Density Approximation for Kinetic Groups

Max van Mulken

Bettina Speckmann TU Eindhoven Kevin Verbeek

Groups

Photos by T.R. Shankar Raman and M.M. Karim

Groups

Finding groups in... Static point sets: K-means clustering DBSCAN ...

Moving point sets: Grouping structure [Buchin et al., 2013]

Photos by T.R. Shankar Raman and M.M. Karim

Group density

Group density contains information about underlying behavior Predator proximity, feeding sites, environmental factors, ...

Function f(x, y) that estimates the density at (x, y)

Goal: Maintain f(x, y) as the points move \downarrow Maintain approximation of f(x, y)

Kernel Density Estimation

Estimate the density function using kernel function K

The density function is then estimated by:

$$KDE_P(x, y) = \frac{1}{n} \sum_{p \in P} K(x - x(p), y - y(p))$$

Kernel Density Estimation

Use $KDE_P(x, y)$ to describe group characteristics:

- Local maxima → Dense clusters
- Contour lines \rightarrow Group shape
- Kernel radius \rightarrow Spatial scales

Kernel Density Estimation

Use $KDE_P(x, y)$ to describe group characteristics:

Useful in practice...

but difficult to give general theoretical guarantees

Assumptions:

- Trajectories of points are known
- Piece-wise linear movement
- Within a bounding box

Overview

Discretization

Construct quadtree on volume under *KDE*_P

Subdivide cell v if the volume under KDE_P in v exceeds threshold $\rho > 0$

Subdivide cell v if the volume under KDE_P in v exceeds threshold $\rho > 0$ Value of density approximation in v equals average value of KDE_P in v

Subdivide cell v if the volume under KDE_P in v exceeds threshold $\rho > 0$ Value of density approximation in v equals average value of KDE_P in vMeasure the quality of approximation f_T of KDE_P as

 $|KDE_P(x, y) - f_T(x, y)|$ for all $(x, y) \in \mathcal{D}$

Bound the maximum slope and height of *KDE*_P

- Lipschitz constant λ , maximum absolute slope in any direction
- Maximum height z^*

Bound the maximum slope and height of *KDE*_P

- Lipschitz constant λ , maximum absolute slope in any direction
- Maximum height z^*
- Domain size D

For Lipschitz constant λ , maximum height z^* and domain size D:

 $|KDE_P(x, y) - f_T(x, y)| < \varepsilon \text{ for } \rho = O(\varepsilon^3)$

with polynomial bounds on the size of the quadtree

Towards moving points

Difficult to maintain as underlying points move...

Solution: Approximate volume under *KDE*_P using a large set of moving points

Overview

Construct moving point set S as a stand-in for the volume under KDE_P Such that at any time and for any quadtree cell v: volume under KDE_P in $v \approx$ number of points from S in v

Construct moving point set S as a stand-in for the volume under KDE_P :

1. Approximate a single kernel *K* with a set of points *S*

- 1. Approximate a single kernel *K* with a set of points *S*
 - a. Overlay $r \times r$ grid

- 1. Approximate a single kernel *K* with a set of points *S*
 - a. Overlay $r \times r$ grid
 - b. Sample random points in each grid cell proportional to kernel value

Construct moving point set S as a stand-in for the volume under KDE_P :

.

- 1. Approximate a single kernel *K* with a set of points *S*
- 2. Approximate KDE_P with the union of kernels $S = \bigcup_{p \in P} S_p$

- 1. Approximate a single kernel *K* with a set of points *S*
- 2. Approximate KDE_P with the union of kernels $S = \bigcup_{p \in P} S_p$
 - a. Assign each input point $p \in P$ a set S_P

- 1. Approximate a single kernel *K* with a set of points *S*
- 2. Approximate KDE_P with the union of kernels $S = \bigcup_{p \in P} S_p$
 - a. Assign each input point $p \in P$ a set S_P
 - b. S_P copies the movement of p

- 1. Approximate a single kernel *K* with a set of points *S*
- 2. Approximate KDE_P with the union of kernels $S = \bigcup_{p \in P} S_p$
- 3. Reduce the size of S
 - a. Take coreset of *S* [Agarwal *et al.,* 2005]

Construct volume-based quadtree on *KDE*_P:

Subdivide cell v if the volume under KDE_P in v exceeds threshold $\rho > 0$ Value of density approximation in v equals average value of KDE_P in v

Weight-based Quadtree

Construct volume-based quadtree on *KDE*_P:

Subdivide cell v if the volume under KDE_P in v exceeds threshold $\rho > 0$ Value of density approximation in v equals average value of KDE_P in v

Construct weight-based quadtree on S:

Subdivide cell v if the number of points from S in v exceeds threshold $\rho > 0$ Value of density approximation in v proportional to the number of points in v

 $|KDE_{P}(x, y) - f_{\tilde{T}}(x, y)| < \varepsilon \text{ for } \rho = O(\varepsilon^{3})$ with $|S| = O\left(\frac{1}{\varepsilon^{8}}\log\left(\frac{1}{\varepsilon}\right)\right)$

Overview

Discretization

0 9

0

0.000

....

0

Compute weight-based quadtree \tilde{T}

Goal: Maintain correctness of \tilde{T} as the points move

Observe: \tilde{T} depends only on distribution of *P* into cells

Compute weight-based quadtree \tilde{T}

Goal: Maintain correctness of \tilde{T} as the points move

Observe: \tilde{T} changes only when a point from S crosses a cell boundary

Compute weight-based quadtree \tilde{T}

Goal: Maintain correctness of \tilde{T} as the points move

Observe: \tilde{T} changes only when a point from S crosses a cell boundary

- Update cell boundaries
- Update cell heights

Compute weight-based quadtree \tilde{T}

Goal: Maintain correctness of \tilde{T} as the points move

Observe: \tilde{T} changes only when a point from S crosses a cell boundary

- Update cell boundaries
- Update cell heights
- Update local maxima

Sufficient to maintain \tilde{T} ... But what about its local maxima?

Compute weight-based quadtree \tilde{T}

Goal: Maintain correctness of \tilde{T} as the points move

Observe: \tilde{T} changes only when a point from S crosses a cell boundary

- Update cell boundaries
- Update cell heights
- Update local maxima ...

Sufficient to maintain \tilde{T} ... But what about its local maxima?

Compute weight-based quadtree \tilde{T}

Goal: Maintain correctness of \tilde{T} as the points move

Observe: \tilde{T} changes only when a point from S crosses a cell boundary

- Update cell boundaries
- Update cell heights
- Update local maxima ...

Small cells must have high values ...

Local maxima cannot have small neighbors

Summary

Theorem. Let $f = KDE_P$ be a KDE function on a set P of n linearly moving points in \mathbb{R}^2 . For any $\varepsilon > 0$, there exists a kinetic data structure that maintains an ε -approximation of f.

Summary

Theorem. Let $f = KDE_P$ be a KDE function on a set P of n linearly moving points in \mathbb{R}^2 . For any $\varepsilon > 0$, there exists a kinetic data structure that maintains an ε -approximation of f.

Future work:

• Engineer practical approach

Deal with assumptions

(known trajectories, piece-wise linear, bounding box)

- Use density surface to find other characteristics
 - Group shape, clustering, ...