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Problem Definition

Input:  

(1) two  by  Boolean matrices  and  

(2) a non-empty subset S of  (given as 
symbols rather than the explicit matrices) 

Output: 

“Yes”, if the entry-wise logical-and of all matrices in S 
contains only False entries; 

“No”, otherwise.
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Sanity Check (1/2)

Input:  

(1) two  by  Boolean matrices  and  

(2) S =  (given as symbols rather than the 
explicit matrices) 

Output: 

“No” because  
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Sanity Check (2/2)

Input:  

(1) two  by  Boolean matrices  and  

(2) S =  (given as symbols rather than 
the explicit matrices) 

Output: 

“Yes” because  
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Main Message

Input:  

(1) two  by  Boolean matrices  and  

(2) a non-empty subset S of (given 
as symbols rather than the explicit matrices) 

Our Main Theorem. 
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Verifying whether the product of GBMM  
contains only False entries can be done in  

deterministic  time.O (n2)



Is Our Result Interesting? (1/3)

Our Main Theorem. 

By a reduction from Diameter 2 or 3       
[Aingworth, Chekuri, Indyk, and Motwani’99]  

]. 
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Verifying whether the product of GBMM  
contains only False entries can be done in  

deterministic  time.O (n2)

Verifying whether the product of GBMM  
contains only True entries needs  time  

by any known combinatorial algorithm.
O (n3)



Is Our Result Interesting? (2/3)

Our Main Theorem. 

By Freivalds’ algorithm [Freivals’77] (noting that it 
has no known efficient deterministic alternative) 
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n

n

Verifying whether the product of GBMM  
contains only False entries can be done in  

deterministic  time.O (n2)

Verifying whether the product of GBMM  
contains only False entries can be done in 

randomized  time.O (n2)



Is Our Result Interesting? (3/3)

Our Main Theorem. 

Our main result can be applied to detect the 
existence of several small subgraphs.
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n

n

Verifying whether the product of GBMM  
contains only False entries can be done in  

deterministic  time.O (n2)

To be introduced in a minute.



Application I  

Detecting Designated Colored 4-Cycles  



Problem Definition

Fix an edge-colored 4-cycle . 

Input: an edge-colored complete graph .  

Output: 

“Yes”,  contains  as a subgraph; 

“No”, otherwise.
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Problem Definition

Fix an edge-colored 4-cycle . 

Input: an edge-colored complete graph .  

Output: 

“Yes”,  contains  as a subgraph; 

“No”, otherwise.

C

G

G C

General (monochromatic) graphs can be thought as 
2-edge-colored complete graphs.



Fix an edge-colored 4-cycle . 

Input: an edge-colored complete graph .  

C

G

Detecting Different Designated 4-Cycles Can Have Different 
Complexities, Unconditionally

Case I: fix  =        . Any single-pass streaming 
algorithm that detects  requires  space. 

Case II: fix  =       . There is a single-pass streaming 
algorithm that detects  using  space.

C
C Ω(n2)

C
C O(n)



Known Results for Detecting Designated 4-CyclesThe number of colors of edges  
incident to each vertex is at most 2.    at most 3.

The number of edge colors in G is  
at most 2.

The number of edge colors in G can be  
more than 2.
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Randomized  

O(n2)
Triangle-hard

Approach Pigeonhole 
[YZ'97]

Pigeonhole  
[YZ’97] or 

Ramsey-type 
Thm [HTW’23]

 Ramsey-type 
Theorem 

[LBYY'21]

Ramsey-type 
Theorem 

[GKMT'17]   
[GS'11]

Our Result Our Result

...



Reduction from Detecting 4-Cycles to GBMM
Fix  =        . 

Input: an edge-colored complete graph   
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Reduction from Detecting 4-Cycles to GBMM
Fix  =        . 

Input: an edge-colored complete graph  

Step 1. Use the color-coding technique to obtain a 
complete bipartite subgraph. 
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Reduction from Detecting 4-Cycles to GBMM
Fix  =        . 

Input: an edge-colored complete graph  

Step 1. Use the color-coding technique to obtain a 
complete bipartite subgraph. 

Step 2. Compute an adjacency matrix  with rows 
corresponding to one part and columns 
corresponding to the other. Let  = .
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Reduction from Detecting 4-Cycles to GBMM
Fix  =        . 

Input: an edge-colored complete graph  

Step 1. Use the color-coding technique to obtain a 
complete bipartite subgraph. 

Step 2. Compute an adjacency matrix  with rows 
corresponding to one part and columns 
corresponding to the other. Let  = . 

Step 3. Solve GBMM for  & .
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Application II  

Detecting Designated Four-Node Induced Subgraphs  



Problem Definition

Fix a 4-node graph . 

Input: a triangle-free undirected simple graph . 

Output: 

“Yes”,  contains  as an induced subgraph; 

“No”, otherwise.
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Problem Definition

Fix a 4-node graph . 

Input: a triangle-free undirected simple graph . 

Output: 

“Yes”,  contains  as an induced subgraph; 

“No”, otherwise.

H

G

G H

For each , with one exception that , the 
known best algorithm that solves our problem for 
general  needs triangle time. [WWWY’15]

H H = P4

G



Our Result

Fix a 4-node graph . 

Input: a triangle-free undirected simple graph . 

H

G

For each , detecting  for triangle-free graphs 
can be done in randomized  time.

H H
O (n2)



Our Algorithm for a Simple Case: H = P4

Fix . 

Input: a triangle-free undirected simple graph . 

Step 1. Use the color-coding technique to obtain a 
bipartite subgraph. 

H = P4
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Our Algorithm for a Simple Case: H = P4

Fix . 

Input: a triangle-free undirected simple graph . 

Step 1. Use the color-coding technique to obtain a 
bipartite subgraph. 

Step 2. Compute an adjacency matrix  with rows 
corresponding to one part and columns 
corresponding to the other. Let  = . 

H = P4
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A 4 5 6

1 T T T

2 T T T

3 F T T



Our Algorithm for a Simple Case: H = P4

Fix . 

Input: a triangle-free undirected simple graph . 

Step 1. Use the color-coding technique to obtain a 
bipartite subgraph. 

Step 2. Compute an adjacency matrix  with rows 
corresponding to one part and columns 
corresponding to the other. Let  = . 

Step 3. Solve GBMM for  & .
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A 4 5 6

1 T T T

2 T T T

3 F T T



Our Algorithm for a Simple Case: H = P4

Fix . 

Input: a triangle-free undirected simple graph G. 

H = P42
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Deciding whether a general graph contains  as an 
induced subgraph is equivalent to recognizing cographs. 

The implementation of the recognition algorithm is 
complicated. The simplest one [HP’05] still is lengthy.   

Our algorithm is a very simple alternative for triangle-
free graph .

P4

G

[HP’05]



Our Algorithm for the Most Complicated Case: H = 2K2

Fix . 

Input: a triangle-free undirected simple graph . 

We need a reduction to 3 different instances of 
GBMM. 

H = 2K2
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Details are omitted in this talk.



Sketch of Our Deterministic Algorithms  



For S = {P1, P2, P3}

Step 1. Given the input matrices  and , define an implication graph  as a sequence of 
incremental edge updates.  

Step 2. Constructing  needs  time by the known best combinatorial algorithm 
[ACIM’99]. We show, however, that identifying all components in  after each incremental 
update can be done in  time. 

Step 3. We use the information of the components in the dynamic  to avoid re-computing the 
same procedure incurred during the computation of . Our algorithm runs in 
deterministic  time. 

A B GI

GI O(n3)
GI

O(n2)

GI
P1 & P2 & P3

O(n2)

For other S, GBMM can be solved by a simplified 
variant of our above algorithm.



Recap 

Input:  

(1) two  by  Boolean matrices  and  

(2) a non-empty subset S of (given 
as symbols rather than the explicit matrices) 

Our Main Theorem. 

n n A B

{P1, P2, P3, P4}

= xA BP1

= xA BP2

= xA BP3

= xA BP4

n

n

Verifying whether the product of GBMM  
contain only False entries can be done in  

deterministic  time.O (n2)

Thank you! Any questions?


