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points
• Voters vote for the closest
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• How many voters can Player
1 win with a good strategy?
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Previous work

Banik et al. (2016)
• When Player 1 optimally places 𝑘 points, then Player 2 can place 1

point to win between 1
2𝑘
𝑛 and 42

𝑘
𝑛 voters

• For 𝑘 ≤ 136, Player 1 can place an ε-net w.r.t. convex ranges for the
voter set to get better guarantees

• For 𝑘 ≥ 5 this guarantees Player 1 wins more than half of the voters
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New results

• New (small) ε-net construction for convex ranges
• For 𝑘 = 4 Player 1 can win at least half of the voters*

• Upper bound on voters won by Player 2 improved to 39
𝑘
𝑛 with new

quadtree-based technique

• Further improved to
2058
𝑘
𝑛 + 6 by combining quadtrees and ε-nets
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*Assuming n is even and general position



(Weak) ε-nets

• For a point set V, an ε-net w.r.t. some range space ensures that any range
containing more than ε of the points of V must intersect the ε-net
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(Weak) ε-nets

• For a point set V, an ε-net w.r.t. some range space ensures that any range
containing more than ε of the points of V must intersect the ε-net

• For points on the line, the lower quartile, median and upper quartile
together form a ¼-net w.r.t. intervals

• For points in the plane, the centerpoint is a ⅔-net w.r.t. convex sets

• The voters won by Player 2 are in a (convex) Voronoi cell that does not
intersect Player 1’s points
• Thus, Player 1 can use an ε-net to ensure Player 2 wins at most εn voters
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Making a ½-net w.r.t. convex ranges
• Set V of n points in general position
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Making a ½-net w.r.t. convex ranges
• Set V of n points in general position

• If n is divisible by 6, three concurrent lines
can equipartition V

• Place a point at the intersection

• Place centerpoints for the 3 combinations
of 3 wedges

• Any convex set not intersecting the net
overlaps at most 4 adjacent wedges

• Three of these will share a centerpoint

• It overlaps at most 𝑛
6

+ 2
3
3 𝑛

6
= 𝑛

2
points
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Quadtree
• Has a finer grid only where

there are many voters
• Subdivide squares until

each contains at most one
voter
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• Has a finer grid only where
there are many voters

• Subdivide squares until
each contains at most one
voter
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Compressed quadtree



Quadtree-based technique
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Quadtree-based technique
• Take the (compressed) quadtree
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• Set a parameter 𝑚 (here 𝑚 = 2)
• Starting from the leaves, select a

cell if it contains more than 𝑚
not yet covered voters
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Placing points
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Placing points
• Placing 13 points as shown

ensures Player 2 wins from
at most 3 ‘child’ cells
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Placing points
• Placing 13 points as shown

ensures Player 2 wins from
at most 3 ‘child’ cells

• 3𝑚 < 3𝑛/ 𝑘
13

= 39
𝑘
𝑛
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Conclusion

• We can use different ε-nets to place proposals
• Using quadtrees, Player 1 can always place k proposals such that

Player 2 can win at most 39
𝑘
𝑛 voters

• By combining the two, we can make this
2058
𝑘
𝑛 + 6

• Can we prove tight bounds for some 𝑘 > 1?

Improved Bounds for Discrete Voronoi Games 10


