Improved Bounds for Discrete Voronoi games

Mark de Berg and Geert van Wordragen

• Voters and parties are 2D points

.

•

•

• Voters and parties are 2D points

- Voters and parties are 2D points
- Voters vote for the closest party

- Voters and parties are 2D points
- Voters vote for the closest party
- How many voters can Player 1 win with a good strategy?

Previous work

Banik et al. (2016)

- When Player 1 optimally places k points, then Player 2 can place 1 point to win between $\frac{1}{2k}n$ and $\frac{42}{k}n$ voters
- For $k \leq 136$, Player 1 can place an ε -net w.r.t. convex ranges for the voter set to get better guarantees
 - For $k \ge 5$ this guarantees Player 1 wins more than half of the voters

New results

- New (small) ϵ -net construction for convex ranges
 - For k = 4 Player 1 can win at least half of the voters*
- Upper bound on voters won by Player 2 improved to $\frac{39}{k}n$ with new quadtree-based technique
- Further improved to $\frac{20\frac{2}{8}}{k}n + 6$ by combining quadtrees and ϵ -nets

*Assuming *n* is even and general position

Improved Bounds for Discrete Voronoi Games

• For a point set V, an ε -net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε -net

- For a point set V, an ε -net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε -net
- For points on the line, the lower quartile, median and upper quartile together form a ¼-net w.r.t. intervals

- For a point set V, an ε -net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε -net
- For points on the line, the lower quartile, median and upper quartile together form a ¼-net w.r.t. intervals

- For a point set V, an ε -net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε -net
- For points on the line, the lower quartile, median and upper quartile together form a ¼-net w.r.t. intervals
- For points in the plane, the *centerpoint* is a ³/₃-net w.r.t. convex sets

- For a point set V, an ε -net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε -net
- For points on the line, the lower quartile, median and upper quartile together form a ¼-net w.r.t. intervals
- For points in the plane, the *centerpoint* is a ²/₃-net w.r.t. convex sets
- The voters won by Player 2 are in a (convex) Voronoi cell that does not intersect Player 1's points

- For a point set V, an ε -net w.r.t. some range space ensures that any range containing more than ε of the points of V must intersect the ε -net
- For points on the line, the lower quartile, median and upper quartile together form a ¼-net w.r.t. intervals
- For points in the plane, the *centerpoint* is a 3/3-net w.r.t. convex sets
- The voters won by Player 2 are in a (convex) Voronoi cell that does not intersect Player 1's points
 - Thus, Player 1 can use an ε -net to ensure Player 2 wins at most εn voters

• Set V of *n* points in general position

.

.

•

- Set V of n points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*

- Set V of n points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*
- Place a point at the intersection

- Set V of *n* points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges

- Set V of n points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges

- Set V of n points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges

- Set V of *n* points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges

- Set V of n points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges
- Any convex set not intersecting the net overlaps at most 4 adjacent wedges

- Set V of n points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges
- Any convex set not intersecting the net overlaps at most 4 adjacent wedges
- Three of these will share a centerpoint

- Set V of n points in general position
- If *n* is divisible by 6, three concurrent lines can equipartition *V*
- Place a point at the intersection
- Place centerpoints for the 3 combinations of 3 wedges
- Any convex set not intersecting the net overlaps at most 4 adjacent wedges
- Three of these will share a centerpoint

• It overlaps at most
$$\frac{n}{6} + \frac{2}{3} \cdot 3 \cdot \frac{n}{6} = \frac{n}{2}$$
 points

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

.

.

.

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

	•
	• •
	•
	• •
	•
	•
•	
•	
•	
•	
•••	
•••	•
	• •
• •	

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

Compressed quadtree

- Has a finer grid only where there are many voters
- Subdivide squares until each contains at most one voter

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here m = 2)
- Starting from the leaves, select a cell if it contains more than *m* not yet covered voters

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here m = 2)
- Starting from the leaves, select a cell if it contains more than *m* not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between m + 1 and 4m voters

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here m = 2)
- Starting from the leaves, select a cell if it contains more than *m* not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between m + 1 and 4m voters

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here m = 2)
- Starting from the leaves, select a cell if it contains more than *m* not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between m + 1 and 4m voters

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here m = 2)
- Starting from the leaves, select a cell if it contains more than *m* not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between m + 1 and 4m voters

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here m = 2)
- Starting from the leaves, select a cell if it contains more than *m* not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between m + 1 and 4m voters

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here m = 2)
- Starting from the leaves, select a cell if it contains more than *m* not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between m + 1 and 4m voters

- Take the (compressed) quadtree of the voter set
- Set a parameter m (here m = 2)
- Starting from the leaves, select a cell if it contains more than *m* not yet covered voters
- Each region is a selected cell without its selected descendants, and covers between m + 1 and 4m voters

Placing points

$\leq m$	$\leq m$
$\leq m$	$\leq m$

Placing points

• Placing 13 points as shown ensures Player 2 wins from at most 3 'child' cells

Placing points

• Placing 13 points as shown ensures Player 2 wins from at most 3 'child' cells

•
$$3m < 3n/\frac{k}{13} = \frac{39}{k}n$$

Conclusion

- We can use different ϵ -nets to place proposals
- Using quadtrees, Player 1 can always place k proposals such that Player 2 can win at most $\frac{39}{k}n$ voters
- By combining the two, we can make this $\frac{20\frac{5}{8}}{k}n + 6$
- Can we prove tight bounds for some k > 1?