DOMINATOR COLORING and CD COLORING in Almost Cluster Graphs

Aritra Banik; Prahlad Narasimhan Kasthurirangan; Venkatesh Raman WADS 2023

NISER Bhubaneswar; Stony Brook University; Institute of Mathematical Sciences

DOMINATOR COLORING and CD COLORING in Almost Cluster Graphs

Aritra Banik; Prahlad Narasimhan Kasthurirangan; Venkatesh Raman WADS 2023

NISER Bhubaneswar; Stony Brook University; Institute of Mathematical Sciences

Introduction

GRAPH COLORING

Input: A graph *G* and a $l \in \mathbb{N}$.

Question: Is there a proper coloring χ of G with $|\chi| \le l$?

DOMINATING SET

Input: A graph *G*, and a $l \in \mathbb{N}$.

Question: Is there a *dominating set* $S \subseteq V(G)$ with $|S| \leq l$?

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in V(G).

CD COLORING

Input: A graph *G* and a $l \in \mathbb{N}$.

Question: Is there a *CD coloring* χ of *G* with $|\chi| \leq l$?

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in V(G).

CD COLORING

Input: A graph *G* and a $l \in \mathbb{N}$.

Question: Is there a *CD coloring* χ of *G* with $|\chi| \leq l$?

CD COLORING is NP-hard for $l \ge 4$ [Merouane *et al.*, 2015].

GRAPH COLORING

```
Input: A graph G and a l \in \mathbb{N}.
```

Question: Is there a proper coloring χ of G with $|\chi| \le l$?

DOMINATING SET

Input: A graph G, and a $l \in \mathbb{N}$.

Question: Is there a *dominating set* $S \subseteq V(G)$ with $|S| \leq l$?

Graph Coloring

```
Input: A graph G and a l \in \mathbb{N}.
```

Question: Is there a proper coloring χ of G with $|\chi| \le l$?

DOMINATING SET

Input: A graph *G*, and a $l \in \mathbb{N}$.

Question: Is there a *dominating set* $S \subseteq V(G)$ with $|S| \leq l$?

• Every color class is dominated by some vertex.

Graph Coloring

```
Input: A graph G and a l \in \mathbb{N}.
```

Question: Is there a proper coloring χ of G with $|\chi| \le l$?

DOMINATING SET

Input: A graph *G*, and a $l \in \mathbb{N}$.

Question: Is there a *dominating set* $S \subseteq V(G)$ with $|S| \leq l$?

- Every color class is dominated by some vertex.
- Every vertex dominates some color class.

Graph Coloring

```
Input: A graph G and a l \in \mathbb{N}.
```

Question: Is there a proper coloring χ of G with $|\chi| \le l$?

DOMINATING SET

Input: A graph *G*, and a $l \in \mathbb{N}$.

Question: Is there a *dominating set* $S \subseteq V(G)$ with $|S| \leq l$?

- Every color class is *dominated by* some vertex.
- Every vertex *dominates* some color class.

An algorithm \mathcal{A} is FPT with respect to the parameter k if there exists a computable function f and a constant c such that for every instance l of \mathcal{P} , \mathcal{A} runs in $f(k) \cdot |l|^c$ -time.

An algorithm \mathcal{A} is FPT with respect to the parameter k if there exists a computable function f and a constant c such that for every instance l of \mathcal{P} , \mathcal{A} runs in $f(k) \cdot |l|^c$ -time.

• Problem of interest?

An algorithm \mathcal{A} is FPT with respect to the parameter k if there exists a computable function f and a constant c such that for every instance l of \mathcal{P} , \mathcal{A} runs in $f(k) \cdot |l|^c$ -time.

- Problem of interest?
- Parameter of interest?

An algorithm \mathcal{A} is FPT with respect to the parameter k if there exists a computable function f and a constant c such that for every instance l of \mathcal{P} , \mathcal{A} runs in $f(k) \cdot |l|^c$ -time.

- Problem of interest?
- Parameter of interest?

Social networking graphs have been empirically shown to have:

- High density of triangles.
- Dense subgraphs or "communities".
- Small world property.
- Heavy-tailed degree distributions.

Social networking graphs have been empirically shown to have:

- High density of triangles.
- Dense subgraphs or "communities".
- Small world property.
- Heavy-tailed degree distributions.

Social networking graphs are almost cluster graphs!

For such graphs, a popular parameter is *Cluster Vertex Deletion* set size:

	CD COLORING	Dominator Coloring
Exact	$ ilde{\mathcal{O}}(2^n)^\dagger$	$ ilde{\mathcal{O}}(4^n)$
CLQ	$\mathcal{O}^*(2^k)$	0*(16 ^k)
TC	$\mathcal{O}^*(2^{\mathcal{O}(k \log k)})$	$\mathcal{O}^*(2^{\mathcal{O}(k \log k)})$
CVD Set	$\mathcal{O}^*(2^{\mathcal{O}(2^k kq \log q)})$	$\mathcal{O}^*(2^{\mathcal{O}(2^k)})$

We also establish some lower bounds for CD COLORING and DOMINATOR COLORING with respect to these parameters.

[†]Proved by Krithika *et al.* in 2021.

	CD COLORING	Dominator Coloring
Exact	$ ilde{\mathcal{O}}(2^n)^\dagger$	$ ilde{\mathcal{O}}(4^n)$
CLQ	$\mathcal{O}^*(2^k)$	$\mathcal{O}^{*}(16^{k})$
TC	$\mathcal{O}^*(2^{\mathcal{O}(k \log k)})$	$\mathcal{O}^*(2^{\mathcal{O}(k \log k)})$
CVD Set	$\mathcal{O}^*(2^{\mathcal{O}(2^k kq \log q)})$	$\mathcal{O}^*(2^{\mathcal{O}(2^k)})$

We also establish some lower bounds for CD COLORING and DOMINATOR COLORING with respect to these parameters.

[†]Proved by Krithika *et al.* in 2021.

- $M \subseteq V(G)$ is a CVD set if G M is a cluster graph.
- A proper coloring χ of G is a CD coloring of G if every color class is dominated by a vertex in V(G).
- We now design a randomized algorithm which solves CD COLORING in $\mathcal{O}^*(2^k)$ time where k is the size of a *clique* modulator.

Clique Modulator

Clique Modulator

A $M \subseteq V(G)$ is a clique modulator if G - M is a clique.

Clique Modulator

Clique Modulator

A $M \subseteq V(G)$ is a clique modulator if G - M is a clique.

Note: A clique modulator is a special CVD set.

Clique Modulator

Clique Modulator

A $M \subseteq V(G)$ is a clique modulator if G - M is a clique.

Note: A clique modulator is a special CVD set.

An optimal clique modulator can be found "quickly" [Gutin *et al.*, 2021].

LIST COLORING can be solved in polynomial time on cliques [Arora *et al.*, 2020].

Lemma

(G, l) is a YES instance of CD COLORING with this coloring of M, if, and only if, B(C, Q) has a matching saturating Q.

Lemma

(G, l) is a YES instance of CD COLORING with this coloring of M, if, and only if, B(C, Q) has a matching saturating Q.

Lemma

(G, l) is a YES instance of CD COLORING with this coloring of M, if, and only if, B(C, Q) has a matching saturating Q.

Takes $\mathcal{O}^*(k^k)$ -time!

Parameterized by Clique Modulator Size

There exists a randomized algorithm that solves CD COLORING in $\mathcal{O}^*(2^k)$ time where k is the size of an optimal clique modulator of the input graph.

Given a polynomial $p(x_1, x_2 ... x_n)$ over \mathbb{R} , and a $J \subseteq \{1, 2, ... n\}$, determine if p contains a monomial m such that $\prod_{j \in J} x_j \mid m$.

Given a polynomial $p(x_1, x_2 ... x_n)$ over \mathbb{R} , and a $J \subseteq \{1, 2, ... n\}$, determine if p contains a monomial m such that $\prod_{j \in J} x_j \mid m$.

Addressed in [Wahlström, 2013].

• Construct a polynomial q such that $q \neq 0 \iff \prod_{j \in J} x_j \mid m$ for a monomial m of p.

Given a polynomial $p(x_1, x_2 ... x_n)$ over \mathbb{R} , and a $J \subseteq \{1, 2, ... n\}$, determine if p contains a monomial m such that $\prod_{j \in J} x_j \mid m$.

Addressed in [Wahlström, 2013].

- Construct a polynomial q such that $q \neq 0 \iff \prod_{j \in J} x_j \mid m$ for a monomial m of p.
- Use the Schwartz-Zippel Lemma on q.

Given a polynomial $p(x_1, x_2 ... x_n)$ over \mathbb{R} , and a $J \subseteq \{1, 2, ... n\}$, determine if p contains a monomial m such that $\prod_{j \in J} x_j \mid m$.

Addressed in [Wahlström, 2013].

- Construct a polynomial q such that $q \neq 0 \iff \prod_{j \in J} x_j \mid m$ for a monomial m of p.
- Use the Schwartz-Zippel Lemma on q.

q can be constructed and evaluated in $\mathcal{O}^*(2^{|j|})$ -time.

$C \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet \\ c_1 c_2 \cdots \bullet \bullet \\ c_{l-1} c_l \qquad \bullet \qquad \bullet \\ c_l \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet \\ c_l $	
--	--

V(G)	•	•		•	•	•		•
			Q				M	

How do we assign two vertices the same color?

How do we assign two vertices the same color?

Add a "sink" for M.

Add a "sink" for M.

Add a set of "dummy" vertices for balance.

Vertices in *M* that can be colored red:

Vertices in *M* that can be colored red: $S_{(v,c)} = \{\emptyset, \{v_4\}, \{v_6\}\}.$

• For each $v \in M$, consider a variable x_v .

- For each $v \in M$, consider a variable x_v .
- For an edge $(v, c) \in V(G) \times C$, $S_{(v,c)}$ is the collection of subsets of M which can also be colored c if v is colored c.

- For each $v \in M$, consider a variable x_v .
- For an edge $(v, c) \in V(G) \times C$, $S_{(v,c)}$ is the collection of subsets of M which can also be colored c if v is colored c.
- For all other edges, $S_{(v,c)} = \emptyset$.

- For each $v \in M$, consider a variable x_v .
- For an edge $(v, c) \in V(G) \times C$, $S_{(v,c)}$ is the collection of subsets of M which can also be colored c if v is colored c.
- For all other edges, $\mathcal{S}_{(v,c)} = \emptyset$.

• Let
$$p_{(v,c)} = \sum_{S \in \mathcal{S}_{(v,c)}} \prod_{v \in S} x_v$$
.

- For each $v \in M$, consider a variable x_v .
- For an edge $(v, c) \in V(G) \times C$, $S_{(v,c)}$ is the collection of subsets of M which can also be colored c if v is colored c.
- For all other edges, $\mathcal{S}_{(v,c)} = \emptyset$.

• Let
$$p_{(v,c)} = \sum_{S \in \mathcal{S}_{(v,c)}} \prod_{v \in S} x_v$$
.

Edmond's Matrix

$$A(v,c) = \begin{cases} z_{(v,c)}p_{(v,c)} \text{ if } (v,c) \in E(B) \\ 0 \text{ otherwise} \end{cases}$$

Theorem

(*G*, *l*) is a YES instance of CD COLORING if, and only if, det *A* contains a monomial *m* such that $\prod_{v \in M} x_v \mid m$.

Theorem

(*G*, *l*) is a YES instance of CD COLORING if, and only if, det *A* contains a monomial *m* such that $\prod_{v \in M} x_v \mid m$.

By [Wahlström, 2013], this takes $\mathcal{O}^*(2^{|\mathcal{M}|}) = \mathcal{O}^*(2^k)$ time.

	CD COLORING	Dominator Coloring
Exact	$ ilde{\mathcal{O}}(2^n)^\dagger$	$ ilde{\mathcal{O}}(4^n)$
CLQ	$\mathcal{O}^*(2^k)$	$\mathcal{O}^{*}(16^{k})$
TC	$\mathcal{O}^*(2^{\mathcal{O}(k \log k)})$	$\mathcal{O}^*(2^{\mathcal{O}(k \log k)})$
CVD Set	$\mathcal{O}^*(2^{\mathcal{O}(2^k kq \log q)})$	$\mathcal{O}^*(2^{\mathcal{O}(2^k)})$

We also establish some lower bounds for CD COLORING and DOMINATOR COLORING with respect to these parameters.

[†]Proved by Krithika *et al.* in 2021.