Improved Bounds for Discrete Voronoi games

M ark de Berg and Geert van Wordragen

The setting

- Voters and parties are 2D points

The setting

- Voters and parties are 2D points

The setting

- Voters and parties are 2D points
- Voters vote for the closest party

The setting

- Voters and parties are 2D points
- Voters vote for the closest party
- How many voters can Player 1 win with a good strategy?

Previous work

Banik et al. (2016)

- When Player 1 optimally places k points, then Player 2 can place 1 point to win between $\frac{1}{2 k} n$ and $\frac{42}{k} n$ voters
- For $k \leq 136$, Player 1 can place an ε-net w.r.t. convex ranges for the voter set to get better guarantees
- For $k \geq 5$ this guarantees Player 1 wins more than half of the voters

New results

- New (small) ε-net construction for convex ranges
- For $k=4$ Player 1 can win at least half of the voters*
- Upper bound on voters won by Player 2 improved to $\frac{39}{k} n$ with new quadtree-based technique
- Further improved to $\frac{20 \frac{5}{8}}{k} n+6$ by combining quadtrees and ε-nets

- ϵ-nets for disks (Banik et al.)
- quadtrees (this paper)

[^0]
(Weak) ε-nets

- For a point set V , an ε-net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε-net

(Weak) ε-nets

- For a point set V , an ε-net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε-net
- For points on the line, the lower quartile, median and upper quartile together form a $1 / 4$ net w.r.t. intervals

(Weak) ε-nets

- For a point set V , an ε-net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε-net
- For points on the line, the lower quartile, median and upper quartile together form a $1 / 4$ net w.r.t. intervals

(Weak) ε-nets

- For a point set V , an ε-net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε-net
- For points on the line, the lower quartile, median and upper quartile together form a $1 / 4$ net w.r.t. intervals
- For points in the plane, the centerpoint is $\mathrm{a}^{\circ} / 3$-net w.r.t. convex sets

(Weak) ε-nets

- For a point set V , an ε-net w.r.t. some range spaceensures that any range containing more than ε of the points of V must intersect the ε-net
- For points on the line, the lower quartile, median and upper quartile together form a $1 / 4$ net w.r.t. intervals
- For points in the plane, the centerpoint is $\mathrm{a}^{2 / 3}$-net w.r.t. convex sets
- The voters won by Player 2 are in a (convex) Voronoi cell that does not intersect Player l's points

(Weak) ε-nets

- For a point set V , an ε-net w.r.t. some range spaceensures that any range containing more than ε of the points of V must intersect the ε-net
- For points on the line, the lower quartile, median and upper quartile together form a $1 / 4$ net w.r.t. intervals
- For points in the plane, the centerpoint is $\mathrm{a}^{2 / 3}$-net w.r.t. convex sets
- The voters won by Player 2 are in a (convex) Voronoi cell that does not intersect Player l's points
- Thus, Player 1 can use an ε-net to ensure Player 2 wins at most ε n voters

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V
- Place a point at the intersection

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges
- Any convex set not intersecting the net overlaps at most 4 adjacent wedges

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges
- Any convex set not intersecting the net overlaps at most 4 adjacent wedges
- Three of these will share a centerpoint

M aking a $1 / 2$-net w.r.t. convex ranges

- Set V of n points in general position
- If n is divisible by 6 , three concurrent lines can equipartition V
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges
- Any convex set not intersecting the net overlaps at most 4 adjacent wedges
- Three of these will share a centerpoint
- It overlaps at most $\frac{n}{6}+\frac{2}{3} \cdot 3 \cdot \frac{n}{6}=\frac{n}{2}$ points

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Compressed quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Quadtree-based technique

Quadtree-based technique

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here $m=2$)
- Starting from the leaves, select a cell if it contains more than m not yet covered voters

Quadtree-based technique

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here $m=2$)
- Starting from the leaves, select a cell if it contains more than m not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between $m+1$ and $4 m$ voters

Quadtree-based technique

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here $m=2$)
- Starting from the leaves, select a cell if it contains more than m not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between $m+1$ and $4 m$ voters

Quadtree-based technique

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here $m=2$)
- Starting from the leaves, select a cell if it contains more than m not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between $m+1$ and $4 m$ voters

Quadtree-based technique

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here $m=2$)
- Starting from the leaves, select a cell if it contains more than m not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between $m+1$ and $4 m$ voters

Quadtree-based technique

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here $m=2$)
- Starting from the leaves, select a cell if it contains more than m not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between $m+1$ and $4 m$ voters

Quadtree-based technique

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here $m=2$)
- Starting from the leaves, select a cell if it contains more than m not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between $m+1$ and $4 m$ voters

Quadtree-based technique

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here $m=2$)
- Starting from the leaves, select a cell if it contains more than m not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between $m+1$ and $4 m$ voters

Placing points

$\leq m$	$\leq m$
$\leq m$	$\leq m$

Placing points

- Placing 13 points as shown ensures Player 2 wins from at most 3 'child' cells

Placing points

- Placing 13 points as shown ensures Player 2 wins from at most 3 'child' cells
- $3 m<3 n / \frac{k}{13}=\frac{39}{k} n$

Conclusion

- We can use different ε-nets to place proposals
- Using quadtrees, Player 1 can always place k proposals such that Player 2 can win at most $\frac{39}{k} n$ voters
- By combining the two, we can make this $\frac{20 \frac{5}{8}}{k} n+6$
- Can we prove tight bounds for some $k>1$?

[^0]: *Assuming nis even and general position

