From Curves to Words and Back Again: Geometric Computation of Minimum-Area Homotopy

Hsien-Chih Chang, Brittany Terese Fasy, Bradley McCoy*, David L. Millman, Carola Wenk

> Montana State University August 1, 2023 Montreal, Canada WADS

Collaborator Appreciation

Hsien-Chih Chang

Brittany Fasy

David Millman Carola Wenk Supported by NSF grants CCF 2107434, DMS 1664858 and CCF 2046730

Generic Curves

Generic Curves

Generic Curves

n - number of segments, |F| - number of faces, |V| - number of self-intersections

Generic Curves

Minimum Area Homotopy

 \sim

Agenda

Talk Outline

- Data Analysis
- Self-Overlapping Curves
- Minimum Area Homotopy
- Word Equivalence
- Mapping Class Groups
- An Open Inverse Problem

Measure Curve Similarity

Measure Curve Similarity

Measure Curve Similarity

Fréchet Distance

Minimum Homotopy Area

Measure Curve Similarity

Robust to Single Data Errors

Definition

Definition

Definition

Definition

Definition

Definition

W = []

W = [2]

$$W = [23]$$

$$W = [231]$$

$$W = [2314]$$

Blank Word Construction

W = [23142]

Blank Word Construction

 $W = [23142\bar{3}]$

Blank Word Construction

 $W = [23142\bar{3}\bar{4}]$

Blank Cuts and Groupings

 Positive subword σ = f₁f₂...f_k where each f_i is positive

Blank Cuts and Groupings

- Positive subword σ = f₁f₂...f_k where each f_i is positive
- Positive pairing (f, \bar{f}) , $w = [fp\bar{f}w'] p$ positive word

Blank Cuts and Groupings

- Positive subword σ = f₁f₂...f_k where each f_i is positive
- Positive pairing (f, \bar{f}) , $w = [fp\bar{f}w'] p$ positive word
- Blank cut replace positive pairing with identity
Blank's Algorithm

Blank Cuts and Groupings

- Positive subword σ = f₁f₂...f_k where each f_i is positive
- Positive pairing (f, \bar{f}) , $w = [fp\bar{f}w'] p$ positive word
- Blank cut replace positive pairing with identity

Blank's Algorithm

Blank Cuts and Groupings

- Positive subword σ = f₁f₂...f_k where each f_i is positive
- Positive pairing (f, \bar{f}) , $w = [fp\bar{f}w'] p$ positive word
- Blank cut replace positive pairing with identity
- Groupable remove positive pairings until positive word

Blank's Algorithm

Count the Number of Extensions

Definition

- Choose a spanning tree
- Write each face as a boundary of edges

•
$$\partial(f_1) = e_3 \bar{e}_2 e_1 e_4$$

•
$$\partial(f_2) = e_2$$

•
$$\partial(f_3) = \bar{e}_3$$

•
$$\partial(f_4) = \bar{e}_4$$

Words From Boundaries

- Choose a spanning tree
- Write each face as a boundary of edges

•
$$\partial(f_1) = e_3 \bar{e}_2 e_1 e_4$$

•
$$\partial(f_2) = e_2$$

•
$$\partial(f_3) = \bar{e}_3$$

•
$$\partial(f_4) = \bar{e}_4$$

• Write the curve as $\gamma = e_1 e_2 e_3 e_4$

Words From Boundaries

- Choose a spanning tree
- Write each face as a boundary of edges

•
$$\partial(f_1) = e_3 \bar{e}_2 e_1 e_4$$

•
$$\partial(f_2) = e_2$$

•
$$\partial(f_3) = \bar{e}_3$$

•
$$\partial(f_4) = \bar{e}_4$$

• Write the curve as $\gamma = e_1 e_2 e_3 e_4$

•
$$\gamma = \partial(f_2)\partial(f_3)\partial(f_1)\partial(f_4)\partial(f_2)\partial(\overline{f_3})\partial(\overline{f_4})$$

Words From Boundaries

• Folding - set of unlinked parings

- Folding set of unlinked parings
- Weighted cancellation norm

- Folding set of unlinked parings
- Weighted cancellation norm
- $||w|| := \min_{\mathcal{F}} \sum_{i} \operatorname{Area}(f_i)$

- Folding set of unlinked parings
- Weighted cancellation norm
- $||w|| := \min_{\mathcal{F}} \sum_{i} \operatorname{Area}(f_i)$
- Dynamic program think matrix chain multiplication

Where Did We Make Choices? Blank's Word

Nie's Word $\partial(f_1) = e_3 \bar{e}_2 e_1 e_4$

Where Did We Make Choices? Blank's Word

Nie's Word $\partial(f_1) = e_3 \bar{e}_2 e_1 e_4$

Where Did We Make Choices? Blank's Word

Nie's Word $\partial(f_1) = e_3 \bar{e}_2 e_1 e_4$

Where Did We Make Choices? Blank's Word

Nie's Word $\partial(f_1) = e_3 \bar{e}_2 e_1 e_4$

Where Did We Make Choices? Blank's Word

Nie's Word $\partial(f_1) = e_3 \bar{e}_2 e_1 e_4$

Tree Co-Tree Decomposition

Tree Co-Tree Decomposition

Where Did We Make Choices? Blank's Word

Foldings \iff Self-Overlapping Decompositions

Theorem (Fasy, Karakoç, Wenk - 2017)

Any curve has a self-overlapping decomposition whose area is minumum over all null-homotopies

Foldings \iff Self-Overlapping Decompositions

Theorem (Fasy, Karakoç, Wenk - 2017)

Any curve has a self-overlapping decomposition whose area is minumum over all null-homotopies

Foldings \iff Self-Overlapping Decompositions

Theorem (Fasy, Karakoç, Wenk - 2017)

Any curve has a self-overlapping decomposition whose area is minumum over all null-homotopies

Possible Issue

Possible Issue

Cable Independence

Mapping Class Groups

• surface with genus g and n punctures S_{g,n}

Cable Independence

Mapping Class Groups

- surface with genus g and n punctures S_{g,n}
- group of orientation-preserving diffeomorphisms *Diffeo*⁺(S_{g,n})

Cable Independence

Mapping Class Groups

- surface with genus g and n punctures S_{g,n}
- group of orientation-preserving diffeomorphisms Diffeo⁺(S_{g,n})
- equivalence relation \sim on Diffeo $\phi \sim \psi$ if ϕ and ψ isotopic

Mapping Class Groups

- surface with genus g and n punctures S_{g,n}
- group of orientation-preserving diffeomorphisms Diffeo⁺(S_{g,n})
- equivalence relation \sim on Diffeo $\phi \sim \psi$ if ϕ and ψ isotopic
- the mapping class group $MCG(S_{g,n}) = Diffeo^+(S_{g,n})/ \sim$.

Mapping Class Groups

- surface with genus g and n punctures S_{g,n}
- group of orientation-preserving diffeomorphisms *Diffeo*⁺(S_{g,n})
- equivalence relation \sim on Diffeo $\phi \sim \psi$ if ϕ and ψ isotopic
- the mapping class group $MCG(S_{g,n}) = Diffeo^+(S_{g,n})/ \sim$.

• our surface - punctured disk

- our surface punctured disk
- cable nonseparating puncture-to-puncture arc

- our surface punctured disk
- cable nonseparating puncture-to-puncture arc
- pure mapping class group punctures fixed

Dehn Twists

Theorem (9.3 Farb, Margalit)

The pure mapping class group of D_n is generated by Dehn twists about the set of simple closed curves that surround exactly two punctures.

Dehn Twists

Theorem (9.3 Farb, Margalit)

The pure mapping class group of D_n is generated by Dehn twists about the set of simple closed curves that surround exactly two punctures.

Dehn Twists

Theorem (9.3 Farb, Margalit)

The pure mapping class group of D_n is generated by Dehn twists about the set of simple closed curves that surround exactly two punctures.

Lemma

Let γ be a curve. For each folding F there exists a null-homotopy of γ with area equal to the area of F.

Lemma

Let γ be a curve. For each folding F there exists a null-homotopy of γ with area equal to the area of F.

Theorem

Given a self-overlapping decomposition Γ of γ , there exists a folding F of w whose area is $Area_{\Gamma}(\gamma)$.

Lemma

Let γ be a curve. For each folding F there exists a null-homotopy of γ with area equal to the area of F.

Theorem

Given a self-overlapping decomposition Γ of γ , there exists a folding F of w whose area is $Area_{\Gamma}(\gamma)$.

Corollary

New proof of correctness.

Theorem

Given a maximal folding F of w, there is a self-overlapping decomposition of γ whose area is equal to the area induced by the folding F.

Theorem

Given a maximal folding F of w, there is a self-overlapping decomposition of γ whose area is equal to the area induced by the folding F.

Corollary

Polynomial time minimum area self-overlapping decomposition.

Highlight Cool Ideas

Cut Cycle Duality

Highlight Cool Ideas

An Open Problem

Which Words are Curves?

Given a word, construct a curve with word equal to the given word or say no curve exists.

$$w_1 = [12]$$
 $w_2 = [122]$

An Open Problem

Which Words are Curves?

Given a word, construct a curve with word equal to the given word or say no curve exists.

An Open Problem

Which Words are Curves?

Given a word, construct a curve with word equal to the given word or say no curve exists.

Questions?

Thank You

