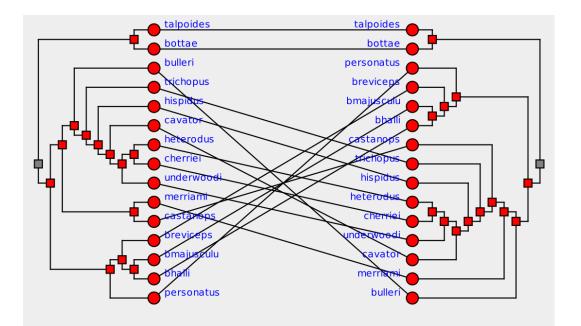
Block Crossings in One-Sided Tanglegrams

Alexander Dobler, Martin Nöllenburg July 31, 2023 · WADS 2023

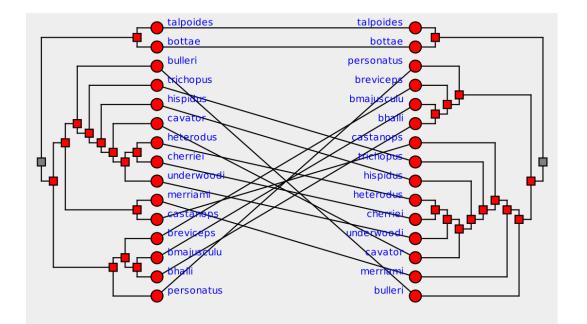
Tanglegrams



Comparison of species trees of **same leaf set**

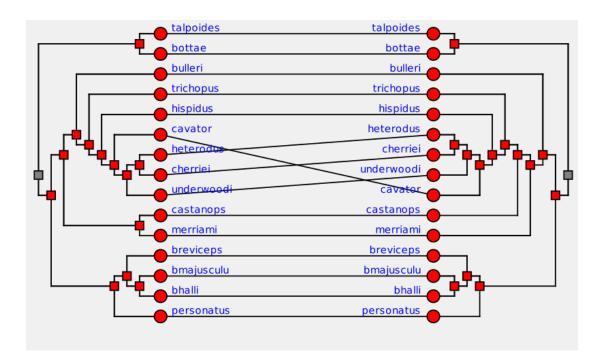
Tanglegrams

acılı

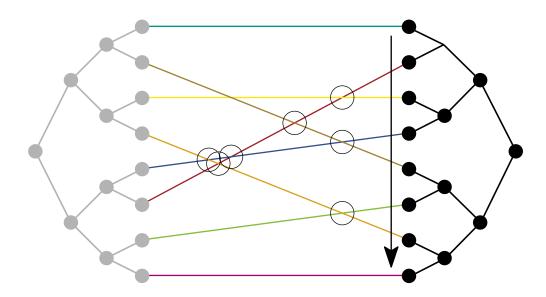


Comparison of species trees of **same leaf set**

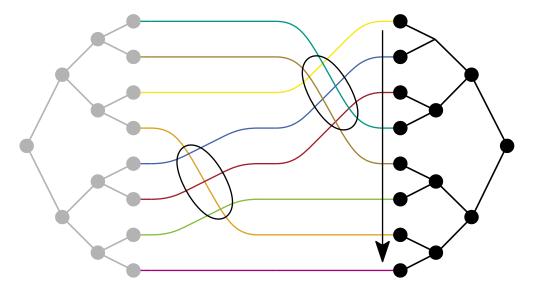
Known **combinatorial problem**: reorder leaves of one/both trees to **minimize crossings**



Same instance, left leaf order fixed

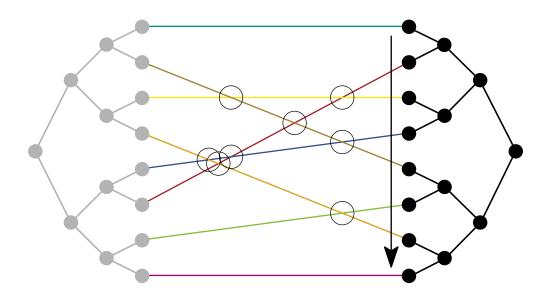


Optimal: 8 edge crossings

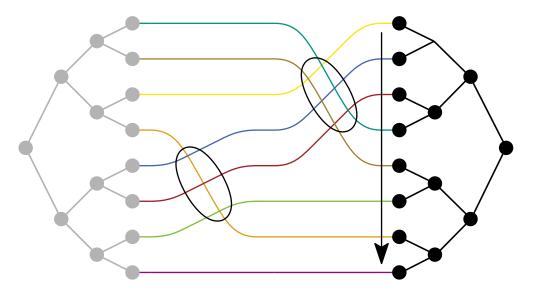


Optimal: 2 block crossings (but 9 edge crossings)

Same instance, left leaf order fixed

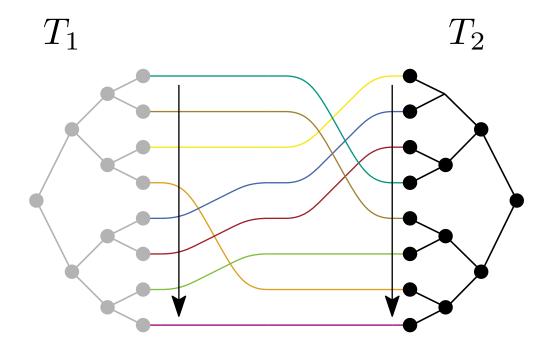


Optimal: 8 edge crossings

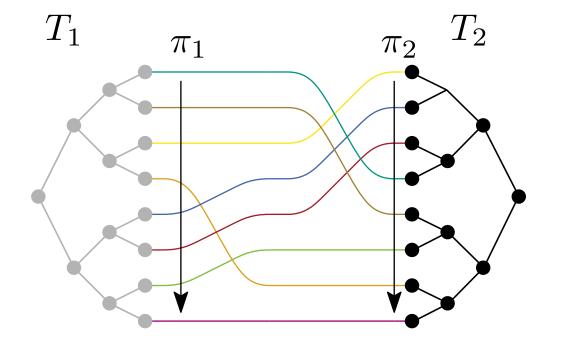


Optimal: 2 block crossings (but 9 edge crossings)

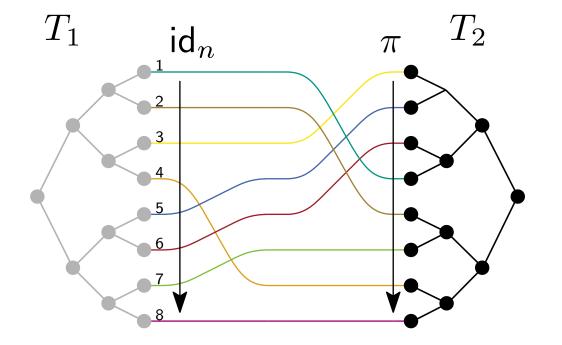
Reduces **visual clutter**, but edges **non-straight-line**



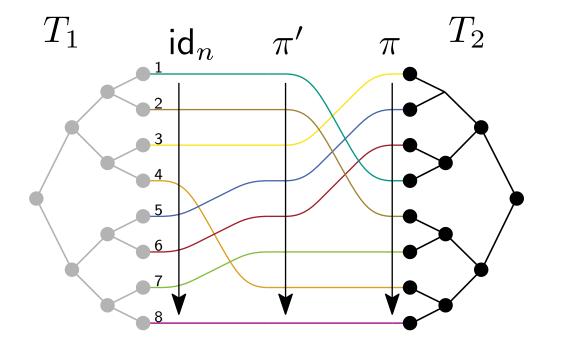
acili



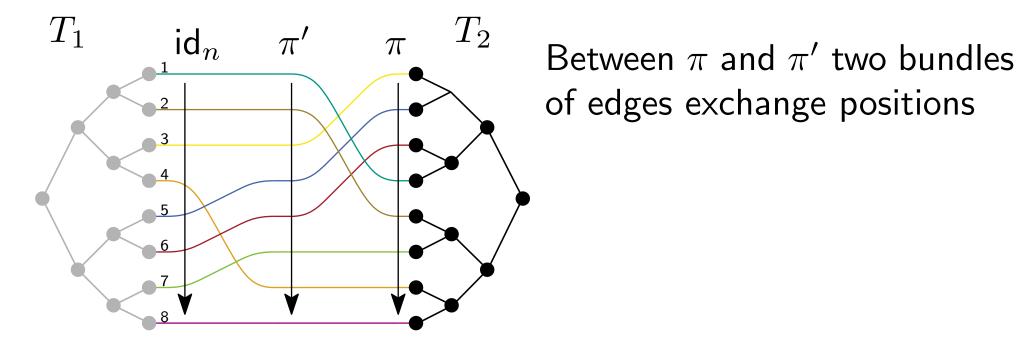
acılı

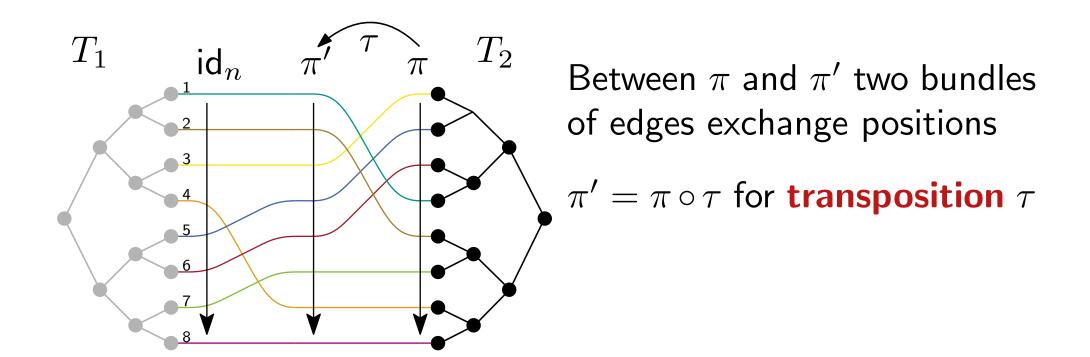


acılı

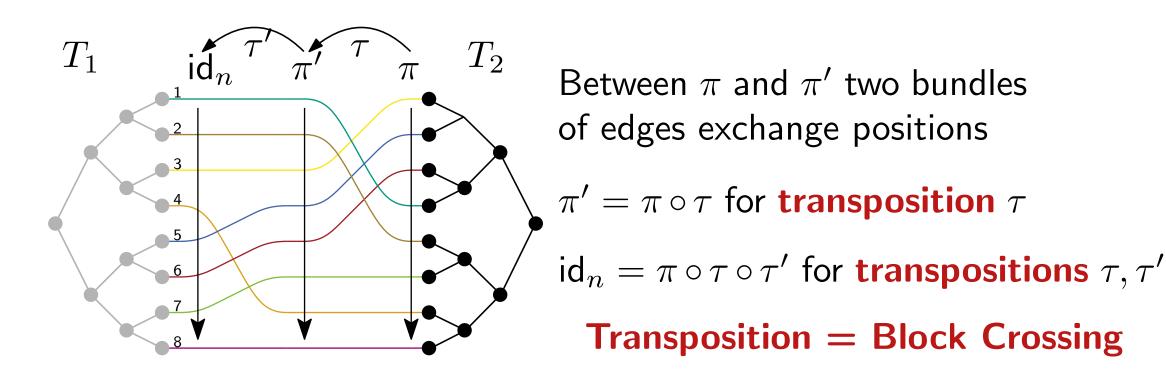


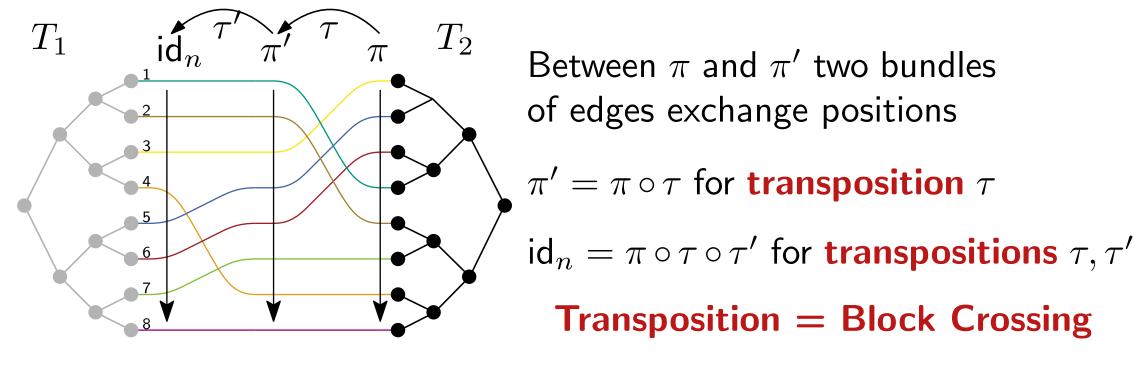
acili





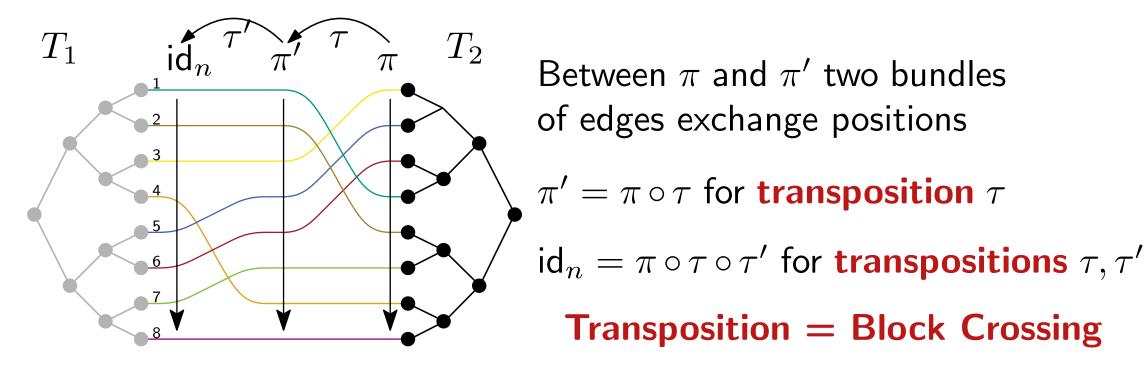
- ||||





A transposition $\tau = \tau(i, j, k) \in \Pi_n$ with $1 \le i < j < k \le n+1$ is the permutation

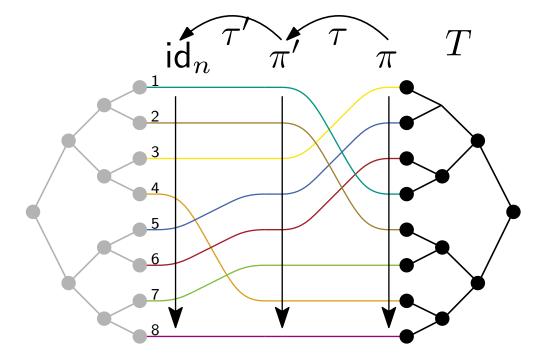
$$(1, \ldots, i-1, j, \ldots, k-1, i, \ldots, j-1, k, \ldots, n).$$



A transposition $\tau = \tau(i, j, k) \in \Pi_n$ with $1 \le i < j < k \le n+1$ is the permutation

$$(1, \ldots, i-1, j, \ldots, k-1, i, \ldots, j-1, k, \ldots, n).$$

The transposition distance $d_t(\pi)$ of $\pi \in \Pi_n$ is the min. number $k \in \mathbb{N}$ s.t. there exist transpositions τ_1, \ldots, τ_k with $\pi \circ \tau_1 \circ \tau_2, \cdots \circ \tau_k = \mathrm{id}_n$



ONE-TREE BLOCK CROSSING MINIMIZATION (OTBCM) Instance: A rooted tree T with leaves(T) = [n] and a positive integer k.

Question: Is there a permutation $\pi \in \Pi_n$ consistent with T such that there exist transpositions τ_1, \ldots, τ_k with $\pi \circ \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k = id_n$?

Results

Complexity results for ONE-TREE BLOCK CROSSING MINIMIZATION:

Restr. on T	Block Crossing Min.	Crossing Min.
Complete Binary	NP-complete	Р
	$\mathcal{O}(n^2)$ 2.25-approximation	[Dwyer and Schreiber 2004]
	FPT-algorithm in k	
Binary	NP-complete	Р
	$\mathcal{O}(n^3)$ 2.25-approximation	[Dwyer and Schreiber 2004]
	FPT-algorithm in k	
Non-binary	NP-complete	NP-complete
	Approx. does not extend	[Bulteau et al. 2022]

Results

Complexity results for ONE-TREE BLOCK CROSSING MINIMIZATION:

Restr. on T	Block Crossing Min.	Crossing Min.
Complete Binary	NP-complete	Р
	$\mathcal{O}(n^2)$ 2.25-approximation	[Dwyer and Schreiber 2004]
	FPT-algorithm in k	
Binary	NP-complete	Р
	$\mathcal{O}(n^3)$ 2.25-approximation	[Dwyer and Schreiber 2004]
	FPT-algorithm in k	
Non-binary	NP-complete	NP-complete
	Approx. does not extend	[Bulteau et al. 2022]

Note: Crossing Min. also NP-hard if leaves of both trees can be permuted. Approximations and FPT-algorithms exist. [Buchin et al. 2012]

Results

Complexity results for ONE-TREE BLOCK CROSSING MINIMIZATION:

Restr. on T	Block Crossing Min.	Crossing Min.
Complete Binary	NP-complete	P
	$\mathcal{O}(n^2)$ 2.25-approximation	[Dwyer and Schreiber 2004]
	FPT-algorithm in k	
Binary	NP-complete	P
	$\mathcal{O}(n^3)$ 2.25-approximation	[Dwyer and Schreiber 2004]
	FPT-algorithm in k	
Non-binary	NP-complete	NP-complete
	Approx. does not extend	[Bulteau et al. 2022]

Note: Crossing Min. also NP-hard if leaves of both trees can be permuted. Approximations and FPT-algorithms exist. [Buchin et al. 2012]

acılı

NP-membership:

NP-membership: Combinatorial problem

acılı

NP-membership: Combinatorial problem

NP-hardness:

acılı

NP-membership: Combinatorial problem

NP-hardness:

Index $i \in \{0, 1, \dots, n\}$ is a breakpoint in $\pi \in \Pi_n$ if i = 0 and $\pi_1 \neq 1$, $1 \leq i \leq n-1$ and $\pi_i + 1 \neq \pi_{i+1}$, or i = n and $\pi_n \neq n$.

$$\pi = (2, 1, 3, 4, 6, 7, 5, 8)$$

NP-membership: Combinatorial problem

NP-hardness:

Index $i \in \{0, 1, ..., n\}$ is a **breakpoint** in $\pi \in \Pi_n$ if i = 0 and $\pi_1 \neq 1$, $1 \leq i \leq n-1$ and $\pi_i + 1 \neq \pi_{i+1}$, or i = n and $\pi_n \neq n$.

$$\pi = (2, 1, 3, 4, 6, 7, 5, 8) \quad bp(\pi) = 5$$

 $bp(\pi)$ is the number of breakpoints of π

NP-membership: Combinatorial problem

NP-hardness:

Index $i \in \{0, 1, \dots, n\}$ is a **breakpoint** in $\pi \in \Pi_n$ if i = 0 and $\pi_1 \neq 1$, $1 \leq i \leq n-1$ and $\pi_i + 1 \neq \pi_{i+1}$, or i = n and $\pi_n \neq n$.

$$\pi = (2, 1, 3, 4, 6, 7, 5, 8) \quad \mathsf{bp}(\pi) = 5$$

 $bp(\pi)$ is the number of breakpoints of π

Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

NP-membership: Combinatorial problem

NP-hardness:

Index $i \in \{0, 1, \dots, n\}$ is a **breakpoint** in $\pi \in \Pi_n$ if i = 0 and $\pi_1 \neq 1$, $1 \leq i \leq n-1$ and $\pi_i + 1 \neq \pi_{i+1}$, or i = n and $\pi_n \neq n$.

$$\pi = (2, 1, 3, 4, 6, 7, 5, 8) \quad bp(\pi) = 5$$

 $bp(\pi)$ is the number of breakpoints of π

Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

Theorem. (Bulteau et al. 2012) It is NP-hard to decide whether $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$.

Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

Theorem. (Bulteau et al. 2012) It is NP-hard to decide whether $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$.

Idea: Decide $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$ with our problem.

Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

Theorem. (Bulteau et al. 2012) It is NP-hard to decide whether $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$.

Idea: Decide $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$ with our problem. Given π

 $\pi = (2, 1, 3, 5, 4, 6)$

Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

Theorem. (Bulteau et al. 2012) It is NP-hard to decide whether $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$.

Idea: Decide $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$ with our problem.

Given π

 $\pi = (2, 1, 3, 5, 4, 6)$ $\pi' = (3, 1, 2, 4, 6, 5, 7)$

Step 1: create π' of size $2^p - 1$ with $d_t(\pi) = d_t(\pi')$ and $bp(\pi) = bp(\pi')$

Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

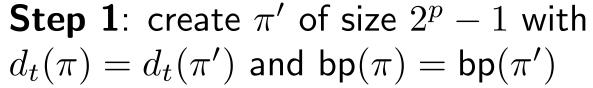
Theorem. (Bulteau et al. 2012) It is NP-hard to decide whether $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$.

Idea: Decide $d_t(\pi) = \lfloor \frac{bp(\pi)}{3} \rfloor$ with our problem.

Given π

 $\pi = (2, 1, 3, 5, 4, 6)$

 $\pi' = (3, 1, 2, 4, 6, 5, 7)$

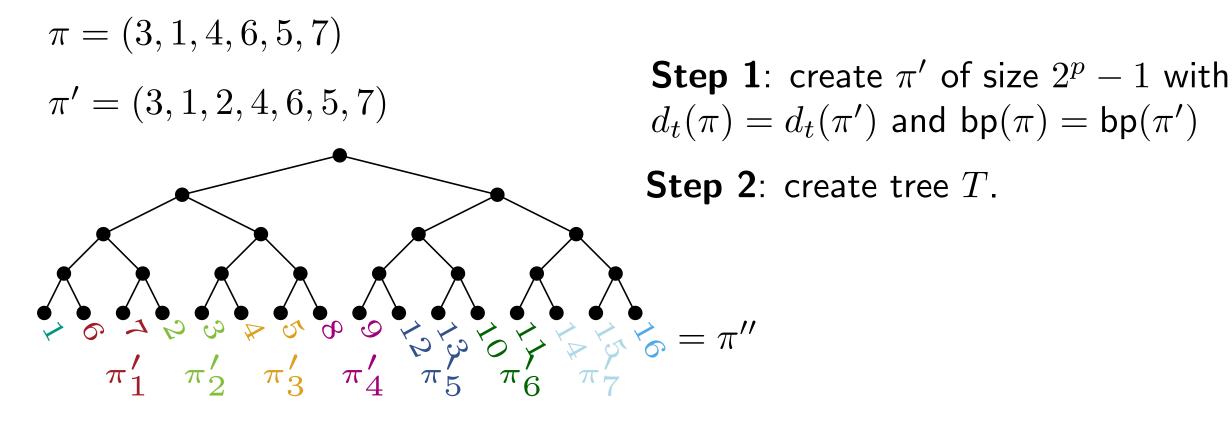


 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

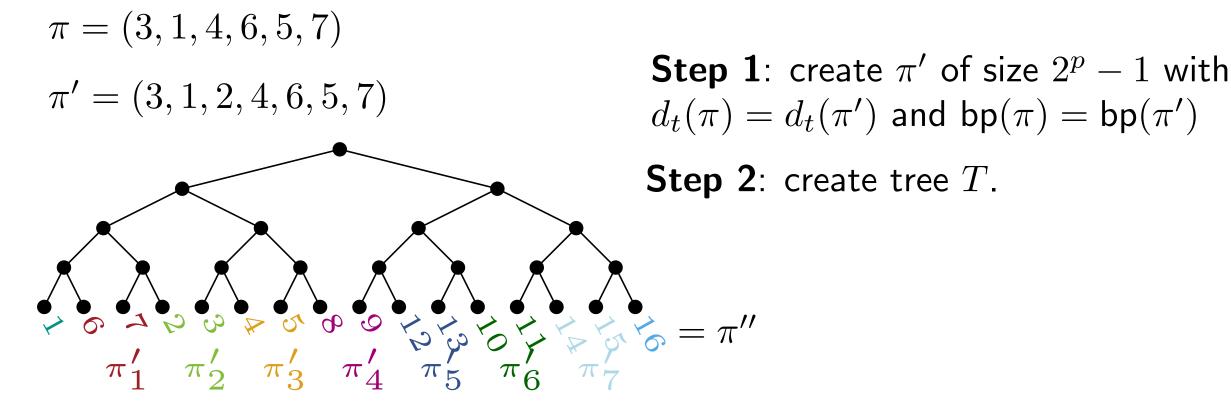
Step 2: create tree T.

A. Dobler, and Martin Nöllenburg · Block Crossings in One-Sided Tanglegrams

acılı



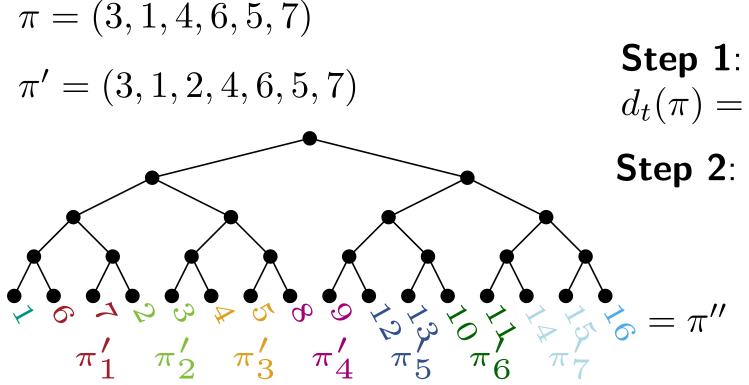
acılıı



Lemma. $d_t(\pi'') = d_t(\pi)$, $bp(\pi'') = bp(\pi)$.

A. Dobler, and Martin Nöllenburg · Block Crossings in One-Sided Tanglegrams

acılıı



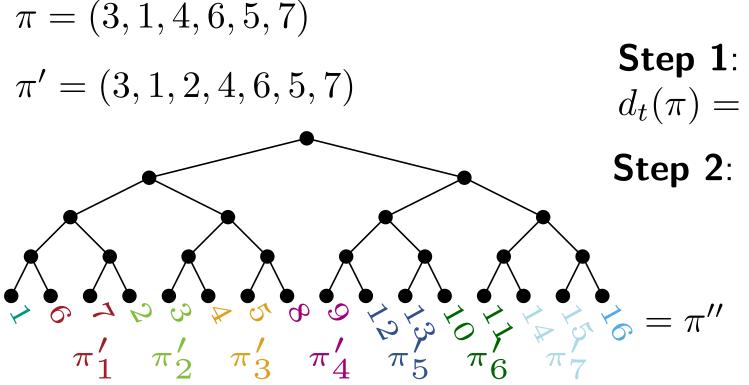
Step 1: create π' of size $2^p - 1$ with $d_t(\pi) = d_t(\pi')$ and $bp(\pi) = bp(\pi')$

Step 2: create tree T.

Lemma. $d_t(\pi'') = d_t(\pi)$, $bp(\pi'') = bp(\pi)$.

Lemma. π'' is the only permutation consistent with T that has $bp(\pi'') \leq bp(\pi)$.

acılı



Step 1: create π' of size $2^p - 1$ with $d_t(\pi) = d_t(\pi')$ and $bp(\pi) = bp(\pi')$

Step 2: create tree T.

Lemma. $d_t(\pi'') = d_t(\pi)$, $bp(\pi'') = bp(\pi)$.

Lemma. π'' is the only permutation consistent with T that has $bp(\pi'') \leq bp(\pi)$.

 $\Rightarrow d_t(\pi) = \lfloor \frac{\mathsf{bp}(\pi)}{3} \rfloor \text{ iff. } (T,k) \text{ is a yes instance for OTBCM with} \\ k = \lfloor \frac{\mathsf{bp}(\pi)}{3} \rfloor. \square$

FPT-Algorithm

- Instance: A rooted tree T with leaves(T) = [n] and a positive integer k.
- Question: Is there a permutation $\pi \in \prod_n$ consistent T such

that there exist transpositions τ_1, \ldots, τ_k with

 $\pi \circ \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k = \mathsf{id}_n?$

FPT-Algorithm

Instance: A rooted tree T with leaves(T) = [n] and a positive integer k. Question: Is there a permutation $\pi \in \prod_n$ consistent T such that there exist transpositions τ_1, \ldots, τ_k with $\pi \circ \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k = id_n$?

Theorem. For binary T, we can find π and τ_1, \ldots, τ_k in time $f(k) \cdot n^c$ if they exist, and report NO otherwise in the same time.

FPT-Algorithm

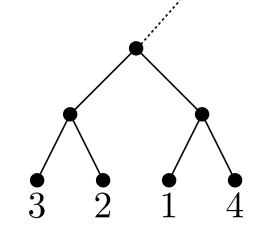
Instance: A rooted tree T with leaves(T) = [n] and a positive integer k. Question: Is there a permutation $\pi \in \prod_n$ consistent T such that there exist transpositions τ_1, \ldots, τ_k with $\pi \circ \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k = id_n$?

Theorem. For binary T, we can find π and τ_1, \ldots, τ_k in time $f(k) \cdot n^c$ if they exist, and report NO otherwise in the same time.

Ingredients:

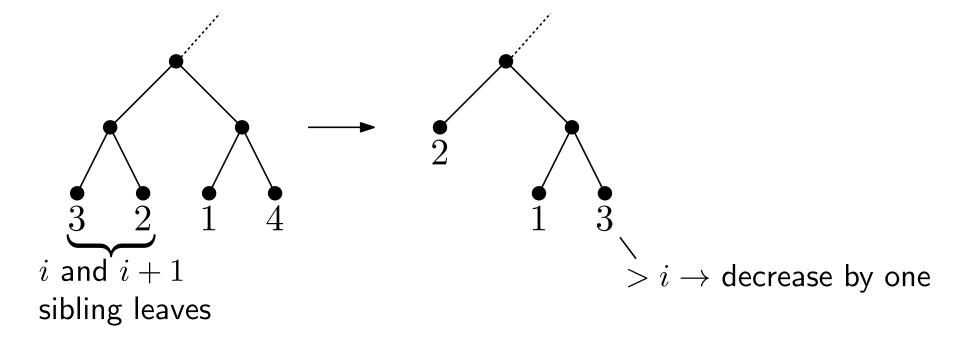
- Two reduction rules
- Search tree algorithm fixing order of children of an inner node
- Leaf ordering π fixed by search tree \rightarrow FPT-algorithm for finding τ_1, \ldots, τ_k

Reduction Rule 1. (Preprocessing)



acılı

Reduction Rule 1. (Preprocessing)



acılı

Search Tree.

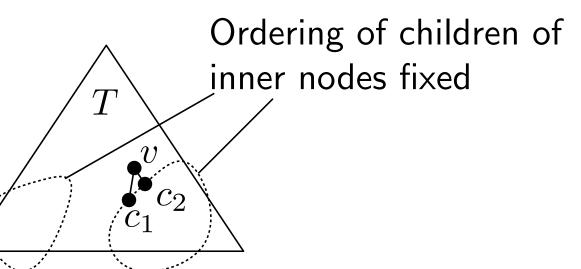
Problem assoc. with search tree node:

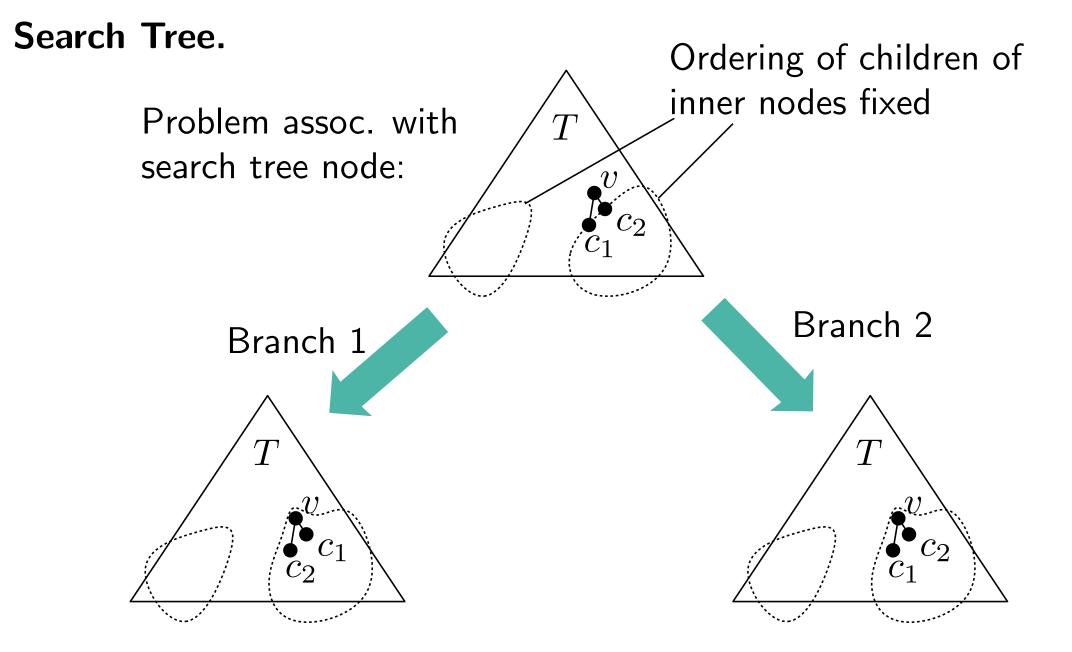
Ordering of children of inner nodes fixed

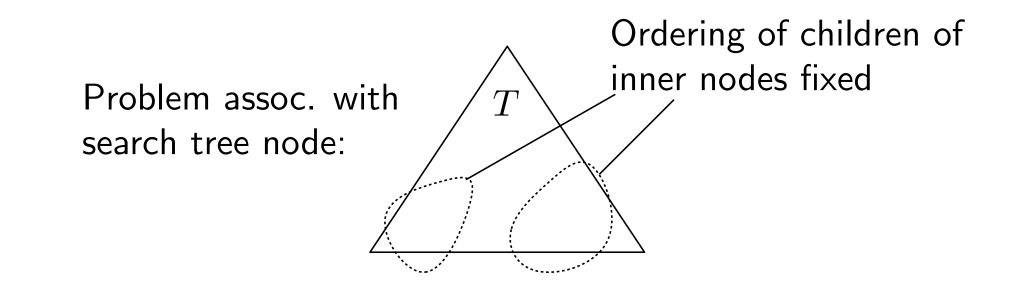
acılı

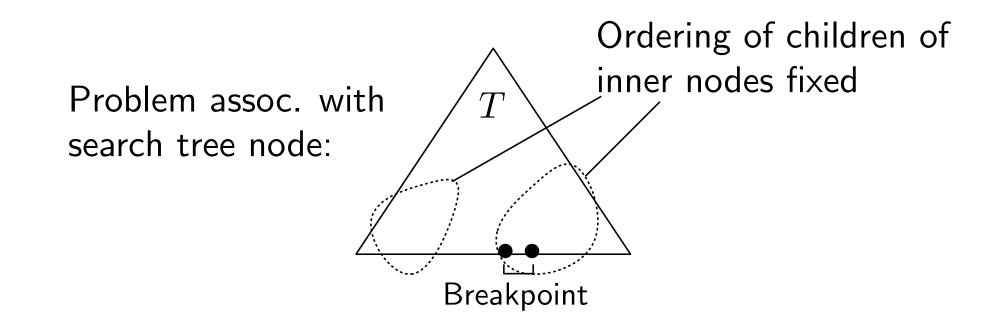
Search Tree.

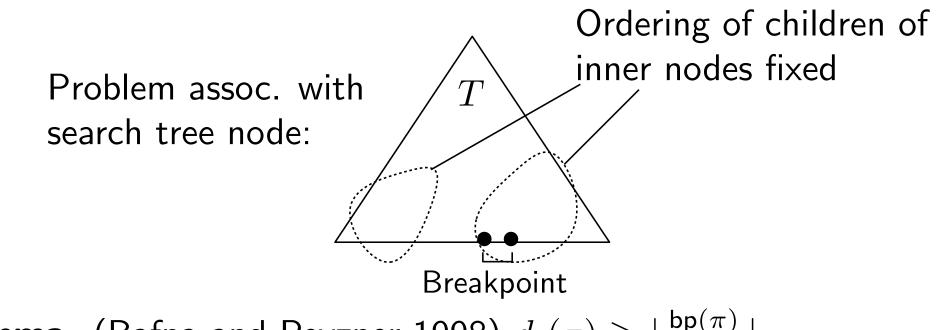
Problem assoc. with search tree node:





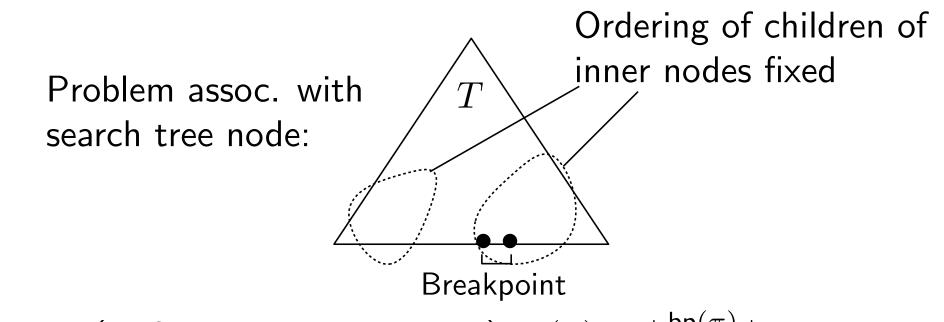






Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

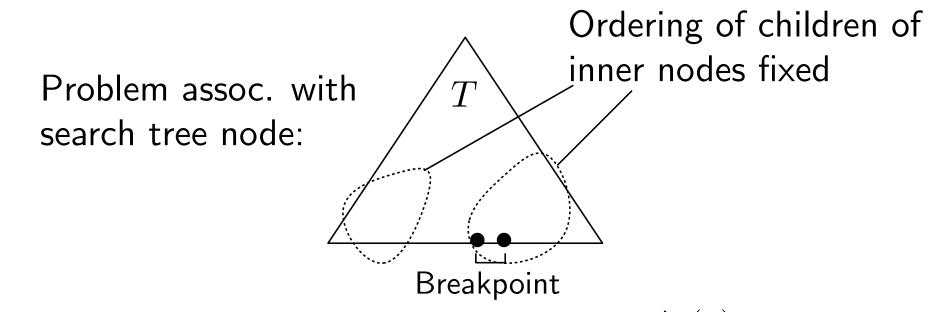
> 3k breakpoints: Report failure for current search tree branch



Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

> 3k breakpoints: Report failure for current search tree branch

Leaves of search tree: $\leq 3k$ breakpoints, apply FPT-Algorithm for finding τ_1, \ldots, τ_k .



Lemma. (Bafna and Pevzner 1998) $d_t(\pi) \ge \lfloor \frac{bp(\pi)}{3} \rfloor$.

> 3k breakpoints: Report failure for current search tree branch

Leaves of search tree: $\leq 3k$ breakpoints, apply FPT-Algorithm for finding τ_1, \ldots, τ_k .

Not enough for bounding runtime \to reduction rule 2 Similar to reduction rule 1, fixes order of children of an inner node

Instance: A rooted tree T with leaves(T) = [n] and a positive integer k. Question: Is there a permutation $\pi \in \prod_n$ consistent with the leaves of T such that there exist transpositions

 au_1, \ldots, au_k with $\pi \circ au_1 \circ au_2 \circ \cdots \circ au_k = \mathsf{id}_n$?

Theorem. For binary T, we can find π and τ_1, \ldots, τ_n in time $\mathcal{O}(2^{6k} \cdot (3k)^{3k} \cdot n^c)$ if they exist, and report NO otherwise in the same time.

acılı

Restr. on T	Block Crossing Min.	Crossing Min.
Complete Binary	NP-complete	Р
	$\mathcal{O}(n^2)$ 2.25-approximation	[Dwyer and Schreiber 2004]
	FPT-algorithm in k	
Binary	NP-complete	Р
	$\mathcal{O}(n^3)$ 2.25-approximation	[Dwyer and Schreiber 2004]
	FPT-algorithm in k	
Non-binary	NP-complete	NP-complete
	Approx. does not extend	[Bulteau et al. 2022]
	1	

Open problems:

- Permute leaves of both trees?
- Better approximations?
- Edges can cross multiple times: disallow this?
- Experiments

