Approximating the Smallest *k*-Enclosing Geodesic Disc in a Simple Polygon

Prosenjit Bose¹ Anthony D'Angelo¹ Stephane Durocher²

¹Carleton University

²University of Manitoba

18th Algorithms and Data Structures Symposium

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < < 回 > < < つ < ○

3 🕨 🖌 3

-

-

<ロ> (日) (日) (日) (日) (日)

Euclidean

Geodesic

Approx. SKEG Disc

三日 のへで

Smallest k-Enclosing Geodesic Disc

Given:

- a simple polygon P defined by a set of m vertices in \mathbb{R}^2 , r of which are reflex vertices
- a set S of n points of \mathbb{R}^2 contained in P

Find a geodesic disc of minimum radius centred and contained in P that contains k points of S.

KEG disc k-enclosing geodesic disc

geodesic disc centred and contained in ${\cal P}$ that contains k points of ${\cal S}$

-

3 1 4

KEG disc k-enclosing geodesic disc geodesic disc centred and contained in P that contains k points of S

SKEG disc smallest k-enclosing geodesic disc KEG disc with smallest radius

KEG disc k-enclosing geodesic disc geodesic disc centred and contained in P that contains k points of S
SKEG disc smallest k-enclosing geodesic disc KEG disc with smallest radius
2-SKEG disc a KEG disc whose radius is at most twice that of a SKEG

2-SKEG disc a KEG disc whose radius is at most twice that of a SKEG disc

Theorem

We compute a 2-SKEG disc:

- if $k \in \omega(n/\log n)$, in $O((n^2/k)\log n\log r + m)$ time and O(n + m)space, but we compute a 2-SKEG disc with high probability (i.e., at least 1 - 1/n)
- if $k \in O(n/\log n)$, in $O(n\log^2 n\log r + m)$ expected time, O(n+m) expected space

N.B.: When $k \in \Theta(n)$, the runtime is $O(n \log n \log r + m)$

Tools

Polygon Simplification

O(m) time (Aichholzer et al., '14) Size O(r), preserves visibility, shortest paths

3 1 4

Tools

Shortest-Path Query Data Structure O(r) build time **(Guibas, Hershberger, '**89**)** $O(\log r)$ query time

ъ

Compute a random sample of $(n/k) \ln n$ points of S and compute the $(k-1)^{st}$ closest point of S to each.

Theorem

RS-Algo computes a 2-SKEG disc with probability at least 1 - 1/n in $O((n^2/k) \log n \log r + m)$ time and O(n + m) space.

▲ 臣 ▶ | ▲ 臣 ▶

Projection

三日 のへの

Computing Projections (Pollack, Sharir, Rote, '89)

ъ

Computing Projections (Pollack, Sharir, Rote, '89) $\implies \angle u_c$ closest to $\pi/2$

ъ

Balanced Hierarchical Polygon Decomposition

Balanced Hierarchical Polygon Decomposition

(Chazelle, '82), (Guibas et al., '87) O(r) time / space

ъ

三日 のへの

<ロ> (日) (日) (日) (日) (日)

イロト イヨト イヨト イヨト

三日 のへの

Merge

三日 のへの

<ロ> (日) (日) (日) (日) (日)

Merge

◆ □ ▶ ◆ 🗇

三日 のへの

Merge

• pick a candidate projection at random

Merge

- pick a candidate projection at random
- $\rho = \text{distance to } k^{\text{th}} \text{ closest neighbour of } S$

Merge

- pick a candidate projection at random
- $\rho = \text{distance to } k^{\text{th}} \text{ closest neighbour of } S$
- \bullet for each point of S, compute the interval along the diagonal within distance ρ

Merge

- pick a candidate projection at random
- $\rho = \text{distance to } k^{\text{th}} \text{ closest neighbour of } S$
- \bullet for each point of S, compute the interval along the diagonal within distance ρ
- overlay, count depth of candidate projections, update candidates

Merge

- pick a candidate projection at random
- $\rho = \text{distance to } k^{\text{th}} \text{ closest neighbour of } S$
- for each point of S, compute the interval along the diagonal within distance ρ
- overlay, count depth of candidate projections, update candidates

(Devroye, '88) "Theory of Records" $O(\log n)$ iterations with high probability

Theorem

DI-Algo computes a 2-SKEG disc in $O(n \log^2 n \log r + m)$ expected time and O(n + m) expected space.

★ ∃ ►

ELE NOR

Comparing to Higher Order Geodesic VDs Ignoring Polylogs

Can be solved exactly with higher-order geodesic VDs in worst-case time $O(k^2n + k^2r + \min(kr, r(n - k)) + m)$.

JOC ELE

A B M A B M

Comparing to Higher Order Geodesic VDs Ignoring Polylogs

2-**SKEG:** *O*(*n* + *m*) OKGVD:

Comparing to Higher Order Geodesic VDs Ignoring Polylogs

2-SKEG: *O*(*n* + *m*) **OKGVD:**

• for
$$k \in \Theta(1)$$
: $O(n+m)$

• for $k \in \Omega(n)$, k < n - 1: O(more than $n^3)$ time

JOC ELE

A B < A B <</p>

The End

Related Results

- Coverings/packing simple polygon with geodesic discs [11, 13]
- Geodesic centre, simple polygon [1, 3, 5, 10, 12] Geodesic 2-centre, simple polygon [9, 13]
- Geodesic centre, n points in simple m-gon: O(m + n log(mn))
 [2, 7, 12]
 Geodesic 2-centre, n points in simple m-gon: O(n(m + n) log³(m + n))
- Geodesic k-Nearest Neighbour Queries (static) [6]: built in O(n * polylog) expected time queries in O(k * polylog) expected time

(日) (周) (日) (日) (日) (日) (000)

Merge Disc Contains Some Projection (Pollack, Sharir, Rote, '89) [10] $\angle uu_c c^* \ge \pi/2$ $\implies d(u,c^*) > d(u_c,c^*), d(u_c,u)$

-

References I

- H. Ahn, L. Barba, P. Bose, J. D. Carufel, M. Korman, and E. Oh. A linear-time algorithm for the geodesic center of a simple polygon. *Discrete & Computational Geometry*, 56(4):836–859, 2016.
- [2] B. Aronov, S. Fortune, and G. T. Wilfong. The furthest-site geodesic voronoi diagram. *Discrete & Computational Geometry*, 9:217–255, 1993.
- [3] T. Asano and G. Toussaint. Computing the geodesic center of a simple polygon. In *Discrete Algorithms and Complexity*, pages 65–79. Elsevier, 1987.
- [4] M. G. Borgelt, M. J. van Kreveld, and J. Luo. Geodesic disks and clustering in a simple polygon. *Int. J. Comput. Geometry Appl.*, 21(6):595–608, 2011.

> < = > < = > = = < < < >

References II

- [5] P. Bose and G. T. Toussaint. Computing the constrained euclidean geodesic and link center of a simple polygon with application. In *Computer Graphics International*, pages 102–110. IEEE Computer Society, 1996.
- [6] S. de Berg and F. Staals. Dynamic data structures for k-nearest neighbor queries. *Computational Geometry*, 111:101976, 2023.
- [7] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. *Journal of Computer and System Sciences*, 39(2):126–152, 1989.
- [8] E. Oh, S. W. Bae, and H. Ahn. Computing a geodesic two-center of points in a simple polygon. *Comput. Geom.*, 82:45–59, 2019.
- [9] E. Oh, J. D. Carufel, and H. Ahn. The geodesic 2-center problem in a simple polygon. *Comput. Geom.*, 74:21–37, 2018.
- [10] R. Pollack, M. Sharir, and G. Rote. Computing the geodesic center of a simple polygon. *Discrete & Computational Geometry*, 4:611–626, 1989.

- [11] G. Rabanca and I. Vigan. Covering the boundary of a simple polygon with geodesic unit disks. *CoRR*, abs/1407.0614, 2014.
- [12] G. Toussaint. Computing geodesic properties inside a simple polygon. *Revue D'Intelligence Artificielle*, 3(2):9–42, 1989.
- [13] I. Vigan. Packing and covering a polygon with geodesic disks. *CoRR*, abs/1311.6033, 2013.