
External-Memory Sorting with Comparison Errors

Michael T. Goodrich and Evrim Ozel
Department of Computer Science

University of California, Irvine

Noisy Sorting Framework

• Sort 𝑛 distinct comparable elements

• Comparing two elements 𝑥, 𝑦 outputs true result independently according

to a fixed probability 𝑝 < 1/2, otherwise outputs false (opposite) result

• Non-persistent errors: determination of correctness made independently

for each comparison

• Persistent errors: if previously compared pair of elements (𝑥, 𝑦), return

that result instead

Noisy Sorting Framework: Motivation

• A/B Testing

• Sport ranking

Noisy Sorting Framework: Evaluation

• Dislocation of an element 𝑥: distance between current position and sorted position

• Maximum dislocation of an array

• Total dislocation of an array

• Worst-case of 𝑂(𝑛) and 𝑂(𝑛!) respectively

• Known lower bounds of Ω(log	𝑛) and Ω(𝑛) for best-possible max and total dislocation

under persistent comparison errors

Noisy Sorting Framework in External Memory

• Goal: sort 𝑛 items in external memory model using an optimal Θ((𝑁/𝐵)log ⁄# $(𝑁/𝐵))
I/Os, while also being tolerant to noisy comparisons

• Interested in both cache-aware (parameters involve 𝑀 and 𝐵) and cache-oblivious settings

Noisy Sorting Framework in External Memory

• Existing algorithms cannot be easily converted into an

external memory algorithm

• They make use of noisy binary search, which involves a

random walk in a BST

• Not cache efficient and takes 240	log	𝑛 steps

Related Prior Work

Time Max Disloc. Total Disloc.

𝑂(𝑛!"#(%)) 𝑂(log	𝑛) 𝑂(𝑛)Braverman, Mossel (2008)

Klein, Penninger, Sohler, Woodruff (2011) 𝑂(𝑛') 𝑂(log	𝑛) 𝑂(𝑛	log	𝑛)

Geissmann, Leucci, Liu, Penna (2019) 𝑂(𝑛	log	𝑛) 𝑂(log	𝑛) 𝑂(𝑛)

Internal Memory

External Memory

Aggarwal, Vitter (1988) (cache-aware)

I/Os

𝑂((𝑁/𝐵)log ⁄) *(𝑁/𝐵))

Leiserson, Frigo, Prokop (1999) (cache-oblivious) 𝑂((𝑁/𝐵)log ⁄) *(𝑁/𝐵))

−

− −

−

Our work (cache-oblivious and cache-aware) 𝑂((𝑁/𝐵)log ⁄) *(𝑁/𝐵))𝑂(log	𝑛) 𝑂(𝑛	log	𝑛)

𝑂(𝑛	log	𝑛)

𝑂(𝑛	log	𝑛)

𝑂(𝑛 log'	𝑛)

−

−

−

Preliminary: Window-Sort
• Takes as input an array of size 𝑛 with max dislocation at most 𝑑! ≤ 𝑛 [Geissmann, Leucci, Liu, Penna (2019)]

• Outputs array with max dislocation at most ⁄𝑑" 2 w.h.p. as a function of 𝑑" (typically choose 𝑑" = Θ(log	𝑛))

• Takes 𝑂(𝑑!𝑛) time in internal memory, and uses 𝑂((𝑛𝑑!/𝐵) + (log(𝑑!/𝑑"))(𝑛/𝐵)log ⁄$ %(𝑛/𝐵)) I/Os in

external memory

• Allows us to achieve noise tolerance for our later algorithms

Window-Merge-Sort

• Variant of merge sort that sorts with max dislocation 𝑂(log	𝑛) under persistent errors, w.h.p

• Takes as input parameter 𝑑, the desired max dislocation, we choose 𝑑 = 𝑐log𝑛 for some constant 𝑐 > 0

• Not cache-oblivious, but sorts in external memory with optimal #I/Os, assuming 𝐵 = Ω(log	𝑛)

• We first consider an internal memory version that runs in 𝑂(𝑛	log!	𝑛) time

• Given array 𝐴, split it into 2 subarrays 𝐴", 𝐴! of roughly equal size and recursively sort them

• Merge sublists by using Window-Sort as subroutine:

• If |𝐴"| + |𝐴!| ≤ 6𝑑, return Window-Sort 𝐴" ∪ 𝐴!, 4𝑑, 𝑑

Window-Merge-Sort: merge step

Window-Merge-Sort: merge step and key lemma

Lemma: If 𝐴% and 𝐴! each have max dislocation at most 3𝑑/2, then merging them

will result in a sequence with max dislocation at most 3𝑑/2 w.h.p.

Proof: Omitted

External Window-Merge-Sort

• Divide 𝐴 into 𝑚 = Θ(𝑀/𝐵) ≥ 2 subarrays 𝐴%, … , 𝐴& instead, each of roughly equal size

• For the merge step, bring in the first 𝑚𝑎𝑥{3𝑑, |𝐴'|} elements from each 𝐴' into a list 𝑆

• Call Window-Sort(𝑆, 4𝑚𝑑, 𝑑). Since 𝐵 = Ω(log	𝑛), fits entirely in internal memory

• Output the first 𝑑 elements from that call and repeat

Lemma: If 𝐴%, … , 𝐴& each have max dislocation at most 3𝑑/2, then merging them

will result in a sequence with max dislocation at most 3𝑑/2 w.h.p.

Theorem: Given an array 𝐴 of 𝑛 distinct comparable elements, one can

deterministically sort 𝐴 in 𝑂(𝑛	log! 𝑛) time in internal memory or in external memory

with 𝑂((𝑛/𝐵)log ⁄# $(𝑛/𝐵)) I/Os subject to comparison errors with 𝑝 ≤ 1/16 so as

to have max dislocation at most 𝑂(log	𝑛) w.h.p., assuming 𝐵 ≥ log𝑛.

External Window-Merge-Sort

Funnelsort and Cache-Obliviousness

• Introduced by Frigo, Leiserson and Prokop in 1999

• Cache-Oblivious algorithms do not contain parameters dependent on M or B that can be tuned to optimize

performance (e.g. by loop tiling: breaking problem into optimally sized blocks for a given cache)

• Such algorithms usually use divide-and-conquer: divide problem into smaller pieces until subproblem fits into

cache, regardless of cache size

• Analysis: work complexity 𝑊(𝑛), cache complexity 𝑄(𝑛)

• Funnelsort: cache-oblivious sorting algorithm, 𝑊(𝑛) = 𝑂(𝑛𝑙𝑜𝑔𝑛) and 𝑄(𝑛) = Θ((𝑁/𝐵)log ⁄" #(𝑁/𝐵)),

requires tall-cache assumption, 𝑀 = Ω(𝐵$)

Preliminary: Funnelsort

• Split input into 𝑛 ⁄% (arrays of size 𝑛 ⁄! (, sort them recursively

• Merge the 𝑛 ⁄% (sorted sequences using a 𝑛 ⁄% (-merger

• 𝑘-merger: recursive data structure that

merges 𝑘 sorted sequences

• Idea: to achieve noise tolerance, use

Window-Sort for base case 𝑘-mergers

Constructing a k-merger

• Before each invocation of 𝑅, if any buffer 𝑖 has< 𝑘 ⁄% $ elements, invoke 𝐿&

once so that buffer has ≥ 𝑘 ⁄% $ elements

• Invariant: one 𝑘-merger invocation outputs

𝑘(elements of merged sequence

• To output 𝑘% elements, 𝑅 gets invoked 𝑘 ⁄% $

times

• Each left merger output connected to buffer of

size 2𝑘 ⁄% $

Window-Funnelsort

• Cache-oblivious, but requires 𝐵 = Ω(log𝑛) in addition to tall-cache assumption

• Same general structure as Funnelsort: recursively sort 𝑛 ⁄% (sequences of size 𝑛 ⁄! (, feed into

𝑛 ⁄% (-merger

• Modify 𝑘-merger construction such that base-case merges are done using Window-Merge

• Original Funnelsort: base case at 𝑘 = 2, Window-Funnelsort: base cases 𝑐𝑙𝑜𝑔𝑛 ≤ 𝑘

< 𝑐log𝑛 for constant 𝑐 > 0

• 𝑘-mergers with 𝑘 > 𝑐log𝑛 work the same (recursive) way as original Funnelsort

Window-Funnelsort

• We prove that Window-Funnelsort:

• has optimal cache complexity 𝑄(𝑛) = 𝑂((𝑁/𝐵)log ⁄# $(𝑁/𝐵))

• has work complexity 𝑊(𝑛) = 𝑂(𝑛log!𝑛)

• sorts with optimal maximum dislocation 𝑂(log𝑛) under persistent errors, w.h.p.

• We provide a proof sketch for 𝑄(𝑛), and omit the remaining two proofs for this talk

Cache complexity of a 𝑘-merger

Lemma: One invocation of a 𝑘-merger incurs 𝑂(𝑘 + 𝑘(/𝐵 + 𝑘(log#𝑘/𝐵) cache misses.

Proof sketch: From the previous lemma, and assuming 𝐵 = Ω(log𝑛) and 𝑀 = Ω(𝐵!), any 𝑘-

merger with 𝑐log𝑛 ≤ 𝑘 ≤ 𝛼 𝑀 will fit entirely in the cache

In this case, since 𝐵 = 𝑂(𝑀), there are at least 𝑀/𝐵 = Ω(𝑘) blocks available for buffers

⟹ 𝑂(𝑘 + 𝑘(/𝐵) cache misses for reading/writing 𝑘(elements

We incur an additional 𝑂(𝑘!/𝐵) cache misses due to the 𝑂(𝑘!) space used by 𝑘-merger

Cache complexity of a 𝑘-merger

Lemma: One invocation of a 𝑘-merger incurs 𝑂(𝑘 + 𝑘(/𝐵 + 𝑘(log#𝑘/𝐵) cache misses.

Proof sketch (cont.): For 𝑘-mergers with 𝑘 > 𝛼 𝑀, we invoke the internal 𝑘-mergers a total of

at most 2𝑘 ⁄(! + 2 𝑘 times

The 𝑘-merger also needs to check before each invocation of 𝑅 whether any buffers are empty,

which incurs at most 𝑘 misses and is repeated 𝑘 ⁄(! times

We have 𝑄) ≤ (2𝑘 ⁄(! + 2 𝑘)𝑄) + 𝑘
!, which has solution 𝑄) ≤ 𝑂(𝑘(log#𝑘/𝐵)

Cache complexity of Window-Funnelsort

Theorem: Window-Funnelsort incurs at most 𝑄(𝑛) = 𝑂((𝑁/𝐵)log ⁄# $(𝑁/𝐵)) cache

misses.

Proof sketch: We have 𝑄(𝑛) = 𝑛 ⁄" #𝑄(𝑛 ⁄$ #) + 𝑄% ⁄" #, where 𝑄% ⁄" # is # of cache misses of 𝑛 ⁄" #-merger

From the previous lemma we know that 𝑄% ⁄" # = 𝑂(𝑛 ⁄" # + 𝑛/𝐵 + 𝑛log&𝑛/𝐵)

So we get 𝑄(𝑛) = 𝑛 ⁄" #𝑄(𝑛 ⁄$ #) + 𝑂(𝑛log&𝑛/𝐵), which has solution 𝑄(𝑛) = 𝑂((𝑁/𝐵)log ⁄& '(𝑁/𝐵))

Conclusions/Future work

• We provided cache-optimal and noise tolerant sorting algorithms in the external memory

setting (cache-aware and cache-oblivious)

• Improvements can be made for total dislocation and work complexity

• Can we do without the assumption that 𝐵 = Ω(log𝑛)?

• Can other cache-oblivious algorithms be made noise-tolerant? (e.g. cache-oblivious

distribution sort)

Our work (cache-oblivious and cache-aware) 𝑂((𝑁/𝐵)log ⁄) *(𝑁/𝐵))𝑂(log𝑛) 𝑂(𝑛log𝑛)𝑂(𝑛log'𝑛)

Time Max Disloc. Total Disloc. I/Os

