Online TSP with Known Locations

Evripidis Bampis Bruno Escoffier ~ Niklas Hahn Michalis Xefteris

WADS 2023

31/07/2023

Traveling Salesperson Problem

® Metric Space M = (X, d)

® Metric Space M = (X, d)

e Point O € X (“Origin")

® Metric Space M = (X, d)

0 t
e Point O € X (“Origin")
® The server S starts at t =0 at O and
moves with (up to) unit speed
O

® Metric Space M = (X, d)

@ e Point O € X (“Origin")

® The server S starts at t =0 at O and

@ @ moves with (up to) unit speed
@ ® nrequests g1,...,qn
Each g; has position p; € X (known)
and release time t; € R>g (unknown)

® Metric Space M = (X, d)

@ e Point O € X (“Origin")

® The server S starts at t =0 at O and

@ @ moves with (up to) unit speed
@ ® nrequests g1,...,qn
Each g; has position p; € X (known)
and release time t; € R>g (unknown)

® Metric Space M = (X, d)

@ e Point O € X (“Origin")

® The server S starts at t =0 at O and
@ moves with (up to) unit speed

R o
@ ® nrequests gi1,...,qn

Each g; has position p; € X (known)
and release time t; € R>g (unknown)

@ 0 ® S has to serve each g; after t;

® Metric Space M = (X, d)

e Point O € X (“Origin")
® The server S starts at t =0 at O and

moves with (up to) unit speed

® nrequests qi,...,qn
Each g; has position p; € X (known)
and release time t; € R>g (unknown)

@ 0 ® S has to serve each g; after t;

@ ® QObjective: Minimize the completion
time of the tour

® Metric Space M = (X, d)

e Point O € X (“Origin")

® The server S starts at t =0 at O and
moves with (up to) unit speed

® nrequests qi,...,qn
Each g; has position p; € X (known)
and release time t; € R>g (unknown)

® S has to serve each g; after t;

® QObjective: Minimize the completion
time of the tour

@ e QOpen variant: S finishes when
reaching the final request
@ Closed variant: S has to return to O

Performance Measure

Competitive Ratio

An online algorithm ALG has competitive ratio ¢ if | ALG(c)| < o - | OPT (o)
for any input instance o, where OPT is an optimal offline algorithm.

Performance Measure

Competitive Ratio
An online algorithm ALG has competitive ratio ¢ if | ALG(c)| < o - | OPT (o)
for any input instance o, where OPT is an optimal offline algorithm.

Simple 2-competitive algorithm
@ Wait at O until all requests are released

® Follow an optimal tour

Performance Measure

Competitive Ratio

An online algorithm ALG has competitive ratio ¢ if | ALG(c)| < o - | OPT (o)
for any input instance o, where OPT is an optimal offline algorithm.

Simple 2-competitive algorithm
@ Wait at O until all requests are released

® Follow an optimal tour

Example
Open variant, single request g with distance 1 and release time 1

)

O q
Optimal offline algorithm finishes at t = 1, | ALG| =2

Performance Measure

Competitive Ratio

An online algorithm ALG has competitive ratio ¢ if | ALG(c)| < o - | OPT (o)
for any input instance o, where OPT is an optimal offline algorithm.

Simple 2-competitive algorithm
@ Wait at O until all requests are released

® Follow an optimal tour

Example
Open variant, single request g with distance 1 and release time 1

)

O q
Optimal offline algorithm finishes at t = 1, | ALG| =2

Classic Online TSP

Tight bound of 2 for the general case in the closed variant [Ausiello et al. '01]

Tight bound of 2.04 for the open variant on the line, 2.5 general upper bound
[Bjelde et al. 20, Ausiello et al. '01]

Algorithm for General Metrics (1)

Observation
W.l.o.g OPT follows a tour/path waiting only at requests’ positions and moving
from a request A to a request B in time d(A, B).

Algorithm for General Metrics (1)

Observation
W.l.o.g OPT follows a tour/path waiting only at requests’ positions and moving

from a request A to a request B in time d(A, B).

Main idea:
e Wait in O until the time that OPT may have traversed exactly half of its
tour

Algorithm for General Metrics (1)

Observation
W.l.o.g OPT follows a tour/path waiting only at requests’ positions and moving

from a request A to a request B in time d(A, B).

Main idea:
e Wait in O until the time that OPT may have traversed exactly half of its
tour

® Follow a “good” tour without deviating and wait at any unreleased request

Algorithm for General Metrics (1)

Observation
W.l.o.g OPT follows a tour/path waiting only at requests’ positions and moving
from a request A to a request B in time d(A, B).

Main idea:

e Wait in O until the time that OPT may have traversed exactly half of its
tour

® Follow a “good” tour without deviating and wait at any unreleased request

Theorem
The algorithm for general metrics achieves a competitive ratio of 3/2 in both
the open and the closed variant of online TSP with known locations.

Algorithm for General Metrics (2)

Main idea:
® Wait in O until time t s.t. two conditions are satisfied for a single tour o:

@ The first half of o (w.r.t. its length ¢,) can be traversed without
encountering an unreleased request

Algorithm for General Metrics (2)

Main idea:
® Wait in O until time t s.t. two conditions are satisfied for a single tour o:

@ The first half of o (w.r.t. its length ¢,) can be traversed without
encountering an unreleased request

Example (closed variant):

[s
N s

I ~ - |

N 7
I N P I
I ~ I I
~ -
I N - I
~ -
| N P |
I N¢ I
o<
I - N I
P N
I P N I
| e ~ |
s ~

| - ~ I
- ~5

I P N I

(Y N
~ ~

Algorithm for General Metrics (2)

Main idea:
® Wait in O until time t s.t. two conditions are satisfied for a single tour o:

@ The first half of o (w.r.t. its length ¢,) can be traversed without
encountering an unreleased request

Example (closed variant):

[s
N s

| ~ - |

N 7
I N P I
I ~ I I
~ -
I N - |
N s
I N P I
I N¢ I
o<
I - N I
P N
I P N I
| e ~ |
s ~

| - ~ |
- ~5

I P N I

(Y N
~ ~

Algorithm for General Metrics (2)

Main idea:
® Wait in O until time t s.t. two conditions are satisfied for a single tour o:

@ The first half of o (w.r.t. its length ¢,) can be traversed without
encountering an unreleased request

Example (closed variant):

[s
N s
| ~ - |
N 7
I N P I
I ~ I I
~ -
I N - |
N s
I N P I
| S< | O
o<
I - N I
P N
| ~ ~ |
| e ~ |
s ~
| - ~ |
- ~5
I P N I
(Y N
~ ~

Algorithm for General Metrics (2)

Main idea:
® Wait in O until time t s.t. two conditions are satisfied for a single tour o:

@ The first half of o (w.r.t. its length ¢,) can be traversed without
encountering an unreleased request

Example (closed variant):

Algorithm for General Metrics (2)

Main idea:
® Wait in O until time t s.t. two conditions are satisfied for a single tour o:

@ The first half of o (w.r.t. its length ¢,) can be traversed without
encountering an unreleased request

® The tour has length at most ¢, < 2t

Example (closed variant):

Algorithm for General Metrics (2)

Main idea:
® Wait in O until time t s.t. two conditions are satisfied for a single tour o:

@ The first half of o (w.r.t. its length ¢,) can be traversed without
encountering an unreleased request

® The tour has length at most ¢, < 2t

® Choose a tour ¢’ that minimizes max{/¢,s /2, unreleased length(c’)} and
follow it without deviating, waiting at any unreleased request

Example (closed variant):

[-
N 7z
1 ~ -
1 N -’b
N 7z
| N .
N .
1 N -,
N 7
1 N
Nz
3! >< 3
1 PREEEN
1 e o
P N
1 - >
P N
1 . ~
- ~b
1 P <
[~
. N
e
Y

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:

® Circumference 3, 2 requests, all distances 1

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:
® Circumference 3, 2 requests, all distances 1

e At t =1, w.lo.g. online § is between A and
O (blue segment)

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:
® Circumference 3, 2 requests, all distances 1

e At t =1, w.lo.g. online § is between A and
O (blue segment)

® Bisreleased at t =1

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:
® Circumference 3, 2 requests, all distances 1

e At t =1, w.lo.g. online § is between A and
O (blue segment)

® Bisreleased at t =1

® Ais released at t = 2

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:
® Circumference 3, 2 requests, all distances 1

e At t =1, w.lo.g. online § is between A and
O (blue segment)

B is released at t = 1

A is released at t = 2

S cannot serve the first request before t = 2

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:

® Circumference 3, 2 requests, all distances 1

/\ e At t =1, w.l.o.g. online S is between A and
A B

O (blue segment)

® Bisreleased at t =1

® Ais released at t =2

® S cannot serve the first request before t = 2
) ® OPT finishes the tour by t = 2, no online

algorithm can finish before t = 3

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:

® Circumference 3, 2 requests, all distances 1

/\ e At t =1, w.l.o.g. online S is between A and
A B

O (blue segment)

® Bisreleased at t =1

® Ais released at t =2

® S cannot serve the first request before t = 2
O ® OPT finishes the tour by t = 2, no online

algorithm can finish before t = 3

Closed Variant
An example on the line suffices for a lower bound of 3/2 [Gouleakis et al. '23]

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:

® Circumference 3, 2 requests, all distances 1

/\ e At t =1, w.l.o.g. online S is between A and
A B

O (blue segment)

B is released at t = 1

A is released at t = 2

S cannot serve the first request before t = 2

OPT finishes the tour by t = 2, no online
algorithm can finish before t = 3

G
°

Closed Variant
An example on the line suffices for a lower bound of 3/2 [Gouleakis et al. '23]

~ The general algorithm is optimal

General Lower Bounds

Open Variant
Competitive ratio at least 3/2:

® Circumference 3, 2 requests, all distances 1

/\ e At t =1, w.l.o.g. online S is between A and
A B

O (blue segment)

B is released at t = 1

A is released at t = 2

S cannot serve the first request before t = 2

OPT finishes the tour by t = 2, no online
algorithm can finish before t = 3

G
°

Closed Variant
An example on the line suffices for a lower bound of 3/2 [Gouleakis et al. '23]

~> The general algorithm is optimal, but it is not poly-time

Poly-time algorithms

Stars:

Poly-time algorithm which is (7/4 4) competi-
tive (closed).

Poly-time algorithms

Stars:

Poly-time algorithm which is (7/4 4) competi-
tive (closed).

Rings:

Poly-time algorithm which is 5/3 competitive
(closed).

Stars:

Poly-time algorithm which is (7/4 4) competi-
tive (closed).

Rings:

Poly-time algorithm which is 5/3 competitive
(closed).

Semi-line:

Poly-time algorithms which are 1 (closed) and
13/9 competitive (open).

Poly-time algorithms

O e

Main idea:

Stars (1)

Main idea:

@ If a long ray (i.e., ray of length at least 1/4 of the overall length of all rays)
exists, first serve this ray completely and return to O.

Stars (1)

Main idea:
@ If a long ray (i.e., ray of length at least 1/4 of the overall length of all rays)
exists, first serve this ray completely and return to O.

Otherwise (all rays are short), wait in O until time t, which is exactly the
combined length of all rays. Then,

Stars (1)

Main idea:

@ If a long ray (i.e., ray of length at least 1/4 of the overall length of all rays)
exists, first serve this ray completely and return to O.

Otherwise (all rays are short), wait in O until time t, which is exactly the
combined length of all rays. Then,
® |dentify a set R of rays maximizing the released segments in R under the
constraint that the set R can be traversed completely, including going back
to O, in time t.

Stars (1)

Main idea:
@ If a long ray (i.e., ray of length at least 1/4 of the overall length of all rays)
exists, first serve this ray completely and return to O.
Otherwise (all rays are short), wait in O until time t, which is exactly the

combined length of all rays. Then,
® |dentify a set R of rays maximizing the released segments in R under the
constraint that the set R can be traversed completely, including going back
to O, in time t.

® Only contiguous segments starting at the outer extremities of the rays are
counted.

Stars (1)

Main idea:
@ If a long ray (i.e., ray of length at least 1/4 of the overall length of all rays)
exists, first serve this ray completely and return to O.

Otherwise (all rays are short), wait in O until time t, which is exactly the
combined length of all rays. Then,
® |dentify a set R of rays maximizing the released segments in R under the
constraint that the set R can be traversed completely, including going back
to O, in time t.

® Only contiguous segments starting at the outer extremities of the rays are

counted.
® Then, serve the requests in R and return to O.

Stars (1)

Main idea:
@ If a long ray (i.e., ray of length at least 1/4 of the overall length of all rays)
exists, first serve this ray completely and return to O.
Otherwise (all rays are short), wait in O until time t, which is exactly the
combined length of all rays. Then,
® |dentify a set R of rays maximizing the released segments in R under the
constraint that the set R can be traversed completely, including going back
to O, in time t.

® Only contiguous segments starting at the outer extremities of the rays are

counted.
® Then, serve the requests in R and return to O.

® Wait in O until all requests are released. Afterwards, serve the unserved
requests in an optimal manner.

Stars (2)

® The algorithm achieves a competitive ratio of 7/4 with an optimal set R

Stars (2)

® The algorithm achieves a competitive ratio of 7/4 with an optimal set R

® Finding an optimal set R constitutes solving a knapsack problem
~» FPTAS to find R gives us

for every € > 0, a (7/4 +) competitive poly-time algorithm

Stars (2)

® The algorithm achieves a competitive ratio of 7/4 with an optimal set R

® Finding an optimal set R constitutes solving a knapsack problem
~» FPTAS to find R gives us

for every € > 0, a (7/4 +) competitive poly-time algorithm

Example
I3
“Rs
/ Ray ‘R1 Ro Rs3 R4 Rs Reg
Ry S— Length | 0.2 0.5 02 01 02 0.15
Ry Released | 0.1 0 015 002 0.1 005

R5/ Ra\

Stars (2)

® The algorithm achieves a competitive ratio of 7/4 with an optimal set R

® Finding an optimal set R constitutes solving a knapsack problem
~» FPTAS to find R gives us
for every € > 0, a (7/4 +) competitive poly-time algorithm

Example
I3
“Rs
/ Ray ‘R1 Ro Rs3 R4 Rs Reg
Ry S— Length | 0.2 0.5 02 01 02 0.15
Ry Released | 0.1 0 015 002 0.1 005

R5/ Ra\

~> R : rays Ri, R3 and R4 (or R3, R4, R5) with a combined length of 1/2 and
released length of ¢ = 0.27

Open OLTSP-L
Lower Bound ‘ Upper Bound

Closed OLTSP-L
Lower Bound ‘ Upper Bound

Semi-line
Star
Ring

General

4/3 13/9*
13/9 3/2
3/2 3/2
3/2 3/2

1 1*
3/2 3/2 (7/44)*
3/2 3/2 5/3*
3/2 3/2

Poly-time algorithms denoted by *

10

Open OLTSP-L
Lower Bound ‘ Upper Bound

Closed OLTSP-L
Lower Bound ‘ Upper Bound

Semi-line
Star
Ring

General

4/3 13/9*
13/9 3/2
3/2 3/2
3/2 3/2

Open Questions

® Improving running time (general)

® |Improving the Bounds

® Predictions on locations

1 1*
3/2 3/2 (7/44)*
3/2 3/2 5/3*
3/2 3/2

Poly-time algorithms denoted by *

10

Open OLTSP-L Closed OLTSP-L
Lower Bound ‘ Upper Bound || Lower Bound ‘ Upper Bound
Semi-line 4/3 13/9* 1 1*
Star 13/9 3/2 3/2 3/2 (7/4+e)*
Ring 3/2 3/2 3/2 3/2 5/3%
General 3/2 3/2 3/2 3/2

Poly-time algorithms denoted by *

Open Questions
® Improving running time (general) aliia$si?>gﬁug?;22te$rees

® |Improving the Bounds Flowers and (almost) Every-

® Predictions on locations where Else

10

Open OLTSP-L Closed OLTSP-L
Lower Bound ‘ Upper Bound || Lower Bound ‘ Upper Bound
Semi-line 4/3 13/9* 1 1*
Star 13/9 3/2 3/2 3/2 (7/4+e)*
Ring 3/2 3/2 3/2 3/2 5/3%
General 3/2 3/2 3/2 3/2

Poly-time algorithms denoted by *

Open Questions
® Improving running time (general) aliia$slr;>gﬁug?;22te$rees
® |Improving the Bounds Flowers and (almost) Every-

® Predictions on locations where Else

Thank you!

10

