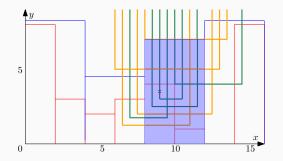
- Recall that a cell intersects $\leq \alpha$ type-2 rects.
- Now, build the data structure for $\sqrt{\alpha}$ lowest ones:
 - A predecessor structure implemented by Fusion Trees
 - using $O(\sqrt{\alpha} \lg n)$ bits of space.

• Total space cost in bits:

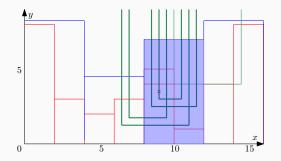
$$O(n \lg n) + \sum_{\alpha} O(\frac{n}{\alpha} \cdot (\sqrt{\alpha} \lg n + \alpha(\frac{\lg n}{\log_{w} \alpha} + \lg \alpha))) = O(n \lg n)$$



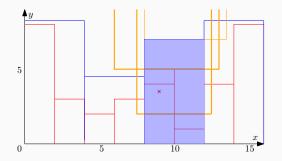
• Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i'-1}} \le k \le 2^{2^{i'}}$.



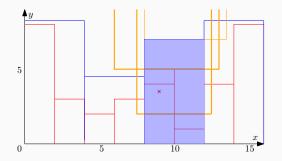
- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i'-1}} \le k \le 2^{2^{i'}}$.
- Finding the parent of the smallest cell.



- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i'-1}} \le k \le 2^{2^{i'}}$.
- Finding the parent of the smallest cell.
- Search for k_1 among type-1 rects in $O(\log_w 2^{2^{i'+1}}) = O(\log_w k)$ time.



- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i'-1}} < k < 2^{2^{i'}}$
- Finding the parent of the smallest cell.
- Search for k₁ among type-1 rects in O(log_w 2^{2^{i'+1}}) = O(log_w k) time.
 Search for k₂ among type-2 rects in O(log_w √2^{2^{i'+1}}) = O(log_w k).



- Finding the smallest cell that contains q in constant time, e.g., $2^{2^{i'-1}} \le k \le 2^{2^{i'}}$.
- Finding the parent of the smallest cell.
- Search for k_1 among type-1 rects in $O(\log_w 2^{2^{i'+1}}) = O(\log_w k)$ time.
- Search for k_2 among type-2 rects in $O(\log_w \sqrt{2^{2^{i'+1}}}) = O(\log_w k)$.
- return $k_1 + k_2$ as k.

Colored 3D dominance range counting:

• $O(n \lg n / \lg \lg n)$ words of space and $O((1 + \log_w k)^2)$ query time?

Thanks!