Verifying the Product of Generalized Boolean Matrix Multiplication and Its Applications to Detect Small Subgraphs

Wing-Kai Hon, Meng-Tsung Tsai, and Hung-Lung Wang
WADS 2023

Academia Sinica, Taiwan

Problem Definition

Sanity Check (1/2)

Sanity Check (2/2)

Main Message

Is Our Result Interesting? (1/3)

Our Main Theorem.

Verifying whether the product of GBMM contains only False entries can be done in deterministic $O\left(n^{2}\right)$ time.

By a reduction from Diameter 2 or 3 [Aingworth, Chekuri, Indyk, and Motwani'99]

Verifying whether the product of GBMM contains only True entries needs $O\left(n^{3}\right)$ time by any known combinatorial algorithm.

Is Our Result Interesting? (2/3)

Our Main Theorem.
Verifying whether the product of GBMM contains only False entries can be done in deterministic $O\left(n^{2}\right)$ time.

By Freivalds' algorithm [Freivals'77] (noting that it has no known efficient deterministic alternative)

Verifying whether the product of GBMM contains only False entries can be done in randomized $O\left(n^{2}\right)$ time.

Is Our Result Interesting? (3/3)

Our Main Theorem.
Verifying whether the product of GBMM contains only False entries can be done in deterministic $O\left(n^{2}\right)$ time.

Our main result can be applied to detect the existence of several small subgraphs.

To be introduced in a minute.

Application I

Detecting Designated Colored 4-Cycles

Problem Definition

Fix an edge-colored 4-cycle C.
Input: an edge-colored complete graph G.

Output:
"Yes", G contains C as a subgraph;
"No", otherwise.

Problem Definition

General (monochromatic) graphs can be thought as 2-edge-colored complete graphs.

Fix an edge-colored 4-cycle C.
Input: an edge-colored complete graph G.
Output:
"Yes", G contains C as a subgraph;
"No", otherwise.

Detecting Different Designated 4-Cycles Can Have Different Complexities, Unconditionally

Fix an edge-colored 4-cycle C.
Input: an edge-colored complete graph G.

Case I: fix $C=$ \square Any single-pass streaming algorithm that detects C requires $\Omega\left(n^{2}\right)$ space.

Case II: fix $C=\square$. There is a single-pass streaming algorithm that detects C using $O(n)$ space.

	The number of colors of edges incident to each vertex is at most 2.					at most 3. ${ }^{\text {d }}$
	The number of edge colors in G is at most 2.				The number of edge colors in G can be more than 2.	
C						
Runtime	Deterministic $O\left(n^{2}\right)$	Deterministic $O\left(n^{2}\right)$	Deterministic $O\left(n^{2}\right)$	Deterministic $O\left(n^{2}\right)$	Randomized $O\left(n^{2}\right)$	Triangle-hard
Approach	Pigeonhole [YZ'97]	Pigeonhole [YZ'97] or Ramsey-type Thm [HTW'23]	Ramsey-type Theorem [LBYY'21]	Ramsey-type Theorem [GKMT'17] [GS'11]	Our Result	Our Result

Reduction from Detecting 4-Cycles to GBMM

$$
\text { Fix } C=\square \text {. }
$$

Input: an edge-colored complete graph G

Reduction from Detecting 4-Cycles to GBMM

$$
\text { Fix } C=\square .
$$

Input: an edge-colored complete graph G
Step 1. Use the color-coding technique to obtain a complete bipartite subgraph.

Reduction from Detecting 4-Cycles to GBMM

$$
\text { Fix } C=\square .
$$

Input: an edge-colored complete graph G
Step 1. Use the color-coding technique to obtain a complete bipartite subgraph.

Step 2. Compute an adjacency matrix A with rows corresponding to one part and columns corresponding to the other. Let $B=A^{T}$.

Reduction from Detecting 4-Cycles to GBMM

$$
\text { Fix } C=\square .
$$

Input: an edge-colored complete graph G
Step 1. Use the color-coding technique to obtain a complete bipartite subgraph.

Step 2. Compute an adjacency matrix A with rows corresponding to one part and columns corresponding to the other. Let $B=A^{T}$.

Step 3. Solve GBMM for $A \bar{B} \& \bar{A} B$.

Application II

Detecting Designated Four-Node Induced Subgraphs

Problem Definition

Fix a 4-node graph H.
Input: a triangle-free undirected simple graph G.

Output:
"Yes", G contains H as an induced subgraph;
"No", otherwise.

Problem Definition

For each H, with one exception that $H=P_{4}$, the known best algorithm that solves our problem for general G needs triangle time. [WWWY'15]

Fix a 4-node graph H.

Input: a triangle-free undirected simple graph G.
Output:
"Yes", G contains H as an induced subgraph;
"No", otherwise.

Our Result

Fix a 4-node graph H.
Input: a triangle-free undirected simple graph G.

For each H, detecting H for triangle-free graphs can be done in randomized $O\left(n^{2}\right)$ time.

Our Algorithm for a Simple Case: $H=P_{4}$

Fix $H=P_{4}$.
Input: a triangle-free undirected simple graph G.

Step 1. Use the color-coding technique to obtain a bipartite subgraph.

Our Algorithm for a Simple Case: $H=P_{4}$

Fix $H=P_{4}$.
Input: a triangle-free undirected simple graph G.

Step 1. Use the color-coding technique to obtain a bipartite subgraph.

Step 2. Compute an adjacency matrix A with rows corresponding to one part and columns corresponding to the other. Let $B=A^{T}$.

Our Algorithm for a Simple Case: $H=P_{4}$

Fix $H=P_{4}$.
Input: a triangle-free undirected simple graph G.
Step 1. Use the color-coding technique to obtain a bipartite subgraph.

A	4	5	6
1	T	T	T
2	T	T	T
3	F	T	T

Step 2. Compute an adjacency matrix A with rows corresponding to one part and columns corresponding to the other. Let $B=A^{T}$.

Step 3. Solve GBMM for $A \bar{B} \& A B$.

Our Algorithm for a Simple Case: $H=P_{4}$

Fix $H=P_{4}$.
Input: a triangle-free undirected simple graph G.
Deciding whether a general graph contains P_{4} as an induced subgraph is equivalent to recognizing cographs.

The implementation of the recognition algorithm is complicated. The simplest one [HP'05] still is lengthy.

Our algorithm is a very simple alternative for trianglefree graph G.

Our Algorithm for the Most Complicated Case: $H=2 K_{2}$

Fix $H=2 K_{2}$.
Input: a triangle-free undirected simple graph G.
We need a reduction to 3 different instances of GBMM.

Details are omitted in this talk.

Sketch of Our Deterministic Algorithms

For $\mathrm{S}=\left\{P_{1}, P_{2}, P_{3}\right\}$

Step 1. Given the input matrices A and B, define an implication graph G_{I} as a sequence of incremental edge updates.

Step 2. Constructing G_{I} needs $O\left(n^{3}\right)$ time by the known best combinatorial algorithm [ACIM'99]. We show, however, that identifying all components in G_{I} after each incremental update can be done in $O\left(n^{2}\right)$ time.

Step 3. We use the information of the components in the dynamic G_{I} to avoid re-computing the same procedure incurred during the computation of $P_{1} \& P_{2} \& P_{3}$. Our algorithm runs in deterministic $O\left(n^{2}\right)$ time.

For other S, GBMM can be solved by a simplified variant of our above algorithm.

Recap

Input:
(1) two n by n Boolean matrices A and B

(2) a non-empty subset S of $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ (given as symbols rather than the explicit matrices)

Our Main Theorem.
Verifying whether the product of GBMM contain only False entries can be done in deterministic $O\left(n^{2}\right)$ time.

