Dominator Coloring and CD Coloring in Almost Cluster Graphs

Aritra Banik; Prahlad Narasimhan Kasthurirangan; Venkatesh Raman WADS 2023

NISER Bhubaneswar; Stony Brook University; Institute of Mathematical Sciences

Dominator Coloring and CD Coloring in Almost Cluster Graphs

Aritra Banik; Prahlad Narasimhan Kasthurirangan; Venkatesh Raman WADS 2023

NISER Bhubaneswar; Stony Brook University; Institute of Mathematical Sciences

Introduction

Problem of Interest

Consider a social networking graph G. What is the minimum number of stranger groups required to partition $V(G)$ such that each stranger group has a common friend?

Problem of Interest

Consider a social networking graph G. What is the minimum number of stranger groups required to partition $V(G)$ such that each stranger group has a common friend?

Graph Coloring

Input: A graph G and $a l \in \mathbb{N}$.
Question: Is there a proper coloring χ of G with $|\chi| \leq l$?

Problem of Interest

Consider a social networking graph G. What is the minimum number of stranger groups required to partition $V(G)$ such that each stranger group has a common friend?

Dominating Set

Input: A graph G, and a $l \in \mathbb{N}$.
Question: Is there a dominating set $S \subseteq V(G)$ with $|S| \leq 1$?

Problem of Interest

Consider a social networking graph G. What is the minimum number of stranger groups required to partition $V(G)$ such that each stranger group has a common friend?

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

Problem of Interest

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

 Input: A graph G and a $l \in \mathbb{N}$.Question: Is there a CD coloring χ of G with $|\chi| \leq 1$?

Problem of Interest

CD Coloring

A proper coloring χ of G is a class dominated coloring of G if every color class is dominated by a vertex in $V(G)$.

CD Coloring

 Input: A graph G and a $l \in \mathbb{N}$.Question: Is there a CD coloring χ of G with $|\chi| \leq 1$?

CD Coloring is NP-hard for $l \geq 4$ [Merouane et al., 2015].

Problem of Interest

Graph Coloring

Input: A graph G and $a l \in \mathbb{N}$.
Question: Is there a proper coloring χ of G with $|\chi| \leq l$?

Dominating Set

Input: A graph G, and a $l \in \mathbb{N}$.
Question: Is there a dominating set $S \subseteq V(G)$ with $|S| \leq l$?

Problem of Interest

Graph Coloring

Input: A graph G and $a l \in \mathbb{N}$.
Question: Is there a proper coloring χ of G with $|\chi| \leq l$?

Dominating Set

Input: A graph G, and a $l \in \mathbb{N}$.
Question: Is there a dominating set $S \subseteq V(G)$ with $|S| \leq l$?

- Every color class is dominated by some vertex.

Problem of Interest

Graph Coloring

Input: A graph G and $a l \in \mathbb{N}$.
Question: Is there a proper coloring χ of G with $|\chi| \leq l$?

Dominating Set

Input: A graph G, and a $l \in \mathbb{N}$.
Question: Is there a dominating set $S \subseteq V(G)$ with $|S| \leq l$?

- Every color class is dominated by some vertex.
- Every vertex dominates some color class.

Problem of Interest

Graph Coloring

Input: A graph G and $a l \in \mathbb{N}$.
Question: Is there a proper coloring χ of G with $|\chi| \leq l$?

Dominating Set

Input: A graph G, and a $l \in \mathbb{N}$.
Question: Is there a dominating set $S \subseteq V(G)$ with $|S| \leq l$?

- Every color class is dominated by some vertex.
- Every vertex dominates some color class.

Fixed-Parameter Tractability

Fixed-Parameter Tractable Algorithm

An algorithm \mathcal{A} is FPT with respect to the parameter k if there exists a computable function f and a constant c such that for every instance I of \mathcal{P}, \mathcal{A} runs in $f(k) \cdot\left\|\|^{c}\right.$-time.

Fixed-Parameter Tractability

Fixed-Parameter Tractable Algorithm

An algorithm \mathcal{A} is FPT with respect to the parameter k if there exists a computable function f and a constant c such that for every instance I of \mathcal{P}, \mathcal{A} runs in $f(k) \cdot\left\|\|^{c}\right.$-time.

- Problem of interest?

Fixed-Parameter Tractability

Fixed-Parameter Tractable Algorithm

An algorithm \mathcal{A} is FPT with respect to the parameter k if there exists a computable function f and a constant c such that for every instance I of \mathcal{P}, \mathcal{A} runs in $f(k) \cdot\left\|\|^{c}\right.$-time.

- Problem of interest?
- Parameter of interest?

Fixed-Parameter Tractability

Fixed-Parameter Tractable Algorithm

An algorithm \mathcal{A} is FPT with respect to the parameter k if there exists a computable function f and a constant c such that for every instance I of \mathcal{P}, \mathcal{A} runs in $f(k) \cdot\left\|\|^{c}\right.$-time.

- Problem of interest?
- Parameter of interest?

Social Networks

Social networking graphs have been empirically shown to have:

- High density of triangles.
- Dense subgraphs or "communities".
- Small world property.
- Heavy-tailed degree distributions.

Social Networks

Social networking graphs have been empirically shown to have:

- High density of triangles.
- Dense subgraphs or "communities".
- Small world property.
- Heavy-tailed degree distributions.

Social networking graphs are almost cluster graphs!

Parameter of Interest

For such graphs, a popular parameter is Cluster Vertex Deletion set size:

Overview of Results

	CD COLORING	Dominator Coloring
Exact	$\tilde{\mathcal{O}}\left(2^{n}\right)^{\dagger}$	$\tilde{\mathcal{O}}\left(4^{n}\right)$
CLQ	$\mathcal{O}^{*}\left(2^{k}\right)$	$\mathcal{O}^{*}\left(16^{k}\right)$
TC	$\mathcal{O}^{*}\left(2^{\mathcal{O}(k \log k)}\right)$	$\mathcal{O}^{*}\left(2^{\mathcal{O}(k \log k)}\right)$
CVD Set	$\mathcal{O}^{*}\left(2^{\mathcal{O}\left(2^{k} k \log q\right)}\right)$	$\mathcal{O}^{*}\left(2^{\mathcal{O}\left(2^{k}\right)}\right)$

We also establish some lower bounds for CD Coloring and Dominator Coloring with respect to these parameters.
' Proved by Krithika et al. in 2021.

Overview of Results

	CD COLORING	Dominator Coloring
Exact	$\tilde{\mathcal{O}}\left(2^{n}\right)^{\dagger}$	$\tilde{\mathcal{O}}\left(4^{n}\right)$
CLQ	$\mathcal{O}^{*}\left(2^{k}\right)$	$\mathcal{O}^{*}\left(16^{k}\right)$
TC	$\mathcal{O}^{*}\left(2^{\mathcal{O}(k \log k)}\right)$	$\mathcal{O}^{*}\left(2^{\mathcal{O}(k \log k)}\right)$
CVD Set	$\mathcal{O}^{*}\left(2^{\mathcal{O}\left(2^{k} k \log q\right)}\right)$	$\mathcal{O}^{*}\left(2^{\mathcal{O}\left(2^{k}\right)}\right)$

We also establish some lower bounds for CD Coloring and Dominator Coloring with respect to these parameters.
' Proved by Krithika et al. in 2021.

Questions?

- $M \subseteq V(G)$ is a CVD set if $G-M$ is a cluster graph.
- A proper coloring χ of G is a $C D$ coloring of G if every color class is dominated by a vertex in $V(G)$.
- We now design a randomized algorithm which solves CD COLORING in $\mathcal{O}^{*}\left(2^{k}\right)$ time where k is the size of a clique modulator.

Clique Modulator

Clique Modulator
$A M \subseteq V(G)$ is a clique modulator if $G-M$ is a clique.

Clique Modulator

Clique Modulator

Clique Modulator
$A M \subseteq V(G)$ is a clique modulator if $G-M$ is a clique.

Clique Modulator

Note: A clique modulator is a special CVD set.

Clique Modulator

Clique Modulator
$A M \subseteq V(G)$ is a clique modulator if $G-M$ is a clique.

Clique Modulator

Note: A clique modulator is a special CVD set.
An optimal clique modulator can be found "quickly" [Gutin et al., 2021].

Coloring the Clique

Coloring the Clique

LIST COLORING can be solved in polynomial time on cliques
[Arora et al., 2020].

Coloring the Clique

$$
B(C, Q)
$$

Lemma

(G, l) is a Yes instance of CD Coloring with this coloring of M, if, and only if, $B(C, Q)$ has a matching saturating Q.

Coloring the Clique

$$
B(C, Q)
$$

Lemma

(G, l) is a YES instance of CD COLORING with this coloring of M, if, and only if, $B(C, Q)$ has a matching saturating Q.

Coloring the Clique

$$
B(C, Q)
$$

Lemma

(G, l) is a Yes instance of CD Coloring with this coloring of M, if, and only if, $B(C, Q)$ has a matching saturating Q.

Takes $\mathcal{O}^{*}\left(k^{k}\right)$-time!

Goal

Parameterized by Clique Modulator Size

There exists a randomized algorithm that solves CD Coloring in $\mathcal{O}^{*}\left(2^{k}\right)$ time where k is the size of an optimal clique modulator of the input graph.

Polynomials

Divisibility Determination

Given a polynomial $p\left(x_{1}, x_{2} \ldots x_{n}\right)$ over \mathbb{R}, and a
$J \subseteq\{1,2, \ldots n\}$, determine if p contains a monomial m such that $\prod_{j \in J} x_{j} \mid m$.

Polynomials

Divisibility Determination

Given a polynomial $p\left(x_{1}, x_{2} \ldots x_{n}\right)$ over \mathbb{R}, and a
$J \subseteq\{1,2, \ldots n\}$, determine if p contains a monomial m such that $\prod_{j \in J} x_{j} \mid m$.

Addressed in [Wahlström, 2013].

- Construct a polynomial q such that $q \not \equiv 0 \Longleftrightarrow \prod_{j \in J} x_{j} \mid m$ for a monomial m of p.

Polynomials

Divisibility Determination

Given a polynomial $p\left(x_{1}, x_{2} \ldots x_{n}\right)$ over \mathbb{R}, and a
$J \subseteq\{1,2, \ldots n\}$, determine if p contains a monomial m such that $\prod_{j \in J} x_{j} \mid m$.

Addressed in [Wahlström, 2013].

- Construct a polynomial q such that $q \not \equiv 0 \Longleftrightarrow \prod_{j \in J} x_{j} \mid m$ for a monomial m of p.
- Use the Schwartz-Zippel Lemma on q.

Polynomials

Divisibility Determination

Given a polynomial $p\left(x_{1}, x_{2} \ldots x_{n}\right)$ over \mathbb{R}, and a
$J \subseteq\{1,2, \ldots n\}$, determine if p contains a monomial m such that $\prod_{j \in J} x_{j} \mid m$.

Addressed in [Wahlström, 2013].

- Construct a polynomial q such that $q \not \equiv 0 \Longleftrightarrow \prod_{j \in J} x_{j} \mid m$ for a monomial m of p.
- Use the Schwartz-Zippel Lemma on q.
q can be constructed and evaluated in $\mathcal{O}^{*}\left(2^{|| |}\right)$-time.

Step 1: Constructing a Bipartite Graph

Step 1: Constructing a Bipartite Graph

Step 1: Constructing a Bipartite Graph

How do we assign two vertices the same color?

Step 1: Constructing a Bipartite Graph

How do we assign two vertices the same color?

Step 1: Constructing a Bipartite Graph

Add a "sink" for M.

Step 1: Constructing a Bipartite Graph

Add a "sink" for M.

Step 1: Constructing a Bipartite Graph

Add a set of "dummy" vertices for balance.

Step 1: Constructing a Bipartite Graph

$$
B\left(C^{\prime}, V^{\prime}\right)
$$

Step 2: Constructing its Edmond's Matrix

Which vertices in M can also be colored red?

Step 2: Constructing its Edmond's Matrix

Which vertices in M can also be colored red?

Step 2: Constructing its Edmond's Matrix

Which vertices in M can also be colored red?

Step 2: Constructing its Edmond's Matrix

Which vertices in M can also be colored red?

Step 2: Constructing its Edmond's Matrix

Vertices in M that can be colored red:

Step 2: Constructing its Edmond's Matrix

Vertices in M that can be colored red: $\mathcal{S}_{(v, c)}=\left\{\emptyset,\left\{v_{4}\right\},\left\{v_{6}\right\}\right\}$.

Step 2: Constructing its Edmond's Matrix

- For each $v \in M$, consider a variable x_{v}.

Step 2: Constructing its Edmond's Matrix

- For each $v \in M$, consider a variable x_{v}.
- For an edge $(v, c) \in V(G) \times C, \mathcal{S}_{(v, c)}$ is the collection of subsets of M which can also be colored c if v is colored c.

Step 2: Constructing its Edmond's Matrix

- For each $v \in M$, consider a variable x_{v}.
- For an edge $(v, c) \in V(G) \times C, \mathcal{S}_{(v, c)}$ is the collection of subsets of M which can also be colored c if v is colored c.
- For all other edges, $\mathcal{S}_{(v, c)}=\emptyset$.

Step 2: Constructing its Edmond's Matrix

- For each $v \in M$, consider a variable x_{v}.
- For an edge $(v, c) \in V(G) \times C, \mathcal{S}_{(v, c)}$ is the collection of subsets of M which can also be colored c if v is colored c.
- For all other edges, $\mathcal{S}_{(v, c)}=\emptyset$.
- Let $p_{(v, c)}=\sum_{S \in \mathcal{S}_{(v, c)}} \prod_{v \in S} x_{v}$.

Step 2: Constructing its Edmond's Matrix

- For each $v \in M$, consider a variable x_{v}.
- For an edge $(v, c) \in V(G) \times C, \mathcal{S}_{(v, c)}$ is the collection of subsets of M which can also be colored c if v is colored c.
- For all other edges, $\mathcal{S}_{(v, c)}=\emptyset$.
- Let $p_{(v, c)}=\sum_{S \in \mathcal{S}_{(v, c)}} \prod_{v \in S} x_{v}$.

Edmond's Matrix

$$
A(v, c)=\left\{\begin{array}{l}
z_{(v, c)} P_{(v, c)} \text { if }(v, c) \in E(B) \\
0 \text { otherwise }
\end{array}\right.
$$

Step 3: Profit?

Theorem
(G, l) is a Yes instance of CD Coloring if, and only if, det A contains a monomial m such that $\prod_{v \in M} x_{v} \mid m$.

Step 3: Profit?

Theorem

(G, l) is a Yes instance of CD Coloring if, and only if, det A contains a monomial m such that $\prod_{v \in M} x_{v} \mid m$.

By [Wahlström, 2013], this takes $\mathcal{O}^{*}\left(2^{|M|}\right)=\mathcal{O}^{*}\left(2^{k}\right)$ time.

Questions?

	CD COLORING	DOMINATOR COLORING
Exact	$\tilde{\mathcal{O}}\left(2^{n}\right)^{\dagger}$	$\tilde{\mathcal{O}}\left(4^{n}\right)$
CLQ	$\mathcal{O}^{*}\left(2^{k}\right)$	$\mathcal{O}^{*}\left(16^{k}\right)$
TC	$\mathcal{O}^{*}\left(2^{\mathcal{O}(k \log k)}\right)$	$\mathcal{O}^{*}\left(2^{\mathcal{O}(k \log k)}\right)$
CVD Set	$\mathcal{O}^{*}\left(2^{\mathcal{O}\left(2^{k} k q \log q\right)}\right)$	$\mathcal{O}^{*}\left(2^{\mathcal{O}\left(2^{k}\right)}\right)$

We also establish some lower bounds for CD Coloring and Dominator Coloring with respect to these parameters.
' Proved by Krithika et al. in 2021.

