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Tanglegrams

Comparison of species trees of
same leaf set
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Tanglegrams

Known combinatorial problem:
reorder leaves of one/both trees to
minimize crossings

Comparison of species trees of
same leaf set
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Edge Crossings vs. Block Crossings

Optimal: 8 edge crossings Optimal: 2 block crossings
(but 9 edge crossings)

Same instance, left leaf order fixed
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Edge Crossings vs. Block Crossings

Optimal: 8 edge crossings Optimal: 2 block crossings
(but 9 edge crossings)

Same instance, left leaf order fixed

Reduces visual clutter, but
edges non-straight-line
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One-Sided Block Crossing Minimization Problem

T1 T2
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One-Sided Block Crossing Minimization Problem

T1 T2π1 π2
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One-Sided Block Crossing Minimization Problem
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One-Sided Block Crossing Minimization Problem

T1 T2idn ππ′
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One-Sided Block Crossing Minimization Problem

T1 T2idn ππ′
Between π and π′ two bundles
of edges exchange positions
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One-Sided Block Crossing Minimization Problem

T1 T2idn ππ′
Between π and π′ two bundles
of edges exchange positions

1

2

3

4

5

6

7

8

π′ = π ◦ τ for transposition τ

τ
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One-Sided Block Crossing Minimization Problem

T1 T2idn ππ′
Between π and π′ two bundles
of edges exchange positions
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π′ = π ◦ τ for transposition τ

idn = π ◦ τ ◦ τ ′ for transpositions τ, τ ′

A transposition τ = τ(i, j, k) ∈ Πn with 1 ≤ i < j < k ≤ n+ 1 is
the permutation

(1, . . . , i− 1, j, . . . , k − 1, i, . . . , j − 1, k, . . . , n).

Transposition = Block Crossing

ττ ′
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One-Sided Block Crossing Minimization Problem

T1 T2idn ππ′
Between π and π′ two bundles
of edges exchange positions
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π′ = π ◦ τ for transposition τ

idn = π ◦ τ ◦ τ ′ for transpositions τ, τ ′

A transposition τ = τ(i, j, k) ∈ Πn with 1 ≤ i < j < k ≤ n+ 1 is
the permutation

(1, . . . , i− 1, j, . . . , k − 1, i, . . . , j − 1, k, . . . , n).

The transposition distance dt(π) of π ∈ Πn is the min. number k ∈ N
s.t. there exist transpositions τ1, . . . , τk with π ◦ τ1 ◦ τ2, · · · ◦ τk = idn

Transposition = Block Crossing

ττ ′
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One-Sided Block Crossing Minimization Problem

One-Tree Block Crossing Minimization (OTBCM)
Instance: A rooted tree T with leaves(T ) = [n] and a positive

integer k.
Question: Is there a permutation π ∈ Πn consistent with T such

that there exist transpositions τ1, . . . , τk with
π ◦ τ1 ◦ τ2 ◦ · · · ◦ τk = idn?

Tidn ππ′
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Results

Complexity results for One-Tree Block Crossing Minimization:

Restr. on T Block Crossing Min. Crossing Min.
Complete Binary NP-complete P

O(n2) 2.25-approximation [Dwyer and Schreiber 2004]

FPT-algorithm in k
Binary NP-complete P

O(n3) 2.25-approximation [Dwyer and Schreiber 2004]

FPT-algorithm in k
Non-binary NP-complete NP-complete

Approx. does not extend [Bulteau et al. 2022]
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permuted. Approximations and FPT-algorithms exist. [Buchin et al. 2012]
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NP-completeness

NP-membership:
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NP-completeness

NP-membership: Combinatorial problem □

NP-hardness:
Index i ∈ {0, 1, . . . , n} is a breakpoint in π ∈ Πn if

i = 0 and π1 ̸= 1,
1 ≤ i ≤ n− 1 and πi + 1 ̸= πi+1, or
i = n and πn ̸= n.

π = (2, 1, 3, 4, 6, 7, 5, 8)
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NP-hardness cont.
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NP-hardness cont.

Lemma. (Bafna and Pevzner 1998) dt(π) ≥ ⌊ bp(π)
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π = (2, 1, 3, 5, 4, 6)
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NP-hardness cont.

Lemma. (Bafna and Pevzner 1998) dt(π) ≥ ⌊ bp(π)
3 ⌋.

Theorem. (Bulteau et al. 2012) It is NP-hard to decide whether

dt(π) = ⌊ bp(π)
3 ⌋.

Idea: Decide dt(π) = ⌊ bp(π)
3 ⌋ with our problem.

Given π

Step 1: create π′ of size 2p − 1 with
dt(π) = dt(π

′) and bp(π) = bp(π′)

π = (2, 1, 3, 5, 4, 6)

π′ = (3, 1, 2, 4, 6, 5, 7)
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NP-hardness cont.

Lemma. (Bafna and Pevzner 1998) dt(π) ≥ ⌊ bp(π)
3 ⌋.

Theorem. (Bulteau et al. 2012) It is NP-hard to decide whether

dt(π) = ⌊ bp(π)
3 ⌋.

Idea: Decide dt(π) = ⌊ bp(π)
3 ⌋ with our problem.

Given π
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dt(π) = dt(π

′) and bp(π) = bp(π′)

π = (2, 1, 3, 5, 4, 6)
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Step 2: create tree T .
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NP-hardness cont.
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NP-hardness cont.

Step 1: create π′ of size 2p − 1 with
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Step 2: create tree T .

= π′′

Lemma. dt(π′′) = dt(π), bp(π
′′) = bp(π).
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NP-hardness cont.

Step 1: create π′ of size 2p − 1 with
dt(π) = dt(π
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Step 2: create tree T .

= π′′

Lemma. dt(π′′) = dt(π), bp(π
′′) = bp(π).

Lemma. π′′ is the only permutation consistent with T that has
bp(π′′) ≤ bp(π).
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NP-hardness cont.

Step 1: create π′ of size 2p − 1 with
dt(π) = dt(π

′) and bp(π) = bp(π′)

π = (3, 1, 4, 6, 5, 7)

π′ = (3, 1, 2, 4, 6, 5, 7)
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6 π′
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Step 2: create tree T .

= π′′

Lemma. dt(π′′) = dt(π), bp(π
′′) = bp(π).

Lemma. π′′ is the only permutation consistent with T that has
bp(π′′) ≤ bp(π).

⇒ dt(π) = ⌊ bp(π)
3 ⌋ iff. (T, k) is a yes instance for OTBCM with

k = ⌊ bp(π)
3 ⌋. □
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FPT-Algorithm

Instance: A rooted tree T with leaves(T ) = [n] and a positive
integer k.

Question: Is there a permutation π ∈ Πn consistent T such
that there exist transpositions τ1, . . . , τk with
π ◦ τ1 ◦ τ2 ◦ · · · ◦ τk = idn?
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FPT-Algorithm

Instance: A rooted tree T with leaves(T ) = [n] and a positive
integer k.

Question: Is there a permutation π ∈ Πn consistent T such
that there exist transpositions τ1, . . . , τk with
π ◦ τ1 ◦ τ2 ◦ · · · ◦ τk = idn?

Theorem. For binary T , we can find π and τ1, . . . , τk in time f(k) · nc if
they exist, and report NO otherwise in the same time.
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FPT-Algorithm

Instance: A rooted tree T with leaves(T ) = [n] and a positive
integer k.

Question: Is there a permutation π ∈ Πn consistent T such
that there exist transpositions τ1, . . . , τk with
π ◦ τ1 ◦ τ2 ◦ · · · ◦ τk = idn?

Theorem. For binary T , we can find π and τ1, . . . , τk in time f(k) · nc if
they exist, and report NO otherwise in the same time.

Ingredients:

Two reduction rules
Search tree algorithm fixing order of children of an inner node
Leaf ordering π fixed by search tree → FPT-algorithm for finding
τ1, . . . , τk
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FPT-Algorithm

Reduction Rule 1. (Preprocessing)

3 2 1 4



A. Dobler, and Martin Nöllenburg · Block Crossings in One-Sided Tanglegrams11

FPT-Algorithm

Reduction Rule 1. (Preprocessing)

3 2 1 4 1 3

2

{
i and i+ 1
sibling leaves

> i → decrease by one
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FPT-Algorithm

Search Tree.

Problem assoc. with
search tree node:

Ordering of children of
inner nodes fixed

T
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FPT-Algorithm

Search Tree.

Problem assoc. with
search tree node:

Ordering of children of
inner nodes fixed

T

v

c1
c2
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FPT-Algorithm

Search Tree.

Problem assoc. with
search tree node:

Ordering of children of
inner nodes fixed

T

v

c1
c2

T

v

c2
c1

T

v

c1
c2

Branch 2Branch 1
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FPT-Algorithm

Problem assoc. with
search tree node:

Ordering of children of
inner nodes fixed

T
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FPT-Algorithm

Problem assoc. with
search tree node:

Ordering of children of
inner nodes fixed

T

Breakpoint
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FPT-Algorithm

Problem assoc. with
search tree node:

Ordering of children of
inner nodes fixed

T

Breakpoint

> 3k breakpoints: Report failure for current search tree branch

Lemma. (Bafna and Pevzner 1998) dt(π) ≥ ⌊ bp(π)
3 ⌋.
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FPT-Algorithm

Problem assoc. with
search tree node:

Ordering of children of
inner nodes fixed

T

Breakpoint

> 3k breakpoints: Report failure for current search tree branch

Lemma. (Bafna and Pevzner 1998) dt(π) ≥ ⌊ bp(π)
3 ⌋.

Leaves of search tree: ≤ 3k breakpoints, apply FPT-Algorithm for
finding τ1, . . . , τk.
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FPT-Algorithm

Problem assoc. with
search tree node:

Ordering of children of
inner nodes fixed

T

Breakpoint

> 3k breakpoints: Report failure for current search tree branch

Lemma. (Bafna and Pevzner 1998) dt(π) ≥ ⌊ bp(π)
3 ⌋.

Leaves of search tree: ≤ 3k breakpoints, apply FPT-Algorithm for
finding τ1, . . . , τk.

Not enough for bounding runtime → reduction rule 2
Similar to reduction rule 1, fixes order of children of an inner node
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FPT-Algorithm

Instance: A rooted tree T with leaves(T ) = [n] and a
positive integer k.

Question: Is there a permutation π ∈ Πn consistent with
the leaves of T such that there exist transpositions
τ1, . . . , τk with π ◦ τ1 ◦ τ2 ◦ · · · ◦ τk = idn?

Theorem. For binary T , we can find π and τ1, . . . , τn in time
O(26k · (3k)3k · nc) if they exist, and report NO otherwise in the
same time.
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Restr. on T Block Crossing Min. Crossing Min.
Complete Binary NP-complete P

O(n2) 2.25-approximation [Dwyer and Schreiber 2004]

FPT-algorithm in k
Binary NP-complete P

O(n3) 2.25-approximation [Dwyer and Schreiber 2004]

FPT-algorithm in k
Non-binary NP-complete NP-complete

Approx. does not extend [Bulteau et al. 2022]

Permute leaves of both trees?
Better approximations?
Edges can cross multiple times: disallow this?
Experiments

Open problems:


