Reconfiguration of

Time－Respecting Arborescences

Naoyuki Kamiyama（IMI，Kyushu University）
with
Takehiro Ito，Yuni Iwamasa，Yasuaki Kobayashi，Yusuke Kobayashi， Shun－ichi Maezawa，and Akira Suzuki

九州大学
KYUSHU UNIVERSITY
Grant Number JP20H05795
Combinatorial Reconfiguration

Arborescence

Arborescence $=$ Out-going directed tree in a digraph

Reconfiguration of Arborescences (Ito et al. TCS 2023)

Reconfiguration of Arborescences (lto et al. TCS 2023)
Is there a reconfiguration sequence between given arborescences?

Reconfiguration of Arborescences (lto et al. TCS 2023)
Is there a reconfiguration sequence between given arborescences?

Reconfiguration of Arborescences (Ito et al. TCS 2023)

Is there a reconfiguration sequence between given arborescences?

■ [Ito et al. TCS 2023] Even when the roots are different

- Checking reachability: Always Yes
- Finding a shortest sequence: P

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

- A digrph $D=(V, A)$

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

- A digrph $D=(V, A)$

■ A time label function $\lambda: A \rightarrow \mathbb{R}_{+}$
(End-vertices of arc a can communicate at the time $\lambda(a)$)

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

- A digrph $D=(V, A)$
- A time label function $\lambda: A \rightarrow \mathbb{R}_{+}$
(End-vertices of arc a can communicate at the time $\lambda(a)$)
- A dipath $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ in D is time-respecting

$$
\stackrel{\text { def }}{\Longrightarrow} \lambda\left(a_{1}\right) \leq \lambda\left(a_{2}\right) \leq \cdots \leq \lambda\left(a_{k}\right)
$$

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

- A digrph $D=(V, A)$
- A time label function $\lambda: A \rightarrow \mathbb{R}_{+}$
(End-vertices of arc a can communicate at the time $\lambda(a)$)
- A dipath $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ in D is time-respecting

$$
\stackrel{\text { def }}{\Longleftrightarrow} \lambda\left(a_{1}\right) \leq \lambda\left(a_{2}\right) \leq \cdots \leq \lambda\left(a_{k}\right)
$$

■ An r-arborescence T in D is time-respecting $\stackrel{\text { def }}{\Longleftrightarrow} \forall v \in V:$ the (r, v)-dipath in T is time-respecting

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

Time-Respecting Arborescence (Kempe et al. JCSS 2002)

Reconfiguration of Time-Respecting Arborescences

■ Consider time-respecting arboresnces $T_{\mathrm{o}}, T_{\mathrm{t}}$

Reconfiguration of Time-Respecting Arborescences

■ Consider time-respecting arboresnces $T_{\mathrm{o}}, T_{\mathrm{t}}$
■ A reconfiguration sequence $\left(T^{0}, T^{1}, \ldots, T^{\ell}\right)$ between $T_{\mathrm{o}}, T_{\mathrm{t}}$

Reconfiguration of Time-Respecting Arborescences

■ Consider time-respecting arboresnces $T_{\mathrm{o}}, T_{\mathrm{t}}$

- A reconfiguration sequence $\left(T^{0}, T^{1}, \ldots, T^{\ell}\right)$ between $T_{\mathrm{o}}, T_{\mathrm{t}}$

$$
\stackrel{\text { def }}{\Longleftrightarrow} T^{0}=T_{\mathrm{o}} \text { and } T^{\ell}=T_{\mathrm{t}},
$$

$$
T^{0}, \ldots, T^{\ell} \text { are time-respecting arborescences in } D \text {, and }
$$

$$
\forall 0 \leq i<\ell:\left|A\left(T^{i+1}\right) \backslash A\left(T^{i}\right)\right|=\left|A\left(T^{i}\right) \backslash A\left(T^{i+1}\right)\right|=1
$$

Reconfiguration of Time-Respecting Arborescences

■ Consider time-respecting arboresnces $T_{\mathrm{o}}, T_{\mathrm{t}}$
■ A reconfiguration sequence $\left(T^{0}, T^{1}, \ldots, T^{\ell}\right)$ between $T_{\mathrm{o}}, T_{\mathrm{t}}$

$$
\stackrel{\text { def }}{\Longleftrightarrow} T^{0}=T_{\mathrm{o}} \text { and } T^{\ell}=T_{\mathrm{t}},
$$

T^{0}, \ldots, T^{ℓ} are time-respecting arborescences in D, and $\forall 0 \leq i<\ell:\left|A\left(T^{i+1}\right) \backslash A\left(T^{i}\right)\right|=\left|A\left(T^{i}\right) \backslash A\left(T^{i+1}\right)\right|=1$

Our problem:

- Input: Time-respecting arboresnces T_{1}, T_{2}

■ Question: Is there a reconfiguration sequence between T_{1}, T_{2} ?

Reconfiguration of Time-Respecting Arborescences

Yes instance:

Reconfiguration of Time-Respecting Arborescences

Yes instance:

Reconfiguration of Time-Respecting Arborescences
Yes instance:

No instance:

Results

- (without time labels) Identical/Non-identical roots case: Reachability: Always Yes, and Shortest sequence: P

Results

■ Identical roots case:

- Checking reachability: Always Yes
- Finding a shortest sequence: \mathbf{P}
- (without time labels) Identical/Non-identical roots case: Reachability: Always Yes, and Shortest sequence: P

Results

■ Identical roots case:

- Checking reachability: Always Yes
- Finding a shortest sequence: \mathbf{P}

■ Non-identical roots case:

- Checking reachability: P
- Finding a shortest sequence: NP-complete (Decision version)
- (without time labels) Identical/Non-identical roots case:

Reachability: Always Yes, and Shortest sequence: P

Identical Roots Case

Identical Roots Case

- TR $:=$ time-respecting
- $T \rightsquigarrow T^{\prime}:=$ a reconfiguration sequence between T, T^{\prime}
- $T_{\mathrm{o}}\left(\right.$ resp. $\left.T_{\mathrm{t}}\right):=$ initial (resp. target) TR-arboresncence

Identical Roots Case

- TR $:=$ time-respecting
- $T \rightsquigarrow T^{\prime}:=$ a reconfiguration sequence between T, T^{\prime}
- $T_{\mathrm{o}}\left(\right.$ resp. $\left.T_{\mathrm{t}}\right):=$ initial (resp. target) TR-arboresncence

■ Sketch of Proof:

Identical Roots Case

- TR $:=$ time-respecting
- $T \rightsquigarrow T^{\prime}:=$ a reconfiguration sequence between T, T^{\prime}
- $T_{\mathrm{o}}\left(\right.$ resp. $\left.T_{\mathrm{t}}\right):=\mathrm{initial}($ resp. target $)$ TR-arboresncence

■ Sketch of Proof:
i) There is a minimal TR arborescence T^{*}

Identical Roots Case

- TR $:=$ time-respecting
- $T \rightsquigarrow T^{\prime}:=$ a reconfiguration sequence between T, T^{\prime}

■ $T_{\mathrm{o}}\left(\right.$ resp. $\left.T_{\mathrm{t}}\right):=$ initial (resp. target) TR-arboresncence

■ Sketch of Proof:
i) There is a minimal TR arborescence T^{*}
ii) There are $T_{\mathrm{o}} \rightsquigarrow T^{*}$ and $T^{*} \rightsquigarrow T_{\mathrm{t}}$

Identical Roots Case

- TR : = time-respecting
- $T \rightsquigarrow T^{\prime}:=$ a reconfiguration sequence between T, T^{\prime}

■ $T_{\mathrm{o}}\left(\right.$ resp. $\left.T_{\mathrm{t}}\right):=$ initial (resp. target) TR-arboresncence

■ Sketch of Proof:
i) There is a minimal TR arborescence T^{*}
ii) There are $T_{\mathrm{o}} \rightsquigarrow T^{*}$ and $T^{*} \rightsquigarrow T_{\mathrm{t}}$
iii) Length of $T_{\mathrm{o}} \rightsquigarrow T^{*} \rightsquigarrow T_{\mathrm{t}}=\left|A\left(T_{\mathrm{o}}\right) \backslash A\left(T_{\mathrm{t}}\right)\right|$

Identical Roots Case

Minimal TR arborescence

Identical Roots Case

Minimal TR arborescence

■ For each $v \in V$, we define $d(v)$ by

$$
\begin{aligned}
d(v):=\min \{\lambda(a) \mid & a \text { enters } v, \text { and } \\
& \exists \text { TR dipath from } r \text { containing } a\}
\end{aligned}
$$

Identical Roots Case

Minimal TR arborescence

■ For each $v \in V$, we define $d(v)$ by

$$
\begin{aligned}
d(v):=\min \{\lambda(a) \mid & a \text { enters } v, \text { and } \\
& \exists \text { TR dipath from } r \text { containing } a\}
\end{aligned}
$$

■ A TR r-arborescence is minimal $\stackrel{\text { def }}{\Longleftrightarrow} \forall v \in V \backslash\{r\}$: the unique arc a of T entering v satisfies $\lambda(a)=d(v)$

Identical Roots Case

Minimal TR arborescence

■ For each $v \in V$, we define $d(v)$ by

$$
\begin{aligned}
d(v):=\min \{\lambda(a) \mid & a \text { enters } v, \text { and } \\
& \exists \text { TR dipath from } r \text { containing } a\}
\end{aligned}
$$

■ A TR r-arborescence is minimal $\stackrel{\text { def }}{\Longleftrightarrow} \forall v \in V \backslash\{r\}$: the unique arc a of T entering v satisfies $\lambda(a)=d(v)$

- We can find a minimal TR arborescence in poly-time (Also, $T_{\mathrm{o}} \rightsquigarrow T^{*} \rightsquigarrow T_{\mathrm{t}}$ can be found in poly-time)

Non-identical Roots Case: Reachability

Non-identical Roots Case: Reachability

- Auxiliary graph \mathcal{G} is define as follows

Non-identical Roots Case: Reachability

- Auxiliary graph \mathcal{G} is define as follows
- The vertex set of \mathcal{G} is V

Non-identical Roots Case: Reachability

- Auxiliary graph \mathcal{G} is define as follows
- The vertex set of \mathcal{G} is V
- $u, v \in V$ is connected in \mathcal{G}
$\exists u$-arborescence T and v-arboerscence T^{\prime} such that there is a reconfiguration sequence between T, T^{\prime}

Non-identical Roots Case: Reachability

$$
\text { root }=w
$$

$\operatorname{root}=v$

root $=r$

Non-identical Roots Case: Reachability

Non-identical Roots Case: Reachability

Non-identical Roots Case: Reachability

- Auxiliary graph \mathcal{G} is define as follows
- The vertex set of \mathcal{G} is V
- $u, v \in V$ is connected in \mathcal{G}
$\exists u$-arborescence T and v-arboerscence T^{\prime} such that there is a reconfiguration sequence between T, T^{\prime}

Non-identical Roots Case: Reachability

- Auxiliary graph \mathcal{G} is define as follows
- The vertex set of \mathcal{G} is V
- $u, v \in V$ is connected in \mathcal{G}
$\exists u$-arborescence T and v-arboerscence T^{\prime} such that there is a reconfiguration sequence between T, T^{\prime}
- We prove \mathcal{G} can be constructed in polynomial time

Non-identical Roots Case: Reachability

- Auxiliary graph \mathcal{G} is define as follows
- The vertex set of \mathcal{G} is V
- $u, v \in V$ is connected in \mathcal{G} \square
$\exists u$-arborescence T and v-arboerscence T^{\prime} such that there is a reconfiguration sequence between T, T^{\prime}
- We prove \mathcal{G} can be constructed in polynomial time

■ Suppose T_{o} is rooted at r_{o} and T_{t} is rooted at r_{t}

Non-identical Roots Case: Reachability

- Auxiliary graph \mathcal{G} is define as follows
- The vertex set of \mathcal{G} is V
- $u, v \in V$ is connected in \mathcal{G} \square
$\exists u$-arborescence T and v-arboerscence T^{\prime} such that there is a reconfiguration sequence between T, T^{\prime}
- We prove \mathcal{G} can be constructed in polynomial time

■ Suppose T_{o} is rooted at r_{o} and T_{t} is rooted at r_{t}
■ We check the reachability between $r_{\mathrm{o}}, r_{\mathrm{t}}$ in \mathcal{G}

Non-identical Roots Case: Reachability

Non-identical Roots Case: Reachability

- We consider reconfiguration of time-respecting arborescences

■ Identical roots case:

- Checking reachability: Always Yes
- Finding a shortest sequence: \mathbf{P}

■ Non-identical roots case:

- Checking reachability: P
- Finding a shortest sequence: NP-complete (Decision version)

Thank you for your attention!!

