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Traveling Salesperson Problem
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e Point O € X (“Origin")

® The server S starts at t =0 at O and
moves with (up to) unit speed

® nrequests qi,...,qn
Each g; has position p; € X (known)
and release time t; € R>g (unknown)

® S has to serve each g; after t;

® QObjective: Minimize the completion
time of the tour

@ e QOpen variant: S finishes when
reaching the final request
@ Closed variant: S has to return to O
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An online algorithm ALG has competitive ratio ¢ if | ALG(c)| < o - | OPT (o)
for any input instance o, where OPT is an optimal offline algorithm.

Simple 2-competitive algorithm
@ Wait at O until all requests are released

® Follow an optimal tour

Example
Open variant, single request g with distance 1 and release time 1

)

O q
Optimal offline algorithm finishes at t = 1, | ALG| =2

Classic Online TSP

Tight bound of 2 for the general case in the closed variant [Ausiello et al. '01]

Tight bound of 2.04 for the open variant on the line, 2.5 general upper bound
[Bjelde et al. 20, Ausiello et al. '01]
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Observation
W.l.o.g OPT follows a tour/path waiting only at requests’ positions and moving
from a request A to a request B in time d(A, B).

Main idea:

e Wait in O until the time that OPT may have traversed exactly half of its
tour

® Follow a “good” tour without deviating and wait at any unreleased request

Theorem
The algorithm for general metrics achieves a competitive ratio of 3/2 in both
the open and the closed variant of online TSP with known locations.
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Algorithm for General Metrics (2)

Main idea:
® Wait in O until time t s.t. two conditions are satisfied for a single tour o:

@ The first half of o (w.r.t. its length ¢,) can be traversed without
encountering an unreleased request

® The tour has length at most ¢, < 2t

® Choose a tour ¢’ that minimizes max{/¢,s /2, unreleased length(c’)} and
follow it without deviating, waiting at any unreleased request

Example (closed variant):
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Open Variant
Competitive ratio at least 3/2:

® Circumference 3, 2 requests, all distances 1

/\ e At t =1, w.l.o.g. online S is between A and
A B

O (blue segment)

B is released at t = 1

A is released at t = 2

S cannot serve the first request before t = 2
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Closed Variant
An example on the line suffices for a lower bound of 3/2 [Gouleakis et al. '23]

~> The general algorithm is optimal, but it is not poly-time
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Rings:

Poly-time algorithm which is 5/3 competitive
(closed).

Semi-line:

Poly-time algorithms which are 1 (closed) and
13/9 competitive (open).
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Main idea:
@ If a long ray (i.e., ray of length at least 1/4 of the overall length of all rays)
exists, first serve this ray completely and return to O.
Otherwise (all rays are short), wait in O until time t, which is exactly the
combined length of all rays. Then,
® |dentify a set R of rays maximizing the released segments in R under the
constraint that the set R can be traversed completely, including going back
to O, in time t.

® Only contiguous segments starting at the outer extremities of the rays are

counted.
® Then, serve the requests in R and return to O.

® Wait in O until all requests are released. Afterwards, serve the unserved
requests in an optimal manner.
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® The algorithm achieves a competitive ratio of 7/4 with an optimal set R

® Finding an optimal set R constitutes solving a knapsack problem
~» FPTAS to find R gives us
for every € > 0, a (7/4 + ) competitive poly-time algorithm

Example
I3
“Rs
/ Ray ‘R1 Ro Rs3 R4 Rs Reg
Ry S— Length | 0.2 0.5 02 01 02 0.15
Ry Released | 0.1 0 015 002 0.1 005

R5/ Ra\

~> R : rays Ri, R3 and R4 (or R3, R4, R5) with a combined length of 1/2 and
released length of ¢ = 0.27
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Poly-time algorithms denoted by *

Open Questions
® Improving running time (general) aliia$slr;>gﬁug?;22te$rees
® |Improving the Bounds Flowers and (almost) Every-

® Predictions on locations where Else

Thank you!
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