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The Minimum Spanning Tree Problem

An instance: weighted graph G = (V ,E ,w), where w : E → R+.
Objective: Construct spanning tree of minimum cost.
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In this case, we have that Opt(G) = 12.
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Online MST Problem - Weight Arrival Model (WMST)

An instance:

• Gu = (V ,E)

• Sequence of (w(e), e)
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In this case Alg(G) = 17, whereas Opt(G) = 12.
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Comparing Online Algorithms

Given an online algorithm, Alg, for an online minimization problem, we typically
measure the quality of Alg by its competitive ratio:

Definition

An online algorithm, Alg, for a minimization problem Π is said to be c-competitive if
there exists a constant b such that for all instances I of Π:

Alg(I ) ⩽ c ·Opt(I ) + b.

The competitive ratio of Alg is then

crAlg = inf{c | Alg is c-competitive}.

Alg is competitive if there exists a c so that Alg is c-competitive.

For the WMST problem, no online algorithm is competitive.
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Online Algorithms with Predictions

- Competitive analysis: Optimize for worst case.

- Machine Learning: Optimize for common cases.

- Question is: can we combine the best of both worlds?

In recent years, a lot of work has been done on Online Algorithms with Predictions.

The idea is to assume that the online algorithms can access some predictions providing
(unreliable) information about the instance.

Formally, these predictions need not be Machine Learned.
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Our playground
An instance:

G = (V ,E , ŵ), where ŵ : E → R+ is a prediction for the edge weights.

Sequence of (w(e), e).
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Details of this framework

• Error η: sum of the n − 1 greatest prediction errors, where n = |V (G)|.

• ε = η
Opt

.

ε

crAlg

• consistency

smoothness

robustness
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Follow-the-predictions

Algorithm 1 FtP

1: Input: A WMST-instance (G , ŵ)

2: Let T̂ be a MST of G w.r.t. ŵ
3: while receiving inputs (w(ei ), ei ) do

4: if ei ∈ T̂ then
5: Accept ei ▷ Add ei to the solution
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Greedy-Ftp

Algorithm 2 GFtP

1: Input: A WMST-instance (G , ŵ)
2: Let TG be a MST of G w.r.t. ŵ
3: U = E(G) ▷ U contains the unseen edges
4: while receiving inputs (w(ei ), ei ) do
5: U = U \ {ei}
6: if ei ∈ TG then
7: Accept ei ▷ Add ei to the solution
8: else if ei ̸∈ TG then
9: C is the cycle ei introduces in TG

10: CU = U ∩ C
11: if CU ̸= ∅ then
12: emax = arg maxej∈CU

{ŵ(ej )}
13: if w(ei ) ⩽ ŵ(emax) then
14: TG = (TG \ {emax}) ∪ {ei} ▷ Update TG

15: Accept ei ▷ Add ei to the solution
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Running GFtP on our example graph.
Color codes:

- T

- Just revealed

- Accepted by GFtP

- Rejected by GFtP
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Cannot distinguish using competitive analysis

Theorem

crFtP(ε) = 1 + 2ε

Theorem

crGFtP(ε) = 1 + 2ε
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Intuition

Basic graph:

v1

v2

z1 z2 z3 · · · zℓ
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Focussing on a single triangle
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5→ 1

FtP(G) = 9 · ℓ+ 1

Opt(G) = ℓ+ 1

η = 4 · (ℓ+ 1), and so ε = 4.
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No algorithm can do better

Theorem

For all ε < 1
2
, and all online algorithm with predictions Alg, crAlg(ε) ⩾ 1 + 2ε.
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Random Order Analysis

A weakening of the adversary:

Definition

Let Alg be an online algorithm for a minimization problem Π, and let
I = ⟨r1, r2, . . . , rm⟩ be an instance of Π. Then, a permutation σ of {1, 2, . . . ,m} is
chosen uniformly at random, and σ(I ) is presented to Alg. The random order ratio of
Alg is

rorAlg = inf{c | ∃b : ∀I : Eσ[Alg(σ(I ))] ⩽ cOpt(σ(I )) + b}

As competitive ratio, we describe the random order ratio of Alg as a function of ε.

This is the first time random order analysis has been used in online algorithms with
predictions.
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Separation by Random Order Analysis

This analysis separates FtP and GFtP:

Theorem

rorFtP(ε) = 1 + 2ε.

Theorem

rorGFtP(ε) ⩽ 1 + (1 + ln(2))ε.

The idea behind this separation...
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Random Order Analysis

Lemma

Let G be a graph, and let T1 and T2 be two spanning trees of G . Then, for any edge
e1 ∈ T1 \T2, there exists an edge e2 ∈ T2 \T1 such that e2 introduces a cycle into T1

that contains e1, and e1 introduces a cycle into T2 that contains e2.

v1

v2

v3

v4

v5

v6

← e1

↓
e2
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How we use this Lemma
Dominate the “random variable” GFtP(G , ŵ)−Opt(G) online.

Orange - edge whose weight has most recently been revealed

v1

v2

v3

v4

v5

v6

v7

• w(eGFtP)− w(eOpt) ⩽ |ŵ(eGFtP)− w(eGFtP)|+ |ŵ(eOpt)− w(eOpt)|
• E[#dominating edges] ⩽ (1 + ln(2))(n − 1), and all distinct.
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• w(eGFtP)− w(eOpt) ⩽ |ŵ(eGFtP)− w(eGFtP)|+ |ŵ(eOpt)− w(eOpt)|

• E[#dominating edges] ⩽ (1 + ln(2))(n − 1), and all distinct.
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Summary:

• FtP is best in the eyes of competitive analysis.

• We obtain a separation between FtP and GFtP using random order analysis.

Open problems:

• Tight random order ratio for GFtP. Somewhere in [1 + ε, 1 + (1 + ln(2))ε].

• Apply random order analysis to other online problems with predictions.

• Create a less asymmetric algorithm - an algorithm which does not always accept
edges in the expected tree.

Thank you for your attention!
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