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Single source shortest path problem

Input: directed graph with edge
lengths plus starting vertex s

Outputs
▶ Tree of shortest paths

from s to all other
reachable vertices

▶ Distances (lengths of
paths) to all vertices
(+∞ if unreachable)
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Represent output by two decorations for each vertex x :

P[x ] = parent vertex of x
D[x ] = distance from start vertex to x



Time bounds for single-source shortest paths

Assume: Input may have negative edges but no negative cycles
(otherwise shortest simple path is NP-hard)

With integer edge weights in range [−W ,W ]:
Randomized O(m log2 n log nW )

[Bernstein et al. 2022; Bringmann et al. 2023]

Main idea: Recursive low-diameter decomposition

Best strongly polynomial time bound known:
O(mn) for the Bellman–Ford algorithm

Main idea: Relaxation



Relaxation algorithms (more detail)

Initialize: P[x ] = None; D[x ] = 0 if x = s, +∞ otherwise

“Relax” edge uv: test whether path to u + edge uv gives a better
path to v, and if so update the decorations for v

def relax(u,v):
if D[u] + length(edge uv) < D[v]:

D[v] = D[u] + length(edge uv)
P[v] = u

Key insights:
▶ Initialization gives s the correct decorations (its distance and

parent in the actual shortest path tree)
▶ If shortest path to v goes through edge uv and u already has

correct decorations, then relax(uv) gives v correct decorations
▶ Other calls to relax are harmless

(maintain invariant that D[v ] ≥ actual distance)



Intuitive picture of a relaxation algorithm

s

vertices with
correct values
of D[v] and P[v]

vertices with D[v] too large

if we relax an edge
in the shortest path tree
from a correct vertex u
to an incorrect vertex v,
v becomes correct
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Examples of relaxation algorithms

Directed acyclic graphs: relax in a topological ordering

m relaxations

Dijkstra: relax, ordered by tentative distance

m relaxations, O(m + n log n) overhead

Bellman–Ford (unoptimized): relax all edges repeatedly, n− 1 times

m(n − 1) relaxations

Bellman–Ford (optimized): partition into two acyclic subgraphs wrt
random vertex order, relax each subgraph in topological order,
repeat until no more changes

≈ mn/3 relaxations [Bannister and Eppstein 2012]



How low can we go?

For worst-case graphs (allowing cycles, and negative edge weights,
but not negative cycles) how few relaxation steps are needed?

Not a well-posed question

Find shortest paths some other way, not involving relaxation, e.g.
recent near-linear-time algorithms for graphs with small integer
edge weights [Bernstein et al. 2022]

Once you know the shortest path tree, apply the DAG algorithm to
that tree, ignoring the rest of the graph ⇒ n − 1 relaxations



Focus on relaxation

To avoid cheating, study
non-adaptive relaxation algorithms:
▶ Using graph structure but not

edge weights, determine
sequence of edges to relax

▶ Relax the edges in that order

Examples of non-adaptive algorithms:
▶ Directed acyclic graph algorithm
▶ Unoptimized Bellman–Ford
▶ Optimized randomized Bellman–Ford with n/3 + o(n)

repetitions (correct w.h.p.)
▶ Bellman–Ford-orderable graphs: relax each edge once in a fixed

order w/ guaranteed correctness [Haddad and Schäffer 1988]



Main results

Number of relaxation steps of non-adaptive relaxation algorithms,
for single-source shortest paths on directed graphs, must be ≥:

▶
(1

6 − o(1)
)
n3, for deterministic algorithms on complete graphs

▶
( 1

12 − o(1)
)
n3, for randomized algorithms on complete graphs

(required to be correct with high probability)

▶ Ω

(
mn

log n

)
on sparse graphs, deterministic or randomized

▶ Ω(mn), when m = Ω(n1+ε) for some ε > 0

Shorter summary: Bellman–Ford is optimal or near-optimal



Main idea: Deterministic, complete graphs

A correct relaxation sequence must have a subsequence that relaxes
the edges of each shortest path in order

Adversary (knowing relaxation sequence) chooses Hamiltonian path,
greedily, 2 steps at a time, so 2nd edge is relaxed as late as possible

(Chosen edges get low weight; unchosen get high weight)

First step must connect to the part of the path that was already
chosen but the second step can be any disjoint edge

# relaxations before sequence reaches chosen edge
≥ # disjoint edges remaining to choose

≈ square of # vertices remaining



Main idea: Random, complete graphs

Replace length of high-probability-correct relaxation sequence by
expected length of path subsequence in too-long relaxation seq
(Doesn’t change length much, easier to analyze)

Two-player game: relaxer chooses
sequence, adversary chooses path,
to min- or maximize subseq length

Yao minimax principle [Yao 1977]:
random relaxer, random adversary
have same expected value vs their
worst-case opponents

(We want to lower-bound the outcome for the random relaxer but
it’s easier to lower-bound the random adversary)

Adversary that picks a Hamiltonian path uniformly at random gets
≈ half as much per step as the greedy deterministic adversary



Main idea: Sparse networks

Divide graph into two parts:
▶ Pool of edges from which

adversary chooses far
along the relaxation
sequence

▶ Router allowing any
sequence of pool edges to
be connected into a path

Adversary makes sequence of
greedy or random choices from
pool edges
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Conclusions and open problems

Bellman–Ford is within a constant factor of optimal among
non-adaptive relaxation algorithms

For both upper bounds (Bellman–Ford) and our lower bounds,
randomized constant factors are smaller than deterministic

But upper and lower bounds are too far apart to prove that optimal
deterministic and random constants differ. Do they?

Can we strengthen our model of relaxation algorithms to something
more realistic, allowing limited forms of adaptivity?
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