Colored Constrained Spanning Tree on Directed Graphs

Hung-Yeh Lee, Hsuan-Yu Liao and Wing-Kai Hon

1

Introduction

Introduction

• κ -Colored-Constraint: the number of incident edges of the same color $\leq \kappa$

• κ -Colored-Constraint: the number of incident edges of the same color $\leq \kappa$

- Directed κ-CCST:
 A spanning out-tree that follows the κ-colored-constraint
- Both incoming and outgoing edges are counted

- Directed κ-CCST:
 A spanning out-tree that follows the κ-colored-constraint
- Both incoming and outgoing edges are counted

• κ -Colored-Out-Constraint: the number of outgoing edges of the same color $\leq \kappa$

• κ -Colored-Out-Constraint: the number of outgoing edges of the same color $\leq \kappa$

Previous Works

- 1-CCST on edge-colored undirected graphs
 - NP-hard
 - Tractable in special cases
- Ramsey-type problems:
 - How large should the graph be to guarantee a 1-CCST

[Kano et al. (Discrete Math. 20) ...]

[Borozan et al. (Eur. J. Comb. 19)]

Graph Class	λ	к	Hardness
Directed	≥ 2	≥1	NP-Hard
DAG	≥ 3	≥1	NP-Hard
DAG	= 2	= 1	Р

	14	$c \cap$	CCT
•	К-		C 31

Graph Class	λ	к	Hardness
Directed	≥ 4	≥ 1	NP-Hard
DAG	≥ 2	≥1	Р

Graph Class	λ	к	Hardness
Directed	≥ 2	≥1	NP-Hard
DAG	≥ 3	≥ 1	NP-Hard
DAG	= 2	= 1	Р

	14	r		CT
•	K-(ノし	J I

Graph Class	λ	К	Hardness
Directed	≥ 4	≥ 1	NP-Hard
DAG	≥ 2	≥ 1	Р

Graph Class	λ	κ	Hardness
Directed	≥ 2	≥1	NP-Hard
DAG	≥ 3	≥ 1	NP-Hard
DAG	= 2	= 1	Р

	74	$c \cap$	CCT	,
•	К-		<i>i</i> C31	

Graph Class	λ	к	Hardness
Directed	≥ 4	≥ 1	NP-Hard
DAG	≥ 2	≥ 1	Р

Graph Class	λ	κ	Hardness
Directed	≥ 2	≥ 1	NP-Hard
DAG	≥ 3	≥ 1	NP-Hard
DAG	= 2	= 1	Р

•		C	CCT	
•	К-	しし	しつ	

Graph Class	λ	к	Hardness
Directed	≥ 4	≥ 1	NP-Hard
DAG	≥ 2	≥ 1	Р

Graph Class	λ	κ	Hardness
Directed	≥ 2	≥ 1	NP-Hard
DAG	≥ 3	≥ 1	NP-Hard
DAG	= 2	= 1	Р

_		<u> </u>	CCT
•	К-	しし	C31

Graph Class	λ	к	Hardness
Directed	≥ 4	≥ 1	NP-Hard
DAG	≥ 2	≥1	Р

Tractable Cases

Rooted DAG

- Root: A vertex that can reach all vertices
- The root must be the only zero-indegree vertex on a DAG

1-CCST on a 2-edge-colored DAGs

- Observe that a 1-CCST on a 2-edge-colored DAG must be either an alternating path or a V-shaped tree
- Dynamic Programming

alternating path

V-shaped Tree

The Dynamic Programming

• Maintain the leaves and their incoming edge colors on trees spanning $v_1, v_2, ..., v_i$ for all i = 1, 2, ..., n

• Allows a linear time algorithm using stack and bit vector

 Match each non-root vertex to one of its incoming edge, such that colored-out-constraint holds

G'

• B-matching \rightarrow Maximum Flow

20

 Match each non-root vertex to one of its incoming edge, such that colored-out-constraint holds

 $cap = \kappa$

G'

• B-matching \rightarrow Maximum Flow

G

 v_1 v_2 v_3 v_5 $(\kappa = 2)$ v_4 v_6 v_6 v_1^{red} $v_1^{v_1}$ $v_1^{v_1}$ $v_1^{v_1}$

21

- Match each non-root vertex to one of its incoming edge, such that colored-out-constraint holds
- B-matching \rightarrow Maximum Flow

- Match each non-root vertex to one of its incoming edge, such that colored-out-constraint holds
- B-matching \rightarrow Maximum Flow

- Match each non-root vertex to one of its incoming edge, such that colored-out-constraint holds
- B-matching \rightarrow Maximum Flow

- Match each non-root vertex to one of its incoming edge, such that colored-out-constraint holds
- B-matching \rightarrow Maximum Flow

- Suppose the edge-colored graph has m edges and n vertices
- Flow graph has at most 2m + n edges and m + n 1 vertices

26

- Suppose the edge-colored graph has m edges and n vertices
- Flow graph has at most 2m + n edges and m + n 1 vertices

- Suppose the edge-colored graph has m edges and n vertices
- Flow graph has at most 2m + n edges and m + n 1 vertices

Hardness results

polynomial time solvable on DAGs

- NP-Hard problem X3C:
 - Input: $X = \{x_1, x_2, ..., x_{3n}\}$ and $C = \{c_1, c_2, ..., c_m\}$.
 - Output: Are there *n* elements of *C* whose union is *X*?

• Ex:
$$(m = 5, n = 2)$$

 $X = \{1, 2, 3, 4, 5, 6\},\$
 $C = \{\{1, 2, 3\}, \{2, 3, 4\}, \{1, 2, 5\}, \{2, 5, 6\}, \{1, 5, 6\}\}.$

• Ex: (m = 5, n = 2) $X = \{1, 2, 3, 4, 5, 6\}$ $C = \{\{1, 2, 3\}, \dots, \{1, 5, 6\}\}$

• Ex: (m = 5, n = 2) $X = \{1, 2, 3, 4, 5, 6\}$ $C = \{\{1, 2, 3\}, \dots, \{1, 5, 6\}\}$

• Ex: (m = 5, n = 2) $X = \{1, 2, 3, 4, 5, 6\}$ $C = \{\{1, 2, 3\}, \dots, \{1, 5, 6\}\}$

• Ex:
$$(m = 5, n = 2)$$

 $X = \{1, 2, 3, 4, 5, 6\}$
 $C = \{\{1, 2, 3\}, \dots, \{1, 5, 6\}\}$

$\kappa\text{-}CCST$ on DAGs

• Ex:
$$(m = 5, n = 2)$$

 $X = \{1, 2, 3, 4, 5, 6\}$
 $C = \{\{1, 2, 3\}, \dots, \{1, 5, 6\}\}$

$\kappa\text{-}CCST$ on DAGs

• Ex:
$$(m = 5, n = 2)$$

 $X = \{1, 2, 3, 4, 5, 6\}$
 $C = \{\{1, 2, 3\}, \dots, \{1, 5, 6\}\}$

$\kappa\text{-}CCST$ on DAGs

• Ex:
$$(m = 5, n = 2)$$

 $X = \{1, 2, 3, 4, 5, 6\}$
 $C = \{\{1, 2, 3\}, \dots, \{1, 5, 6\}\}$

{1, 2, 3} {1, 5, 6}
chosen v.s. not chosen

κ -COCST on directed graphs

NP-Hard

κ -COCST on directed graphs

• Replace each edge e = (u, v, c) with a gadget G_e .

Conclusion

• *к-СС*ST

Graph Class	λ	κ	Hardness
Directed	≥ 2	≥1	NP-Hard
DAG	≥ 3	≥1	NP-Hard
DAG	= 2	≥ 2	Open
DAG	= 2	= 1	Р

• *ĸ*-COCST

Graph Class	λ	К	Hardness
Directed	≥ 4	≥1	NP-Hard
Directed	= 3	= 1	Open
Directed	= 2	≥ 1	Open
DAG	≥ 2	≥1	Р