tuM M

On Length-Sensitive Fréchet Similarity

Kevin Buchin, Brittany Terese Fasy, Erfan Hosseini Sereshgi and Carola Wenk

Overview

- Statement of the Problem
- Preliminaries
- Definition For Curves
- Computing LSFS for Curves
- Definition For Graphs
- LSFS is NP-hard for Graphs
- Contributions

Statement of the Problem

Objectives

- Match segments of two graphs in a certain proximity one-to-one
- One-to-one = The lengths of the matched portions must be equal
- A long segment A can be matched to two smaller segments B and C as long as: $\operatorname{len}(A)=\operatorname{len}(B)+\operatorname{len}(C)$

ε

Why do we need this?

- For comparing road networks and GPS trajectories
- For comparing some biomedical structures
- For clustering any dataset of geometric graphs
- A continuous version of Graph Sampling*
*Aguilar, J., Buchin, K., Buchin, M., Hosseini Sereshgi, E., Silveira, R.I., Wenk, C.: Graph sampling for map comparison. In: 3rd ACM SIGSPATIAL International Workshop on Spatial Gems (2021)

Why discrete matching is not ideal:

Fréchet for Curves

Free-space diagram: a binary function

$$
\boldsymbol{d}_{\boldsymbol{F}}(\boldsymbol{f}, \boldsymbol{g})=\inf _{h:\left[0, L_{f}\right] \rightarrow\left[0, L_{g}\right]} \max _{t \in\left[0, L_{f}\right]}\|f(t)-g(h(t))\|_{p}
$$

Partial Fréchet Matching (Similarity)

Back to Overview

Partial Fréchet Similarity*
Length-Sensitive Fréchet Similarity

*Buchin, K., Buchin, M., Wang, Y.: Exact algorithms for partial curve matching via the Fréchet distance. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 645-654. Society for Industrial and Applied Mathematics, USA (2009)

LSFS for Curves

LSFS for Curves

Suppose we have a function $h: f \rightarrow g$ that is homeomorphic onto its image

$$
\boldsymbol{I}_{h}^{\varepsilon}=\left\{x \in\left[0, L_{f}\right] \mid(x, h(x)) \text { is free and } \exists \delta>0:\left.h\right|_{(x-\delta, x+\delta)} \text { is length-preserving. }\right\}
$$

We define the Length-Sensitive Fréchet Similarity (LSFS) of (f, g) as:

$$
\mathbb{F}_{\varepsilon}(f, \boldsymbol{g})=\sup _{h:\left[0, L_{f}\right] \rightarrow\left[0, L_{g}\right]} \operatorname{len}\left(I_{h}^{\varepsilon}\right)
$$

Computing LSFS for Curves

[^0]
Refining the free-space diagram

Refining the free-space diagram

Observation 1:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Lemma 1: If f and g consist of m and n segments respectively, the total number of refined cells is $\Theta(n m)$.

The Algorithm

Score Function within a cell

Observation 2:

$$
\mathcal{L}((x, y),(x+\Delta x, y+\Delta y)) \leq \min (\Delta x, \Delta y)
$$

Properties of the score function

Observation 3 (Optimal Substructure):
$\mathcal{S}(x, y) \leq \mathcal{S}\left(x^{\prime}, y^{\prime}\right)+\min \left(y-y^{\prime}, x-x^{\prime}\right)$

Properties of the score function

Lemma 2 (Single Breakpoint):

Properties of the score function

Lemma 3 (Slope Upper-Bounded):

The score function on a refined cell boundary is:

- Piecewise linear
- Each piece has slope less than or equal to 1

Propagation

Propagation

Case (a):
$\mathcal{S}_{L \rightarrow R}(r)=\left\{\begin{array}{lr}\mathcal{S}_{L}(0)+r & \text { for } r \leq x_{R} \\ \mathcal{S}_{L}\left(r-x_{R}\right)+x_{R} \text { for } r \geq x_{R}\end{array}\right.$

$\mathcal{S}_{B \rightarrow R}(r)= \begin{cases}\mathcal{S}_{B}\left(x_{R}-r\right)+r \text { for } r \leq x_{R} \\ \mathcal{S}_{B}(0)+x_{R} & \text { for } r \geq x_{R}\end{cases}$

$$
\mathcal{S}_{R}(r)=\max \left(\mathcal{S}_{L \rightarrow R}(r), \mathcal{S}_{B \rightarrow R}(r)\right)
$$

Analysis

Total number of refined cells is in $O(m n)$ (from Lemma 1)
The initialization and concatenation steps take time linear in the complexity of the involved score functions.

Propagation within a refined cell and computing the score functions on top and right boundaries add $O(1)$ complexity (from Lemma 2)

So the number of breakpoints in the cell $D[i j[j]$ is in $O(i j)$. the complexity of the score functions on the top right cell is $O(m n)$ and the total runtime of the DP is $O\left(m^{2} n^{2}\right)$.

LSFS for Graphs

Input

Homeomorphic subgraph

Output

LSFS for Graphs

$$
C_{h}^{\varepsilon}=\left\{x \in C| | \mid \phi_{G}(x)-\phi_{H}(h(x)) \|_{p} \leq \varepsilon \text { and } \exists \delta>0:\left.h\right|_{\mathbb{B}_{p}(x, \delta)} \text { is length-preserving }\right\}
$$

$$
\mathbb{F}_{\varepsilon}(\boldsymbol{G}, \boldsymbol{H})=\sup _{C \subset G} \sup _{h: C \rightarrow H} \operatorname{len}\left(C_{h}^{\varepsilon}\right)
$$

LSFS for Graphs is NP-hard

We choose $\varepsilon=n+1$

We claim that if H^{\prime} has a Hamiltonian path then $\mathrm{F}_{\varepsilon}(\mathrm{G}, \mathrm{H})=\mathrm{n}+1$, and otherwise
$\mathrm{F}_{\varepsilon}(\mathrm{G}, \mathrm{H})<\mathrm{n}+1 / 5$

Contributions and Open problems

Back to Overview

- Finding an approximation algorithm for graphs
- Is there a poly time algorithm for trees?
- Is there a faster algorithm for curves in higher dimensions?

Thank You

I am nearing graduation and actively seeking opportunities in industry, national and university laboratories. If my skills align with your projects, please contact me on erfanhosseini.com

[^0]: *De Carufel, J.L., Gheibi, A., Maheshwari, A., Sack, J.R., Scheffer, C.: Similarity of polygonal curves in the presence of outliers. Comput. Geom. 47(5), 625-641 (2014). https://doi.org/10.1016/j.comgeo.2014.01.002

