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Problem of Interest

Consider a social networking graph G. What is the minimum
number of stranger groups required to partition V(G) such that
each stranger group has a common friend?

GRAPH COLORING
Input: A graph G and a l ∈ N.

Question: Is there a proper coloring χ of G with |χ| ≤ l?
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Fixed-Parameter Tractable Algorithm
An algorithm A is FPT with respect to the parameter k if there
exists a computable function f and a constant c such that for
every instance I of P , A runs in f(k) · |I|c-time.

• Problem of interest?

• Parameter of interest?



Fixed-Parameter Tractability

Fixed-Parameter Tractable Algorithm
An algorithm A is FPT with respect to the parameter k if there
exists a computable function f and a constant c such that for
every instance I of P , A runs in f(k) · |I|c-time.

• Problem of interest?

• Parameter of interest?



Fixed-Parameter Tractability

Fixed-Parameter Tractable Algorithm
An algorithm A is FPT with respect to the parameter k if there
exists a computable function f and a constant c such that for
every instance I of P , A runs in f(k) · |I|c-time.

• Problem of interest?

• Parameter of interest?



Fixed-Parameter Tractability

Fixed-Parameter Tractable Algorithm
An algorithm A is FPT with respect to the parameter k if there
exists a computable function f and a constant c such that for
every instance I of P , A runs in f(k) · |I|c-time.

• Problem of interest?

• Parameter of interest?



Social Networks

Social networking graphs have been empirically shown to
have:

• High density of triangles.
• Dense subgraphs or “communities”.
• Small world property.
• Heavy-tailed degree distributions.

Social networking graphs are almost cluster graphs!



Social Networks

Social networking graphs have been empirically shown to
have:

• High density of triangles.
• Dense subgraphs or “communities”.
• Small world property.
• Heavy-tailed degree distributions.

Social networking graphs are almost cluster graphs!



Parameter of Interest

For such graphs, a popular parameter is Cluster Vertex Deletion
set size:

CVD Set



Overview of Results

CD COLORING DOMINATOR COLORING
Exact Õ(2n)† Õ(4n)
CLQ O∗(2k) O∗(16k)
TC O∗(2O(k log k)) O∗(2O(k log k))

CVD Set O∗(2O(2kkq log q)) O∗(2O(2k))

We also establish some lower bounds for CD COLORING and
DOMINATOR COLORING with respect to these parameters.

†Proved by Krithika et al. in 2021.

https://doi.org/10.1016/j.dam.2020.12.015
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Questions?

• M ⊆ V(G) is a CVD set if G−M is a cluster graph.

• A proper coloring χ of G is a CD coloring of G if every color
class is dominated by a vertex in V(G).

• We now design a randomized algorithm which solves CD
COLORING in O∗(2k) time where k is the size of a clique
modulator.
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Goal

Parameterized by Clique Modulator Size
There exists a randomized algorithm that solves CD COLORING
in O∗(2k) time where k is the size of an optimal clique
modulator of the input graph.



Polynomials

Divisibility Determination
Given a polynomial p(x1, x2 . . . xn) over R, and a
J ⊆ {1, 2, . . .n}, determine if p contains a monomial m such
that

∏
j∈J xj | m.

Addressed in [Wahlström, 2013].

• Construct a polynomial q such that q ̸≡ 0 ⇐⇒
∏

j∈J xj | m
for a monomial m of p.

• Use the Schwartz-Zippel Lemma on q.

q can be constructed and evaluated in O∗(2|J|)-time.

https://drops.dagstuhl.de/opus/volltexte/2013/3946/pdf/34.pdf
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Step 2: Constructing its Edmond’s Matrix

• For each v ∈ M, consider a variable xv.

• For an edge (v, c) ∈ V(G)× C, S(v,c) is the collection of
subsets of M which can also be colored c if v is colored c.

• For all other edges, S(v,c) = ∅.

• Let p(v,c) =
∑

S∈S(v,c)

∏
v∈S xv.

Edmond’s Matrix

A(v, c) =

z(v,c)p(v,c) if (v, c) ∈ E(B)
0 otherwise
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Theorem
(G, l) is a YES instance of CD COLORING if, and only if, detA
contains a monomial m such that
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By [Wahlström, 2013], this takes O∗(2|M|) = O∗(2k) time.
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