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• -Colored-Constraint:
the number of incident edges of the same color

-Colored-Constrained Spanning Tree 
( -CCST)
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-Colored-Out-Constrained Spanning 
Tree ( -COCST)
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Previous Works

• -CCST on edge-colored undirected graphs
• NP-hard
• Tractable in special cases

• Ramsey-type problems:
• How large should the graph be to guarantee a -CCST
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[Borozan et al. (Eur. J. Comb. 19)]

[Kano et al. (Discrete Math. 20) …]
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Tractable Cases
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Rooted DAG

• Root: A vertex that can reach all vertices
• The root must be the only zero-indegree vertex on a DAG
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-CCST on a -edge-colored DAGs

• Observe that a -CCST on a -edge-colored DAG must be 
either an alternating path or a V-shaped tree

• Dynamic Programming
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alternating path V-shaped Tree



The Dynamic Programming

• Maintain the leaves and their incoming edge colors
on trees spanning for all 

• Allows a linear time algorithm using stack and bit vector
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• Match each non-root vertex to one of its incoming edge, 
such that colored-out-constraint holds

• B-matching  Maximum Flow

-COCST on -edge-colored DAGs
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• Suppose the edge-colored graph has edges and vertices
• Flow graph has at most edges and vertices

-COCST on -edge-colored DAGs
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Hardness results
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-CCST on DAGs
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-CCST
on undirected graphs

NP-Hard
reduction

-CCST
on directed graphs

Borozan et al. (Eur. J. Comb. 2019)

degree-constrained 
spanning tree 

problem
reduction -CCST on DAGs

polynomial time solvable on DAGs



-CCST on DAGs

• NP-Hard problem X3C:
• Input: and . 
• Output: Are there elements of whose union is ?
• Ex: 
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-CCST on DAGs
( , )

reductionX3C



-CCST on DAGs

• Ex: 
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Exact-cover-testing component
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Truth-setting
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-CCST on DAGs
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-COCST on directed graphs
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-COCST
on directed graphs

( , )
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-COCST on directed graphs

• Replace each edge with a gadget .

edge gadget 
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-COCST on directed graphs
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• -COCST

Conclusion
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