External-Memory Sorting with Comparison Errors

Michael T. Goodrich and Evrim Ozel Department of Computer Science University of California, Irvine

Noisy Sorting Framework

- Sort *n* distinct comparable elements
- Comparing two elements x, y outputs true result independently according to a fixed probability p < 1/2, otherwise outputs false (opposite) result
- Non-persistent errors: determination of correctness made independently for each comparison
- **Persistent** errors: if previously compared pair of elements (x, y), return that result instead

Noisy Sorting Framework: Motivation

- A/B Testing
- Sport ranking

Noisy Sorting Framework: Evaluation

- **Dislocation** of an element *x*: distance between current position and sorted position
- Maximum dislocation of an array
- Total dislocation of an array
- Worst-case of O(n) and $O(n^2)$ respectively
- under persistent comparison errors

4

• Known lower bounds of $\Omega(\log n)$ and $\Omega(n)$ for best-possible max and total dislocation

Noisy Sorting Framework in External Memory

- Goal: sort *n* items in external memory model using an optimal $\Theta((N/B)\log_{M/B}(N/B))$ I/Os, while also being tolerant to noisy comparisons
- Interested in both cache-aware (parameters involve M and B) and cache-oblivious settings

Noisy Sorting Framework in External Memory

- Existing algorithms cannot be easily converted into an external memory algorithm
 - They make use of **noisy binary search**, which involves a random walk in a BST
 - Not cache efficient and takes 240 log n steps

Related Prior Work

Internal Memory	Time	Max Disloc.	Total Disloc.	I/Os
Braverman, Mossel (2008)	$O(n^{3+f(p)})$	$O(\log n)$	0(n)	
Klein, Penninger, Sohler, Woodruff (2011)	$O(n^2)$	$O(\log n)$	$O(n \log n)$	
Geissmann, Leucci, Liu, Penna (2019)	$O(n \log n)$	0(log n)	0(n)	
External Memory				
Aggarwal, Vitter (1988) (cache-aware)	$O(n \log n)$			$O((N/B)\log_{M/B}($
Leiserson, Frigo, Prokop (1999) (cache-oblivious)	$O(n \log n)$			$O((N/B)\log_{M/B}($
Our work (cache-oblivious and cache-aware)	$O(n\log^2 n)$	$O(\log n)$	$O(n \log n)$	$O((N/B)\log_{M/B}($

Preliminary: Window-Sort

- Takes as input an array of size n with max dislocation at most $d_1 \leq n$
- Takes $O(d_1n)$ time in internal memory, and uses $O((nd_1/B) + (\log(d_1/d_2))(n/B)\log_{M/B}(n/B))$ I/Os in external memory
- Allows us to achieve noise tolerance for our later algorithms

Algorithm 1: Window-Sort $(A = \{a_0, a_1, \dots, a_{n-1}\}, d_1, d_2)$

- 1 for $w \leftarrow 2d_1, d_1, d_1/2, \ldots, 2d_2$ do
- foreach $i \leftarrow 0, 1, 2, \ldots, n-1$ do $\mathbf{2}$
 - $| r_i \leftarrow \max\{0, i w\} + |\{a_j < a_i : |j i| \le w\} |$
- 4 comparison key for a_i)
- 5 return A

3

[Geissmann, Leucci, Liu, Penna (2019)] • Outputs array with max dislocation at most $d_2/2$ w.h.p. as a function of d_2 (typically choose $d_2 = \Theta(\log n)$)

Sort A (deterministically) by nondecreasing r_i values (i.e., using r_i as the

Window-Merge-Sort

- Variant of merge sort that sorts with max dislocation $O(\log n)$ under persistent errors, w.h.p.
- Takes as input parameter d, the desired max dislocation, we choose $d = c \log n$ for some constant c > 0
- Not cache-oblivious, but sorts in external memory with optimal #I/Os, assuming $B = \Omega(\log n)$
- We first consider an internal memory version that runs in $O(n \log^2 n)$ time
- Given array A, split it into 2 subarrays A_1, A_2 of roughly equal size and recursively sort them
- Merge sublists by using Window-Sort as subroutine:
 - If $|A_1| + |A_2| \le 6d$, return Window-Sort $(A_1 \cup A_2, 4d, d)$

Window-Merge-Sort: merge step

Window-Merge-Sort: merge step and key lemma

while $|A_1| + |A_2| > 6d$ do Let S_1 be the first min $\{3d, |A_1|\}$ elements of A_1 Let S_2 be the first min $\{3d, |A_2|\}$ elements of A_2 Let $S \leftarrow S_1 \cup S_2$ Window-Sort(S, 4d, d)Let B' be the first d elements of (the near-sorted) S

will result in a sequence with max dislocation at most 3d/2 w.h.p.

Proof: Omitted

- Add B' to the end of B and remove the elements of B' from A_1 and A_2
- Lemma: If A_1 and A_2 each have max dislocation at most 3d/2, then merging them

External Window-Merge-Sort

- Divide A into $m = \Theta(M/B) \ge 2$ subarrays A_1, \dots, A_m instead, each of roughly equal size
- For the merge step, bring in the first $max\{3d, |A_i|\}$ elements from each A_i into a list S
- Call Window-Sort(S, 4md, d). Since $B = \Omega(\log n)$, fits entirely in internal memory
- Output the first d elements from that call and repeat

will result in a sequence with max dislocation at most 3d/2 w.h.p.

Lemma: If A_1, \ldots, A_m each have max dislocation at most 3d/2, then merging them

External Window-Merge-Sort

Theorem: Given an array A of n distinct comparable elements, one can deterministically sort A in $O(n \log^2 n)$ time in internal memory or in external memory to have max dislocation at most $O(\log n)$ w.h.p., assuming $B \geq \log n$.

- with $O((n/B)\log_{M/B}(n/B))$ I/Os subject to comparison errors with $p \le 1/16$ so as

Funnelsort and Cache-Obliviousness

- Introduced by Frigo, Leiserson and Prokop in 1999
- performance (e.g. by loop tiling: breaking problem into optimally sized blocks for a given cache)
- cache, regardless of cache size
- Analysis: work complexity W(n), cache complexity Q(n)
- requires tall-cache assumption, $M = \Omega(B^2)$

• Cache-Oblivious algorithms do not contain parameters dependent on M or B that can be tuned to optimize

• Such algorithms usually use divide-and-conquer: divide problem into smaller pieces until subproblem fits into

• Funnelsort: cache-oblivious sorting algorithm, W(n) = O(nlogn) and $Q(n) = \Theta((N/B)\log_{M/B}(N/B))$,

Preliminary: Funnelsort

- Split input into $n^{1/3}$ arrays of size $n^{2/3}$, sort them recursively
- Merge the $n^{1/3}$ sorted sequences using a $n^{1/3}$ -merger
- *k*-merger: recursive data structure that merges k sorted sequences
- Idea: to achieve noise tolerance, use Window-Sort for base case *k*-mergers

Figure 4-1: Illustration of a *k*-merger. A *k*-merger is built recursively out of \sqrt{k} left \sqrt{k} mergers $\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_{\sqrt{k}}$, a series of buffers, and one right \sqrt{k} -merger \mathcal{R} .

Constructing a k-merger

- Invariant: one k-merger invocation outputs k^3 elements of merged sequence
- To output k^3 elements, R gets invoked $k^{3/2}$ times
- Each left merger output connected to buffer of size $2k^{3/2}$
- Before each invocation of R, if any buffer i has $< k^{3/2}$ elements, invoke L_i once so that buffer has $\geq k^{3/2}$ elements

Figure 4-1: Illustration of a *k*-merger. A *k*-merger is built recursively out of \sqrt{k} left \sqrt{k} mergers $\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_{\sqrt{k}}$, a series of buffers, and one right \sqrt{k} -merger \mathcal{R} .

Window-Funnelsort

- Cache-oblivious, but requires $B = \Omega(\log n)$ in addition to tall-cache assumption
- $n^{1/3}$ -merger
- $< c \log n$ for constant c > 0
- k-mergers with $k > c \log n$ work the same (recursive) way as original Funnelsort

• Same general structure as Funnelsort: recursively sort $n^{1/3}$ sequences of size $n^{2/3}$, feed into

• Modify k-merger construction such that base-case merges are done using Window-Merge

• Original Funnelsort: base case at k = 2, Window-Funnelsort: base cases $\sqrt{clogn} \le k$

Window-Funnelsort

- We prove that Window-Funnelsort:
 - has optimal cache complexity $Q(n) = O((N/B)\log_{M/B}(N/B))$
 - has work complexity $W(n) = O(n \log^2 n)$
 - sorts with optimal maximum dislocation $O(\log n)$ under persistent errors, w.h.p.
- We provide a proof sketch for Q(n), and omit the remaining two proofs for this talk

Cache complexity of a *k*-merger

merger with $\sqrt{c \log n} \le k \le \alpha \sqrt{M}$ will fit entirely in the cache

 $\Rightarrow O(k + k^3/B)$ cache misses for reading/writing k^3 elements

Lemma: One invocation of a k-merger incurs $O(k + k^3/B + k^3\log_M k/B)$ cache misses.

- Proof sketch: From the previous lemma, and assuming $B = \Omega(\log n)$ and $M = \Omega(B^2)$, any k-
- In this case, since $B = O(\sqrt{M})$, there are at least $M/B = \Omega(k)$ blocks available for buffers
- We incur an additional $O(k^2/B)$ cache misses due to the $O(k^2)$ space used by k-merger

Cache complexity of a *k*-merger

at most $2k^{3/2} + 2\sqrt{k}$ times

which incurs at most \sqrt{k} misses and is repeated $k^{3/2}$ times

We have $Q_k \leq (2k^{3/2} + 2\sqrt{k})Q_{\sqrt{k}} + k^2$, which has solution $Q_k \leq O(k^3 \log_M k/B)$

Lemma: One invocation of a k-merger incurs $O(k + k^3/B + k^3\log_M k/B)$ cache misses.

Proof sketch (cont.): For k-mergers with $k > \alpha \sqrt{M}$, we invoke the internal \sqrt{k} -mergers a total of

The k-merger also needs to check before each invocation of R whether any buffers are empty,

Cache complexity of Window-Funnelsort

misses.

Proof sketch: We have $Q(n) = n^{1/3}Q(n^{2/3}) + Q_{n^{1/3}}$, where $Q_{n^{1/3}}$ is # of cache misses of $n^{1/3}$ -merger

From the previous lemma we know that $Q_{n^{1/3}} = O$

So we get $Q(n) = n^{1/3}Q(n^{2/3}) + O(n\log_M n/B)$, which has solution $Q(n) = O((N/B)\log_{M/B}(N/B))$

Theorem: Window-Funnelsort incurs at most $Q(n) = O((N/B)\log_{M/B}(N/B))$ cache

$$P(n^{1/3} + n/B + n\log_M n/B)$$

Conclusions/Future work

- setting (cache-aware and cache-oblivious)
- Improvements can be made for total dislocation and work complexity
- Can we do without the assumption that $B = \Omega(\log n)$?
- Can other cache-oblivious algorithms be made noise-tolerant? (e.g. cache-oblivious distribution sort)

Time

Our work (cache-oblivious and cache-aware)

Total Disloc. Max Disloc. I/Os $O(n\log^2 n)$ $O(n \log n)$ $O(\log n)$ $O((N/B)\log_{M/B}(N/B))$

• We provided cache-optimal and noise tolerant sorting algorithms in the external memory

