External-Memory Sorting with Comparison Errors

Michael T. Goodrich and Evrim Ozel

Department of Computer Science
University of California, Irvine




Noisy Sorting Framework

* Sort n distinct comparable elements

* Comparing two elements X, y outputs true result independently according

to a fixed probability p < 1/2, otherwise outputs false (opposite) result

* Non-persistent errors: determination of correctness made independently

for each comparison

* Persistent errors: if previously compared pair of elements (X, y), return

that result instead



Noisy Sorting Framework: Motivation

* A/B Testing

. ort ranking

CONTROL VARIATION

J
{ A s fi ¥
Y e . S il



Noisy Sorting Framework: Evaluation

* Dislocation of an element Xx: distance between current position and sorted position

K=2
* Maximum dislocation of an array 2 /—\ O

~ &

4 6

* Total dislocation of an array &_"1/ \ ,/
<

* Worst-case of 0(n) and 0 (n?) respectively

* Known lower bounds of {2(log n) and (1(n) for best-possible max and total dislocation

under persistent comparison errors



Noisy Sorting Framework in External Memory

* Goal: sort n items in external memory model using an optimal O((N/B)logy, /g (N/B))

I/Os, while also being tolerant to noisy comparisons

* Interested in both cache-aware (parameters involve M and B) and cache-oblivious settings

N
CPU
Fast Memory
M

B

> o=

Large Memory




Noisy Sorting Framework in External Memory

* Existing algorithms cannot be easily converted into an

external memory algorithm

* They make use of noisy binary search, which involves a C

random walk in a BST e @

* Not cache efficient and takes 240 log n steps E E @



Related Prior Work

Internal Memory

Braverman, Mossel (2008)

Klein, Penninger, Sohler, Woodruff (2011)

Geissmann, Leucci, Liu, Penna (2019)

External Memory
Aggarwal, Vitter (1988) (cache-aware)

Leiserson, Frigo, Prokop (1999) (cache-oblivious)

Our work (cache-oblivious and cache-aware)

Time
0 (n3+/®)
0(n%)

O(nlogn)

O(nlogn)

O(nlogn)

0 (nlog® n)

Max Disloc.  Total Disloc. /Os
0(log n) 0(n) _
0(log n) 0(n logn) -
0(log n) 0(n) _
_ _ O((N/B)logy/p(N/B))
_ _ O((N/B)logy/p(N/B))

O(logn) O(nlogn) O((N/B)logu,s(N/B))



Preliminary: Window-Sort
* Takes as input an array of size 1 with max dislocation at most d; < n [Geissmann, Leucci, Liu, Penna (2019)]

» Qutputs array with max dislocation at most d, /2 w.h.p. as a function of d, (typically choose d, = O(log n))

* Takes O (dyn) time in internal memory, and uses O ((nd,/B) + (log(dy/d;))(n/B)logy /g(n/B)) I/Os in

external memory

* Allows us to achieve noise tolerance for our later algorithms

Algorithm 1: Window-Sort(A = {ag,ay,...,a,_1},d1,d>)
1 for w < 2d1,d1,d1/2,...,2d2 do

2 foreach 7+ 0,1,2,...,n—1 do

3 | 7 max{0,i — w}+ |{a; <a:i : |j—i| < w}

4 Sort A (deterministically) by nondecreasing r; values (i.e., using r; as the
comparison key for a;)

5 return A




Window-Merge-Sort
* Variant of merge sort that sorts with max dislocation O (log n) under persistent errors, w.h.p
* Takes as input parameter d, the desired max dislocation, we choose d = clogn for some constant ¢ > 0
* Not cache-oblivious, but sorts in external memory with optimal #|/Os, assuming B = (A (log n)
* We first consider an internal memory version that runs in O (n log# n) time

* Given array A, split it into 2 subarrays Ay, A, of roughly equal size and recursively sort them

* Merge sublists by using Window-Sort as subroutine:

* If |A{| + |Ay| < 6d, return Window-Sort(4, U A,,4d, d)



Window-Merge-Sort: merge step

Aj

3d

Window-Sort

3d

-+ Output



Window-Merge-Sort: merge step and key lemma

while [A1| + |A2| > 6d do

Let S; be the first min{3d, |A;|} elements of A;

Let S2 be the first min{3d, |A2|} elements of A

Let S < S;US

Window-Sort (S, 4d, d)

Let B’ be the first d elements of (the near-sorted) S

Add B’ to the end of B and remove the elements of B’ from A; and A,

Lemma: If A; and A, each have max dislocation at most 3d /2, then merging them

will result in a sequence with max dislocation at most 3d /2 w.h.p.

Proof: Omitted



External Window-Merge-Sort

* Divide Aintom = O(M/B) = 2 subarrays A4, ..., A,, instead, each of roughly equal size
* For the merge step, bring in the first max{3d, |A;|} elements from each A; into a list
* Call Window-Sort(S, 4md, d). Since B = Q(log n), fits entirely in internal memory

* Qutput the first d elements from that call and repeat

Lemma: If A4, ..., A, each have max dislocation at most 3d /2, then merging them

will result in a sequence with max dislocation at most 3d /2 w.h.p.



External Window-Merge-Sort

Theorem: Given an array A of n distinct comparable elements, one can

deterministically sort A in O(n log2 n) time in internal memory or in external memory

with O ((n/B)logy /g(n/B)) I/Os subject to comparison errors with p < 1/16 so as

to have max dislocation at most O (log n) w.h.p., assuming B = logn.



Funnelsort and Cache-Obliviousness

* Introduced by Frigo, Leiserson and Prokop in 1999

* Cache-Oblivious algorithms do not contain parameters dependent on M or B that can be tuned to optimize

performance (e.g. by loop tiling: breaking problem into optimally sized blocks for a given cache)

* Such algorithms usually use divide-and-conquer: divide problem into smaller pieces until subproblem fits into

cache, regardless of cache size

* Analysis: work complexity W (n), cache complexity Q (1)

* Funnelsort: cache-oblivious sorting algorithm, W (n) = O(nlogn) and Q(n) = O((N/B)log, ;s (N/B)),

requires tall-cache assumption, M = Q(B*?)



Preliminary: Funnelsort

3

* Split input into nl/3 arrays of size n?/ , sort them recursively

* Merge the n1/3 sorted sequences using a nl/ 3—merger

* k-merger: recursive data structure that

merges k sorted sequences

* |dea: to achieve noise tolerance, use

Window-Sort for base case k-mergers

Figure 4-1: Illustration of a k-merger. A k-merger is built recursively out of vk left v/k-
mergers L1, Lo, ..., L Jf @ series of buffers, and one right \/E-merger R.



Constructing a k-merger

* Invariant: one k-merger invocation outputs

k> elements of merged sequence

» To output k3 elements, R gets invoked k3/2

times
e Fach left m erger Output connected to buffer of Figure 4-1: Illustration of a k-merger. A k-merger is built recursively out of vk left v/k-
mergers Lq,Ly,. .., L Vi @ series of buffers, and one right \/E-merger R.
size 2k3/?

* Before each invocation of R, if any buffer [ has< k3/2 elements, invoke L;

once so that buffer has > k3/2 elements



Window-Funnelsort

* Cache-oblivious, but requires B = ()(logn) in addition to tall-cache assumption

1/3

* Same general structure as Funnelsort: recursively sort n seguences of size n2/ 3 feed into

1/3

n-/°-merger

* Modify k-merger construction such that base-case merges are done using Window-Merge

* Original Funnelsort: base case at k = 2, Window-Funnelsort: base cases \/ clogn <k

< clogn for constant ¢ > 0

* k-mergers with k > clogn work the same (recursive) way as original Funnelsort



Window-Funnelsort

* We prove that Window-Funnelsort:
* has optimal cache complexity Q(n) = O((N/B)logy /g(N/B))
* has work complexity W (n) = 0(nlog“n)
* sorts with optimal maximum dislocation O (logn) under persistent errors, w.h.p.

* We provide a proof sketch for Q (1), and omit the remaining two proofs for this talk



Cache complexity of a k-merger

Lemma: One invocation of a k-merger incurs O (k + k3 /B + k3log,, k/B) cache misses.

Proof sketch: From the previous lemma, and assuming B = Q(logn) and M = Q(B*4), any k-

merger with,/clogn < k < av'M will fit entirely in the cache

In this case, since B = 0(+/M), there are at least M /B = Q(k) blocks available for buffers

= 0(k + k> /B) cache misses for reading/writing k> elements

We incur an additional O (k*/B) cache misses due to the O (k*?) space used by k-merger



Cache complexity of a k-merger

Lemma: One invocation of a k-merger incurs O (k + k3 /B + k3log,, k/B) cache misses.

Proof sketch (cont.): For k-mergers with k > av M, we invoke the internal \/E—mergers a total of

at most 2k3/2 + 2k times

The k-merger also needs to check before each invocation of R whether any buffers are empty,

which incurs at most vk misses and is repeated k3/2 times

We have Q;, < (2k3/% + Z\/E)Q\/,; + k2, which has solution Q) < 0(k>log,k/B)



Cache complexity of Window-Funnelsort

Theorem: Window-Funnelsort incurs at most Q(n) = O((N/B)logy;/g(N/B)) cache

misses.

Proof sketch: We have Q(n) = nl/3Q(n?/3) + Q..1/3, where (). 1/3 is # of cache misses of nl/3_merger

From the previous lemma we know that ) ,1/3 = 0(n'/3 + n/B + nlogyn/B)

So we get Q(n) = n1/3Q(n?/3) + 0(nlogyn/B), which has solution Q(n) = O((N/B)logpy/g(N/B))



Conclusions/Future work

* We provided cache-optimal and noise tolerant sorting algorithms in the external memory

setting (cache-aware and cache-oblivious)

* Improvements can be made for total dislocation and work complexity

* Can we do without the assumption that B = Q(logn)?

* Can other cache-oblivious algorithms be made noise-tolerant? (e.g. cache-oblivious

distribution sort)

Time Max Disloc. Total Disloc. |/Os

Our work (cache-oblivious and cache-aware) 0 (nlog“n) O (logn) O(nlogn)  O((N/B)logy ,5(N/B))



