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Groups

Finding groups in...

Static point sets:
K-means clustering
DBSCAN

Moving point sets:
Grouping structure [Buchin et al., 2013]
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Group density

Group density contains information about underlying behavior
Predator proximity, feeding sites, environmental factors, ...

Function f(x,y) that estimates the density at (x, y)

Goal: Maintain f(x,y) as the points move
NZ
Maintain approximation of f(x,y)




Kernel Density Estimation

Estimate the density function using kernel function K

The density function is then estimated by:

1
KDEp(x,y) = EZ K(x —x(p),y —y(®))
pEP




Kernel Density Estimation

Use KDEp(x,y) to describe group characteristics:

e Local maxima — Dense clusters




Kernel Density Estimation

Use KDEp(x,y) to describe group characteristics:

Useful in practice...
but difficult to give general theoretical guarantees

Assumptions:
« Trajectories of points are known
« Piece-wise linear movement

« Within a bounding box




Overview

Volume-based quadtree




Volume-based Quadtree

Construct quadtree on volume under KDEp




Volume-based Quadtree

Subdivide cell v if the volume under KDE, in v exceeds threshold p > 0
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Volume-based Quadtree

Subdivide cell v if the volume under KDE, in v exceeds threshold p > 0

Value of density approximation in v equals average value of KDE, inv
Measure the quality of approximation f; of KDE, as

|KDEp(x,y) = fr(x,y)| forall (x,y) €D




Volume-based Quadtree

A




Volume-based Quadtree

e




Volume-based Quadtree
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Volume-based Quadtree

Bound the maximum slope and height of KDEp

 Lipschitz constant A, maximum absolute slope in any direction
« Maximum height z*




Volume-based Quadtree

Bound the maximum slope and height of KDEp
 Lipschitz constant A, maximum absolute slope in any direction
« Maximum height z*

« Domainsize D

»




Volume-based Quadtree

For Lipschitz constant A, maximum height z* and domain size D:

|[KDEp(x,y) — fr(x,y)| < e for p = 0(e?)

with polynomial bounds on the size of the quadtree




Towards moving points

Difficult to maintain as underlying points move...

Solution: Approximate volume under KDE, using a large set of moving points



Overview

Discretization




Discretization

Construct moving point set § as a stand-in for the volume under KDE,
Such that at any time and for any quadtree cell v:

volume under KDEp in v ~ number of points from § in v
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Discretization

Construct moving point set § as a stand-in for the volume under KDEp:

1. Approximate a single kernel K with a set of points §
a. Overlay r x r grid
b. Sample random points in each grid cell proportional to kernel value
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Discretization

Construct moving point set § as a stand-in for the volume under KDEp:

2. Approximate KDEp with the union of kernels § = U,¢p S,
a. Assign each input pointp € P asetSp
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Discretization

Construct moving point set § as a stand-in for the volume under KDEp:

2. Approximate KDEp with the union of kernels § = U,¢p S,
a. Assign each input pointp € P asetSp
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Discretization

Construct moving point set § as a stand-in for the volume under KDEp:

3. Reducethesize of §
a. Take coresetof §



Volume-based Quadtree

Construct volume-based quadtree on KDEp:
Subdivide cell v if the volume under KDE, in v exceeds threshold p > 0

Value of density approximation in v equals average value of KDE, inv



Weight-based Quadtree

Construct weight-based quadtree on S:
Subdivide cell v if the number of points from § in v exceeds threshold p > 0

Value of density approximation in v proportional to the number of points in v

|KDEp(x,y) — f+(x, )| < & for p = 0(&?)

with |S] = 0 (8—1810g (1))



Overview

Kinetic Data Structure

A




Kinetic Data Structure

Compute weight-based quadtree T
Goal: Maintain correctness of T as the points move

Observe: T depends only on distribution of P into cells
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Compute weight-based quadtree T
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Kinetic Data Structure

Compute weight-based quadtree T
Goal: Maintain correctness of T as the points move

Observe: T changes only when a point from S crosses a cell boundary
« Update cell boundaries

« Update cell heights
« Update local maxima ...

Small cells must have high values ...

Local maxima cannot have small neighbors




Summary

Theorem. Let f = KDE, be a KDE function on a set P of n linearly moving points in R?.
For any € > 0, there exists a Rinetic data structure that maintains an s-approximation of f.

Volume-based quadtree

Discretization

Kinetic Data Structure




Summary

Theorem. Let f = KDEp be a KDE function on a set P of n linearly moving points in R?.
For any € > 0, there exists a Rinetic data structure that maintains an e-approximation of f.

Future work:

« Engineer practical approach
Deal with assumptions
(known trajectories, piece-wise linear, bounding box)

« Use density surface to find other characteristics
« Group shape, clustering, ...



