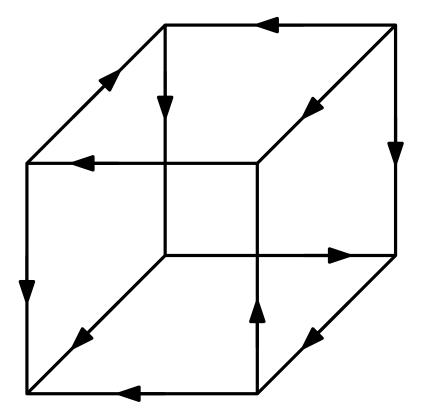
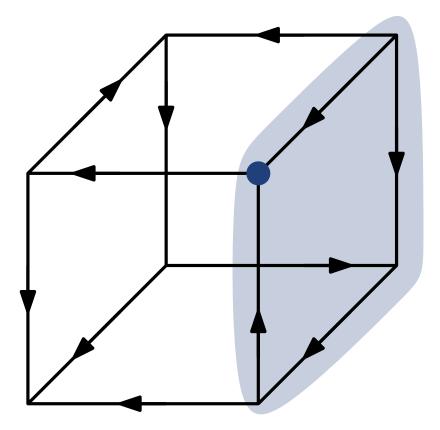
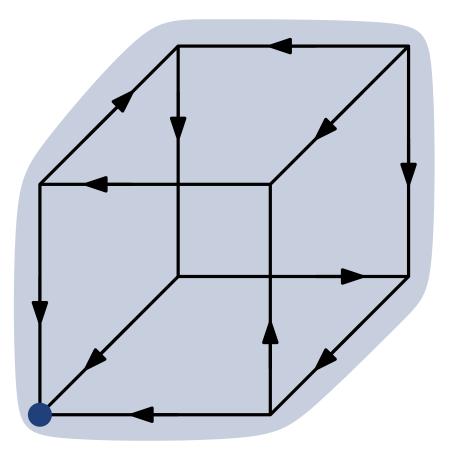
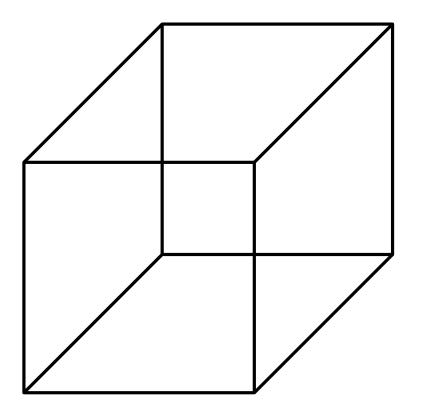
Realizability Makes a Difference: A Complexity Gap for Sink-Finding in USOs

Simon Weber and Joel Widmer

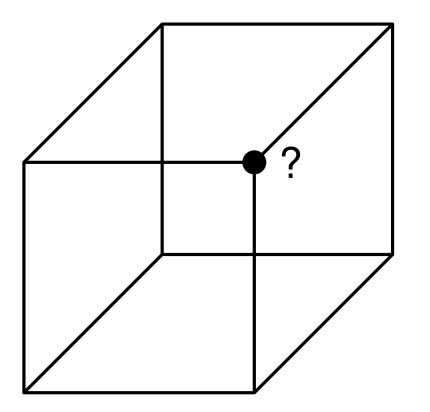




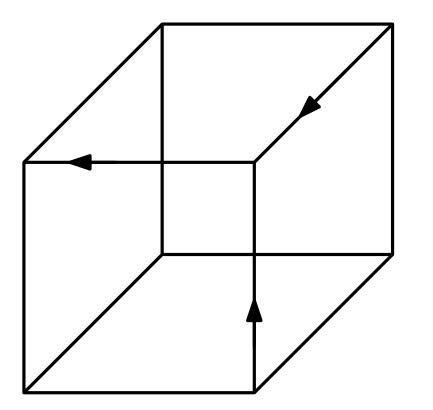




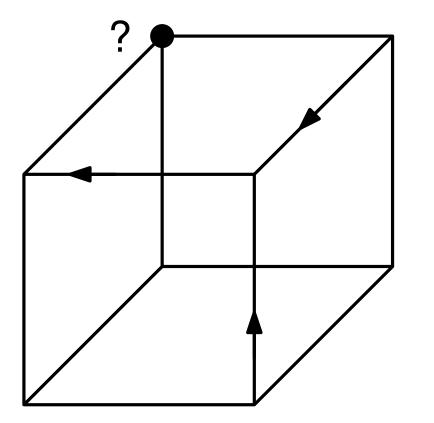
Sink-finding:



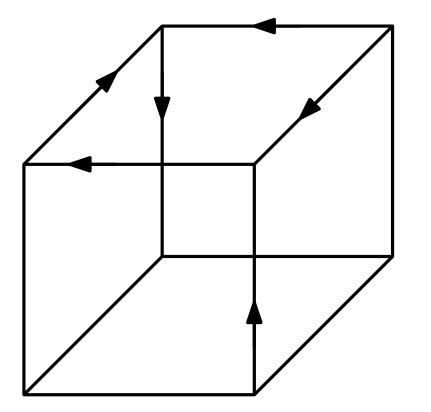
Sink-finding:



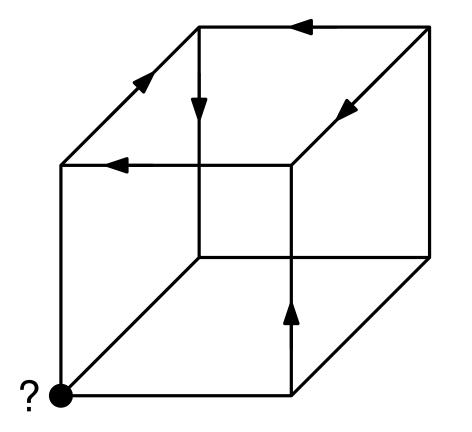
Sink-finding:



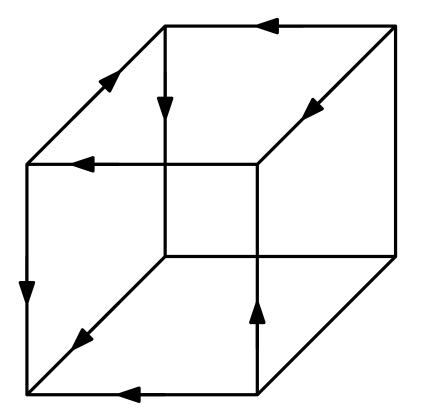
Sink-finding:



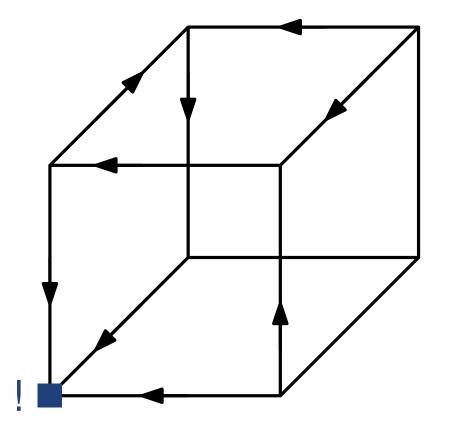
Sink-finding:



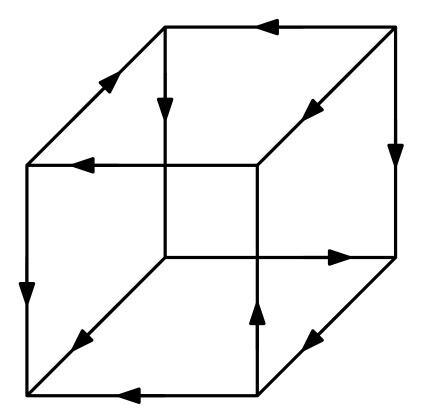
Sink-finding:



Sink-finding:



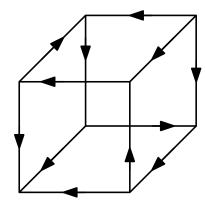
Sink-finding:



Sink-finding:

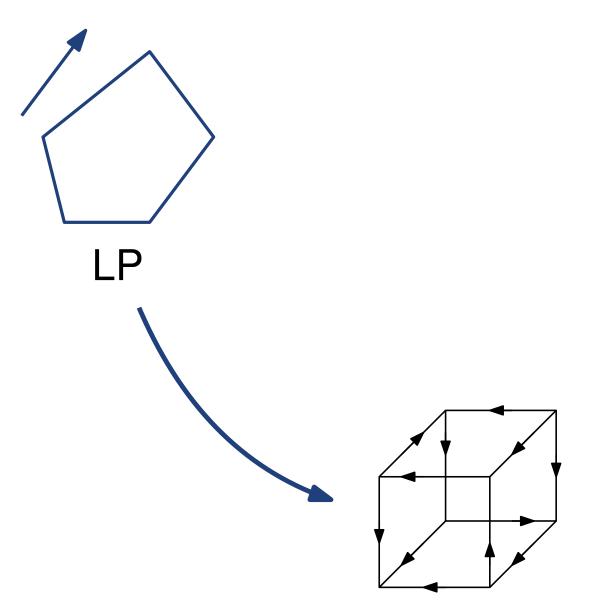
Find the global sink using *vertex evaluations*

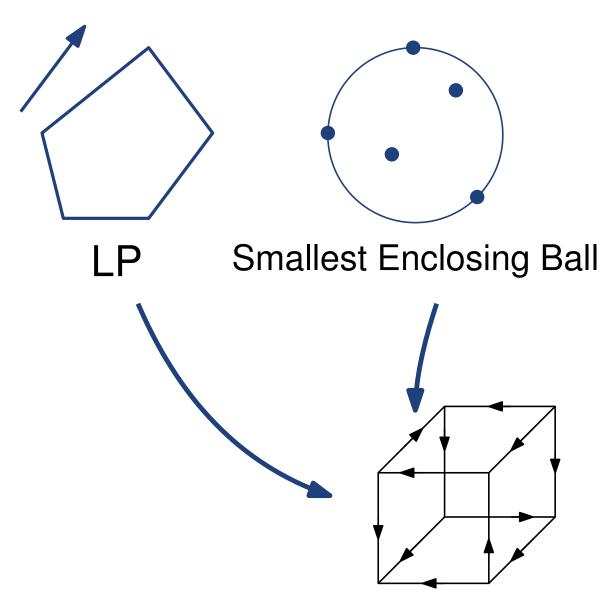
Runtime = Number of vertex evaluations

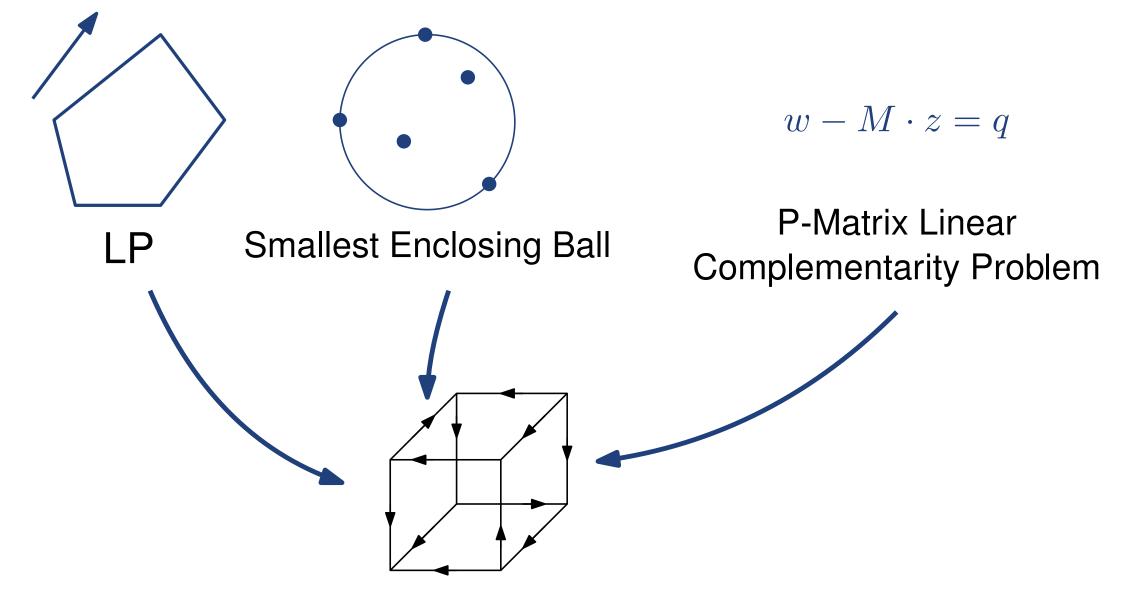


Department of Computer Science

Simon Weber WADS, Aug. 1st, 2023







Definition: A USO is called *realizable* if it can be obtained through the reduction from P-LCP.

Definition: A USO is called *realizable* if it can be obtained through the reduction from P-LCP.

This is a small subset!

Definition: A USO is called *realizable* if it can be obtained through the reduction from P-LCP.

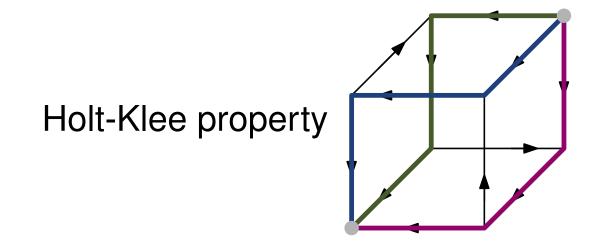
This is a small subset!

Theorem: There are $2^{\Theta(2^n \log n)}$ USOs of the *n*-cube. Out of those, only $2^{\Theta(n^3)}$ are realizable.

Definition: A USO is called *realizable* if it can be obtained through the reduction from P-LCP.

This is a small subset!

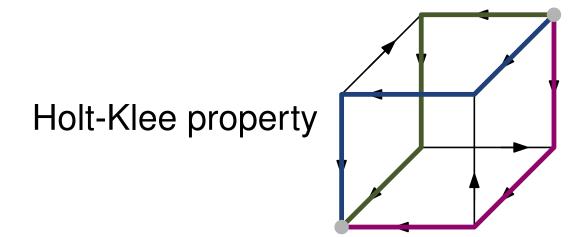
Theorem: There are $2^{\Theta(2^n \log n)}$ USOs of the *n*-cube. Out of those, only $2^{\Theta(n^3)}$ are realizable.



Definition: A USO is called *realizable* if it can be obtained through the reduction from P-LCP.

This is a small subset!

Theorem: There are $2^{\Theta(2^n \log n)}$ USOs of the *n*-cube. Out of those, only $2^{\Theta(n^3)}$ are realizable.



Necessary, but not sufficient! Fulfilled by $2^{\Omega(2^n/\sqrt{n})}$ USOs

Query Complexity Lower Bounds

Theorem [Schurr, Szábo, 2004]: A deterministic sink-finding algorithm needs $\Omega(n^2/\log n)$ vertex evaluations in the worst case.

Query Complexity Lower Bounds

Theorem [Schurr, Szábo, 2004]: A deterministic sink-finding algorithm needs $\Omega(n^2/\log n)$ vertex evaluations in the worst case.

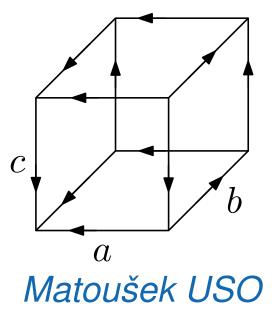
Theorem [Borzechowski, W., 2023]: On realizable USOs, a deterministic sink-finding algorithm needs at least n vertex evaluations in the worst case.

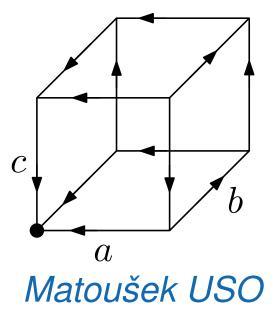
Query Complexity Lower Bounds

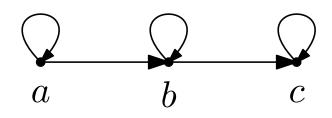
Theorem [Schurr, Szábo, 2004]: A deterministic sink-finding algorithm needs $\Omega(n^2/\log n)$ vertex evaluations in the worst case.

Theorem [Borzechowski, W., 2023]: On realizable USOs, a deterministic sink-finding algorithm needs at least n vertex evaluations in the worst case.

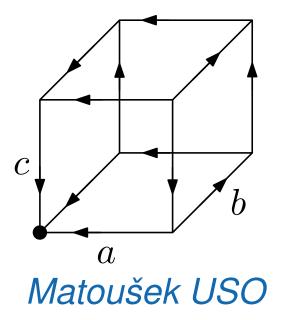
The best algorithms are exponential!

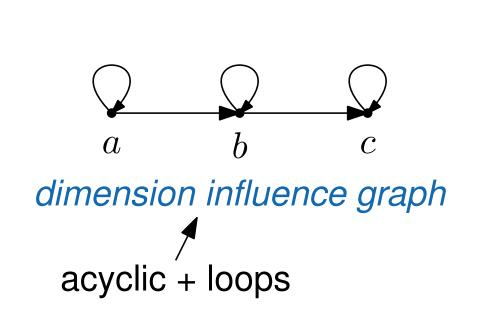


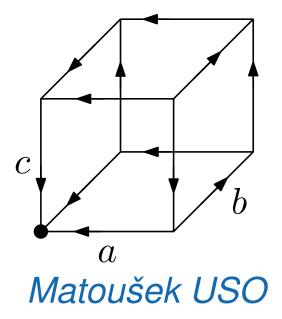




dimension influence graph







Theorem [Matoušek, 1994]: The expected number of queries needed by the *Random Facet* algorithm is $2^{\Omega(\sqrt{n})}$ in the worst case.

Theorem [Gärtner, 1994]: The expected number of queries needed by Random Facet on *realizable* Matoušek USOs is $O(n^2)$.

Theorem [Matoušek, 1994]: The expected number of queries needed by the *Random Facet* algorithm is $2^{\Omega(\sqrt{n})}$ in the worst case.

Theorem [Gärtner, 1994]: The expected number of queries needed by Random Facet on *realizable* Matoušek USOs is $O(n^2)$.

For Random Facet, there is a clear *complexity gap* in realizable vs. non-realizable Matoušek USOs.

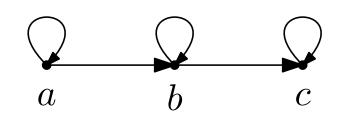
Theorem [Matoušek, 1994]: The expected number of queries needed by the *Random Facet* algorithm is $2^{\Omega(\sqrt{n})}$ in the worst case.

Theorem [Gärtner, 1994]: The expected number of queries needed by Random Facet on *realizable* Matoušek USOs is $O(n^2)$.

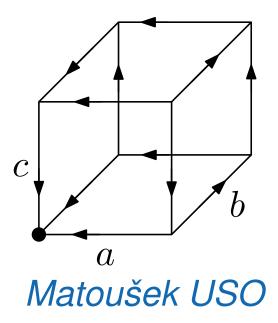
For Random Facet, there is a clear *complexity gap* in realizable vs. non-realizable Matoušek USOs.

Is this specific to Random Facet or *inherent to the problem*?

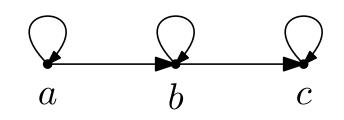
Matoušek-type USOs



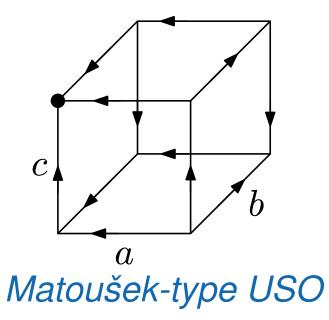
dimension influence graph



Matoušek-type USOs



dimension influence graph



The Complexity of Sink-Finding on Matoušek-type USOs

Theorem [W., Widmer, 2023]: An optimal deterministic algorithm needs exactly n queries to find the sink of a Matoušek-type USO in the worst case.

The Complexity of Sink-Finding on Matoušek-type USOs

Theorem [W., Widmer, 2023]: An optimal deterministic algorithm needs exactly n queries to find the sink of a Matoušek-type USO in the worst case.

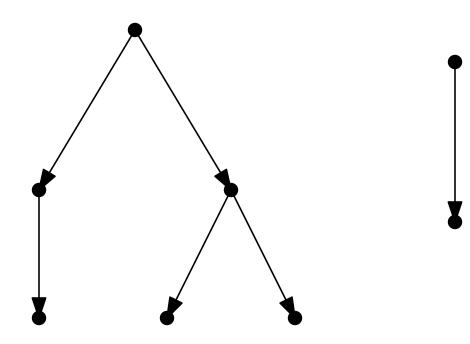
Theorem [W., Widmer, 2023]: An optimal deterministic algorithm needs between $O(\log^2 n)$ and $\Omega(\log n)$ queries to find the sink of a *realizable* Matoušek-type USO in the worst case.

The Realizable Matoušek-type USOs

Theorem [W., Gärtner, 2021]: A Matoušek-type USO is realizable if and only if its dimension influence graph is the *reflexive transitive closure of an arborescence*.

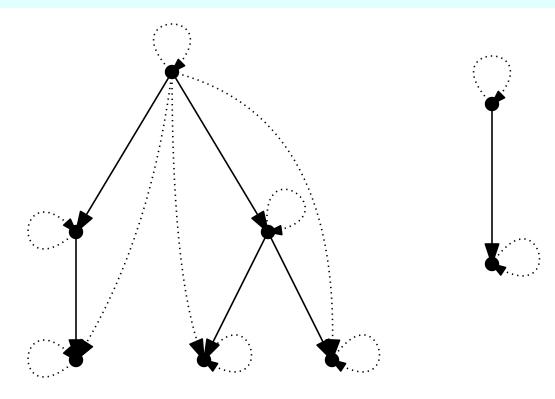
The Realizable Matoušek-type USOs

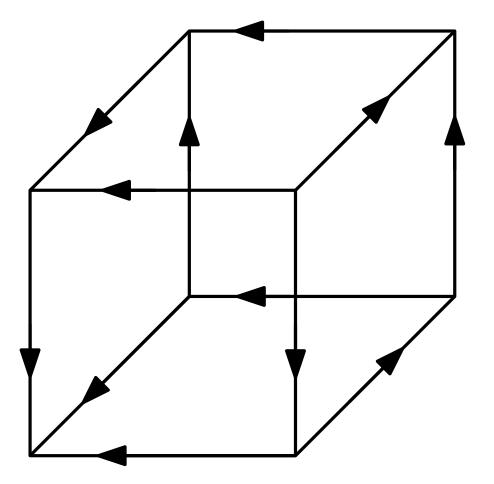
Theorem [W., Gärtner, 2021]: A Matoušek-type USO is realizable if and only if its dimension influence graph is the *reflexive transitive closure of an arborescence*.

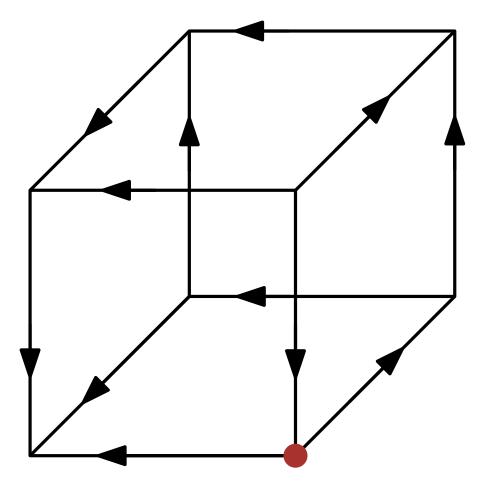


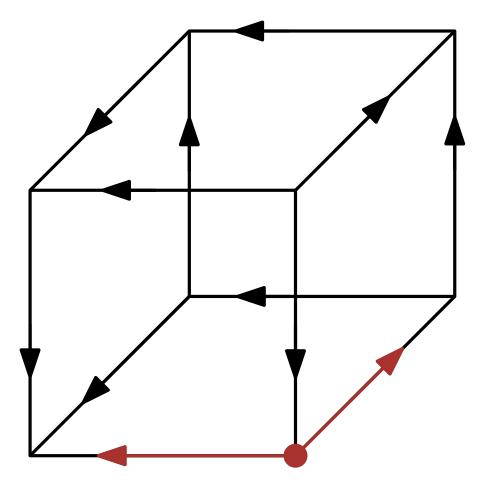
The Realizable Matoušek-type USOs

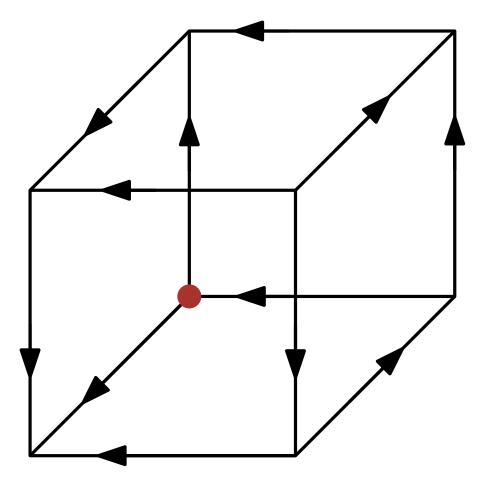
Theorem [W., Gärtner, 2021]: A Matoušek-type USO is realizable if and only if its dimension influence graph is the *reflexive transitive closure of an arborescence*.

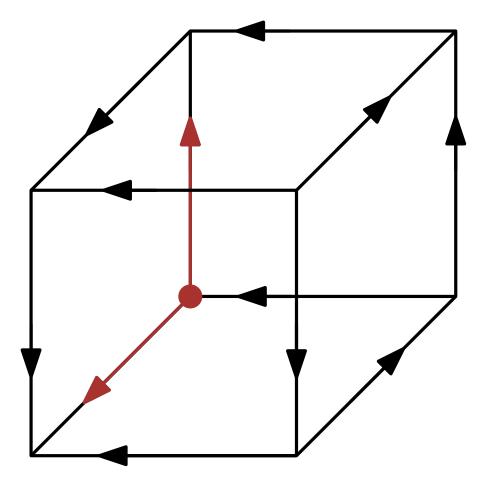


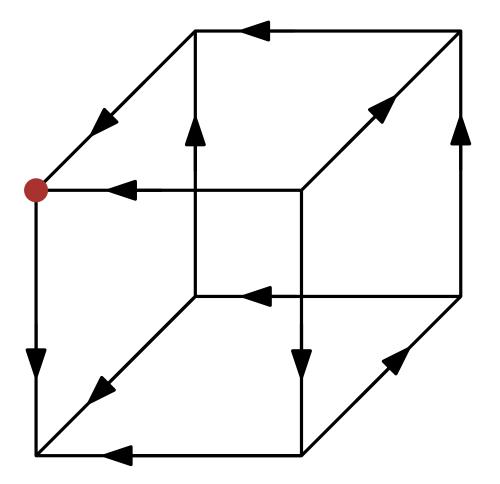


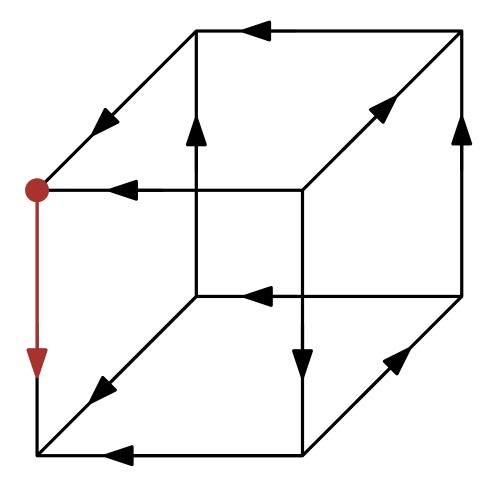


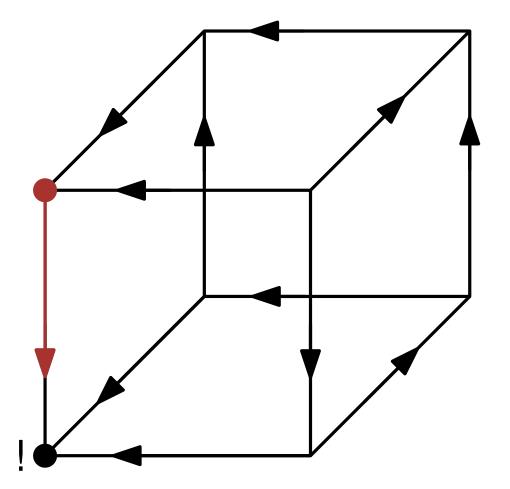


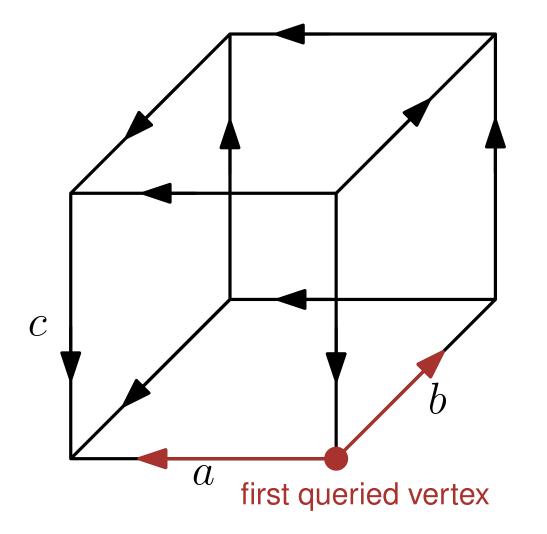


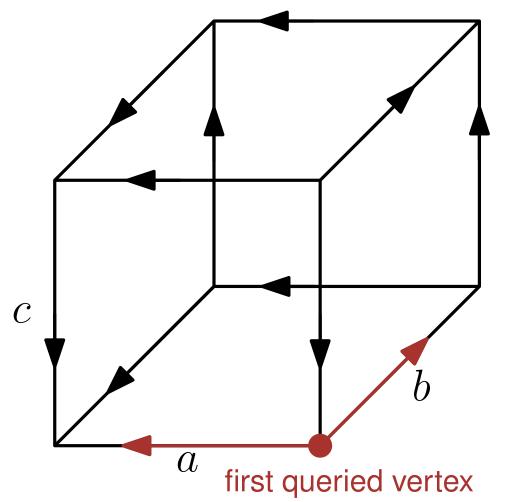


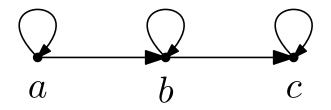


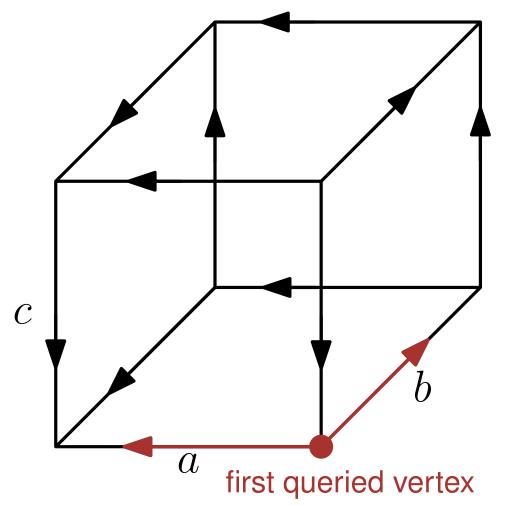


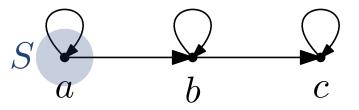


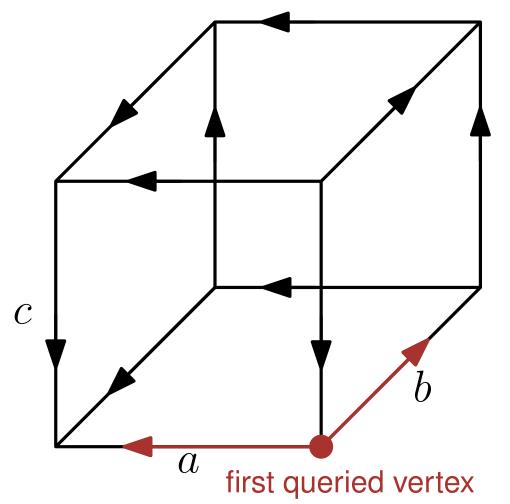


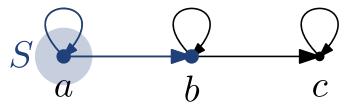


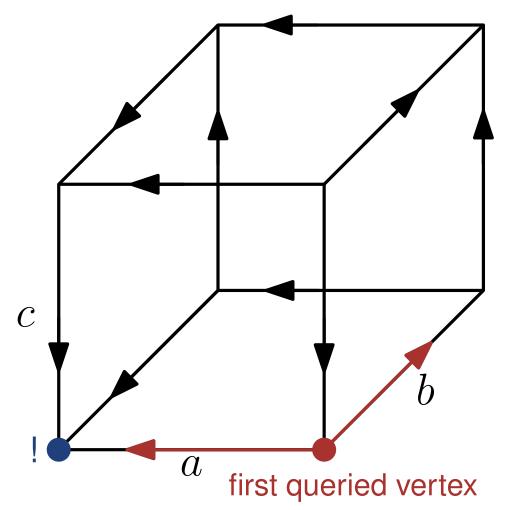


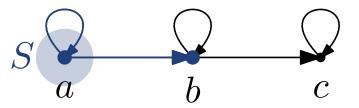


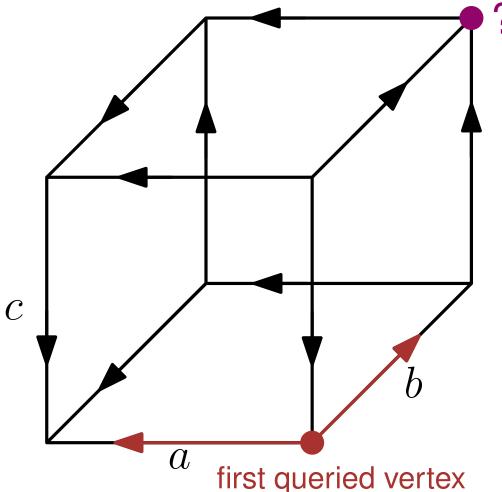


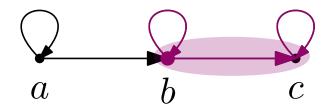


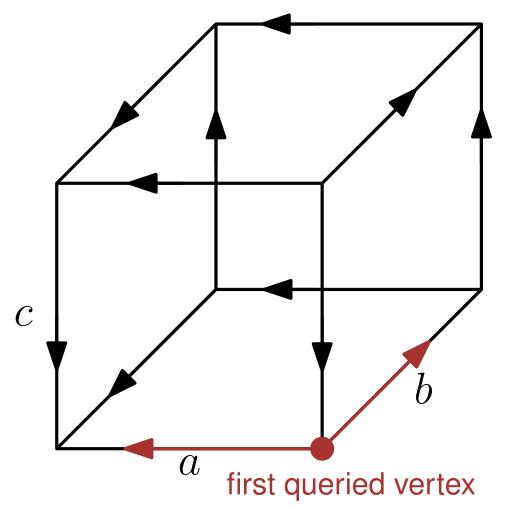




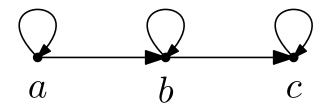








Find set of dimensions S such that a and bhave odd numbers of in-neighbors in S, and c has an even number



Mx = y

Adversarial, adaptive oracle:

• The first queried vertex is never a sink ($y \neq 0$)

- The first queried vertex is never a sink ($y \neq 0$)
- Set dimension influence graph G to be "empty" (M = I) if V

- The first queried vertex is never a sink ($y \neq 0$)
- Set dimension influence graph G to be "empty" $(M = I) \checkmark \checkmark \checkmark$
- On every query: Would replying according to the current dimension influence graph let the algorithm figure out the sink?

- The first queried vertex is never a sink ($y \neq 0$)
- Set dimension influence graph G to be "empty" $(M = I) \bigvee \bigvee \bigvee$
- On every query: Would replying according to the current dimension influence graph let the algorithm figure out the sink?
 No? Answer according to G.

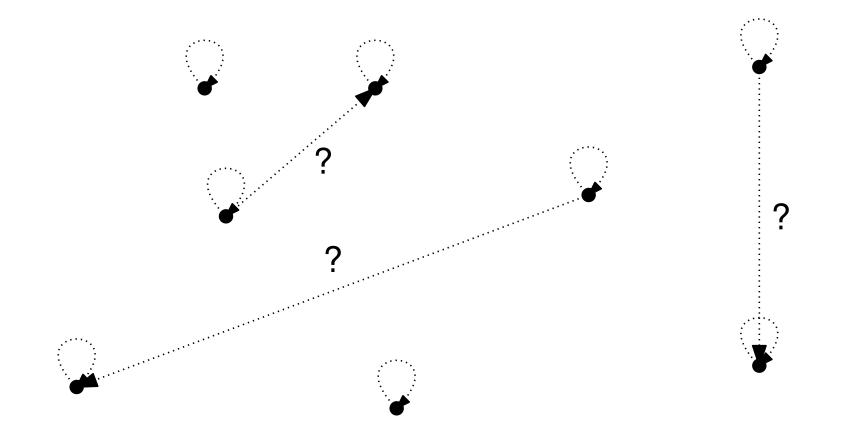
- The first queried vertex is never a sink ($y \neq 0$)
- Set dimension influence graph G to be "empty" $(M = I) \checkmark \checkmark \checkmark$
- On every query: Would replying according to the current dimension influence graph let the algorithm figure out the sink?
 No? Answer according to G.
 - \circ Yes? Change G.

Adversarial, adaptive oracle:

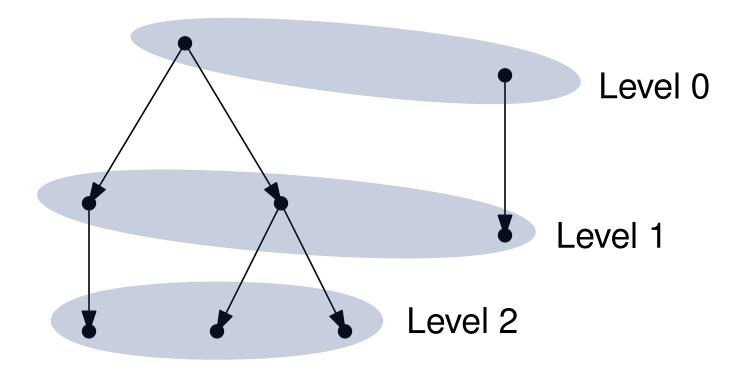
- The first queried vertex is never a sink ($y \neq 0$)
- Set dimension influence graph G to be "empty" $(M = I) \checkmark \checkmark \checkmark$
- On every query: Would replying according to the current dimension influence graph let the algorithm figure out the sink?
 No? Answer according to G.
 - \circ Yes? Change G.

Need *consistency*, *legality*, and *uncertainty*.

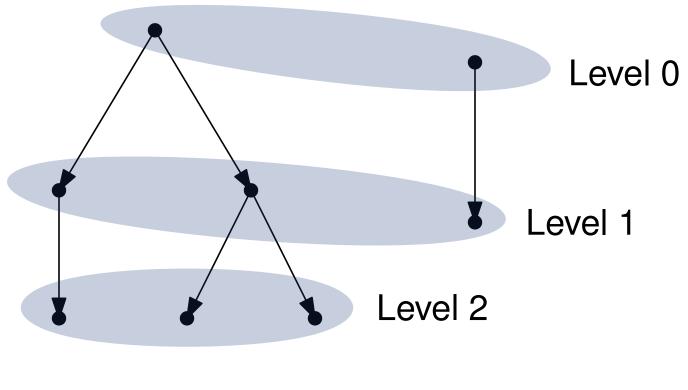
We recover the whole dimension influence graph!



Levels:



Levels:



Level = in-degree -1

Levelling: $O(\log n)$

• First query $\{1, \ldots, n\}$: \Rightarrow set of dimensions with odd in-degree

Levelling: $O(\log n)$

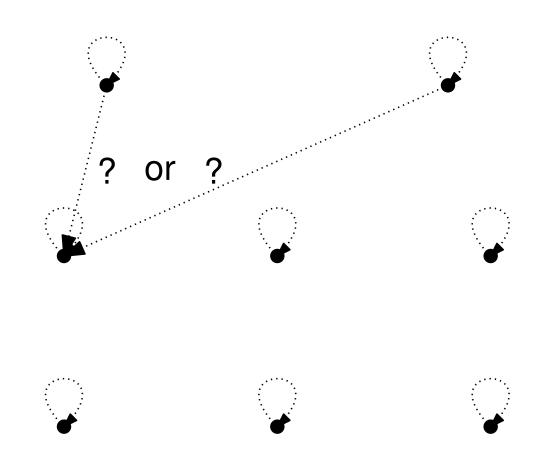
- First query $\{1, \ldots, n\}$: \Rightarrow set of dimensions with odd in-degree
- Query set of dimensions with odd in-degree: ⇒ set of dimensions with odd in-degree among those with odd in-degree

Levelling: $O(\log n)$

- First query $\{1, \ldots, n\}$: \Rightarrow set of dimensions with odd in-degree
- Query set of dimensions with odd in-degree: ⇒ set of dimensions with odd in-degree among those with odd in-degree

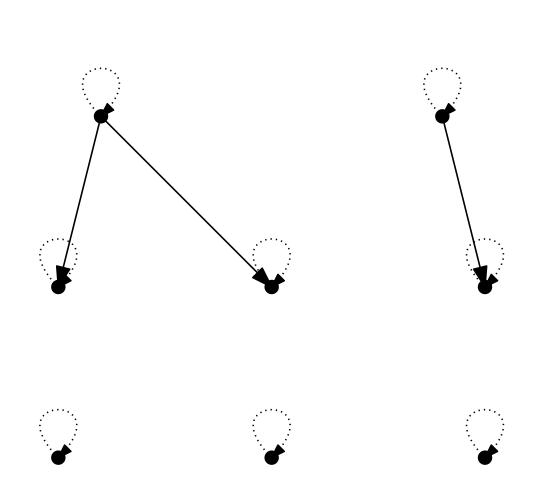
This reveals something about the second-LSB of their in-degree

Levelling: $O(\log n)$

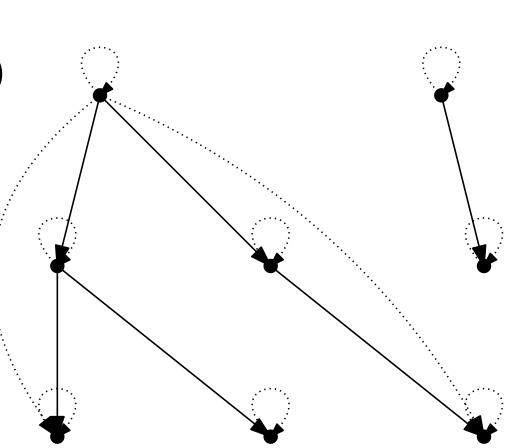


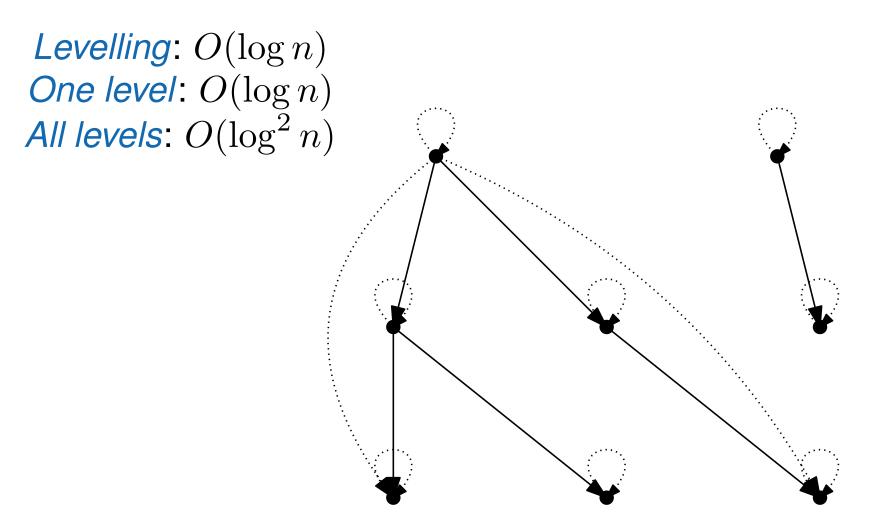
Department of Computer Science

Levelling: $O(\log n)$ One level: $O(\log n)$



Levelling: $O(\log n)$ One level: $O(\log n)$ All levels: $O(n \log n)$





Open Questions

Can we find a complexity gap or algorithms making use of realizability for larger (more relevant) classes of USOs?

Open Questions

Can we find a complexity gap or algorithms making use of realizability for larger (more relevant) classes of USOs?

What is the true query complexity of sink-finding on realizable Matoušek-type USOs?

Open Questions

Can we find a complexity gap or algorithms making use of realizability for larger (more relevant) classes of USOs?

What is the true query complexity of sink-finding on realizable Matoušek-type USOs?

Does the complexity gap also hold for randomized algorithms?