

Fully Dynamic Clustering and Diversity Maximization in Doubling Metrics

Andrea Pietracaprina

University of Padova, Italy

Joint work with:

Paolo Pellizzoni (Max-Planck Inst. of Biochemistry, Germany) Geppino Pucci (University of Padova, Italy)

- Problems and key notions
- Our contribution and comparison with previous work
- Augmented Cover Trees
- ACT-based fully-dynamic clustering and diversity

Conclusions

k-center

k-center: Given a pointset S from metric space $(M, d(\cdot, \cdot))$ and $k \le |S|$, k centers (set $C \subseteq S$) minimizing the radius

$$r_C(S) = \max_{x \in S} d(x, C)$$

Variants:

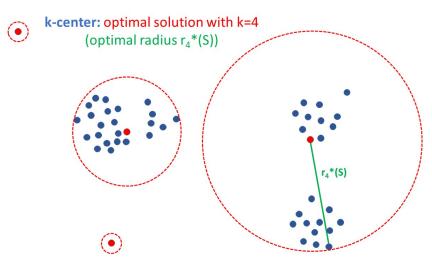
k-center with z outliers: Disregard the z largest center-point distances in the max computation (z outliers).

$$r_{C}(S,z) = \min_{\substack{S' \subset S, |S'|=z}} \max_{x \in S-S'} d(x,C)$$

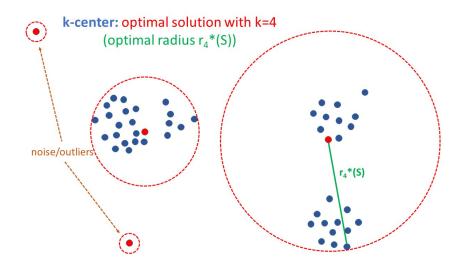
► Matroid center: Set C must be an independent set of a matroid (S, I). In this case, k = rank of matroid.

Used to model fairness constraints.

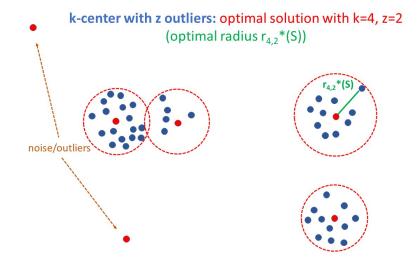
k-center



k-center

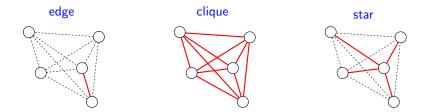


k-center with z outliers



Diversity maximization: Given a pointset *S* from metric space $(M, d(\cdot, \cdot))$ and $k \leq |S|$, determine *k* points (set $C \subseteq S$) maximizing a given *diversity function* div(C)

Typical instantiations: div(C) = min (aggregate) distance of a specific subgraph induced by C, e.g.,



Applications

 $\leftarrow \, \mathsf{News}/\mathsf{document} \,\, \mathsf{aggregators}$

[←] Facility location

Observations. Above problems are NP-hard and best approximations are often costly. Also, practical scenarios entail dynamically evolving data.

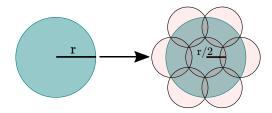
FULLY-DYNAMIC SETTING: at each time step t support

- update: insert/delete a point p in/from S
- query: return a good solution for the current S

GOALs (w.r.t. full recomputation):

- significantly smaller update/query times
- comparable accuracy
- ► (quasi-)linear space

Doubling dimension of a metric space (M, D): minimum D such that every *ball* of radius r can be covered by 2^D balls of radius r/2



- Generalizes notion of Euclidean dimension
- E.g., related to expansion for networks under shortest-path distances

- 1. Augmented Cover Tree: enhancement of Cover Tree supporting fully-dynamic k-center (with outliers), matroid-center, diversity maximization
 - update time: $O(c^D \log \Delta)$, with c = O(1) and Δ = aspect ratio.

linear space

(Extra factor k for matroid-center).

- 2. Coreset-based fully-dynamic algorithms for the above problems
 - $(\alpha_{\text{static}} + \epsilon)$ -approx. with $\alpha_{\text{static}} =$ best approx. in static setting. (+1 for k-center with outliers)
 - Query time $O\left(\operatorname{poly}(k, (c/\epsilon)^D) \log \Delta\right)$ (independent of |S|!).

Remarks: data structure oblivious to k, ϵ, D, Δ – algorithms oblivious to D, Δ .

• Cover Tree:

[BeygelzimerEtAl-ICML06]: original structure, more complex implementation and analysis, no support for extra info.

k-center

- [ChanEtAl-WWWW2018], [BateniEtAl-SODA23]: randomized algorithms, update time dependent on k, superlinear space, data structure dependent on k and ϵ .
- [GoranciEtAl-ALENEX21]: randomized algorithms, superlinear space, data structure dependent on ϵ .

k-center with z outliers.

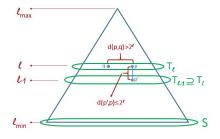
- [ChanEtAl-COCOON22]: randomized algorithm, bicriteria $(14 + \epsilon)$ -approximation ratio (ours is $(3 + \epsilon)$ and non-bicriteria!) update time dependent on k, superlinear space, data structure dependent on k and ϵ .

No previous results for fully-dynamic matroid-center and diversity maximization

Augmented cover tree: definition

Original Cover tree for pointset S

- Levels indexed by $\ell \in [\ell_{\min}, \ell_{\max}]$
- $\blacktriangleright \ \ell_{\max} \ell_{\min} = O\left(\log \Delta\right)$
- Each node associated with a $p \in S$
- Each $p \in S$ associated with ≥ 1 nodes
- Define $T_{\ell} = \{ \text{points at level } \ell \}$:
 - $T_\ell \subseteq T_{\ell-1}$
 - $d(p,q)>2^\ell$ for $p,q\in T_\ell;$
 - $d(p',p) \leq 2^{\ell}$ for $p' \in T_{\ell-1}$ child of p.



Compaction: to achieve linear space, chains of degree-1 nodes are coalesced. **Augmentation:** each node v carries addidtional info:

- weight: number of points in subtree rooted at v
- mis: maximal independent set of points in the subtree rooted at v

DYNAMIC MAINTAINANCE

Key notion: cover set at each level of T for an arbitrary point q

$$\blacktriangleright Q^q_{\ell_{\max}} = \{ \text{root of } T \}$$

Università

degli Studi di Padova

 $\blacktriangleright \ \ Q^q_\ell = \{p \in \mathcal{T}_\ell : d(p,q) \le 2^{\ell+1} \land p. \mathsf{parent} \in Q^q_{\ell+1}\}, \ \mathsf{for} \ \ell_{\min} \le \ell < \ell_{\max}$

Lemma: for every q and ℓ

 $|Q_{\ell}^{q}| \leq 4^{D}$ and $|\{\text{children of } Q_{\ell}^{q}\}| \leq 12^{D}.$

Insert/delete of a point *q*: essentially entails updating all cover sets Q_{ℓ}^{q} and the info associated with its nodes.

 \Rightarrow running time $= O(c^D \log \Delta)$

Remark: an extra factor proportional to the rank of the matroid is needed to maintain maximum independent sets, if needed.

FULLY-DYNAMIC CLUSTERING/DIVERSITY

Main idea:

Università

degli Studi di Padova

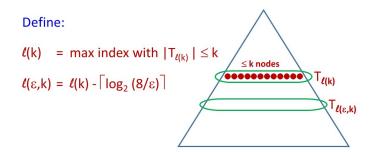
- Extract from T a small coreset $\overline{C} \subset S$ which represents S well for the problem at hand.
- Run best static approximation on \bar{C}

Definition: An (ϵ, k) -coreset for S is a subset $\overline{C} \subseteq S$ such that

 $r_{\bar{C}}(S) \leq \epsilon r_k^*(S)$

where $r_k^*(S)$ is the optimal radius for k-center.

ACT-based fully dynamic clustering/diversity



Lemma: $T_{\ell(\epsilon,k)}$ is an (ϵ, k) -coreset for S

- $|T_{\ell(\epsilon,k)}| \le k(64/\epsilon)^D$
- Construction time: $O(k((64/\epsilon)^D + \log \Delta))$.

Problem	Coreset	Approximation ratio
k-center	$T_{\ell(\epsilon,k)}$	$2 + \epsilon$
k-center with z outliers	$T_{\ell(\epsilon,k+z)}$	$3 + O(\epsilon)$
Matroid-center	$MIS(T_{\ell(\epsilon,k)})$	$3+O(\epsilon)$
Diversity maximization	$DM(T_{\ell(\epsilon,k)})$	$\alpha_{ m static} + O(\epsilon)$

- ► MIS(T_{ℓ(ϵ,k)}) = union of all maximal independent sets at T_{ℓ(ϵ,k)} (k = rank of matroid)
- DM($T_{\ell(\epsilon,k)}$) depends on the diversity function:
 - edge/cycle variants: $\mathsf{DM}(T_{\ell(\epsilon,k)}) = (T_{\ell(\epsilon,k)})$
 - other variants: $DM(T_{\ell(\epsilon,k)}) = MIS(T_{\ell(\epsilon,k)})$ w.r.t. k-bounded cardinality matroid.

 $\alpha_{\text{static}} = \text{best static approximation}.$

Summary:

- Fully-Dynamic deterministic algorithms for k-center (with outliers), matroid center and diversity maximization.
- ► The algorithms feature:
 - Accuracy comparable to best static algorithms
 - For data of low doubling dimension, small update and query times (independent of dataset size)

Future work:

- Experimental analysis (under way)
- Lower dependency on doubling dimension
- Extension to other problems (e.g., diversity maximization with matroid constraint, other clustering problems).

Thank you

