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Noisy Sorting Framework

• Sort 𝑛 distinct comparable elements

• Comparing two elements 𝑥, 𝑦 outputs true result independently according 

to a fixed probability 𝑝 < 1/2, otherwise outputs false (opposite) result

• Non-persistent errors: determination of correctness made independently 

for each comparison

• Persistent errors: if previously compared pair of elements (𝑥, 𝑦), return 

that result instead



Noisy Sorting Framework: Motivation

• A/B Testing

• Sport ranking



Noisy Sorting Framework: Evaluation

• Dislocation of an element 𝑥: distance between current position and sorted position

• Maximum dislocation of an array

• Total dislocation of an array

• Worst-case of 𝑂(𝑛) and 𝑂(𝑛!) respectively

• Known lower bounds of Ω(log	𝑛) and Ω(𝑛) for best-possible max and total dislocation 

under persistent comparison errors



Noisy Sorting Framework in External Memory

• Goal: sort 𝑛 items in external memory model using an optimal Θ((𝑁/𝐵)log ⁄# $(𝑁/𝐵)) 
I/Os, while also being tolerant to noisy comparisons

• Interested in both cache-aware (parameters involve 𝑀 and 𝐵) and cache-oblivious settings



Noisy Sorting Framework in External Memory

• Existing algorithms cannot be easily converted into an 

external memory algorithm

• They make use of noisy binary search, which involves a 

random walk in a BST

• Not cache efficient and takes 240	log	𝑛 steps
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Preliminary: Window-Sort
• Takes as input an array of size 𝑛 with max dislocation at most 𝑑! ≤ 𝑛 [Geissmann, Leucci, Liu, Penna (2019)]

• Outputs array with max dislocation at most ⁄𝑑" 2 w.h.p. as a function of 𝑑" (typically choose 𝑑" = Θ(log	𝑛))

• Takes 𝑂(𝑑!𝑛) time in internal memory, and uses 𝑂((𝑛𝑑!/𝐵) + (log(𝑑!/𝑑"))(𝑛/𝐵)log ⁄$ %(𝑛/𝐵)) I/Os in 

external memory

• Allows us to achieve noise tolerance for our later algorithms



Window-Merge-Sort

• Variant of merge sort that sorts with max dislocation 𝑂(log	𝑛) under persistent errors, w.h.p

• Takes as input parameter 𝑑, the desired max dislocation, we choose 𝑑 = 𝑐log𝑛 for some constant 𝑐 > 0

• Not cache-oblivious, but sorts in external memory with optimal #I/Os, assuming 𝐵 = Ω(log	𝑛)

• We first consider an internal memory version that runs in 𝑂(𝑛	log!	𝑛) time

• Given array 𝐴, split it into 2 subarrays 𝐴", 𝐴! of roughly equal size and recursively sort them

• Merge sublists by using Window-Sort as subroutine:

• If |𝐴"| + |𝐴!| ≤ 6𝑑, return Window-Sort 𝐴" ∪ 𝐴!, 4𝑑, 𝑑



Window-Merge-Sort: merge step



Window-Merge-Sort: merge step and key lemma

Lemma: If 𝐴% and 𝐴! each have max dislocation at most 3𝑑/2, then merging them 

will result in a sequence with max dislocation at most 3𝑑/2 w.h.p.

Proof: Omitted



External Window-Merge-Sort

• Divide 𝐴 into 𝑚 = Θ(𝑀/𝐵) ≥ 2 subarrays 𝐴%, … , 𝐴& instead, each of roughly equal size

• For the merge step, bring in the first 𝑚𝑎𝑥{3𝑑, |𝐴'|} elements from each 𝐴' into a list 𝑆

• Call Window-Sort(𝑆, 4𝑚𝑑, 𝑑). Since 𝐵 = Ω(log	𝑛), fits entirely in internal memory

•  Output the first 𝑑 elements from that call and repeat

Lemma: If 𝐴%, … , 𝐴& each have max dislocation at most 3𝑑/2, then merging them 

will result in a sequence with max dislocation at most 3𝑑/2 w.h.p.



Theorem: Given an array 𝐴 of 𝑛 distinct comparable elements, one can 

deterministically sort 𝐴 in 𝑂(𝑛	log! 𝑛) time in internal memory or in external memory 

with 𝑂((𝑛/𝐵)log ⁄# $(𝑛/𝐵)) I/Os subject to comparison errors with 𝑝 ≤ 1/16 so as 

to have max dislocation at most 𝑂(log	𝑛) w.h.p., assuming 𝐵 ≥ log𝑛.

External Window-Merge-Sort



Funnelsort and Cache-Obliviousness

• Introduced by Frigo, Leiserson and Prokop in 1999

• Cache-Oblivious algorithms do not contain parameters dependent on M or B that can be tuned to optimize 

performance (e.g. by loop tiling: breaking problem into optimally sized blocks for a given cache)

• Such algorithms usually use divide-and-conquer: divide problem into smaller pieces until subproblem fits into 

cache, regardless of cache size

• Analysis: work complexity 𝑊(𝑛), cache complexity 𝑄(𝑛)

• Funnelsort: cache-oblivious sorting algorithm, 𝑊(𝑛) = 𝑂(𝑛𝑙𝑜𝑔𝑛) and 𝑄(𝑛) = Θ((𝑁/𝐵)log ⁄" #(𝑁/𝐵)),

requires tall-cache assumption, 𝑀 = Ω(𝐵$)



Preliminary: Funnelsort

• Split input into 𝑛 ⁄% ( arrays of size 𝑛 ⁄! (, sort them recursively

• Merge the 𝑛 ⁄% ( sorted sequences using a 𝑛 ⁄% (-merger

• 𝑘-merger: recursive data structure that 

merges 𝑘 sorted sequences 

• Idea: to achieve noise tolerance, use 

Window-Sort for base case 𝑘-mergers



Constructing a k-merger

• Before each invocation of 𝑅, if any buffer 𝑖 has< 𝑘 ⁄% $ elements, invoke 𝐿& 

once so that buffer has ≥ 𝑘 ⁄% $ elements

• Invariant: one 𝑘-merger invocation outputs 

𝑘( elements of merged sequence

• To output 𝑘% elements, 𝑅 gets invoked 𝑘 ⁄% $ 

times

• Each left merger output connected to buffer of 

size 2𝑘 ⁄% $



Window-Funnelsort

• Cache-oblivious, but requires 𝐵 = Ω(log𝑛) in addition to tall-cache assumption

• Same general structure as Funnelsort: recursively sort 𝑛 ⁄% ( sequences of size 𝑛 ⁄! (, feed into 

𝑛 ⁄% (-merger

• Modify 𝑘-merger construction such that base-case merges are done using Window-Merge

• Original Funnelsort: base case at 𝑘 = 2, Window-Funnelsort: base cases 𝑐𝑙𝑜𝑔𝑛 ≤ 𝑘

< 𝑐log𝑛 for constant 𝑐 > 0

• 𝑘-mergers with 𝑘 > 𝑐log𝑛 work the same (recursive) way as original Funnelsort



Window-Funnelsort

• We prove that Window-Funnelsort:

• has optimal cache complexity 𝑄(𝑛) = 𝑂((𝑁/𝐵)log ⁄# $(𝑁/𝐵))

• has work complexity 𝑊(𝑛) = 𝑂(𝑛log!𝑛)

• sorts with optimal maximum dislocation 𝑂(log𝑛) under persistent errors, w.h.p.

• We provide a proof sketch for 𝑄(𝑛), and omit the remaining two proofs for this talk



Cache complexity of a 𝑘-merger

Lemma: One invocation of a 𝑘-merger incurs 𝑂(𝑘 + 𝑘(/𝐵 + 𝑘(log#𝑘/𝐵) cache misses.

Proof sketch: From the previous lemma, and assuming 𝐵 = Ω(log𝑛) and 𝑀 = Ω(𝐵!), any 𝑘-

merger with 𝑐log𝑛 ≤ 𝑘 ≤ 𝛼 𝑀 will fit entirely in the cache

In this case, since 𝐵 = 𝑂( 𝑀), there are at least 𝑀/𝐵 = Ω(𝑘) blocks available for buffers

⟹ 𝑂(𝑘 + 𝑘(/𝐵) cache misses for reading/writing 𝑘( elements

We incur an additional 𝑂(𝑘!/𝐵) cache misses due to the 𝑂(𝑘!) space used by 𝑘-merger



Cache complexity of a 𝑘-merger

Lemma: One invocation of a 𝑘-merger incurs 𝑂(𝑘 + 𝑘(/𝐵 + 𝑘(log#𝑘/𝐵) cache misses.

Proof sketch (cont.): For 𝑘-mergers with 𝑘 > 𝛼 𝑀, we invoke the internal 𝑘-mergers a total of 

at most 2𝑘 ⁄( ! + 2 𝑘 times

The 𝑘-merger also needs to check before each invocation of 𝑅 whether any buffers are empty, 

which incurs at most 𝑘 misses and is repeated 𝑘 ⁄( ! times

We have 𝑄) ≤ (2𝑘 ⁄( ! + 2 𝑘)𝑄 ) + 𝑘
!, which has solution 𝑄) ≤ 𝑂(𝑘(log#𝑘/𝐵)



Cache complexity of Window-Funnelsort

Theorem: Window-Funnelsort incurs at most 𝑄(𝑛) = 𝑂((𝑁/𝐵)log ⁄# $(𝑁/𝐵)) cache 

misses.

Proof sketch: We have 𝑄(𝑛) = 𝑛 ⁄" #𝑄(𝑛 ⁄$ #) + 𝑄% ⁄" #, where 𝑄% ⁄" # is # of cache misses of 𝑛 ⁄" #-merger

From the previous lemma we know that 𝑄% ⁄" # = 𝑂(𝑛 ⁄" # + 𝑛/𝐵 + 𝑛log&𝑛/𝐵)

So we get 𝑄(𝑛) = 𝑛 ⁄" #𝑄(𝑛 ⁄$ #) + 𝑂(𝑛log&𝑛/𝐵), which has solution 𝑄(𝑛) = 𝑂((𝑁/𝐵)log ⁄& '(𝑁/𝐵))



Conclusions/Future work

• We provided cache-optimal and noise tolerant sorting algorithms in the external memory 

setting (cache-aware and cache-oblivious)

• Improvements can be made for total dislocation and work complexity

• Can we do without the assumption that 𝐵 = Ω(log𝑛)?

• Can other cache-oblivious algorithms be made noise-tolerant? (e.g. cache-oblivious 

distribution sort)

Our work (cache-oblivious and cache-aware) 𝑂((𝑁/𝐵)log ⁄) *(𝑁/𝐵))𝑂(log𝑛) 𝑂(𝑛log𝑛)𝑂(𝑛log'𝑛)

Time Max Disloc. Total Disloc. I/Os


