Online TSP with Known Locations

Evripidis Bampis Bruno Escoffier Niklas Hahn Michalis Xefteris

WADS 2023

31/07/2023

Traveling Salesperson Problem

- Metric Space $M=(X, d)$

- Metric Space $M=(X, d)$
- Point $\mathcal{O} \in X$ ("Origin")

M

- Metric Space $M=(X, d)$
- Point $\mathcal{O} \in X$ ("Origin")
- The server \mathcal{S} starts at $t=0$ at \mathcal{O} and moves with (up to) unit speed

- Metric Space $M=(X, d)$
- Point $\mathcal{O} \in X$ ("Origin")
- The server \mathcal{S} starts at $t=0$ at \mathcal{O} and moves with (up to) unit speed
- n requests q_{1}, \ldots, q_{n} Each q_{i} has position $p_{i} \in X$ (known) and release time $t_{i} \in \mathbb{R}_{\geq 0}$ (unknown)

- Metric Space $M=(X, d)$
- Point $\mathcal{O} \in X$ ("Origin")
- The server \mathcal{S} starts at $t=0$ at \mathcal{O} and moves with (up to) unit speed
- n requests q_{1}, \ldots, q_{n} Each q_{i} has position $p_{i} \in X$ (known) and release time $t_{i} \in \mathbb{R}_{\geq 0}$ (unknown)

- Metric Space $M=(X, d)$
- Point $\mathcal{O} \in X$ ("Origin")
- The server \mathcal{S} starts at $t=0$ at \mathcal{O} and moves with (up to) unit speed
- n requests q_{1}, \ldots, q_{n}

Each q_{i} has position $p_{i} \in X$ (known) and release time $t_{i} \in \mathbb{R}_{\geq 0}$ (unknown)

- \mathcal{S} has to serve each q_{i} after t_{i}

- Metric Space $M=(X, d)$
- Point $\mathcal{O} \in X$ ("Origin")
- The server \mathcal{S} starts at $t=0$ at \mathcal{O} and moves with (up to) unit speed
- n requests q_{1}, \ldots, q_{n}

Each q_{i} has position $p_{i} \in X$ (known) and release time $t_{i} \in \mathbb{R}_{\geq 0}$ (unknown)

- \mathcal{S} has to serve each q_{i} after t_{i}
- Objective: Minimize the completion time of the tour

- Metric Space $M=(X, d)$
- Point $\mathcal{O} \in X$ ("Origin")
- The server \mathcal{S} starts at $t=0$ at \mathcal{O} and moves with (up to) unit speed
- n requests q_{1}, \ldots, q_{n}

Each q_{i} has position $p_{i} \in X$ (known) and release time $t_{i} \in \mathbb{R}_{\geq 0}$ (unknown)

- \mathcal{S} has to serve each q_{i} after t_{i}
- Objective: Minimize the completion time of the tour
- Open variant: \mathcal{S} finishes when reaching the final request Closed variant: \mathcal{S} has to return to \mathcal{O}

Competitive Ratio

An online algorithm ALG has competitive ratio ϱ if $|\operatorname{ALG}(\sigma)| \leq \varrho \cdot|\mathrm{OPT}(\sigma)|$ for any input instance σ, where OPT is an optimal offline algorithm.

Competitive Ratio

An online algorithm ALG has competitive ratio ϱ if $|\operatorname{ALG}(\sigma)| \leq \varrho \cdot|\operatorname{OPT}(\sigma)|$ for any input instance σ, where OPT is an optimal offline algorithm.

Simple 2-competitive algorithm
(1) Wait at \mathcal{O} until all requests are released
(2) Follow an optimal tour

Competitive Ratio

An online algorithm ALG has competitive ratio ϱ if $|\operatorname{ALG}(\sigma)| \leq \varrho \cdot|\operatorname{OPT}(\sigma)|$ for any input instance σ, where OPT is an optimal offline algorithm.

Simple 2-competitive algorithm
(1) Wait at \mathcal{O} until all requests are released
(2) Follow an optimal tour

Example

Open variant, single request q with distance 1 and release time 1

Optimal offline algorithm finishes at $t=1,|\operatorname{ALG}|=2$

Competitive Ratio

An online algorithm ALG has competitive ratio ϱ if $|\operatorname{ALG}(\sigma)| \leq \varrho \cdot|\operatorname{OPT}(\sigma)|$ for any input instance σ, where OPT is an optimal offline algorithm.

Simple 2-competitive algorithm

(1) Wait at \mathcal{O} until all requests are released
(2) Follow an optimal tour

Example

Open variant, single request q with distance 1 and release time 1

Optimal offline algorithm finishes at $t=1,|\operatorname{ALG}|=2$
Classic Online TSP
Tight bound of 2 for the general case in the closed variant
[Ausiello et al. '01] Tight bound of 2.04 for the open variant on the line, 2.5 general upper bound [Bjelde et al. '20, Ausiello et al. '01]

Algorithm for General Metrics (1)

Observation

W.I.o.g OPT follows a tour/path waiting only at requests' positions and moving from a request A to a request B in time $d(A, B)$.

Algorithm for General Metrics (1)

Observation

W.I.o.g OPT follows a tour/path waiting only at requests' positions and moving from a request A to a request B in time $d(A, B)$.

Main idea:

- Wait in \mathcal{O} until the time that $O P T$ may have traversed exactly half of its tour

Algorithm for General Metrics (1)

Observation

W.I.o.g OPT follows a tour/path waiting only at requests' positions and moving from a request A to a request B in time $d(A, B)$.

Main idea:

- Wait in \mathcal{O} until the time that $O P T$ may have traversed exactly half of its tour
- Follow a "good" tour without deviating and wait at any unreleased request

Algorithm for General Metrics (1)

Observation

W.I.o.g OPT follows a tour/path waiting only at requests' positions and moving from a request A to a request B in time $d(A, B)$.

Main idea:

- Wait in \mathcal{O} until the time that $O P T$ may have traversed exactly half of its tour
- Follow a "good" tour without deviating and wait at any unreleased request

Theorem

The algorithm for general metrics achieves a competitive ratio of $3 / 2$ in both the open and the closed variant of online TSP with known locations.

Algorithm for General Metrics (2)

Main idea:

- Wait in \mathcal{O} until time t s.t. two conditions are satisfied for a single tour σ :
(1) The first half of σ (w.r.t. its length ℓ_{σ}) can be traversed without encountering an unreleased request

Algorithm for General Metrics (2)

Main idea:

- Wait in \mathcal{O} until time t s.t. two conditions are satisfied for a single tour σ :
(1) The first half of σ (w.r.t. its length ℓ_{σ}) can be traversed without encountering an unreleased request

Example (closed variant):

Algorithm for General Metrics (2)

Main idea:

- Wait in \mathcal{O} until time t s.t. two conditions are satisfied for a single tour σ :
(1) The first half of σ (w.r.t. its length ℓ_{σ}) can be traversed without encountering an unreleased request

Example (closed variant):

Algorithm for General Metrics (2)

Main idea:

- Wait in \mathcal{O} until time t s.t. two conditions are satisfied for a single tour σ :
(1) The first half of σ (w.r.t. its length ℓ_{σ}) can be traversed without encountering an unreleased request

Example (closed variant):

Algorithm for General Metrics (2)

Main idea:

- Wait in \mathcal{O} until time t s.t. two conditions are satisfied for a single tour σ :
(1) The first half of σ (w.r.t. its length ℓ_{σ}) can be traversed without encountering an unreleased request

Example (closed variant):

Algorithm for General Metrics (2)

Main idea:

- Wait in \mathcal{O} until time t s.t. two conditions are satisfied for a single tour σ :
(1) The first half of σ (w.r.t. its length ℓ_{σ}) can be traversed without encountering an unreleased request
(2) The tour has length at most $\ell_{\sigma} \leq 2 t$

Example (closed variant):

Algorithm for General Metrics (2)

Main idea:

- Wait in \mathcal{O} until time t s.t. two conditions are satisfied for a single tour σ :
(1) The first half of σ (w.r.t. its length ℓ_{σ}) can be traversed without encountering an unreleased request
(2) The tour has length at most $\ell_{\sigma} \leq 2 t$
- Choose a tour σ^{\prime} that minimizes $\max \left\{\ell_{\sigma^{\prime}} / 2\right.$, unreleased length $\left.\left(\sigma^{\prime}\right)\right\}$ and follow it without deviating, waiting at any unreleased request

Example (closed variant):

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

- Circumference 3, 2 requests, all distances 1

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

- Circumference 3 , 2 requests, all distances 1

- At $t=1$, w.l.o.g. online \mathcal{S} is between A and \mathcal{O} (blue segment)

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

- Circumference 3 , 2 requests, all distances 1

- At $t=1$, w.l.o.g. online \mathcal{S} is between A and \mathcal{O} (blue segment)
- B is released at $t=1$

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

- Circumference 3 , 2 requests, all distances 1

- At $t=1$, w.l.o.g. online \mathcal{S} is between A and \mathcal{O} (blue segment)
- B is released at $t=1$
- A is released at $t=2$

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

- Circumference 3 , 2 requests, all distances 1

- At $t=1$, w.l.o.g. online \mathcal{S} is between A and \mathcal{O} (blue segment)
- B is released at $t=1$
- A is released at $t=2$
- \mathcal{S} cannot serve the first request before $t=2$

General Lower Bounds

Open Variant

Competitive ratio at least $3 / 2$:

- Circumference 3,2 requests, all distances 1

- At $t=1$, w.l.o.g. online \mathcal{S} is between A and \mathcal{O} (blue segment)
- B is released at $t=1$
- A is released at $t=2$
- \mathcal{S} cannot serve the first request before $t=2$
- OPT finishes the tour by $t=2$, no online algorithm can finish before $t=3$

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

- Circumference 3,2 requests, all distances 1

- At $t=1$, w.l.o.g. online \mathcal{S} is between A and \mathcal{O} (blue segment)
- B is released at $t=1$
- A is released at $t=2$
- \mathcal{S} cannot serve the first request before $t=2$
- OPT finishes the tour by $t=2$, no online algorithm can finish before $t=3$

Closed Variant

An example on the line suffices for a lower bound of $3 / 2$

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

- Circumference 3,2 requests, all distances 1

- At $t=1$, w.l.o.g. online \mathcal{S} is between A and \mathcal{O} (blue segment)
- B is released at $t=1$
- A is released at $t=2$
- \mathcal{S} cannot serve the first request before $t=2$
- OPT finishes the tour by $t=2$, no online algorithm can finish before $t=3$

Closed Variant

An example on the line suffices for a lower bound of $3 / 2$
[Gouleakis et al. '23]
\rightsquigarrow The general algorithm is optimal

General Lower Bounds

Open Variant

Competitive ratio at least 3/2:

- Circumference 3,2 requests, all distances 1

- At $t=1$, w.l.o.g. online \mathcal{S} is between A and \mathcal{O} (blue segment)
- B is released at $t=1$
- A is released at $t=2$
- \mathcal{S} cannot serve the first request before $t=2$
- OPT finishes the tour by $t=2$, no online algorithm can finish before $t=3$

Closed Variant

An example on the line suffices for a lower bound of $3 / 2$
[Gouleakis et al. '23]
\rightsquigarrow The general algorithm is optimal, but it is not poly-time

Stars:

Poly-time algorithm which is $(7 / 4+\varepsilon)$ competitive (closed).

Stars:

Poly-time algorithm which is $(7 / 4+\varepsilon)$ competitive (closed).

Rings:

Poly-time algorithm which is $5 / 3$ competitive (closed).

Stars:

Poly-time algorithm which is $(7 / 4+\varepsilon)$ competitive (closed).

Rings:

Poly-time algorithm which is $5 / 3$ competitive (closed).

Semi-line:
Poly-time algorithms which are 1 (closed) and 13/9 competitive (open).

Stars (1)

Main idea:

Main idea:

(1) If a long ray (i.e., ray of length at least $1 / 4$ of the overall length of all rays) exists, first serve this ray completely and return to \mathcal{O}.

Main idea:

(1) If a long ray (i.e., ray of length at least $1 / 4$ of the overall length of all rays) exists, first serve this ray completely and return to \mathcal{O}.
Otherwise (all rays are short), wait in \mathcal{O} until time t, which is exactly the combined length of all rays. Then,

Main idea:

(1) If a long ray (i.e., ray of length at least $1 / 4$ of the overall length of all rays) exists, first serve this ray completely and return to \mathcal{O}.
Otherwise (all rays are short), wait in \mathcal{O} until time t, which is exactly the combined length of all rays. Then,

- Identify a set R of rays maximizing the released segments in R under the constraint that the set R can be traversed completely, including going back to \mathcal{O}, in time t.

Main idea:

(1) If a long ray (i.e., ray of length at least $1 / 4$ of the overall length of all rays) exists, first serve this ray completely and return to \mathcal{O}.
Otherwise (all rays are short), wait in \mathcal{O} until time t, which is exactly the combined length of all rays. Then,

- Identify a set R of rays maximizing the released segments in R under the constraint that the set R can be traversed completely, including going back to \mathcal{O}, in time t.
- Only contiguous segments starting at the outer extremities of the rays are counted.

Main idea:

(1) If a long ray (i.e., ray of length at least $1 / 4$ of the overall length of all rays) exists, first serve this ray completely and return to \mathcal{O}.
Otherwise (all rays are short), wait in \mathcal{O} until time t, which is exactly the combined length of all rays. Then,

- Identify a set R of rays maximizing the released segments in R under the constraint that the set R can be traversed completely, including going back to \mathcal{O}, in time t.
- Only contiguous segments starting at the outer extremities of the rays are counted.
- Then, serve the requests in R and return to \mathcal{O}.

Main idea:

(1) If a long ray (i.e., ray of length at least $1 / 4$ of the overall length of all rays) exists, first serve this ray completely and return to \mathcal{O}.
Otherwise (all rays are short), wait in \mathcal{O} until time t, which is exactly the combined length of all rays. Then,

- Identify a set R of rays maximizing the released segments in R under the constraint that the set R can be traversed completely, including going back to \mathcal{O}, in time t.
- Only contiguous segments starting at the outer extremities of the rays are counted.
- Then, serve the requests in R and return to \mathcal{O}.
(2) Wait in \mathcal{O} until all requests are released. Afterwards, serve the unserved requests in an optimal manner.

Stars (2)

- The algorithm achieves a competitive ratio of $7 / 4$ with an optimal set R
- The algorithm achieves a competitive ratio of $7 / 4$ with an optimal set R
- Finding an optimal set R constitutes solving a knapsack problem
\rightsquigarrow FPTAS to find R gives us for every $\varepsilon>0$, a $(7 / 4+\varepsilon)$ competitive poly-time algorithm
- The algorithm achieves a competitive ratio of $7 / 4$ with an optimal set R
- Finding an optimal set R constitutes solving a knapsack problem
\rightsquigarrow FPTAS to find R gives us
for every $\varepsilon>0$, a ($7 / 4+\varepsilon$) competitive poly-time algorithm

Example

Ray	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
Length	0.2	0.15	0.2	0.1	0.2	0.15
Released	0.1	0	0.15	0.02	0.1	0.05

- The algorithm achieves a competitive ratio of $7 / 4$ with an optimal set R
- Finding an optimal set R constitutes solving a knapsack problem
\rightsquigarrow FPTAS to find R gives us
for every $\varepsilon>0$, a $(7 / 4+\varepsilon)$ competitive poly-time algorithm
Example

Ray	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
Length	0.2	0.15	0.2	0.1	0.2	0.15
Released	0.1	0	0.15	0.02	0.1	0.05

$\rightsquigarrow R$: rays R_{1}, R_{3} and R_{4} (or R_{3}, R_{4}, R_{5}) with a combined length of $1 / 2$ and released length of $\ell=0.27$

Outlook

	Open OLTSP-L		Closed OLTSP-L		
	Lower Bound	Upper Bound	Lower Bound	Upper Bound	
Semi-line	$4 / 3$	$13 / 9^{*}$	$\mathbf{1}$	$\mathbf{1}^{*}$	
Star	$13 / 9$	$3 / 2$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	
$(7 / 4+\varepsilon)^{*}$					
Ring	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	
General	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$		
		$\mathbf{3 / 2}$			

Poly-time algorithms denoted by *

Outlook

	Open OLTSP-L		Closed OLTSP-L		
	Lower Bound	Upper Bound	Lower Bound	Upper Bound	
Semi-line	$4 / 3$	$13 / 9^{*}$	$\mathbf{1}$	$\mathbf{1}^{*}$	
Star	$13 / 9$	$3 / 2$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	
Ring	$\mathbf{7 / 4 + \varepsilon})^{*}$				
General	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	
R	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$		$\mathbf{3 / 2}$	

Poly-time algorithms denoted by *

Open Questions

- Improving running time (general)
- Improving the Bounds
- Predictions on locations

Outlook

	Open OLTSP-L		Closed OLTSP-L	
	Lower Bound	Upper Bound	Lower Bound	Upper Bound
Semi-line	$4 / 3$	$13 / 9^{*}$	$\mathbf{1}$	$\mathbf{1}^{*}$
Star	$13 / 9$	$3 / 2$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$
Ring	$\mathbf{7 / 4 + \varepsilon})^{*}$			
General	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$
Rin	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$		$\mathbf{3 / 2}$

Poly-time algorithms denoted by *

Open Questions

- Improving running time (general)
- Improving the Bounds
- Predictions on locations
> \rightsquigarrow Learning-Augmented Online TSP on Rings, Trees, Flowers and (almost) Everywhere Else

Outlook

	Open OLTSP-L		Closed OLTSP-L		
	Lower Bound	Upper Bound	Lower Bound	Upper Bound	
Semi-line	$4 / 3$	$13 / 9^{*}$	$\mathbf{1}$	$\mathbf{1}^{*}$	
Star	$13 / 9$	$3 / 2$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	
$(7 / 4+\varepsilon)^{*}$					
Ring	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	
General	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$		
		$\mathbf{3 / 2}$			

Poly-time algorithms denoted by *

Open Questions

- Improving running time (general)
- Improving the Bounds
- Predictions on locations
> \rightsquigarrow Learning-Augmented Online TSP on Rings, Trees, Flowers and (almost) Everywhere Else

Thank you!

