Naoyuki Kamiyama (IMI, Kyushu University)

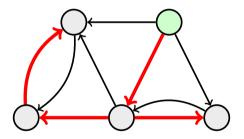
with

Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yusuke Kobayashi, Shun-ichi Maezawa. and Akira Suzuki

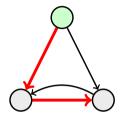
Grant Number JP20H05795

Arborescence

Arborescence = Out-going directed tree in a digraph

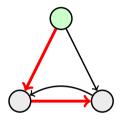


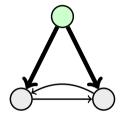
Is there a reconfiguration sequence between given arborescences?

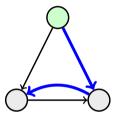




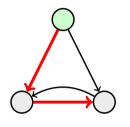
Is there a reconfiguration sequence between given arborescences?

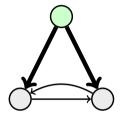


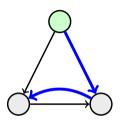




Is there a reconfiguration sequence between given arborescences?







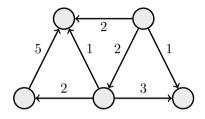
- [Ito et al. TCS 2023] Even when the roots are different
 - Checking reachability: Always Yes
 - Finding a shortest sequence: P

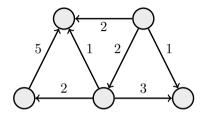
lacksquare A digrph D = (V, A)

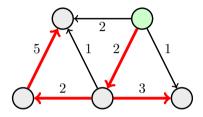
- $\blacksquare \ \mathsf{A} \ \mathsf{digrph} \ D = (V, A)$
- A time label function $\lambda \colon A \to \mathbb{R}_+$ (End-vertices of arc a can communicate at the time $\lambda(a)$)

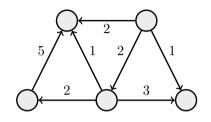
- lacksquare A digrph D = (V, A)
- A **time label** function $\lambda \colon A \to \mathbb{R}_+$ (End-vertices of arc a can communicate at the time $\lambda(a)$)
- A dipath $(a_1, a_2, ..., a_k)$ in D is time-respecting $\stackrel{\text{def}}{\iff} \lambda(a_1) \le \lambda(a_2) \le \cdots \le \lambda(a_k)$

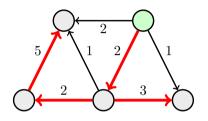
- lacksquare A digrph D = (V, A)
- A time label function $\lambda \colon A \to \mathbb{R}_+$ (End-vertices of arc a can communicate at the time $\lambda(a)$)
- A dipath $(a_1, a_2, ..., a_k)$ in D is time-respecting $\stackrel{\text{def}}{\iff} \lambda(a_1) \leq \lambda(a_2) \leq \cdots \leq \lambda(a_k)$
- An r-arborescence T in D is **time-respecting** $\stackrel{\text{def}}{\Longleftrightarrow} \forall v \in V \colon \text{ the } (r, v)\text{-dipath in } T \text{ is time-respecting}$

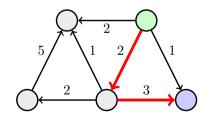


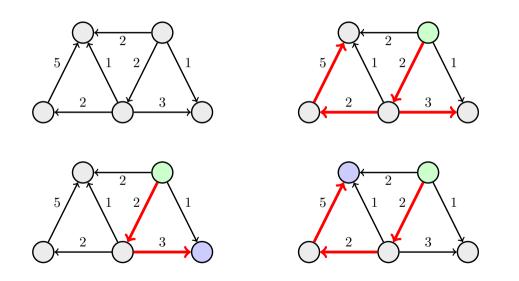












lacktriangle Consider time-respecting arboresnces $T_{
m o}, T_{
m t}$

- lacktriangle Consider time-respecting arboresnces $T_{
 m o}, T_{
 m t}$
- lacksquare A reconfiguration sequence (T^0,T^1,\ldots,T^ℓ) between $T_{\mathrm{o}},T_{\mathrm{t}}$

- lacktriangle Consider time-respecting arboresnces $T_{
 m o}, T_{
 m t}$
- A reconfiguration sequence $(T^0, T^1, \dots, T^\ell)$ between T_o, T_t

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} T^0 = T_{\mathrm{o}} \text{ and } T^\ell = T_{\mathrm{t}},$$

$$T^0, \dots, T^\ell \text{ are time-respecting arborescences in } D, \text{ and}$$

$$\forall 0 \leq i < \ell \colon |A(T^{i+1}) \setminus A(T^i)| = |A(T^i) \setminus A(T^{i+1})| = 1$$

- lacktriangle Consider time-respecting arboresnces $T_{
 m o}, T_{
 m t}$
- lacksquare A reconfiguration sequence (T^0,T^1,\ldots,T^ℓ) between $T_{\mathrm{o}},T_{\mathrm{t}}$

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} T^0 = T_\mathrm{o} \; \mathsf{and} \; T^\ell = T_\mathrm{t}$$
 ,

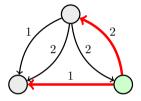
 T^0,\ldots,T^ℓ are time-respecting arborescences in D, and

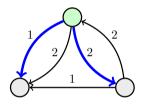
$$\forall 0 \leq i < \ell \colon |A(T^{i+1}) \setminus A(T^i)| = |A(T^i) \setminus A(T^{i+1})| = 1$$

Our problem:

- Input: Time-respecting arboresnces T_1, T_2
- **Question:** Is there a reconfiguration sequence between T_1, T_2 ?

Yes instance:

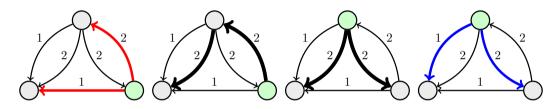




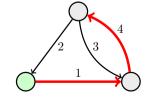
Yes instance:

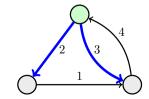


Yes instance:



No instance:





Results

■ (without time labels) Identical/Non-identical roots case:

Reachability: Always Yes, and Shortest sequence: P

Results

Identical roots case:

- Checking reachability: Always Yes
- Finding a shortest sequence: P

■ (without time labels) Identical/Non-identical roots case:

Reachability: Always Yes, and Shortest sequence: P

Results

Identical roots case:

- Checking reachability: Always Yes
- Finding a shortest sequence: P

■ Non-identical roots case:

- Checking reachability: P
- Finding a shortest sequence: **NP-complete** (Decision version)
- (without time labels) Identical/Non-identical roots case:

Reachability: Always Yes, and Shortest sequence: P

- TR := time-respecting
- lacksquare $T \leadsto T' :=$ a reconfiguration sequence between T, T'
- \blacksquare $T_{\rm o}$ (resp. $T_{\rm t}$) := initial (resp. target) TR-arboresncence

- TR := time-respecting
- lacksquare $T \leadsto T' :=$ a reconfiguration sequence between T, T'
- \blacksquare $T_{\rm o}$ (resp. $T_{\rm t}$) := initial (resp. target) TR-arboresncence

■ Sketch of Proof:

- TR := time-respecting
- lacksquare $T \leadsto T' :=$ a reconfiguration sequence between T, T'
- $lacktriangleq T_{
 m o}$ (resp. $T_{
 m t}$) := initial (resp. target) TR-arboresncence

■ Sketch of Proof:

i) There is a **minimal TR arborescence** T^*

- TR := time-respecting
- lacksquare $T \leadsto T' :=$ a reconfiguration sequence between T, T'
- \blacksquare $T_{\rm o}$ (resp. $T_{\rm t}$) := initial (resp. target) TR-arboresncence

■ Sketch of Proof:

- i) There is a **minimal TR arborescence** T^*
- ii) There are $T_{\rm o} \leadsto T^*$ and $T^* \leadsto T_{\rm t}$

- TR := time-respecting
- $\blacksquare T \leadsto T' := a$ reconfiguration sequence between T, T'
- $lacktriangleq T_{
 m o}$ (resp. $T_{
 m t}$) := initial (resp. target) TR-arboresncence

■ Sketch of Proof:

- i) There is a minimal TR arborescence T^*
- ii) There are $T_{\rm o} \leadsto T^*$ and $T^* \leadsto T_{\rm t}$
- iii) Length of $T_{\rm o} \leadsto T^* \leadsto T_{\rm t} = |A(T_{\rm o}) \setminus A(T_{\rm t})|$

Minimal TR arborescence

Minimal TR arborescence

lacksquare For each $v \in V$, we define d(v) by

$$d(v) := \min\{\lambda(a) \mid a \text{ enters } v, \text{ and }$$

 $\exists \mathsf{TR} \mathsf{dipath} \mathsf{from} r \mathsf{containing} a$

Minimal TR arborescence

- For each $v \in V$, we define d(v) by $d(v) := \min\{\lambda(a) \mid a \text{ enters } v \text{, and}$ $\exists \ \mathsf{TR} \ \mathsf{dipath} \ \mathsf{from} \ r \ \mathsf{containing} \ a\}$
- A TR r-arborescence is **minimal** $\stackrel{\text{def}}{\Longleftrightarrow}$ $\forall v \in V \setminus \{r\}$: the unique arc a of T entering v satisfies $\lambda(a) = d(v)$

Minimal TR arborescence

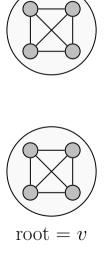
- For each $v \in V$, we define d(v) by $d(v) := \min\{\lambda(a) \mid a \text{ enters } v \text{, and } \\ \exists \ \mathsf{TR} \ \mathsf{dipath} \ \mathsf{from} \ r \ \mathsf{containing} \ a\}$
- A TR r-arborescence is **minimal** $\stackrel{\text{def}}{\Longleftrightarrow}$ $\forall v \in V \setminus \{r\}$: the unique arc a of T entering v satisfies $\lambda(a) = d(v)$
- We can find a minimal TR arborescence in poly-time (Also, $T_{\rm o} \leadsto T^* \leadsto T_{\rm t}$ can be found in poly-time)

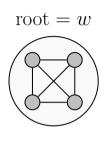
■ Auxiliary graph \mathcal{G} is define as follows

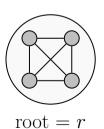
- Auxiliary graph \mathcal{G} is define as follows
 - The vertex set of $\mathcal G$ is V

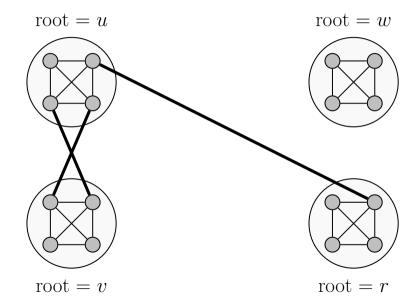
- Auxiliary graph \mathcal{G} is define as follows
 - The vertex set of $\mathcal G$ is V
 - $u, v \in V$ is connected in $\mathcal{G} \iff$
 - \exists *u*-arborescence T and v-arboerscence T' such that there is a reconfiguration sequence between T,T'

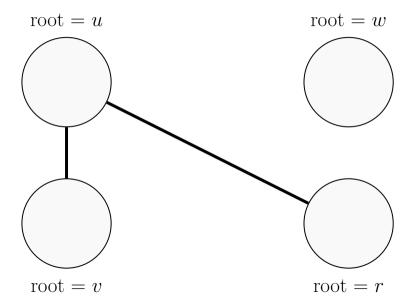
root = u









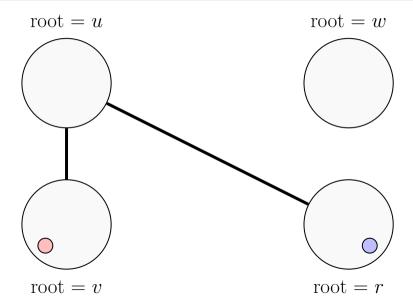


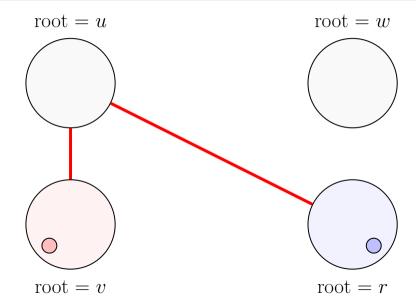
- Auxiliary graph \mathcal{G} is define as follows
 - The vertex set of $\mathcal G$ is V
 - $u, v \in V$ is connected in $\mathcal{G} \iff$
 - \exists *u*-arborescence T and v-arboerscence T' such that there is a reconfiguration sequence between T,T'

- Auxiliary graph G is define as follows
 - The vertex set of $\mathcal G$ is V
 - $u, v \in V$ is connected in $\mathcal{G} \iff$
 - \exists *u*-arborescence T and v-arboerscence T' such that there is a reconfiguration sequence between T,T'
- lacktriangle We prove ${\cal G}$ can be constructed in polynomial time

- Auxiliary graph G is define as follows
 - The vertex set of $\mathcal G$ is V
 - $u, v \in V$ is connected in $\mathcal{G} \iff$
 - \exists *u*-arborescence T and v-arboerscence T' such that there is a reconfiguration sequence between T,T'
- lacktriangle We prove ${\cal G}$ can be constructed in polynomial time
- lacksquare Suppose $T_{
 m o}$ is rooted at $r_{
 m o}$ and $T_{
 m t}$ is rooted at $r_{
 m t}$

- Auxiliary graph \mathcal{G} is define as follows
 - The vertex set of $\mathcal G$ is V
 - $u, v \in V$ is connected in $\mathcal{G} \iff$
 - \exists u-arborescence T and v-arboerscence T' such that there is a reconfiguration sequence between T,T'
- lacktriangle We prove ${\cal G}$ can be constructed in polynomial time
- lacksquare Suppose $T_{
 m o}$ is rooted at $r_{
 m o}$ and $T_{
 m t}$ is rooted at $r_{
 m t}$
- lacktriangle We check the reachability between $r_{
 m o}, r_{
 m t}$ in ${\cal G}$





Conclusion

- We consider reconfiguration of time-respecting arborescences
- Identical roots case:
 - Checking reachability: Always Yes
 - Finding a shortest sequence: P
- Non-identical roots case:
 - Checking reachability: P
 - Finding a shortest sequence: **NP-complete** (Decision version)

Thank you for your attention!!