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Traveling Salesperson Problem
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Model

t0

M

• Metric Space M = (X , d)

• Point O ∈ X (“Origin”)

• The server S starts at t = 0 at O and
moves with (up to) unit speed

• n requests q1, . . . , qn
Each qi has position pi ∈ X (known)
and release time ti ∈ R≥0 (unknown)

• S has to serve each qi after ti

• Objective: Minimize the completion
time of the tour

• Open variant: S finishes when
reaching the final request
Closed variant: S has to return to O
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Performance Measure

Competitive Ratio
An online algorithm ALG has competitive ratio ϱ if | ALG(σ)| ≤ ϱ · | OPT(σ)|
for any input instance σ, where OPT is an optimal offline algorithm.

Simple 2-competitive algorithm
1 Wait at O until all requests are released
2 Follow an optimal tour

Example
Open variant, single request q with distance 1 and release time 1

O
×q

Optimal offline algorithm finishes at t = 1, | ALG | = 2

Classic Online TSP
Tight bound of 2 for the general case in the closed variant [Ausiello et al. ’01]
Tight bound of 2.04 for the open variant on the line, 2.5 general upper bound

[Bjelde et al. ’20, Ausiello et al. ’01]
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Algorithm for General Metrics (1)

Observation
W.l.o.g OPT follows a tour/path waiting only at requests’ positions and moving
from a request A to a request B in time d(A, B).

Main idea:
• Wait in O until the time that OPT may have traversed exactly half of its

tour

• Follow a “good” tour without deviating and wait at any unreleased request

Theorem
The algorithm for general metrics achieves a competitive ratio of 3/2 in both
the open and the closed variant of online TSP with known locations.
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Algorithm for General Metrics (2)

Main idea:
• Wait in O until time t s.t. two conditions are satisfied for a single tour σ:

(1) The first half of σ (w.r.t. its length ℓσ) can be traversed without
encountering an unreleased request

(2) The tour has length at most ℓσ ≤ 2t

• Choose a tour σ′ that minimizes max{ℓσ′/2, unreleased length(σ′)} and
follow it without deviating, waiting at any unreleased request

Example (closed variant):

4

3

4

3

5

5

O
⋆ ×

A

C B

A
×

××

O⋆ ×

××

ℓ = 14

O⋆ ××

××

ℓ = 18
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General Lower Bounds

Open Variant
Competitive ratio at least 3/2:

O

• Circumference 3, 2 requests, all distances 1
• At t = 1, w.l.o.g. online S is between A and

O (blue segment)
• B is released at t = 1
• A is released at t = 2
• S cannot serve the first request before t = 2
• OPT finishes the tour by t = 2, no online

algorithm can finish before t = 3

Closed Variant
An example on the line suffices for a lower bound of 3/2 [Gouleakis et al. ’23]

⇝ The general algorithm is optimal, but it is not poly-time
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Poly-time algorithms

Stars:

Poly-time algorithm which is (7/4 + ε) competi-
tive (closed). O

Rings:

Poly-time algorithm which is 5/3 competitive
(closed).

O

Semi-line:
Poly-time algorithms which are 1 (closed) and
13/9 competitive (open). O
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Stars (1)

Main idea:

(1) If a long ray (i.e., ray of length at least 1/4 of the overall length of all rays)
exists, first serve this ray completely and return to O.
Otherwise (all rays are short), wait in O until time t, which is exactly the
combined length of all rays. Then,

• Identify a set R of rays maximizing the released segments in R under the
constraint that the set R can be traversed completely, including going back
to O, in time t.

• Only contiguous segments starting at the outer extremities of the rays are
counted.

• Then, serve the requests in R and return to O.

(2) Wait in O until all requests are released. Afterwards, serve the unserved
requests in an optimal manner.

8
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Stars (2)

• The algorithm achieves a competitive ratio of 7/4 with an optimal set R

• Finding an optimal set R constitutes solving a knapsack problem
⇝ FPTAS to find R gives us
for every ε > 0, a (7/4 + ε) competitive poly-time algorithm

Example

⇝ R : rays R1, R3 and R4 (or R3, R4, R5) with a combined length of 1/2 and
released length of ℓ = 0.27

9
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Outlook

Open OLTSP-L Closed OLTSP-L
Lower Bound Upper Bound Lower Bound Upper Bound

Semi-line 4/3 13/9* 1 1*
Star 13/9 3/2 3/2 3/2 (7/4+ε)*
Ring 3/2 3/2 3/2 3/2 5/3*

General 3/2 3/2 3/2 3/2
Poly-time algorithms denoted by *

Open Questions
• Improving running time (general)
• Improving the Bounds
• Predictions on locations

⇝ Learning-Augmented
Online TSP on Rings, Trees,
Flowers and (almost) Every-
where Else

Thank you!
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